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Preliminaries

» Finite set of alternatives A {a,b,c}
» A s not fixed

» Linear preference relations = € £ (A) azb=c

» Fractional preference profiles R € A(Z (A)) = R|a Yo s Yo
» A(Z(A)) denotes the (JA|!-1)-dimensional unit simplex a a b
» implicitly assumes anonymity and homogeneity g g g
» Wil only consider rational fractions

» Fractional collective preference Rix,y)= >  R()  Rab)=5%

>c ¥ (A): X=y
» Majority margin grlx,y) = R(x,y) - R(ly,x) grla,b)=%5
» (Weak) Condorcet winner x with gr(x,y) = O for all y a
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Probabllistic
Soclal Choice Functions

» A probabilistic social choice function (PSCF) f maps a
preference profile Re #|a to a non-empty subset of A(A).

»  fis (Upper hemi-)continuous (continuity)
»  f(R) is a convex set (convexity)
» ReR|ix,y and R(x,y)=1 imply f(R) = {x} (Unanimity)
» {ReR|a : |f(R)|=1} is dense in #|a (decisiveness)

» Non-probabilistic SCFs are PSCFs where, for all Re #|a,
f(R)=A(X) for some XCA.

» The axioms we propose for PSCFs coincide with classic
axioms for the special case of non-probabilistic SCFs.
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Random Dictatorship g s

» One agent is picked uniformly at random and his most
poreferred alternative is implemented as the social choice.

» RDR) ={ ) R()  max(A) ] 2 ¥ Y
>c ¥ (A) g a a b

b c cC

c b a

RD(R) = {3 a + ¥ b)

» RD is a (single-valued) PSCF.
» |t satisfies continuity, convexity, unanimity, and decisiveness.
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Population-Consistency

¥ ¥
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Whenever two disjoint electorates agree on a lottery,
this lottery should also be chosen by the union of both electorates.
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Population-Consistency
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a b a b a a b
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cC a b a c b a
R R’ "R+ 1R

a+ b oa+ e b oa+ e b

» f(R) nfR) AR+ (T-A)R’)
»  strong population-consistency requires equality (not only inclusion)
whenever left-hand-side is non-empty

» first proposed by Smith (1973), Young (1974), Fine & Fine (1974)
» also known as “reinforcement” (Moulin, 1988)

»  variants used by Fishburn, Merlin, Myerson, Saari, etc.
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Composition-Consistency

[&c?&j &V 0O

O O
O Oy o©
p \ 4 \

L L

Decomposable preference profiles are treated component-wise.

t
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Composition-Consistency

Vs V6 V1o 1o 15 3 24
a a b a b b’ b
b b b’ b a b b’
b b a
R R|a R|s
wa+3b+Y¥b’ oa+ b %b+ b’

» fiRla) o IR|B) = f(R)
» Laffond, Laslier, and Le Breton (1996)

»  Cloning-consistency precursors: Arrow and Hurwicz (1972),
Maskin (1979), Moulin (1986), Tideman (1987)
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Non-Probabillistic
Social Choice

Marquis de Condorcet

» All scoring rules satisfy population-consistency.
(Smith 1973; Young, 1974)

» No Condorcet extension satisfies population-consistency.
(Young and Levenglick, 1978)

» Many Condorcet extensions satisfy composition-
CONSIStENCY. (Laffond et al., 1996)

» No Pareto-optimal scoring rule satisfies composition-
consistency. (asiier, 1996)

» Theorem: There is no SCF that satisfies population-
consistency and composition-consistency.

» But: These two axioms uniquely characterize a PSCF.
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Maximal Lotteries

Germain Kreweras Peter C. Fishburn

» Kreweras (1965) and Fishburn (1984)

» rediscovered by Laffond et al. (1993), Felsenthal and Machover
(1992), Fisher and Ryan (1995), Rivest and Shen (2010)

» Extend gr to lotteries: gr(p,q) = Dxy PKX) - qV) - grlX,Y)

» fractional collective preferences over lotteries

» pis a maximal lottery, peML(R), if gr(p,q)=0 for all geA(A).

»  probabilistic Condorcet winner
» always exists due to Minimax Theorem (v. Neumann, 1928)

»  Set of profiles with unigue maximal lotteries is open and dense.

> set of profiles with multiple maximal lotteries is negligible
» always unigue for odd number of voters (Laffond et al., 1997)
» generalized uniqueness conditions by Le Breton (2005)
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» [wo alternatives

» gr can be interpreted as a symmetric zero-sum game.

Examples
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Maximal lotteries
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Random dictatorship
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»  Maximal lotteries are mixed minimax strategies.
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» The unigue maximal lottery is 3/5a + 1/5b + 1/5 c.
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Main Result

4 )
» Theorem: A PSCF f satisfies population-consistency and

composition-consistency iff f=ML.

-

» Proof structure:
» - Composition-consistency implies neutrality.
» Two-alternative characterization (via three-alternative profiles)
»  Condorcet-consistency around uniform profile

» fC ML.

Assume for contradiction that 7 yields a lottery that is not maximal.
Construct a Condorcet profile in which a uniform lottery is returned.
Derive a density violation.

» ML Cf.

For any vertex of the set of maximal lotteries in a profile, construct a sequence of
profiles that converges to the original profile and whose unique maximal lotteries
converge to the original maximal lottery.

Apply continuity and convexity.
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Two-Alternative Proof

» Lemma: Let f be a composition-consistent PSCF and A={x, y}.
pef(R) with pzx,y implies f(R)= A(A).
»  Proof: Let r=R(x,y).

r 1-r r 1-r 1 1-r
X Yy X Yy X Yy
y X X X y X
y X
AX + (T-A)y A2X + A(T-A)X" + (1-A)y A2X + (1-A%)y

»  Hence, A°x + (1-A9)y e f(R).
»  Repeated application, continuity, and convexity imply the statement.

» As a consequence, RD violates composition-consistency.
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Two-Alternative Proof (ctd.)

]
“Simple majority rule”
pX)
Random
dictatorship
0
0 r o 1

R(Xy)
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Remarks

» Independence of axioms
»  population, not composition: random dictatorship RD
» - composition, not population: maximal lotteries variant ML3

» ML almost always satisfy strong population-consistency

» Composition-consistency can be weakened to cloning-
consistency when also requiring Condorcet-consistency
» RD satisfies cloning-consistency

» ML also satisfy agenda-consistency (Sen’s a and y)

» Axioms imply Fishburn’s C2 (pairwiseness) as well as
Condorcet-consistency.
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Remarks (ctd.)

» Possible non-probabillistic interpretation of outcomes as
fractional division (e.g., budget division, time shares)

»  Axioms are equally natural.

» Pareto-dominated alternatives always get zero probability in
every maximal |ottery.
» In fact, ML is even SD-efficient (Aziz et al., 2012).

» ML does not require asymmetry, completeness, or even
transitivity of preferences.
»  Random dictatorship requires unigue maximum.

» In assignment domain, ML are known as popular mixed
matchings (Kavitha et al., 2011).

» ML can be efficiently computed via linear programming.
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: : Random Serial Borda’s
Maximal Lotteries : .
Dictatorship Rule
population-consistency only for strict prefs
agenda-consistency —
cloning-consistency | —
even composition-consistency
Condorcet-consistency — —
(weak SD-) strategyproofness — —
weak group-strategyproofness —
(weak SD-) participation
even for groups even very strongly
. . only for strict prefs
(SD') eff|C|ency otherwise only ex post
- . .- #P-complete
efficient computability i P for strict pref
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