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ABSTRACT
One of the central economic paradigms in multi-agent systems
is that agents should not be better off by acting dishonestly. In
the context of collective decision-making, this axiom is known
as strategyproofness and turns out to be rather prohibitive, even
when allowing for randomization. In particular, Gibbard’s random
dictatorship theorem shows that only rather unattractive social de-
cision schemes (SDSs) satisfy strategyproofness on the full domain
of preferences. In this paper, we obtain more positive results by
investigating strategyproof SDSs on the Condorcet domain, which
consists of all preference profiles that admit a Condorcet winner. In
more detail, we show that, if the number of voters 𝑛 is odd, every
strategyproof and non-imposing SDS on the Condorcet domain
can be represented as a mixture of dictatorial SDSs and the Con-
dorcet rule (which chooses the Condorcet winner with probability
1). Moreover, we prove that the Condorcet domain is a maximal
connected domain that allows for attractive strategyproof SDSs if
𝑛 is odd as only random dictatorships are strategyproof and non-
imposing on any sufficiently connected superset of it.We also derive
analogous results for even 𝑛 by slightly extending the Condorcet
domain. Finally, we also characterize the set of group-strategyproof
and non-imposing SDSs on the Condorcet domain and its supersets.
These characterizations strengthen Gibbard’s random dictatorship
theorem and establish that the Condorcet domain is essentially a
maximal domain that allows for attractive strategyproof SDSs.
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1 INTRODUCTION
Strategyproofness—no agent should be better of by acting dishon-
estly—is one of the central economic paradigms in multi-agent
systems [6, 31, 47]. An important challenge for such systems is the
identification of socially desirable outcomes by letting the agents
cast votes that represent their preferences over the possible alter-
natives. A multitude of theorems in economic theory have shown
that even rather basic properties of voting rules cannot be satisfied
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simultaneously. In this context, strategyproofness is known to be a
particularly restrictive axiom. This is exemplified by the Gibbard-
Satterthwaite theorem which states that dictatorships are the only
deterministic voting rules that satisfy strategyproofness and non-
imposition (i.e., every alternative is elected for some preference
profile). Since dictatorships are not acceptable for most applications,
this result is commonly considered an impossibility theorem.

One of the most successful escape routes from the Gibbard-
Satterthwaite impossibility is to restrict the domain of feasible
preference profiles. For instance, Moulin [29] prominently showed
that there are attractive strategyproof voting rules on the domain of
single-peaked preference profiles, and various other restricted do-
mains of preferences have been considered since then [e.g., 4, 21, 32,
43]. The idea behind domain restrictions is that the voters’ prefer-
ences often obey structural constraints and thus, not all preference
profiles are likely or plausible. A particularly significant constraint
is the existence of a Condorcet winner which is an alternative that
is favored to every other alternative by a majority of the voters.
Apart from its natural appeal, this concept is important because
there is strong empirical evidence that real-world elections usually
admit Condorcet winners [23, 27, 40]. This motivates the study of
the Condorcet domain which consists precisely of the preference
profiles that admit a Condorcet winner. Note that the Condorcet
domain is a superset of several important domains such as those
of single-peaked and single-dipped preferences when the number
of voters is odd. There are several results showing the existence
of attractive strategyproof voting rules on the Condorcet domain.
In particular, Campbell and Kelly [10] characterize the Condorcet
rule, which always picks the Condorcet winner, as the only strat-
egyproof, non-imposing, and non-dictatorial voting rule on the
Condorcet domain if the number of voters is odd.

In this paper, we focus on randomized voting rules, so-called
social decision schemes (SDSs). Gibbard [25] has shown that ran-
domization unfortunately does not allow for much more leeway
beyond the negative consequences of the Gibbard-Satterthwaite
theorem: random dictatorships, which select each voter with a fixed
probability and elect the favorite alternative of the chosen voter,
are the only SDSs on the full domain that satisfy strategyproofness
and non-imposition (which in the randomized setting requires that
every alternative is chosen with probability 1 for some preference
profile). Thus, these SDSs are merely “mixtures of dictatorships”.

In order to circumvent this negative result, we are interested in
large domains that allow for strategyproof and non-imposing SDSs
apart from random dictatorships. A natural candidate for this is the
Condorcet domain and, indeed, we show that the Condorcet do-
main is essentially a maximal domain that allows for strategyproof,
non-imposing, and “non-randomly dictatorial” social choice. In



more detail, we prove that, if the number of voters 𝑛 is odd, every
strategyproof and non-imposing SDS on the Condorcet domain can
be represented as a mixture of dictatorial SDSs and the Condorcet
rule (which chooses the Condorcet winner with probability 1). This
result entails that the Condorcet rule is the only strategyproof, non-
imposing, and completely “non-randomly dictatorial” SDS on the
Condorcet domain for odd 𝑛. Moreover, we show that, if 𝑛 is odd,
the Condorcet domain is a maximal domain that allows for strate-
gyproof and non-imposing SDSs other than random dictatorships.
This theorem highlights the importance of Condorcet winners for
the existence of attractive strategyproof SDSs.

Unfortunately, our results for the Condorcet domain fail if the
number of voters 𝑛 is even because, in this case, a single voter
cannot change the Condorcet winner. For extending our results
to an even number of voters, we consider tie-breaking Condorcet
domains, which contain all preference profiles that have a Con-
dorcet winner after majority ties are broken according to a fixed
tie-breaking order. Tie-breaking Condorcet domains are supersets
of the Condorcet domain for even𝑛, andwe derive analogous results
for these domains as for the Condorcet domain: if 𝑛 is even, only
mixtures of random dictatorships and the tie-breaking Condorcet
rule (which chooses the Condorcet winner after the majority ties
have been broken) are strategyproof and non-imposing on these
domains, and only random dictatorships satisfy these properties on
connected supersets. Finally, we also characterize the set of group-
strategyproof and non-imposing SDSs on the Condorcet domain
and most of its supersets independently of the parity of 𝑛: while
the Condorcet rule satisfies these axioms on the Condorcet domain,
only dictatorships are able to do so on most of its superdomains.

In summary, our results demonstrate two important insights:
(i) the Condorcet domain is essentially a maximal domain that al-
lows for strategyproof, non-randomly dictatorial, and non-imposing
SDSs, and (ii) the (deterministic) Condorcet rule is the most appeal-
ing strategyproof voting rule on this domain, even if we allow for
randomization. Our characterizations can also be seen as attractive
complements to classic negative results for the full domain, whereas
our results for supersets of the (tie-breaking) Condorcet domain
significantly strengthen these negative results. In particular, our
theorems imply statements by Barberà [2] and Campbell and Kelly
[10] as well as the Gibbard-Satterthwaite theorem [24, 46] and the
random dictatorship theorem [25]. A more detailed comparison
between our results to these classic theorems is given in Table 1.

2 RELATEDWORK
Restricting the domain of preference profiles in order to circumvent
classic impossibility theorems has a long tradition and remains an
active research area to date. In particular, the existence of attrac-
tive deterministic voting rules that satisfy strategyproofness has
been shown for a number of domains. Classic examples include
the domains of single-peaked [29], single-dipped [3], and single-
crossing [43] preference profiles. More recent positive results focus
on broader but more technical domains such as the domains of
multi-dimensionally single-peaked or semi single-peaked prefer-
ence profiles [e.g., 4, 13, 30, 39]. On the other hand, domain restric-
tions are also used to strengthen impossibility results by proving
them for smaller domains [e.g., 1, 26, 44]. In more recent research,

the possibility and impossibility results converge by giving pre-
cise conditions under which a domain allows for strategyproof and
non-dictatorial deterministic voting rules [13, 14, 17, 42].

While similar results have also been put forward for SDSs, this
setting is not as well understood. For instance, Ehlers et al. [19]
have shown the existence of attractive strategyproof SDSs on the
domain of single-peaked preference profiles [see also 37, 38]. The
existence of strategyproof and non-imposing SDSs other than ran-
dom dictatorships has also been investigated for a variety of other
domains [35, 36, 41]. Following a more general approach, Chatterji
et al. [15] and Chatterji and Zeng [16] identify criteria for deciding
whether a domain admits such SDSs.

The strong interest in restricted domains also led to the study of
many computational problems for restricted domains [e.g., 5, 9, 18,
20, 22, 33, 34]. For instance, Bredereck et al. [9] give an algorithm
for recognizing whether a preference profile is single-crossing. Note
that for the Condorcet domain, this problem can be solved efficiently
as it is easy to verify the existence of a Condorcet winner.

Finally, observe that all aforementioned results are restricted to
Cartesian domains, i.e., domains of the form D = X𝑁 , where X
is a set of preference relations. However, the Condorcet domain
is not Cartesian. In this sense, the only results directly related to
ours are the ones by Campbell and Kelly [10] and their follow-
up work [11, 12, 28]. These papers can be seen as predecessors of
our work since they investigate strategyproof deterministic voting
rules on the Condorcet domain. In particular, our results extend the
results by Campbell and Kelly [10] in several ways: we allow for
randomization, we explore the case of even 𝑛 by slightly extending
the domain, we demonstrate the boundary of the possibility results,
and we analyze the consequences of group-strategyproofness.

3 PRELIMINARIES
Let 𝑁 = {1, . . . , 𝑛} denote a finite set of voters and 𝐴 = {𝑎, 𝑏, . . . }
be a finite set of𝑚 alternatives. Throughout the paper, we assume
that there are 𝑛 ≥ 3 voters and 𝑚 ≥ 3 alternatives. Every voter
𝑖 ∈ 𝑁 is equipped with a preference relation ≻𝑖 which is a complete,
transitive, and anti-symmetric binary relation on𝐴. We define R as
the set of all preference relations on 𝐴. A preference profile 𝑅 ∈ R𝑁

consists of the preference relations of all voters 𝑖 ∈ 𝑁 . A domain
of preference profiles D is a subset of the full domain R𝑁 . When
writing preference profiles, we represent preference relations as
comma-separated lists and indicate the set of voters who share a
preference relation directly before the preference relation. Finally,
we use “. . . ” to indicate that the missing alternatives can be ordered
arbitrarily. For instance, {1, 2} : 𝑎, 𝑏, 𝑐, . . . means that voters 1 and 2
prefer 𝑎 to 𝑏 to 𝑐 to all remaining alternatives, which can be ordered
arbitrarily. We omit the brackets for singleton sets of voters.

The main object of study in this paper are social decision schemes
(SDSs) which are voting rules that may use randomization to de-
termine the winner of an election. More formally, an SDS maps
every preference profile 𝑅 of a domain D to a lottery over the al-
ternatives that determines the winning chance of every alternative.
A lottery 𝑝 is a probability distribution over the alternatives, i.e.,
𝑝 (𝑥) ≥ 0 for all 𝑥 ∈ 𝐴 and

∑
𝑥∈𝐴 𝑝 (𝑥) = 1. We define Δ(𝐴) as the

set of all lotteries over 𝐴. Formally, an SDS on a domain D is then



a function of the type 𝑓 : D → Δ(𝐴). Hence, SDSs are a general-
ization of deterministic voting rules which choose an alternative
with probability 1 in every preference profile. The term 𝑓 (𝑅, 𝑥)
denotes the probability assigned to 𝑥 by the lottery 𝑓 (𝑅). For every
set𝑋 ⊆ 𝐴 and lottery 𝑝 , we define 𝑝 (𝑋 ) = ∑

𝑥∈𝐴 𝑝 (𝑥); in particular
𝑓 (𝑅,𝑋 ) = ∑

𝑥∈𝑋 𝑓 (𝑅, 𝑥). Finally, an SDS 𝑓 : D → Δ(𝐴) is a mix-
ture of SDSs 𝑔1, . . . , 𝑔𝑘 if there are values _𝑖 ≥ 0 for 𝑖 ∈ {1, . . . , 𝑘}
such that 𝑓 (𝑅) = ∑𝑘

𝑖=1 _𝑖𝑔𝑖 (𝑅) for all profiles 𝑅 ∈ D.
A natural desideratum for an SDS 𝑓 : D → Δ(𝐴) is non-impo-

sition which requires that for every alternative 𝑥 ∈ 𝐴 there is a
profile 𝑅 ∈ D such that 𝑓 (𝑅, 𝑥) = 1. A prominent strengthening
of this property is ex post efficiency. In order to define this axiom,
we say an alternative 𝑥 ∈ 𝐴 Pareto-dominates another alternative
𝑦 ∈ 𝐴 \ {𝑥} in a profile 𝑅 if 𝑥 ≻𝑖 𝑦 for all voters 𝑖 ∈ 𝑁 . Then, an SDS
𝑓 : D → Δ(𝐴) is ex post efficient if 𝑓 (𝑅, 𝑥) = 0 for all alternatives
𝑥 ∈ 𝐴 and profiles 𝑅 ∈ D such that 𝑥 is Pareto-dominated in 𝑅.

3.1 Strategyproofness & Random Dictatorships
Strategic manipulation is one of the central issues in social choice
theory: voters might be better off by voting dishonestly. Since
satisfactory collective decisions require the voters’ true preferences,
SDSs should incentivize honest voting. In order to formalize this,
we need to specify how voters compare lotteries over alternatives.
The most prominent approach for this is based on (first order)
stochastic dominance [e.g., 19, 25, 35]. Let the upper contour set
𝑈 (≻𝑖 , 𝑥) = {𝑦 ∈ 𝐴 : 𝑦 ≻𝑖 𝑥 ∨ 𝑦 = 𝑥} be the set of alternatives that
voter 𝑖 weakly prefers to 𝑥 . Then, (first order) stochastic dominance
states that a voter 𝑖 prefers a lottery 𝑝 to another lottery 𝑞, denoted
by 𝑝 ≿SD

𝑖
𝑞, if 𝑝 (𝑈 (≻𝑖 , 𝑥)) ≥ 𝑞(𝑈 (≻𝑖 , 𝑥)) for all 𝑥 ∈ 𝐴. Note that the

stochastic dominance relation is transitive but not complete. Using
stochastic dominance to compare lotteries is appealing because
𝑝 ≿SD

𝑖
𝑞 holds if and only if 𝑝 guarantees voter 𝑖 at least as much

expected utility than 𝑞 for every utility function that is ordinally
consistent with his preference relation ≻𝑖 .

Based on stochastic dominance, we now define strategyproof-
ness: an SDS 𝑓 : D → Δ(𝐴) is strategyproof if 𝑓 (𝑅) ≿SD

𝑖
𝑓 (𝑅′) for

all preference profiles 𝑅, 𝑅′ ∈ D and voters 𝑖 ∈ 𝑁 such that ≻𝑗 = ≻′
𝑗

for all 𝑗 ∈ 𝑁 \ {𝑖}. Less formally, strategyproofness requires that
every voter weakly prefers the lottery obtained by acting truthfully
to every lottery he could obtain by lying. Conversely, an SDS is
called manipulable if it is not strategyproof. A convenient property
of strategyproofness is that mixtures of strategyproof SDSs are
again strategyproof.

Note that this strategyproof notion has attained significant at-
tention. In particular, Gibbard [25] has shown that only random
dictatorships satisfy strategyproofness and non-imposition on the
full domain. For defining these functions, we say an SDS 𝑑𝑖 is dicta-
torial or a dictatorship if it always assigns probability 1 to the most
preferred alternative of voter 𝑖 . Then, a random dictatorship 𝑓 is a
mixture of dictatorial SDSs 𝑑𝑖 .

Strategyproofness is closely related to two properties called lo-
calizedness and non-perversity. Both of these axioms are concerned
with how the outcome changes if a voter only swaps two alterna-
tives. For making this formal, let 𝑅𝑖:𝑦𝑥 denote the profile derived
from another profile 𝑅 by only swapping 𝑥 and 𝑦 in the preference
relation of voter 𝑖 . Note that this definition requires that 𝑥 ≻𝑖 𝑦

and that there is no alternative 𝑧 ∈ 𝐴 \ {𝑥,𝑦} with 𝑥 ≻𝑖 𝑧 ≻𝑖 𝑦.
Now, an SDS 𝑓 on a domain D is localized if 𝑓 (𝑅, 𝑧) = 𝑓 (𝑅𝑖:𝑦𝑥 , 𝑧)
for all distinct alternatives 𝑥,𝑦, 𝑧 ∈ 𝐴, voters 𝑖 ∈ 𝑁 , and profiles
𝑅, 𝑅𝑖:𝑦𝑥 ∈ D. Moreover, 𝑓 is non-perverse if 𝑓 (𝑅𝑖:𝑦𝑥 , 𝑦) ≥ 𝑓 (𝑅,𝑦)
for all distinct alternatives 𝑥,𝑦 ∈ 𝐴, voters 𝑖 ∈ 𝑁 , and profiles
𝑅, 𝑅𝑖:𝑦𝑥 ∈ D. More intuitively, if voter 𝑖 reinforces 𝑦 against 𝑥 ,
localizedness requires that the probability assigned to the other
alternatives does not change, and non-perversity that the proba-
bility of 𝑦 cannot decrease. Gibbard [25] has shown for the full
domain of preferences that the conjunction of localizedness and
non-perversity is equivalent to strategyproofness. Furthermore, it
is easy to see that every strategyproof SDS satisfies non-perversity
and localizedness on every domain. We thus mainly use the latter
two axioms in our proofs as they are easier to handle.

Finally, in order to disincentivize groups of voters from ma-
nipulating, we need a stronger strategyproofness notion: an SDS
𝑓 : D → Δ(𝐴) is group-strategyproof if for all preference profiles
𝑅, 𝑅′ ∈ D and all non-empty sets of voters 𝐼 ⊆ 𝑁 with ≻𝑗 = ≻′

𝑗
for

all 𝑗 ∈ 𝑁 \ 𝐼 , there is a voter 𝑖 ∈ 𝐼 such that 𝑓 (𝑅) ≿SD
𝑖

𝑓 (𝑅′). Con-
versely, an SDS is group-manipulable if it is not group-strategyproof.
Note that group-strategyproofness implies strategyproofness.

3.2 Super Condorcet Domains
Since Gibbard’s random dictatorship theorem shows that there are
no attractive strategyproof SDSs on the full domain, we investigate
the Condorcet domain and its supersets with respect to the existence
of such functions. In order to define these domains, we first need to
introduce some terminology. The majority margin 𝑔𝑅 (𝑥,𝑦) = |{𝑖 ∈
𝑁 : 𝑥 ≻𝑖 𝑦}| − |{𝑖 ∈ 𝑁 : 𝑦 ≻𝑖 𝑥}| indicates how many more voters
prefer 𝑥 to 𝑦 in the profile 𝑅 than vice versa. Based on the majority
margins, we define the Condorcet winner of a profile 𝑅 as the alterna-
tive 𝑥 such that 𝑔𝑅 (𝑥,𝑦) > 0 for all 𝑦 ∈ 𝐴 \ {𝑥}. Since the existence
of a Condorcet winner is not guaranteed, we focus on the Condorcet
domain D𝐶 = {𝑅 ∈ R𝑁 : there is a Condorcet winner in 𝑅} which
contains all profiles with a Condorcet winner for the given elec-
torate. As explained in the introduction, this domain is of interest
because real-world elections frequently admit Condorcet winners.

A particularly natural SDS on the Condorcet domain is the Con-
dorcet rule (COND) which always assigns probability 1 to the Con-
dorcet winner. However, all SDSs defined for the full domain (e.g.,
random dictatorships, Borda’s rule, Plurality rule) are also well-
defined for the Condorcet domain and there is thus a multitude of
voting rules to choose from.

Note that the Condorcet domain D𝐶 is not connected with re-
spect to strategyproofness if 𝑛 is even. To make this formal, we
define D𝑥

𝐶
as the domain of profiles in which alternative 𝑥 is the

Condorcet winner. Then, it is impossible for distinct alternatives
𝑥,𝑦 ∈ 𝐴 that a single voter deviates from a profile 𝑅 ∈ D𝑥

𝐶
to a

profile 𝑅′ ∈ D𝑦

𝐶
. Indeed, if 𝑅 ∈ D𝑥

𝐶
and 𝑛 is even, then 𝑔𝑅 (𝑥,𝑦) ≥ 2

and 𝑔𝑅′ (𝑥,𝑦) ≥ 0 for all alternatives 𝑦 ∈ 𝐴 \ {𝑥} and profiles 𝑅′
that differ from 𝑅 only in the preference relation of a single voter.
This is problematic for our analysis because the choice for a profile
𝑅 ∈ D𝑥

𝐶
has no influence of the choice for a profile 𝑅′ ∈ D𝑦

𝐶
. For

even 𝑛, we will thus consider the tie-breaking Condorcet domain
D▷

𝐶
= {𝑅 ∈ R𝑁 : there is a Condorcet winner in (𝑅,▷)}, which

contains all profiles that have a Condorcet winner after adding a



fixed preference relation ▷ ∈ R. Note that this extra preference
relation only breaks majority ties if 𝑛 is even because |𝑔𝑅 (𝑥,𝑦) | ≥ 2
if 𝑔𝑅 (𝑥,𝑦) ≠ 0. In particular, this proves that D𝐶 ⊆ D▷

𝐶
for even 𝑛.

An attractive SDS onD▷
𝐶
is the tie-breaking Condorcet rule (COND▷)

which assigns probability 1 to the Condorcet winner in (𝑅,▷) for
all profiles 𝑅 ∈ D▷

𝐶
.

To show that D𝐶 and D▷
𝐶
are maximal domains that allow for

attractive strategyproof SDSs, we will also consider supersets of
them. Formally, we analyze super Condorcet domains which are
domains D with D𝐶 ⊆ D. Just as the Condorcet domain for even
𝑛, super Condorcet domains can be disconnected. We therefore
discuss connectedness notions for domains and introduce ad-paths.
An ad-path from a profile 𝑅 to a profile 𝑅′ in a domain D is a
sequence of profiles (𝑅1, . . . , 𝑅𝑙 ) such that 𝑅1 = 𝑅, 𝑅𝑙 = 𝑅′, 𝑅𝑘 ∈ D
for all 𝑘 ∈ {1, . . . , 𝑙}, and the profile 𝑅𝑘+1 evolves out of 𝑅𝑘 by
swapping two alternatives 𝑥,𝑦 ∈ 𝐴 in the preference relation of a
voter 𝑖 ∈ 𝑁 , i.e., 𝑅𝑘+1 = (𝑅𝑘 )𝑖:𝑦𝑥 for all 𝑘 ∈ {1, . . . , 𝑙 − 1}. Then,
we say that a domain D is weakly connected if there is an ad-path
between all profiles 𝑅, 𝑅′ ∈ D. Unfortunately, this condition is
too weak to be useful in our analysis and we therefore slightly
strengthen it: a domain D is connected if it is weakly connected
and if for all alternatives 𝑥 ∈ 𝐴 and profiles 𝑅, 𝑅′ ∈ D such that
𝑈 (≻′

𝑖
, 𝑥) = 𝑈 (≻𝑖 , 𝑥) for all 𝑖 ∈ 𝑁 , there is an ad-path (𝑅1, . . . , 𝑅𝑙 )

from 𝑅 to 𝑅′ such that 𝑈 (≻𝑘+1
𝑖

, 𝑥) = 𝑈 (≻𝑘
𝑖
, 𝑥) for all 𝑖 ∈ 𝑁 and

𝑘 ∈ {1, . . . , 𝑙 − 1}. Less formally, connectedness strengthens weak
connectedness by requiring that if an alternative 𝑥 is at the same
position in 𝑅 and 𝑅′, then we can go from 𝑅 to 𝑅′ without moving 𝑥 .

Connectedness is a very mild property and is, e.g., weaker than
Sato’s non-restoration property [45]. Hence, many domains, such as
the full domain and the single-peaked domain, satisfy this condition.
As we show next, the same holds for the Condorcet domain if 𝑛 is
odd and for tie-breaking Condorcet domains if 𝑛 is even.

Lemma 1. If 𝑛 ≥ 3 is odd, the Condorcet domain D𝐶 is connected.
If 𝑛 ≥ 4 is even, the tie-breaking Condorcet domain D▷

𝐶
is connected

for every preference relation ▷ ∈ R.

Proof sketch. The proof for D𝐶 and D▷
𝐶

work essentially the
same, and we thus focus onD𝐶 in this proof sketch. Hence, assume
that 𝑛 ≥ 3 is odd, consider two profiles 𝑅, 𝑅′ ∈ D𝐶 , and let 𝑐 and
𝑐′ be the respective Condorcet winners. We first show that D𝐶 is
weakly connected and thus need to construct an ad-path from 𝑅 to
𝑅′. If 𝑐 = 𝑐′, we start at 𝑅 by reinforcing 𝑐 until it unanimously top-
ranked, reorder the other alternatives according to 𝑅′, and weaken 𝑐
until it is in the correct position. If 𝑐 ≠ 𝑐′, we can proceed similarly:
starting at 𝑅, we let all voters first push up 𝑐 until it is their best
alternative, and then let all voters push up 𝑐′ until it is their second
best alternative. We can now change the Condorcet winner without
leaving the Condorcet domain by letting the voters swap 𝑐 and
𝑐′ one after another. After this, 𝑐′ is the Condorcet winner and
we can now apply the same construction as for the case 𝑐 = 𝑐′ to
go from this intermediate profile to 𝑅′. For showing that D𝐶 is
connected, we also need to construct ad-paths from 𝑅 to 𝑅′ that do
not move 𝑥 for every alternative 𝑥 ∈ 𝐴 with 𝑈 (≻𝑖 , 𝑥) = 𝑈 (≻′

𝑖
, 𝑥)

for all 𝑖 ∈ 𝑁 . The construction of these ad-paths relies on a tedious
case distinction with respect to whether 𝑥 = 𝑐 and 𝑐 = 𝑐′, so we
defer it to an full version of this paper [8]. □

4 RESULTS
We are now ready to present our characterizations of strategyproof
and group-strategyproof SDSs on super Condorcet domains. In
more detail, we first characterize the set of strategyproof and non-
imposing SDSs on the Condorcet domain for an odd number of
voters 𝑛 in Section 4.1. Moreover, we also demonstrate that the
Condorcet domain is a maximal connected domain that allows for
strategyproof and non-imposing SDSs apart from random dicta-
torships. Next, we derive analogous results for the tie-breaking
Condorcet domain if 𝑛 is even in Section 4.2. Finally, in Section 4.3,
we revisit the Condorcet domain and characterize the set of group-
strategyproof and non-imposing SDSs, independently of the parity
of 𝑛. Due to space restrictions, we defer the proofs of Lemma 3 and
Theorems 2 and 3 to an full version of this paper [8].

4.1 Condorcet Domain
In this section, we analyze the set of strategyproof and non-impo-
sing SDSs on the Condorcet domain and its supersets for the case
that 𝑛 is odd. In more detail, we will show that, if 𝑛 is odd, only
mixtures of random dictatorships and the Condorcet rule are strate-
gyproof and non-imposing on the Condorcet domain. As a byprod-
uct, we also derive a characterization of the Condorcet rule as the
only strategyproof, non-imposing, and “completely non-randomly
dictatorial” SDS on D𝐶 . Moreover, we will also prove that, if 𝑛 is
odd, only random dictatorships are strategyproof and non-imposing
on every connected superset of the Condorcet domain, thus demon-
strating that the Condorcet domain is an inclusion-maximal con-
nected domain that allows for attractive strategyproof SDSs.

Before proving these claims, we discuss two auxiliary lemmas.
First, we show that, if 𝑛 is odd, every strategyproof and non-impo-
sing SDS on a connected super Condorcet domain is also ex post
efficient. Analogous claims are known for, e.g., the full domain and
the domain of single-peaked preferences [19, 25].

Lemma 2. Assume𝑛 ≥ 3 is odd, and letD ⊆ R𝑁 denote a connected
domain with D𝐶 ⊆ D. Every strategyproof and non-imposing SDS
on D is ex post efficient.

Proof. Assume 𝑛 ≥ 3 is odd and let D denote a connected do-
main with D𝐶 ⊆ D. Moreover, consider a strategyproof and non-
imposing SDS 𝑓 on D and assume for contradiction that 𝑓 fails
ex post efficiency. This means that there are a profile 𝑅1 ∈ D and
two alternatives 𝑥,𝑦 ∈ 𝐴 such that 𝑥 ≻𝑖 𝑦 for all voters 𝑖 ∈ 𝑁

but 𝑓 (𝑅1, 𝑦) > 0. Now, consider the profile 𝑅2 derived from 𝑅1 by
making 𝑥 into the best alternative of every voter 𝑖 ∈ 𝑁 . Clearly,
𝑅2 ∈ D𝐶 ⊆ D because 𝑥 is the Condorcet winner in 𝑅2. Since
𝑈 (≻1

𝑖
, 𝑦) = 𝑈 (≻2

𝑖
, 𝑦) for all voters 𝑖 ∈ 𝑁 , there is by connected-

ness an ad-path from 𝑅1 to 𝑅2 along which 𝑦 is never swapped.
Hence, we infer that 𝑓 (𝑅2, 𝑦) = 𝑓 (𝑅1, 𝑦) > 0 and 𝑓 (𝑅2, 𝑥) < 1 by
repeatedly applying localizedness along this ad-path.

Next, let 𝑅3 ∈ D denote a profile such that 𝑓 (𝑅3, 𝑥) = 1; such a
profile exists by non-imposition. If 𝑥 is the Condorcet winner in
𝑅3, we can reinforce this alternative until it is top-ranked by every
voter without leaving the domain D. This leads to a profile 𝑅4 in
which 𝑥 is unanimously top-ranked, and non-perversity shows that
𝑓 (𝑅4, 𝑥) ≥ 𝑓 (𝑅3, 𝑥) = 1. Finally, we can again use the connected-
ness of D to find an ad-path from 𝑅4 to 𝑅2 along which 𝑥 is never



swapped. Hence, localizedness requires that 𝑓 (𝑅2, 𝑥) = 𝑓 (𝑅4, 𝑥) =
1, which contradicts our previous observation.

As second case, suppose that 𝑥 is not the Condorcet winner in 𝑅3.
Since 𝑛 is odd, there is an alternative 𝑧 ∈ 𝐴 \ {𝑥} and a set of voters
𝐼 with |𝐼 | > 𝑛

2 such that 𝑧 ≻3
𝑖
𝑥 for all 𝑖 ∈ 𝐼 . Now, consider the

profile 𝑅5 derived from 𝑅3 by making 𝑧 into the best alternative of
the voters 𝑖 ∈ 𝐼 . Clearly, 𝑅5 ∈ D𝐶 ⊆ D because more than half of
the voters top-rank 𝑧. Moreover, it holds that 𝑈 (≻3

𝑖
, 𝑥) = 𝑈 (≻5

𝑖
, 𝑥)

for all 𝑖 ∈ 𝑁 , and thus connectedness and localizedness imply that
𝑓 (𝑅5, 𝑥) = 1. Next, let 𝑅6 denote the profile derived from 𝑅5 by
making 𝑥 into the best alternative of the voters 𝑖 ∈ 𝑁 \ 𝐼 and into
the second best one of the voters 𝑖 ∈ 𝐼 . We can transform 𝑅5 into
𝑅6 by repeatedly reinforcing 𝑥 , and 𝑧 stays always the Condorcet
winner as it is top-ranked by the voters 𝑖 ∈ 𝐼 . Hence, 𝑅6 ∈ D and
non-perversity shows that 𝑓 (𝑅6, 𝑥) = 1. Finally, we let the voters
𝑖 ∈ 𝐼 swap 𝑥 and 𝑧 one after another. Since all voters top-ranks 𝑥 or
𝑧 in 𝑅6, one of these alternatives is always top-ranked by more than
half of the voters during these steps. Hence, we do not leave D.
This process terminates in a profile 𝑅7 in which all voters top-rank
𝑥 , and non-perversity shows that 𝑓 (𝑅7, 𝑥) = 1. This contradicts
again that 𝑓 (𝑅2, 𝑥) < 1 as there is an ad-path from 𝑅7 to 𝑅2 along
which we do not move 𝑥 . Since we have a contradiction in both
cases, 𝑓 must be ex post efficient. □

Lemma 2 is helpful for our analysis because ex post efficiency—
in contrast to non-imposition—is inherited to subdomains. Since
an analogous claim also holds for strategyproofness, we next in-
vestigate the set of strategyproof and ex post efficient SDSs in the
domain D𝑥

𝐶
where alternative 𝑥 is always the Condorcet winner.

Lemma 3. Fix an alternative 𝑎 ∈ 𝐴 and let 𝑓 denote a strate-
gyproof and ex post efficient SDS on a super Condorcet domain.
There is a random dictatorship 𝑑 and 𝛾 ∈ R≥0 such that 𝑓 (𝑅) =

(1 − 𝛾)COND(𝑅) + 𝛾𝑑 (𝑅) for all 𝑅 ∈ D𝑎
𝐶
.

Proof sketch. Consider an arbitrary super Condorcet domainD, a
strategyproof and ex post efficient SDS 𝑓 onD, and fix an alternative
𝑎 ∈ 𝐴. For proving this lemma, we will investigate the behavior of
𝑓 on several subdomains of D𝑎

𝐶
. In particular, we first fix a set of

voters 𝐼 ⊆ 𝑁 with |𝐼 | = ⌈𝑛+1
2 ⌉ and a profile 𝑅 ∈ R𝐼 in which all

voters 𝑖 ∈ 𝐼 report 𝑎 as their favorite alternative. Then, we consider
the domain D𝐼 ,�̂�

1 of profiles in which the voters 𝑖 ∈ 𝐼 report ≻̂𝑖
and the voters 𝑖 ∈ 𝑁 \ 𝐼 report arbitrary preference relations. In
particular, we show that 𝑓 induces an SDS 𝑔

�̂�
on the domain R𝑁 \𝐼

that is non-imposing and strategyproof. The random dictatorship
theorem therefore shows that 𝑔

�̂�
is a random dictatorship. By using

the relation between 𝑔
�̂�
and 𝑓 , we then derive that there are values

𝛾𝐶 ≥ 0 and 𝛾𝑖 ≥ 0 for 𝑖 ∈ 𝑁 \ 𝐼 such that 𝑓 (𝑅) = 𝛾COND
𝐶

(𝑅) +∑
𝑖∈𝑁 \𝐼 𝛾𝑖𝑑𝑖 (𝑅) for all profiles 𝑅 ∈ D𝐼 ,�̂�

1 . For proving the lemma
from this point on, we repeatedly enlarge the domain D𝐼 ,�̂�

1 and
show that 𝑓 can always be represented as a mixture of a random
dictatorship and the Condorcet rule. For instance, we consider next
the domain D𝐼

2 , where the voters in 𝐼 have to top-rank 𝑎. Clearly,
every profile 𝑅 ∈ D𝐼

2 is in D𝐼 ,𝑅′

1 for a profile 𝑅′ ∈ R𝐼 . Since 𝑓 can
be represented for every domain D𝐼 ,�̂�

1 as a mixture of a random
dictatorship and the Condorcet rule, we hence derive an analogous

claim for D𝐼
2 by showing that it is always the same mixture. By

further generalizing the domain like this, we eventually derive the
lemma. □

Lemma 3 is itself already a rather strong statement as it charac-
terizes the behavior of all strategyproof and ex post efficient SDSs
𝑓 on the domains D𝑥

𝐶
. In particular, this result does neither require

that 𝑛 is odd nor a connectedness condition on the domain. On
the other hand, Lemma 3 does not relate the behavior of 𝑓 for
different subdomains D𝑥

𝐶
, and it might be that the weight on the

Condorcet rule is negative. Indeed, if 𝑛 is even and 𝑚 = 3, the
SDS 𝑓 (𝑅) = ∑

𝑖∈𝑁
1

𝑛−1𝑑𝑖 (𝑅) −
1

𝑛−1COND(𝑅) is well-defined, non-
imposing, and strategyproof for the Condorcet domain because the
Condorcet winner is top-ranked by at least one voter if𝑚 = 3.

Nevertheless, Lemma 3 is the central tool for proving all of our
theorems and we will use it next to characterize the set of strate-
gyproof and non-imposing SDSs on the Condorcet domain and all
of its connected supersets for the case that 𝑛 is odd.

Theorem 1. Assume 𝑛 ≥ 3 is odd and let D ⊆ R𝑁 denote a
connected domain. The following claims are true.

(1) AssumeD𝐶 = D. An SDS onD is strategyproof and non-imposing
if and only if it is a mixture of a random dictatorship and the
Condorcet rule.

(2) Assume D𝐶 ⊊ D. An SDS on D is strategyproof and non-
imposing if and only if it is a random dictatorship.

Proof. Assume 𝑛 ≥ 3 is odd and let D denote a connected domain
with D𝐶 ⊆ D.

Proof of Claim (1): First, we assume thatD = D𝐶 and consider
an SDS 𝑓 on D that is a mixture of a random dictatorship and the
Condorcet rule. Since mixtures of strategyproof SDSs are them-
selves strategyproof and the Condorcet rule as well as all random
dictatorships are known to satisfy this axiom on D𝐶 , it follows
immediately that 𝑓 is strategyproof. Moreover, all random dictator-
ships and the Condorcet rule choose an alternative with probability
1 if it is unanimously top-ranked. Since all these profile are in D𝐶 ,
we derive that 𝑓 is also non-imposing.

For the other direction, assume that 𝑓 is a strategyproof and non-
imposing SDS on D𝐶 . Since the Condorcet domain is connected
if 𝑛 is odd (see Lemma 1), we derive from Lemma 2 that 𝑓 is ex
post efficient. In turn, Lemma 3 shows that for every alternative
𝑥 ∈ 𝐴, there are values 𝛾𝑥

𝐶
and 𝛾𝑥

𝑖
≥ 0 for all 𝑖 ∈ 𝑁 such that

𝑓 (𝑅) = 𝛾𝑥
𝐶
COND(𝑅) + ∑

𝑖∈𝑁 𝛾𝑥
𝑖
𝑑𝑖 (𝑅) for all 𝑅 ∈ D𝑥

𝐶
. Hence, the

theorem follows by showing that 𝛾𝑥
𝐶

= 𝛾
𝑦

𝐶
and 𝛾𝑥

𝑖
= 𝛾

𝑦

𝑖
for all

𝑥,𝑦 ∈ 𝐴 and all 𝑖 ∈ 𝑁 , and that 𝛾𝑥
𝐶
≥ 0. First, we show that 𝛾𝑥

𝑖
= 𝛾

𝑦

𝑖

and𝛾𝑥
𝐶
= 𝛾

𝑦

𝐶
for all 𝑥,𝑦 ∈ 𝐴. For doing so, consider three alternatives

𝑎, 𝑏, 𝑐 ∈ 𝐴, a voter 𝑖 ∈ 𝑁 , and the profiles 𝑅1 and 𝑅2.
𝑅1: 𝑖: 𝑐, 𝑎, 𝑏, . . . 𝑁 \{𝑖}: 𝑎, 𝑏, 𝑐, . . .
𝑅2: 𝑖: 𝑐, 𝑎, 𝑏, . . . 𝑁 \{𝑖}: 𝑏, 𝑎, 𝑐, . . .

Clearly, 𝑅1 ∈ D𝑎
𝐶
and 𝑅2 ∈ D𝑏

𝐶
and thus, 𝑓 (𝑅1, 𝑐) = 𝛾𝑎

𝑖
and

𝑓 (𝑅2, 𝑐) = 𝛾𝑏
𝑖
. Furthermore, since D𝐶 is connected and𝑈 (≻1

𝑖
, 𝑐) =

𝑈 (≻2
𝑖
, 𝑐) for all 𝑖 ∈ 𝑁 , there is an ad-path from 𝑅1 to 𝑅2 along

which 𝑐 is never swapped. Localizedness implies therefore that
𝑓 (𝑅1, 𝑐) = 𝑓 (𝑅2, 𝑐) and hence, 𝛾𝑎

𝑖
= 𝛾𝑏

𝑖
. Because voter 𝑖 is chosen

arbitrarily, this holds for all voters 𝑖 ∈ 𝑁 and we infer that 𝛾𝑎
𝐶

=



1 − ∑
𝑖∈𝑁 𝛾𝑎

𝑖
= 1 − ∑

𝑖∈𝑁 𝛾𝑏
𝑖
= 𝛾𝑏

𝐶
. This means that 𝛾𝑥

𝐶
= 𝛾

𝑦

𝐶
and

𝛾𝑥
𝑖
= 𝛾

𝑦

𝑖
for all voters 𝑖 ∈ 𝑁 and alternatives 𝑥,𝑦 ∈ 𝐴

Next, we will show that 𝛾𝑎
𝐶
≥ 0 for some 𝑎 ∈ 𝐴. For this step, we

partition the set of voters in three disjoint subsets 𝐼1, 𝐼2, and 𝐼3 such
that |𝐼1 | = |𝐼2 | = 𝑛−1

2 and |𝐼3 | = 1. Now, let 𝑏, 𝑐 ∈ 𝐴 \ {𝑎} denote
distinct alternatives and consider the profiles 𝑅3 and 𝑅4.

𝑅3: 𝐼1: 𝑎, 𝑏, . . . 𝐼2: 𝑏, 𝑎, . . . 𝐼3: 𝑐, 𝑎, 𝑏, . . .
𝑅4: 𝐼1: 𝑎, 𝑏, . . . 𝐼2: 𝑏, 𝑎, . . . 𝐼3: 𝑐, 𝑏, 𝑎, . . .

Alternative 𝑎 is the Condorcet winner in 𝑅3 and alternative 𝑏 in
𝑅4. Hence, 𝑓 (𝑅3, 𝑎) = ∑

𝑖∈𝐼 1 𝛾𝑎𝑖 + 𝛾𝑎
𝐶
and 𝑓 (𝑅4, 𝑎) = ∑

𝑖∈𝐼 1 𝛾𝑏𝑖 . Next,
non-perversity shows that 𝑓 (𝑅3, 𝑎) ≥ 𝑓 (𝑅4, 𝑎). Since 𝛾𝑎

𝑖
= 𝛾𝑏

𝑖
for

all 𝑖 ∈ 𝑁 , we thus infer that 𝛾𝑎
𝐶

≥ 0. Now, by defining 𝛾𝐶 = 𝛾𝑎
𝐶

and 𝛾𝑖 = 𝛾𝑎
𝑖
for all 𝑖 ∈ 𝑁 and some 𝑎 ∈ 𝐴, we conclude that

𝑓 (𝑅) = 𝛾𝐶COND(𝑅) +
∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for all 𝑅 ∈ D𝐶 .

Proof of Claim (2): For the second claim, we assume thatD𝐶 ⊊
D. Since it is straightforward to see that random dictatorships are
strategyproof and non-imposing on D, we focus on the converse.
For this, let 𝑓 denote a strategyproof and non-imposing SDS on
D. By Lemma 2, 𝑓 is also ex post efficient. As a consequence, it is
non-imposing in the Condorcet domain, and we thus infer from
Claim (1) that there are 𝛾𝐶 ≥ 0 and 𝛾𝑖 ≥ 0 for all 𝑖 ∈ 𝑁 such
that 𝑓 (𝑅) = 𝛾𝐶COND(𝑅) +

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for all 𝑅 ∈ D𝐶 . Now, for

proving Claim (2), consider a profile 𝑅 ∈ D \ D𝐶 and let 𝑥 denote
an arbitrary alternative. Since 𝑛 is odd and there is no Condorcet
winner in 𝑅, there is a set of voters 𝐼 and an alternative 𝑦 ∈ 𝐴 \ {𝑥}
such that |𝐼 | > 𝑛

2 and 𝑦 ≻𝑖 𝑥 for all 𝑖 ∈ 𝐼 . Next, we consider the
profile 𝑅′ derived from 𝑅 by letting all voters 𝑖 ∈ 𝐼 make 𝑦 into their
favorite alternative. Clearly, 𝑦 is the Condorcet winner in 𝑅′ and
thus 𝑓 (𝑅′, 𝑥) =

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅′, 𝑥). On the other hand, 𝑈 (≻𝑖 , 𝑥) =

𝑈 (≻′
𝑖
, 𝑥) for all 𝑖 ∈ 𝑁 because the voters in 𝐼 prefer 𝑦 to 𝑥 in 𝑅.

Hence, we can apply connectedness and localizedness to derive that
𝑓 (𝑅, 𝑥) = 𝑓 (𝑅′, 𝑥) = ∑

𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅, 𝑥). Since 𝑥 is chosen arbitrarily,
this means that 𝑓 (𝑅) = ∑

𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅). In particular, it must hold
that

∑
𝑖∈𝑁 𝛾𝑖 = 1 and thus 𝛾𝐶 = 0 as otherwise

∑
𝑥∈𝐴 𝑓 (𝑅, 𝑥) < 1.

This proves 𝑓 (𝑅) = ∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for all 𝑅 ∈ D. □

Claim (1) of Theorem 1 immediately implies that the Condorcet
rule is the only “completely non-randomly dictatorial” SDS on
the Condorcet domain that satisfies strategyproofness and non-
imposition. To formalize this observation, we introduce the notion
of 𝛾-randomly dictatorial SDSs first suggested by Brandt et al. [7]:
a strategyproof SDS 𝑓 on a domain D is 𝛾-randomly dictatorial
if 𝛾 ∈ [0, 1] is the maximal value such that 𝑓 can be represented
as 𝑓 (𝑅) = 𝛾𝑑 (𝑅) + (1 − 𝛾)𝑔(𝑅) for all profiles 𝑅 ∈ D, where 𝑑 is a
random dictatorship and 𝑔 is another strategyproof SDS on D. It
follows immediately from Theorem 1 that, if 𝑛 is odd, the Condorcet
rule is the only 0-randomly dictatorial, strategyproof, and non-
imposing SDS on the Condorcet domain. This corollary generalizes
Theorem 1 of Campbell and Kelly [10] who have characterized the
Condorcet rule with equivalent axioms in the deterministic setting.
Furthermore, this insight highlights the appeal of the Condorcet
rule on the Condorcet domain because every other strategyproof
and non-imposing SDS is a mixture of the Condorcet rule and a
random dictatorship.

On the other hand, Claim (2) of Theorem 1 generalizes the ran-
dom dictatorship theorem from the full domain to all connected

supersets of D𝐶 if 𝑛 is odd. Since deterministic voting rules can
be seen as a special case of SDSs, our result also generalizes the
Gibbard-Satterhwaite theorem to these smaller domains. In particu-
lar, Claim (2) of Theorem 1 shows that adding even a single profile
to the Condorcet domain can turn the positive results of Claim (1)
into a negative one. This follows, for instance, by considering the
domainD1 = D𝐶 ∪{𝑅∗}. The preference profile 𝑅∗ is shown below,
where 𝐼 = {4, 6, . . . , 𝑛 − 1}, 𝐽 = {5, 7, . . . , 𝑛}.

𝑅∗: 1: 𝑎, 𝑏, 𝑐, . . . 2: 𝑏, 𝑐, 𝑎, . . . 3: 𝑐, 𝑎, 𝑏, . . .
𝐼 : 𝑎, 𝑏, 𝑐, . . . 𝐽 : 𝑐, 𝑏, 𝑎, . . .

4.2 Tie-Breaking Condorcet Domain
A natural follow-up question to Theorem 1 is to ask for the strat-
egyproof and non-imposing SDSs on the Condorcet domain if 𝑛
is even. Unfortunately, since the Condorcet domain is not con-
nected in this case, a concise characterization of all these SDSs
seems impossible. We therefore characterize the set of strategyproof
and non-imposing SDS on the tie-breaking Condorcet domain D▷

𝐶
.

Moreover, the following theorem also demonstrates that, if𝑛 is even,
tie-breaking Condorcet domains are inclusion-maximal connected
domains that allow for strategyproof and non-imposing SDSs other
than random dictatorships.

Theorem 2. Assume𝑛 ≥ 4 is even, let ▷ ∈ R be a preference relation,
and D ⊆ R𝑁 be a connected domain. The following claims hold.

(1) Assume D = D▷
𝐶
. An SDS on D is strategyproof and non-impo-

sing if and only if it is a mixture of a random dictatorship and
the tie-breaking Condorcet rule COND▷.

(2) Assume D▷
𝐶
⊊ D. An SDS on D is strategyproof and non-impo-

sing if and only if it is a random dictatorship.

Proof sketch. Assume 𝑛 ≥ 4 is even, fix a preference relation
▷ ∈ R, and consider a connected domain D with D▷

𝐶
⊆ D. First,

note that random dictatorships are strategyproof and non-imposing
on D, regardless of whether D = D▷

𝐶
or D▷

𝐶
⊊ D. Moreover, if

D = D▷, then COND▷ is strategyproof onD because every manip-
ulation of this rule can be turned in a manipulation of the Condorcet
rule for 𝑛 + 1 voters. Since mixture of strategyproof SDSs are strat-
egyproof, it follows that all mixtures of random dictatorships and
COND▷ are strategyproof, and it is easy to see that these rules are
also non-imposing.

Next, we focus on the direction from left to right and consider
for this a strategyproof and non-imposing SDS 𝑓 on D. Analogous
to Lemma 2, it is not difficult to derive that 𝑓 is ex post efficient
on D. Hence, Lemma 3 implies that there are values 𝛾𝑥

𝑖
≥ 0 for all

𝑖 ∈ 𝑁 and 𝛾𝑥
𝐶
such that 𝑓 (𝑅) = 𝛾𝑥

𝐶
COND(𝑅) +∑𝑖∈𝑁 𝛾𝑥

𝑖
𝑑𝑖 (𝑅) for all

subdomains D𝑥
𝐶
and profiles 𝑅 ∈ D𝑥

𝐶
. Next, we show analogously

to the proof of Theorem 1 that 𝛾𝑥
𝐶
= 𝛾

𝑦

𝐶
and 𝛾𝑥

𝑖
= 𝛾

𝑦

𝑖
for all 𝑥,𝑦 ∈ 𝐴

and 𝑖 ∈ 𝑁 and we can thus drop the superscript. Since COND(𝑅) =
COND▷ (𝑅) for all 𝑅 ∈ DC if 𝑛 is even, this means that 𝑓 (𝑅) =

𝛾𝐶COND▷ (𝑅) +
∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for all 𝑅 ∈ D𝐶 .

Now, to prove the first claim, let us assume that D = D▷
𝐶
.

In this case, we first show that 𝑓 (𝑅) can also be represented as
𝛾𝐶COND▷ (𝑅) +

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) if there is an alternative 𝑥 in 𝑅 which

is top-ranked by at least half of the voters and which is the Con-
dorcet winner in (𝑅,▷). Next, we consider a profile 𝑅 ∈ D▷

𝐶
and let



𝑥 denote the Condorcet winner in (𝑅,▷). This means that for every
alternative 𝑦 ∈ 𝐴 \ {𝑥}, there are at least 𝑛

2 voters who prefer 𝑥 to 𝑦
in𝑅. If we let these voters reinforce 𝑥 until it is top-ranked, we arrive
at a profile 𝑅′ such that 𝑓 (𝑅′) = 𝛾𝐶COND▷ (𝑅′) +

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅′).

Moreover, connectedness and localizedness imply that the prob-
ability of 𝑦 does not change when going from 𝑅 to 𝑅′. Since 𝑦 ∈
𝐴 \ {𝑥} is chosen arbitrarily, we derive from this observation that
𝑓 (𝑅) = 𝛾𝐶COND▷ (𝑅) +

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for every profile 𝑅 ∈ D▷

𝐶
. As

last step, we show that 𝛾𝐶 ≥ 0 by using a similar argument as in
the proof of Theorem 1. This completes the proof of Claim (1).

For proving Claim (2), assume that D▷
𝐶
⊊ D. By Claim (1), we

infer that 𝑓 can be represented as amixture of a random dictatorship
and COND▷ for all profiles 𝑅 ∈ D▷

𝐶
. Now, consider a profile 𝑅 ∈

D \ D▷
𝐶
. For the proof, we identify for every alternative 𝑥 ∈ 𝐴 a

profile 𝑅′ ∈ D▷
𝐶
such that𝑈 (≻𝑖 , 𝑥) = 𝑈 (≻′

𝑖
, 𝑥) for all voters 𝑖 ∈ 𝑁 .

Once we have these profiles, the proof proceeds exactly as the proof
of Claim (2) in Theorem 1. □

First, note that Theorem 2 implies—analogously to Theorem 1—
that the tie-breaking Condorcet rule is the only strategyproof, non-
imposing, and 0-randomly dictatorial SDS on the tie-breaking Con-
dorcet domain if𝑛 is even. In particular, this proves again that choos-
ing the Condorcet winners is desirable because COND▷ chooses
the Condorcet winners whenever there is one. Moreover, since
the tie-breaking Condorcet domain is only a small extension of
the Condorcet domain, this result demonstrates the important role
of Condorcet winners for the existence of strategyproof and non-
imposing SDSs other than random dictatorships.

Furthermore, Claim (2) in Theorem 2 shows again that adding
even a single profile to D▷

𝐶
can turn the positive result into a nega-

tive one. In particular, note that this claim also implies that the do-
main of all profiles with a weak Condorcet winner (which is equiva-
lent to the domainD = {𝑅 ∈ R𝑁 : ∃ ▷ ∈ R : there is a Condorcet
winner in (𝑅,▷)}) only allows for random dictatorships as strate-
gyproof and non-imposing SDSs.

Remark 1. An important observation of Theorems 1 and 2 is that
every strategyproof and non-imposing SDS on the respective do-
mains can be represented as a mixture of deterministic voting rules,
each of which is strategyproof and non-imposing. This is sometimes
called deterministic extreme point property and remarkably, many
important domains satisfy this condition [41]. On the one hand,
this shows that randomization does not lead to completely new
strategyproof SDSs. On the other hand, the deterministic extreme
point property allows for a natural interpretation of strategyproof
and non-imposing SDSs: we randomly select a deterministic voting
rule.

Remark 2. The connectedness condition is required for Claim (2)
in Theorems 1 and 2 because there are domains D with D𝐶 ⊊ D
(resp. D▷

𝐶
⊊ D) that allow for non-imposing and strategyproof

SDSs that are no random dictatorships. For example, consider the
domainD2 which is derived by adding a single preference profile𝑅1

to the Condorcet domain. If 𝑅1 differs from every profile in D𝐶 in
the preference relations of at least two voters, an arbitrary outcome
can be returned for 𝑅1 without violating strategyproofness.

4.3 Group-Strategyproofness
Finally, we investigate the set of of group-strategyproof and non-
imposing SDSs on the Condorcet domain and its supersets. In par-
ticular, we will show that only the Condorcet rule and dictatorial
SDSs satisfy group-strategyproofness on the Condorcet domain.
Note that this result is independent of the parity of 𝑛 and group-
strategyproofness thus allows for a unified characterization. More-
over, we also prove a counterpart to Claim (2) in Theorems 1 and 2,
which notably does not require connectedness.

Theorem 3. Assume 𝑛 ≥ 3 and let D ⊆ R𝑁 denote an arbitrary
domain. The following claims are true.

(1) Assume D = D𝐶 . An SDS on D is group-strategyproof and non-
imposing if and only if it is a dictatorship or the Condorcet rule.

(2) Assume D𝐶 ⊊ D and that there is a profile 𝑅 ∈ D such that
for each 𝑥 ∈ 𝐴, there is 𝑦 ∈ 𝐴 with 𝑔𝑅 (𝑦, 𝑥) > 0. An SDS on
D is group-strategyproof and non-imposing if and only if it is a
dictatorship.

Proof sketch. For the direction from right to left of both claims,
we note first that dictatorships are clearly non-imposing and group-
strategyproof on every super Condorcet domain. Furthermore, it is
also apparent that the Condorcet rule is non-imposing on the Con-
dorcet domain. We hence only need to show that COND is group-
strategyproof on D𝐶 . For this, let 𝐼 ⊆ 𝑁 denote a non-empty set of
voters and consider two profiles 𝑅, 𝑅′ ∈ D𝐶 such that ≻𝑖 = ≻′

𝑖 for
all 𝑖 ∈ 𝑁 \ 𝐼 . Moreover, let 𝑐 and 𝑐′ denote the respective Condorcet
winners in 𝑅 and 𝑅′. If 𝑐 = 𝑐′, then COND(𝑅) = COND(𝑅′) and
the Condorcet rule is clearly group-strategyproof. On the other
hand, if 𝑐 ≠ 𝑐′, there must be a voter 𝑖 ∈ 𝐼 with 𝑐 ≻𝑖 𝑐′ and 𝑐′ ≻′

𝑖
𝑐 ;

otherwise, it is impossible that 𝑔𝑅 (𝑐, 𝑐′) > 0 and 𝑔𝑅′ (𝑐′, 𝑐) > 0.
However, this voter prefers COND(𝑅) to COND(𝑅′), which proves
that COND is also in this case group-strateygproof.

For the other direction, we consider a group-strategyproof and
non-imposing SDS 𝑓 on a domain D with D𝐶 ⊆ D. First, it is
not difficult to see that 𝑓 must be ex post efficient. Since group-
strategyproofness implies strategyproofness, we can now invoke
Lemma 3 to derive that for every alternative 𝑥 ∈ 𝐴, there are values
𝛾𝑥
𝐶
and 𝛾𝑥

𝑖
≥ 0 for all 𝑖 ∈ 𝑁 such that 𝑓 (𝑅) = 𝛾𝑥

𝐶
COND(𝑅) +∑

𝑖∈𝑁 𝛾𝑥
𝑖
𝑑𝑖 (𝑅) for all 𝑅 ∈ D𝑥

𝐶
. Moreover, we can essentially use

the same argument as in the proof of Theorem 1 to show that
𝛾𝑥
𝐶
= 𝛾

𝑦

𝐶
and 𝛾𝑥

𝑖
= 𝛾

𝑦

𝑖
for all 𝑖 ∈ 𝑁 and 𝑥,𝑦 ∈ 𝐴. We hence drop the

superscript from now on and write, e.g., 𝛾𝐶 instead of 𝛾𝑥
𝐶
.

Next, we show that 𝛾𝑖 = 1 if 𝛾𝑖 > 0. For this, we assume that
there is a voter 𝑖 ∈ 𝑁 with 0 < 𝛾𝑖 < 1 and consider the profiles 𝑅1

and 𝑅2 shown below to derive a contradiction.
𝑅1: 𝑖: 𝑐, 𝑎, 𝑏, . . . 𝑁 \{𝑖}: 𝑏, 𝑎, 𝑐, . . .
𝑅2: 𝑖: 𝑎, 𝑏, 𝑐, . . . 𝑁 \{𝑖}: 𝑎, 𝑏, 𝑐, . . .

Since 𝑏 is the Condorcet winner in 𝑅1 and 𝛾𝑖 < 1, we have that
𝑓 (𝑅1, 𝑐) = 𝛾𝑖 > 0 and 𝑓 (𝑅1, 𝑏) = 1 − 𝑓 (𝑅3, 𝑐) > 0. On the other
hand, ex post efficiency shows that 𝑓 (𝑅2, 𝑎) = 1. However, the set
of all voters can now group-manipulate by deviating from 𝑅1 to
𝑅2 because 𝑓 (𝑅1,𝑈 (≻1

𝑗
, 𝑎)) < 1 = 𝑓 (𝑅2,𝑈 (≻1

𝑗
, 𝑎)) for all 𝑗 ∈ 𝑁 .

This contradicts that 𝑓 is group-strategyproof and thus proves that
𝛾𝑖 = 1 if 𝛾𝑖 > 0. Now, since there clearly cannot be different voters
𝑖, 𝑗 with 𝛾𝑖 = 1 and 𝛾 𝑗 = 1, we infer that for all profiles 𝑅 ∈ D𝐶 ,



Full domain R𝑁 Domains D with D (▷)
𝐶
⊊ D (tie-breaking) Condorcet domain D (▷)

𝐶

Deterministic, strategyproof,
and non-imposing voting rules Dictatorships [24, 46] Dictatorships⋄ (Theorems 1

and 2)
Dictatorships and the (tie-breaking)
Condorcet rule (Theorem 2 and [10])

Strategyproof and
non-imposing SDSs Random dictatorships [25] Random dictatorships⋄

(Theorems 1 and 2)

Mixtures of random dictatorships and the
(tie-breaking) Condorcet rule (Theorems 1
and 2)

Group-strategyproof and
non-imposing SDSs Dictatorial SDSs [2] Dictatorial SDSs (Theorem 3)

Dictatorial SDSs and the (tie-breaking)
Condorcet rule (Theorem 3)

Table 1: Comparison of results for the full domain R𝑁 , strict supersets of D𝐶 (resp. D▷
𝐶
), and the (tie-breaking) Condorcet

domain D𝐶 (resp. D▷
𝐶
). Each row characterizes a set of SDSs for the full domain R𝑁 , strict supersets of D𝐶 (resp. D▷

𝐶
), and the

(tie-breaking) Condorcet domain D𝐶 (resp. D▷
𝐶
), respectively. For the last two columns, the results rely on a case distinction

with respect to 𝑛: if 𝑛 is odd, we consider the results of Theorem 1 for the Condorcet domain and its supersets; if 𝑛 is even, we
consider the results of Theorem 2 for the tie-breaking Condorcet domain and its supersets. The results marked with a diamond
(⋄) require that the considered domain is connected. New results are italicized.

either 𝑓 (𝑅) = 𝑑𝑖 (𝑅) for some 𝑖 ∈ 𝑁 or 𝑓 (𝑅) = COND(𝑅) if 𝛾𝑖 = 0
for all 𝑖 ∈ 𝑁 . This proves Claim (1) by choosing D = D𝐶 .

For proving Claim (2), we assume next that there is a profile
𝑅∗ ∈ D such that for every alternative 𝑥 ∈ 𝐴, there is another
alternative 𝑦 ∈ 𝐴 \ {𝑥} such that 𝑔𝑅∗ (𝑦, 𝑥) > 0. Now, consider an
alternative 𝑎 ∈ 𝐴 with 𝑓 (𝑅∗, 𝑎) > 0, let 𝑏 denote an alternative
with 𝑔𝑅∗ (𝑏, 𝑎) > 0, and define 𝐼 = {𝑖 ∈ 𝑁 : 𝑏 ≻∗

𝑖
𝑎}. We let all

voters 𝑖 ∈ 𝐼 make 𝑏 into their best alternative to derive the profile
𝑅′. Note that 𝑅′ ∈ D𝐶 ⊆ D as 𝑦 is the Condorcet winner in 𝑅′.
If 𝑓 (𝑅′) = COND(𝑅′), the voters 𝑖 ∈ 𝐼 can group-manipulate by
deviating from 𝑅 to 𝑅′ because they all prefer 𝑏 to 𝑎. Hence, group-
strategyproofness requires that there is a voter 𝑖 ∈ 𝑁 such that
𝑓 (𝑅) = 𝑑𝑖 (𝑅) for all 𝑅 ∈ D𝐶 . From here on, it is easy to see that
𝑓 = 𝑑𝑖 (𝑅) for all 𝑅 ∈ D, which proves Claim (2). □

Theorem 3 generalizes Theorem 1 to super Condorcet domains
for an even number of voters by using group-strategyproofness.
In particular, it entails that the Condorcet rule is the only group-
strategyproof, non-imposing, and non-dictatorial SDS on the Con-
dorcet domain, regardless of the parity of 𝑛. Moreover, Claim (2)
of the theorem shows that the Condorcet domain is essentially a
maximal domain that allows for a group-strategyproof and non-
imposing SDS apart from dictatorships. In more detail, if 𝑛 is odd,
every domain D with D𝐶 ⊊ D satisfies the conditions of Claim (2)
in Theorem 3. Hence, no superset of the Condorcet domain admits
group-strategyproof and non-imposing SDSs other than dictator-
ships if 𝑛 is odd. On the other hand, if 𝑛 is even, Theorem 3 can be
refined. For instance, COND▷ is also group-strategyproof on D▷

𝐶
.

Indeed, it is possible to prove an exact equivalent of Theorem 2 for
disconnected domains based on group-strategyproofness.

Remark 3. The results of Barberà [2] imply that every group-
strategyproof and non-imposing SDS on the full domain is a dicta-
torship. Hence, Theorem 3 and Barberà’s results share a common
idea: group-strategyproof and non-imposing SDSs cannot rely on
randomization to determine the winner. However, whereas only
undesirable SDSs are group-strategyproof and non-imposing on
R𝑁 , the attractive Condorcet rule satisfies these axioms on D𝐶 .

5 CONCLUSION
We study strategyproof and non-imposing social decision schemes
(SDSs) on the Condorcet domain (which consists of all preference
profiles with a Condorcet winner) and its supersets. These domains
are of great relevance because empirical results suggest that real-
world elections ususally admit a Condorcet winner. In contrast
to the full domain, there are attractive strategyproof SDSs on the
Condorcet domain: we show that, if the number of voters 𝑛 is odd,
every strategyproof and non-imposing SDS on the Condorcet do-
main can be represented as a mixture of a random dictatorship and
the Condorcet rule. An immediate consequence of this insight is
that the Condorcet rule is the only strategyproof, non-imposing,
and completely non-randomly dictatorial SDS on the Condorcet
domain if 𝑛 is odd. Moreover, we demonstrate that, if 𝑛 is odd,
the Condorcet domain is a maximal connected domain that al-
lows for strategyproof and non-imposing SDSs other than ran-
dom dictatorships. We also derive analogous results for even 𝑛 by
slightly extending the Condorcet domain. Finally, we investigate
the set of group-strategyproof and non-imposing SDSs on super
Condorcet domains: we prove that the Condorcet rule is the only
non-dictatorial, group-strategyproof, and non-imposing SDS on
the Condorcet domain, and that no SDS satisfies these axioms on
larger domains.

Our results for the Condorcet domain show an astonishing sim-
ilarity to classic results for the full domain but have a more pos-
itive flavor. For instance, while the random dictatorship theorem
shows that only mixtures of dictatorial SDSs are strategyproof and
non-imposing on the full domain, we prove in Theorem 1 that
mixtures of dictatorial SDSs and the Condorcet rule are the only
strategyproof and non-imposing SDSs on the Condorcet domain
(if the number of voters is odd). A more exhaustive comparison
between results for the full domain and for the Condorcet domain is
given in Table 1. In particular, our results highlights the important
role of the Condorcet rule on the Condorcet domain: even if we
allow for randomization, it is still the most appealing strategyproof
voting rule. Thus, our theorems make a strong case for choosing a
Condorcet winner whenever one exists.
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A OMITTED PROOFS
In this appendix, we discuss the omitted proofs of Lemmas 1 and 3
and Theorems 2 and 3. We start by formally proving Lemma 1.
Lemma 1. If 𝑛 ≥ 3 is odd, the Condorcet domain D𝐶 is connected.
If 𝑛 ≥ 4 is even, the tie-breaking Condorcet domain D▷

𝐶
is connected

for every preference relation ▷ ∈ R.
Proof. The proofs for the Condorcet domainD𝐶 and odd 𝑛 ≥ 3 and
for the tie-breaking Condorcet domain D▷

𝐶
and even 𝑛 ≥ 4 work

almost identically. In particular, we can use the same ad-paths for
both domains and only the arguments on why the ad-paths remain
in the respective domain slightly change. We therefore focus only
on the Condorcet domain in this proof.

Hence, assume that 𝑛 ≥ 3 is odd, consider two profiles 𝑅, 𝑅′ ∈
D𝐶 , and let 𝑐 and 𝑐’ denote the respective Condorcet winners. We
proceed in multiple steps to show that D𝐶 is connected. First, we
show that this domain is weakly connected by constructing an
ad-path from 𝑅 to 𝑅′. Next, we suppose that there is an alternative
𝑥 ∈ 𝐴 such that𝑈 (≻𝑖 , 𝑥) = 𝑈 (≻′

𝑖
, 𝑥) for all 𝑖 ∈ 𝑁 . We then consider

several cases depending on whether 𝑐 = 𝑐′ and 𝑥 ∈ {𝑐, 𝑐′} and
always construct an ad-path from 𝑅 to 𝑅′ along which 𝑥 is not
moved.

Step 1: D𝐶 is weakly connected
For proving this claim, we need to construct an ad-path from 𝑅

to 𝑅′ in D𝐶 . For doing so, we start at 𝑅 by reinforcing 𝑐 until it is
the best alternative of all voters 𝑖 ∈ 𝑁 . This leads to a profile 𝑅1 and,
since we only reinforce the Condorcet winner, we do not leave the
Condorcet domain. Next, if 𝑐 ≠ 𝑐′, we reinforce 𝑐′ until we arrive
in the profile 𝑅2 in which every voter ranks 𝑐 first and 𝑐′ second.
During all these steps, 𝑐 is unanimously top-ranked and therefore
the Condorcet winner. Next, we let the voters swap 𝑐 and 𝑐′ one
after another. Since 𝑛 is odd, 𝑐 or 𝑐′ are top-ranked by more than
half of the voters in each of these profiles, which shows that we do
not leave the Condorcet domain. Finally, we are now in a profile 𝑅3

in which all voters top-rank 𝑐′. Note that if 𝑐 = 𝑐′, we can simply set
𝑅3 = 𝑅1. As the next step, we use swaps to reorder the alternatives
in𝐴\{𝑐′} according to 𝑅′. These steps result in the profile 𝑅4 which
only differs from 𝑅′ in the fact that 𝑐′ is unanimously top-ranked.
Since this also holds during all steps in the construction of this
profile, we do not leave the Condorcet domain. Finally, we weaken
𝑐′ to derive 𝑅′ from 𝑅4. Note that, since 𝑈 (≻̂𝑖 , 𝑐′) ⊆ 𝑈 (≻′

𝑖
, 𝑐′) for

all voters 𝑖 ∈ 𝑁 and intermediate profiles 𝑅, 𝑐′ is the Condorcet
winner during all steps. Hence, there is an ad-path from 𝑅 to 𝑅′ in
D𝐶 and the Condorcet domain is weakly connected if 𝑛 is odd.

Step 2.1: 𝑥 = 𝑐

Next, we suppose that there is an alternative 𝑥 ∈ 𝐴 such that
𝑈 (≻𝑖 , 𝑥) = 𝑈 (≻′

𝑖
, 𝑥) for all 𝑖 ∈ 𝑁 . In this case, we need to construct

an ad-path from 𝑅 to 𝑅′ along which 𝑥 is not moved. For construct-
ing this ad-path, we use a case distinction with respect to 𝑥 , 𝑐 , and
𝑐′, and first assume that 𝑥 = 𝑐 . This implies that 𝑐 = 𝑐′ because we
cannot change the Condorcet winner without moving this alter-
native. As a consequence, we can simply reorder the alternatives
𝑦, 𝑧 ∈ 𝐴 \ {𝑐} to transform 𝑅 to 𝑅′. Since 𝑈 (≻𝑖 , 𝑥) = 𝑈 (≻′

𝑖
, 𝑥) for

all 𝑖 ∈ 𝑁 , we never need to swap 𝑥 and thus also do not leave the
Condorcet domain.

Step 2.2: 𝑐 = 𝑐′ and 𝑥 ≠ 𝑐

As the second case, suppose that 𝑐 = 𝑐′ but 𝑥 ≠ 𝑐 and let 𝐼 =

{𝑖 ∈ 𝑁 : 𝑐 ≻𝑖 𝑥} denote the set of voters who prefer 𝑐 to 𝑥 in 𝑅.
As the first step, we consider the profile 𝑅1 which is defined as
follows: the voters 𝑖 ∈ 𝐼 top-rank 𝑐 and order all alternatives as in
𝑅, and the voters 𝑖 ∈ 𝑁 \ 𝐼 rank 𝑐 directly below 𝑥 and order the
alternatives 𝐴 \ {𝑐} according to 𝑅. Clearly, we can move from 𝑅 to
𝑅1 by only reinforcing 𝑐 and thus, 𝑅1 and all intermediate profiles
are in the Condorcet domain. As the second step, we analyze the
profile 𝑅2 which is defined as follows: all voters 𝑖 ∈ 𝐼 top-rank
𝑐 and order the remaining alternatives according to 𝑅′, and all
voters 𝑖 ∈ 𝑁 \ 𝐼 place 𝑐 directly below 𝑥 and reorder the remaining
alternatives according to 𝑅′. Since𝑈 (≻′

𝑖
, 𝑥) = 𝑈 (≻𝑖 , 𝑥) = 𝑈 (≻2

𝑖
, 𝑥)

for all 𝑖 ∈ 𝑁 , no voter needs to swap 𝑥 during any of these steps.
Indeed, 𝑥 partitions the alternatives in two sets for every voter 𝑖:
𝑈𝑖 = {𝑦 ∈ 𝐴 : 𝑦 ≻𝑖 𝑥} and 𝐿𝑖 = {𝑦 ∈ 𝐴 : 𝑥 ≻𝑖 𝑦}. Since we only
need to reorder alternatives within these sets to go from 𝑅1 to 𝑅2,
no swap involves 𝑥 . Moreover, since 𝑐 is the best alternative within
𝑈𝑖 (if 𝑖 ∈ 𝐼 ) or 𝐿𝑖 (if 𝑖 ∈ 𝑁 \ 𝐼 ) in both 𝑅1 and 𝑅2, we also do not
need to swap 𝑐 . This ensures that we do not leave the Condorcet
domain during these steps. Finally, we can go from 𝑅2 to 𝑅′ by only
weakening 𝑐 . Since 𝑈 (≻̂𝑖 , 𝑐) ⊆ 𝑈 (≻′

𝑖
, 𝑐) for all 𝑖 ∈ 𝑁 and profiles

𝑅 on this ad-path, 𝑐 always remains the Condorcet winner. This
completes the ad-path from 𝑅 to 𝑅′ and it is easy to see that 𝑥 is
never swapped with another alternative along it.

Step 2.3: 𝑐 ≠ 𝑐′ and 𝑥 ∉ {𝑐, 𝑐′}
As last case, we assume that 𝑐 ≠ 𝑐′ and 𝑥 ∉ {𝑐, 𝑐′}. In this

case, let 𝐼1 = {𝑖 ∈ 𝑁 : 𝑐 ≻𝑖 𝑥} and 𝐼2 = {𝑖 ∈ 𝑁 : 𝑐′ ≻𝑖 𝑥} denote
the sets of voters who prefer 𝑐 and 𝑐′, respectively, to 𝑥 . Since
𝑈 (≻𝑖 , 𝑥) = 𝑈 (≻′

𝑖
, 𝑥) for all 𝑖 ∈ 𝑁 , it does not matter whether we

define 𝐼1 and 𝐼2 with respect to 𝑅 or 𝑅′. Now, consider the profile
𝑅1 constructed as follows:
• All 𝑖 ∈ 𝑁 order all alternatives in 𝐴 \ {𝑐, 𝑐′} as in 𝑅′.
• All 𝑖 ∈ 𝐼1 \ 𝐼2 prefer 𝑐 the most and rank 𝑐′ directly below 𝑥 .
• All 𝑖 ∈ 𝐼2 \ 𝐼1 prefer 𝑐′ the most and rank 𝑐 directly below 𝑥 .
• All 𝑖 ∈ 𝐼1 ∩ 𝐼2 prefer 𝑐 the most and 𝑐′ the second most.
• All 𝑖 ∈ 𝑁 \ (𝐼1∪𝐼2) rank 𝑐 directly below 𝑥 and 𝑐′ directly below 𝑐 .

In particular, note that 𝑐 is top-ranked by all voters in 𝐼1 and
placed directly below 𝑥 by all voters 𝑖 ∈ 𝑁 \ 𝐼1. Moreover, it holds
that𝑈 (≻1

𝑖
, 𝑥) = 𝑈 (≻𝑖 , 𝑥) for all 𝑖 ∈ 𝑁 . This implies that𝑈 (≻1

𝑖
, 𝑐) ⊆

𝑈 (≻𝑖 , 𝑐) for all 𝑖 ∈ 𝑁 and thus, 𝑐 is the Condorcet winner in 𝑅1. We
can therefore use the construction of Step 2.2 to find an ad-path
from 𝑅 to 𝑅1 along which 𝑥 is never moved.

Next, let 𝐼 = (𝐼1 ∩ 𝐼2) ∪ (𝑁 \ (𝐼1 ∪ 𝐼2)) and consider the profile
𝑅2 derived from 𝑅1 by letting the voters 𝑖 ∈ 𝐼 swap 𝑐 and 𝑐′ one
after another. Note that at 𝐼 ≠ ∅ because 𝑦 ≻𝑖 𝑥 ≻𝑖 𝑧′ implies that
𝑦 ≻′

𝑖
𝑥 ≻′

𝑖
𝑧 for all voters 𝑖 ∈ 𝑁 . Or put differently, the voters in

𝐼1 \ 𝐼2 and 𝐼2 \ 𝐼1 cannot swap 𝑐 and 𝑐′ as this would require them
to change the upper contour set of 𝑥 . Since 𝑐 ≠ 𝑐′, it thus follows
that 𝐼 ≠ ∅. Next, note that 𝑐 ≻𝑖 𝑦 implies that 𝑐 ≻𝑘

𝑖
𝑦 and 𝑐′ ≻′

𝑖
𝑦

implies 𝑐′ ≻𝑘
𝑖
𝑦 for all voters 𝑖 ∈ 𝑁 , alternatives 𝑦 ∈ 𝐴 \ {𝑐, 𝑐′}, and

𝑘 ∈ {1, 2}. This claim holds since we are not allowed to swap 𝑥 with
any alternative, and 𝑐 and 𝑐′ are either top-ranked or directly below
𝑥 . In particular, this means that 𝑔𝑅𝑘 (𝑐,𝑦) > 0 and 𝑔𝑅𝑘 (𝑐′, 𝑦) > 0
for all 𝑦 ∈ 𝐴 \ {𝑐, 𝑐′} and 𝑘 ∈ {1, 2}. Finally, this analysis also
holds for all profiles 𝑅 on the ad-path between 𝑅1 and 𝑅2 and



thus 𝑐 is the Condorcet winner if 𝑔
�̂�
(𝑐, 𝑐′) > 0 and 𝑐′ otherwise.

Moreover, in 𝑅2, 𝑐′ must be the Condorcet winner because all voters
𝑖 ∈ 𝐼2 top-rank 𝑐′ and all other voters place it directly below 𝑥 , i.e.,
𝑈 (≻2

𝑖
, 𝑐′) ⊆ 𝑈 (≻′

𝑖
, 𝑐′) for all 𝑖 ∈ 𝑁 . Finally, we can use again the

construction of Step 2.2 to go from 𝑅2 to 𝑅′ as 𝑐′ is the Condorcet
winner in both profiles. This completes the proof. □

Next, we turn to the proof of Lemma 3.
Lemma 3. Fix an alternative 𝑎 ∈ 𝐴 and let 𝑓 denote a strate-
gyproof and ex post efficient SDS on a super Condorcet domain.
There is a random dictatorship 𝑑 and 𝛾 ∈ R≥0 such that 𝑓 (𝑅) =

(1 − 𝛾)COND(𝑅) + 𝛾𝑑 (𝑅) for all 𝑅 ∈ D𝑎
𝐶
.

Proof. Let D denote a super Condorcet domain, and let 𝑓 : D →
Δ(𝐴) denote a strategyproof and ex post efficient SDS. Moreover,
fix an alternative 𝑎 ∈ 𝐴. For proving the lemma, we will reason
about multiple subdomains of D𝑎

𝐶
.

Throughout the proof, we use some additional notation. First, we
define 𝑡 = ⌈𝑛+1

2 ⌉ as the smallest integer larger than 𝑛
2 . Moreover,

given a set of voters 𝐼 with ∅ ⊊ 𝐼 ⊊ 𝑁 and two profiles 𝑅1 ∈ R𝐼 ,
𝑅2 ∈ R𝑁 \𝐼 , we define the 𝑅1 + 𝑅2 as the profile 𝑅 on the electorate
𝑁 with ≻𝑖 = ≻1

𝑖
if 𝑖 ∈ 𝐼 and ≻𝑖 = ≻2

𝑖
if 𝑖 ∈ 𝑁 \ 𝐼 . Finally, we

define the rank of an alternative 𝑥 in a preference relation ≻𝑖 as
𝑟 (≻𝑖 , 𝑥) = |{𝑦 ∈ 𝐴 : 𝑦 ≻𝑖 𝑥 ∨ 𝑦 = 𝑥}|. For instance, 𝑟 (≻𝑖 , 𝑥) = 1
means that 𝑥 is voters 𝑖’s favorite alternative.

Step 1: Fix a set of voters 𝐼 ⊆ 𝑁 with |𝐼 | = 𝑡 and an alternative
𝑏 ∈ 𝐴 \ {𝑎}. Moreover, let D𝐼 ,𝑏

1 = {𝑅 ∈ R𝑁 : ∀𝑖 ∈ 𝐼 : 𝑟 (≻𝑖 , 𝑎) =

1 ∧ ∀𝑖 ∈ 𝑁 \ 𝐼 : 𝑟 (≻𝑖 , 𝑏) = 1} denote the domain in which all voters
in 𝐼 always top-rank 𝑎 and all voters in 𝑁 \ 𝐼 always top-rank 𝑏. We
show that 𝑓 (𝑅, 𝑎) + 𝑓 (𝑅,𝑏) = 1 for all profiles 𝑅 ∈ D𝐼 ,𝑏

1 . For this,
consider an arbitrary profile 𝑅 ∈ D𝐼 ,𝑏

1 and let 𝑅∗ ∈ D𝐼 ,𝑏
1 denote the

profile shown below.
𝑅∗: 𝐼 : 𝑎, 𝑏, . . . 𝑁 \𝐼 : 𝑏, 𝑎, . . .

Ex post efficiency requires for𝑅∗ that 𝑓 (𝑅∗, 𝑎)+ 𝑓 (𝑅∗, 𝑏) = 1 as all
other alternatives are Pareto-dominated. Next, consider the profiles
𝑅1 and 𝑅2 which are defined as follows: in 𝑅1, the voters 𝑖 ∈ 𝐼 report
≻∗
𝑖
and the voters 𝑖 ∈ 𝑁 \ 𝐼 report ≻𝑖 . Conversely, in 𝑅2, the voters

𝑖 ∈ 𝐼 report ≻𝑖 and the voters 𝑖 ∈ 𝑁 \𝐼 report ≻∗
𝑖
. Next, we show that

𝑓 (𝑅, 𝑎) = 𝑓 (𝑅1, 𝑎) = 𝑓 (𝑅∗, 𝑎). Note for this that 𝑈 (≻∗
𝑖
, 𝑏) = 𝑈 (≻1

𝑖

, 𝑏) for all voters 𝑖 ∈ 𝑁 because ≻1
𝑖
= ≻∗

𝑖
for all voters 𝑖 ∈ 𝐼 and

𝑟 (≻∗
𝑖
, 𝑏) = 𝑟 (≻1

𝑖
, 𝑏) = 1 for all voters 𝑖 ∈ 𝑁 \ 𝐼 . Now, there is clearly

an ad-path from 𝑅∗ to 𝑅1 along which 𝑏 is never swapped and
we can therefore infer from localizedness that 𝑓 (𝑅1, 𝑏) = 𝑓 (𝑅∗, 𝑏).
Moreover, 𝑏 Pareto-dominates all other alternatives 𝑧 ∈ 𝐴\ {𝑎, 𝑏} in
𝑅1, so ex post efficiency requires that 𝑓 (𝑅1, 𝑎) + 𝑓 (𝑅1, 𝑏) = 1. Hence,
we conclude that 𝑓 (𝑅1, 𝑎) = 1 − 𝑓 (𝑅1, 𝑏) = 1 − 𝑓 (𝑅∗, 𝑏) = 𝑓 (𝑅∗, 𝑎).

As the next step, we transform 𝑅1 into 𝑅 by reordering the al-
ternatives in 𝐴 \ {𝑎} in the preference relations of the voters 𝑖 ∈ 𝐼 .
This time, we have that 𝑈 (≻1

𝑖
, 𝑎) = 𝑈 (≻𝑖 , 𝑎) for all voters 𝑖 ∈ 𝑁

because 𝑟 (≻1
𝑖
, 𝑎) = 𝑟 (≻𝑖 , 𝑎) = 1 for all 𝑖 ∈ 𝐼 and ≻1

𝑖
= ≻𝑖 for all

𝑖 ∈ 𝑁 \ 𝐼 . Hence, an analogous argument as before shows that
𝑓 (𝑅, 𝑎) = 𝑓 (𝑅1, 𝑎) = 𝑓 (𝑅∗, 𝑎). Moreover, we can use a symmetric
argument to derive that 𝑓 (𝑅,𝑏) = 𝑓 (𝑅2, 𝑏) = 𝑓 (𝑅∗, 𝑏). This proves
that 𝑓 (𝑅, 𝑎) + 𝑓 (𝑅,𝑏) = 1 for all preference profiles 𝑅 ∈ D𝐼 ,𝑏

1 .
Step 2: Fix a set of voters 𝐼 ⊆ 𝑁 with |𝐼 | = 𝑡 and a profile 𝑅∗ ∈ R𝐼

in which all voters top-rank 𝑎. In this step, we consider the domain

D𝐼 ,𝑅∗

2 = {𝑅∗ + 𝑅 : 𝑅 ∈ R𝑁 \𝐼 }, i.e., the voters 𝑖 ∈ 𝐼 have to report
≻∗
𝑖
and the voters in 𝑁 \ 𝐼 can report arbitrary preference relations.

Our goal is to show that there are values 𝛾𝐶 ≥ 0 and 𝛾𝑖 ≥ 0 for
all 𝑖 ∈ 𝑁 \ 𝐼 such that 𝑓 (𝑅) = 𝛾𝐶COND(𝑅) +

∑
𝑖∈𝑁 \𝐼 𝛾𝑖𝑑𝑖 (𝑅) for all

𝑅 ∈ D𝐼 ,𝑅∗

2 .
For proving this, let 𝑅 denote a profile in D𝐼 ,𝑅∗

2 in which all
voters 𝑖 ∈ 𝑁 \ 𝐼 prefer 𝑎 the least and define 𝛿𝑎 = 𝑓 (𝑅, 𝑎). We first
show that 𝑓 (𝑅, 𝑎) ≥ 𝛿𝑎 for all profiles 𝑅 ∈ D𝐼 ,𝑅∗

2 . For this, consider
an arbitrary profile 𝑅 ∈ D𝐼 ,𝑅∗

2 and let 𝑅′ denote the profile derived
from 𝑅 by letting each voter 𝑖 ∈ 𝑁 \ 𝐼 make 𝑎 into his least preferred
alternative. Clearly, there is an ad-path from 𝑅 to 𝑅′ in D𝐼 ,𝑅∗

2 along
which 𝑎 is never swapped and thus, 𝑓 (𝑅′, 𝑎) = 𝑓 (𝑅, 𝑎) = 𝛿𝑎 because
of localizedness. On the other hand, we only need to reinforce 𝑎
to go from 𝑅′ to 𝑅. Hence, non-perversity shows that 𝑓 (𝑅, 𝑎) ≥
𝑓 (𝑅′, 𝑎) = 𝛿𝑎 , which proves our claim.

Now, if 𝛿𝑎 = 1, this means that 𝑓 (𝑅, 𝑎) = 1 and therefore 𝑓 (𝑅) =
COND(𝑅) for all profiles 𝑅 ∈ D𝐼 ,𝑅∗

2 . In this case, Step 2 is proven
as we can choose 𝛾𝐶 = 1 and 𝛾𝑖 = 0 for 𝑖 ∈ 𝑁 \ 𝐼 . Thus, we suppose
that 0 ≤ 𝛿𝑎 < 1 and define the SDS 𝑔𝑅∗ (𝑅) for the electorate 𝑁 \𝐼 as
follows:𝑔𝑅∗ (𝑅, 𝑥) = 1

1−𝛿𝑎 𝑓 (𝑅
∗+𝑅, 𝑥) for 𝑥 ∈ 𝐴\{𝑎} and𝑔𝑅∗ (𝑅, 𝑎) =

1
1−𝛿𝑎 (𝑓 (𝑅

∗ + 𝑅, 𝑎) − 𝛿𝑎). In particular, note that 𝑔𝑅∗ is defined on
R𝑁 \𝐼 , i.e., it is defined on the full domain with respect to 𝑁 \ 𝐼 .
Subsequently, we show that 𝑔𝑅∗ is a well-defined, strategyproof,
and non-imposing SDS because the random dictatorship theorem
then entails that 𝑔𝑅∗ is a random dictatorship.

First, we prove that 𝑔𝑅∗ is well-defined and note for this that∑
𝑥∈𝐴 𝑔𝑅∗ (𝑅, 𝑥) = 1

1−𝛿𝑎
∑
𝑥∈𝐴 𝑓 (𝑅∗ + 𝑅, 𝑥) − 𝛿𝑎

1−𝛿𝑎 = 1 for every
profile 𝑅 ∈ R𝑁 \𝐼 because

∑
𝑥∈𝐴 𝑓 (𝑅∗ + 𝑅, 𝑥) = 1. Moreover, it

clearly holds that 𝑔𝑅∗ (𝑅, 𝑥) = 1
1−𝛿𝑎 𝑓 (𝑅 + 𝑅, 𝑥) ≥ 0 for every 𝑥 ∈

𝐴 \ {𝑎}. Finally, 𝑔𝑅∗ (𝑅, 𝑎) = 1
1−𝛿𝑎 (𝑓 (𝑅

∗ + 𝑅, 𝑎) − 𝛿𝑎) ≥ 0 because
𝑓 (𝑅∗+𝑅, 𝑎) ≥ 𝛿𝑎 . Hence,𝑔𝑅∗ is indeed awell-defined SDS.Moreover,
𝑔𝑅∗ inherits strategyproofness from 𝑓 . In more detail, if a voter
𝑖 ∈ 𝑁 \ 𝐼 could manipulate 𝑔𝑅∗ by deviating from 𝑅 to 𝑅′, then he
could also manipulate 𝑓 by deviating from 𝑅∗ +𝑅 to 𝑅∗ +𝑅′. Finally,
we note that 𝑔𝑅∗ is non-imposing. For 𝑎, this follows immediately
because 𝑔𝑅∗ (𝑅) = 1

1−𝛿𝑎 (𝑓 (𝑅
∗ + 𝑅, 𝑎) − 𝛿𝑎) = 1 for every profile

𝑅 ∈ R𝑁 \𝐼 in which all voters 𝑖 ∈ 𝑁 \ 𝐼 top-rank 𝑎 because ex
post efficiency requires that 𝑓 (𝑅∗ + 𝑅, 𝑎) = 1. For the alternatives
𝑥 ∈ 𝐴 \ {𝑎}, this follows by considering a profile 𝑅 ∈ R𝑁 \𝐼 such
that all voters top-rank 𝑥 and bottom-rank 𝑎. It is not difficult to
see that 𝑓 (𝑅∗ + 𝑅, 𝑎) = 𝑓 (𝑅, 𝑎) = 𝛿𝑎 because of localizedness. On
the other hand, Step 1 shows that 𝑓 (𝑅∗ + 𝑅, 𝑎) + 𝑓 (𝑅∗ + 𝑅, 𝑥) = 1.
Hence, we conclude that 𝑔𝑅∗ (𝑅, 𝑥) = 1

1−𝛿𝑎 𝑓 (𝑅
∗ + 𝑅, 𝑥) = 1 and 𝑔𝑅∗

is indeed non-imposing.
Since𝑔𝑅∗ is a strategyproof and non-imposing SDS on the full do-

main (with respect to𝑁 \𝐼 ), the random dictatorship theorem shows
that 𝑔𝑅∗ must be a random dictatorship. Or, put differently, there
are values 𝛾𝑖 ≥ 0 for 𝑖 ∈ 𝑁 \ 𝐼 such that 𝑔𝑅∗ (𝑅) = ∑

𝑖∈𝑁 \𝐼 𝛾𝑖𝑑𝑖 (𝑅)
for all 𝑅 ∈ R𝑁 \𝐼 . Since 𝑔𝑅∗ (𝑅, 𝑥) = 1

1−𝛿𝑎 𝑓 (𝑅
∗ + 𝑅, 𝑥) for 𝑥 ∈

𝐴 \ {𝑎} and 𝑔𝑅∗ (𝑅, 𝑎) = 1
1−𝛿𝑎 (𝑓 (𝑅

∗ + 𝑅, 𝑎) − 𝛿𝑎), it follows that
𝑓 (𝑅∗+𝑅, 𝑥) = (1−𝛿𝑎)

∑
𝑖∈𝑁 \𝐼 𝛾𝑖𝑑𝑖 (𝑅∗+𝑅, 𝑥) and 𝑓 (𝑅∗+𝑅, 𝑎) = 𝛿𝑎+

(1−𝛿𝑎)
∑
𝑖∈𝑁 \𝐼 𝛾𝑖𝑑𝑖 (𝑅∗+𝑅, 𝑎). Finally, let𝛾 ′𝐶 = 𝛿𝑎 and𝛾 ′𝑖 = (1−𝛿𝑎)𝛾𝑖



for 𝑖 ∈ 𝑁 \ 𝐼 . Since 𝑎 is the Condorcet winner for all 𝑅 ∈ D𝐼 ,𝑅∗

2 ,
it is easy to see that 𝑓 (𝑅) = 𝛾 ′

𝐶
COND(𝑅) +∑

𝑖∈𝑁 \𝐼 𝛾
′
𝑖
𝑑𝑖 (𝑅) for all

𝑅 ∈ D𝐼 ,𝑅∗

2 .
Step 3: Once again, we fix a set of voters 𝐼 ⊆ 𝑁 with |𝐼 | = 𝑡 . In

this step, we analyze the domainD𝐼
3 = {𝑅 ∈ R𝑁 : ∀𝑖 ∈ 𝐼 : 𝑟 (≻𝑖 , 𝑎) =

1}, i.e., the voters in 𝐼 have to top-rank 𝑎, but otherwise the domain
is not constrained. Our goal is to show that there are 𝛾𝐶 ≥ 0 and
𝛾𝑖 ≥ 0 for 𝑖 ∈ 𝑁 \ 𝐼 such that 𝑓 (𝑅) = 𝛾𝐶COND(𝑅) +

∑
𝑖∈𝑁 \𝐼 𝛾𝑖𝑑𝑖 (𝑅).

For this, consider two profiles 𝑅1, 𝑅2 ∈ R𝐼 in which all voters
𝑖 ∈ 𝐼 unanimously top-rank 𝑎. By Step 3, there are 𝛾𝑥

𝐶
≥ 0 and

𝛾𝑥
𝑖
≥ 0 such that 𝑓 (𝑅𝑥+𝑅) = 𝛾𝑥

𝐶
COND(𝑅𝑥+𝑅)+∑𝑖∈𝑁 \𝐼 𝛾𝑖𝑑𝑖 (𝑅𝑥+𝑅)

for all profiles 𝑅 ∈ R𝑁 \𝐼 and 𝑥 ∈ {1, 2}. Our goal is to show that
𝛾1
𝐶
= 𝛾2

𝐶
and 𝛾1

𝑖
= 𝛾2

𝑖
for all 𝑖 ∈ 𝑁 \ 𝐼 . Assume for contradiction that

this is not the case, which implies that 𝑅1 ≠ 𝑅2. Now, consider an
ad-path (𝑅1, . . . , 𝑅𝑙 ) from 𝑅1 to 𝑅2 in R𝐼 along which 𝑎 is always
unanimously top-ranked. Clearly, 𝑅𝑘 +𝑅 ∈ D𝐼

3 for all 𝑘 ∈ {1, . . . , 𝑙}
and we can thus also use Step 2 for each of these intermediate
profiles. In particular, there must be two consecutive profiles 𝑅3

and 𝑅4 on this ad-path such that 𝛾3
𝐶

≠ 𝛾4
𝐶
or 𝛾3

𝑖
≠ 𝛾4

𝑖
for some

𝑖 ∈ 𝑁 \ 𝐼 . Since 𝑅3 and 𝑅4 are consecutive on the ad-path, 𝑅4

evolves out of 𝑅3 by swapping two alternatives 𝑥,𝑦 ∈ 𝐴 \ {𝑎} in
the preference relation of a single voter 𝑖∗ ∈ 𝐼 .

First suppose that 𝛾3
𝐶
≠ 𝛾4

𝐶
and consider a profile 𝑅 ∈ R𝑁 \𝐼 such

that 𝑎 is not top-ranked by any voter. Using Step 2, we infer that
𝑓 (𝑅3 +𝑅, 𝑎) = 𝛾3

𝐶
and 𝑓 (𝑅4 +𝑅, 𝑎) = 𝛾4

𝐶
because 𝑅3 +𝑅 ∈ D𝐼 ,𝑅3

2 and
𝑅4 + 𝑅 ∈ D𝐼 ,𝑅4

2 . Hence, 𝑓 (𝑅3 + 𝑅, 𝑎) ≠ 𝑓 (𝑅4 + 𝑅, 𝑎). However, this
contradicts localizedness as we can transform 𝑅3 + 𝑅 into 𝑅4 + 𝑅

by only swapping 𝑥 and 𝑦 in the preference relation of voter 𝑖∗.
Hence, we must have 𝛾3

𝐶
= 𝛾4

𝐶
. As second case, suppose that there

is a voter 𝑖 ∈ 𝑁 \ 𝐼 such that 𝛾3
𝑖
≠ 𝛾4

𝑖
. In this case, consider the

profile 𝑅 ∈ R𝑁 \𝐼 such that only voter 𝑖 top-ranks 𝑎. Using again the
insights of Step 2, we derive that 𝑓 (𝑅3 +𝑅, 𝑎) = 𝛾3

𝐶
+𝛾3

𝑖
≠ 𝛾4

𝐶
+𝛾4

𝑖
=

𝑓 (𝑅4 + 𝑅, 𝑎). In particular, we use here that 𝛾3
𝐶
= 𝛾4

𝐶
because of the

first case. Now, we can again move from 𝑅3 + 𝑅 to 𝑅4 + 𝑅 by only
swapping 𝑥 and 𝑦 in the preference relation of voter 𝑖∗, and we thus
have a contradiction to localizedness. This shows that 𝛾3

𝐶
= 𝛾4

𝐶
and

𝛾3
𝑖
= 𝛾4

𝑖
for all 𝑖 ∈ 𝑁 \ 𝐼 and consequently, the same claim holds for

all profiles 𝑅1, 𝑅2 ∈ R𝐼 in which 𝑎 is unanimously top-ranked.
Based on this insight, choose an arbitrary profile 𝑅 ∈ R𝐼 in

which all voters top-rank 𝑎 and let 𝛾𝐶 ≥ 0 and 𝛾𝑖 ≥ 0 for 𝑖 ∈ 𝑁 \ 𝐼
denote the respective values such that 𝑓 (𝑅+𝑅) = 𝛾𝐶COND(𝑅+𝑅) +∑
𝑖∈𝑁 \𝐼 𝛾𝑖𝑑𝑖 (𝑅 + 𝑅) for all 𝑅 ∈ R𝑁 \𝐼 . It follows from our previous

analysis and Step 2 that 𝑓 (𝑅) = 𝛾𝐶COND(𝑅) +
∑
𝑖∈𝑁 \𝐼 𝛾𝑖𝑑𝑖 (𝑅) for

all 𝑅 ∈ D𝐼
3 because 𝑅 ∈ D𝐼 ,𝑅′

2 , where 𝑅′ is the restriction of 𝑅 to
the voters 𝑖 ∈ 𝐼 .

Step 4: In this step, we analyze 𝑓 on the domain D4 which
consists of the profiles in which at least 𝑡 voters top-rank 𝑎, i.e.,
D4 = {𝑅 ∈ R𝑛 : ∃𝐼 ⊆ 𝑁 : |𝐼 | = 𝑡 ∧ ∀𝑖 ∈ 𝐼 : 𝑟 (≻𝑖 , 𝑎) = 1}. Our
goal is to find values 𝛾𝐶 and 𝛾𝑖 ≥ 0 for all 𝑖 ∈ 𝑁 such that 𝑓 (𝑅) =
𝛾𝐶COND(𝑅) +

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for all 𝑅 ∈ D4. In particular, note that

𝛾𝐶 can be negative after this step.
For this, consider two sets of voters 𝐼1 ⊆ 𝑁 and 𝐼2 ⊆ 𝑁 with

|𝐼1 | = |𝐼2 | = 𝑡 . By Step 4, there are values 𝛾𝑥
𝐶

≥ 0 and 𝛾𝑥
𝑖
≥ 0 for

𝑖 ∈ 𝑁 \ 𝐼𝑥 such that 𝑓 (𝑅) = 𝛾𝑥
𝐶
COND(𝑅) +∑

𝑖∈𝑁 \𝐼𝑥 𝛾
𝑥
𝑖
𝑑𝑖 (𝑅) for all

profiles 𝑅 ∈ D𝐼𝑥
3 and 𝑥 ∈ {1, 2}. Next, we show that 𝛾1

𝑖
= 𝛾2

𝑖
for all

voters 𝑖 ∈ 𝑁 \ (𝐼1 ∪ 𝐼2). For this, consider the profile 𝑅 in which
all voters 𝑗 ∈ 𝑁 \ {𝑖} top-rank 𝑎, and voter 𝑖 top-ranks another
alternative 𝑥 . Note that 𝑅 is both in D𝐼1

3 and D𝐼2
3 . Hence, it follows

from Step 4 that 𝑓 (𝑅, 𝑥) = 𝛾1
𝑖
and 𝑓 (𝑅, 𝑥) = 𝛾2

𝑖
. This implies that

𝛾1
𝑖
= 𝛾2

𝑖
, which proves our claim.

Next, consider three sets of voters 𝐼1, 𝐼2, 𝐼3 such that |𝐼1 | = |𝐼2 | =
|𝐼3 | = 𝑡 and 𝑁 = (𝑁 \ 𝐼1) ∪ (𝑁 \ 𝐼2) ∪ (𝑁 \ 𝐼3). We define 𝛾𝑖 = 𝛾

𝐼1
𝑖

if
𝑖 ∈ 𝑁 \ 𝐼1, 𝛾𝑖 = 𝛾

𝐼2
𝑖
if 𝑖 ∈ 𝐼1 \ 𝐼2, and 𝛾𝑖 = 𝛾

𝐼3
𝑖
if 𝑖 ∈ (𝐼1 ∩ 𝐼2) \ 𝐼3. Here,

we use 𝛾 𝐼𝑥
𝑖

for the values derived for 𝐼𝑥 in Step 4. In particular, 𝛾𝑖
is defined for all 𝑖 ∈ 𝑁 and 𝛾𝑖 ≥ 0. Moreover, let 𝛾𝐶 = 1 −∑

𝑖∈𝑁 𝛾𝑖 .
We claim that 𝑓 (𝑅) = 𝛾COND(𝑅) + ∑

𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for all 𝑅 ∈ D4.
For showing this, consider an arbitrary profile 𝑅 ∈ D4. By the
definition of this domain, there is a set of voters 𝐼 with |𝐼 | = 𝑡 such
that all voters in 𝐼 top-rank 𝑎. Hence, we can use Step 4 to derive
that 𝑓 (𝑅) = 𝛾 𝐼

𝐶
COND(𝑅) +∑

𝑖∈𝑁 \𝐼 𝛾
𝐼
𝑖
𝑑𝑖 (𝑅) for some values 𝛾 𝐼

𝐶
≥ 0

and 𝛾 𝐼
𝑖
≥ 0 for all 𝑖 ∈ 𝑁 \ 𝐼 . By the insights of the last paragraph, it

holds that 𝛾 𝐼
𝑖
= 𝛾

𝐼1
𝑖

if 𝑖 ∈ 𝑁 \ 𝐼1, 𝛾 𝐼𝑖 = 𝛾
𝐼2
𝑖

if 𝑖 ∈ 𝐼1 \ 𝐼2, and 𝛾 𝐼𝑖 = 𝛾
𝐼3
𝑖

if
𝑖 ∈ (𝐼1 ∩ 𝐼2) \ 𝐼3. This means that 𝛾 𝐼

𝑖
= 𝛾𝑖 for all 𝑖 ∈ 𝑁 \ 𝐼 and that

𝛾 𝐼
𝐶
= 1−∑

𝑖∈𝑁 \𝐼 𝛾
𝐼
𝑖
= 1−∑

𝑖∈𝑁 \𝐼 𝛾𝑖 = 𝛾𝐶 +∑𝑖∈𝐼 𝛾𝑖 . Since all voters
𝑖 ∈ 𝐼 top-rank 𝑎, it follows that 𝑓 (𝑅) = 𝛾𝐶COND(𝑅) +

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅),

which proves this step.
Step 5: Finally, we consider the domain D𝑎

𝐶
that contains all

profiles in which 𝑎 is the Condorcet winner. Note that D4 ⊆ D𝑎
𝐶
.

Hence, there are values 𝛾𝐶 and 𝛾𝑖 ≥ 0 for all 𝑖 ∈ 𝑁 such that
𝑓 (𝑅) = 𝛾𝐶COND(𝑅) +

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for all 𝑅 ∈ D4 because of Step

4. We will show that the same holds for all profiles 𝑅 ∈ D𝑎
𝐶
.

For this, consider an arbitrary profile 𝑅 ∈ D𝑎
𝐶
. If 𝑅 ∈ D4, the

claim follows immediately and we hence suppose that 𝑅 ∉ D4.
Now, consider an alternative 𝑥 ∈ 𝐴 \ {𝑎}. We claim that 𝑓 (𝑅, 𝑥) =∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅, 𝑥). For proving this, note that there is a set of voters

𝐼 ⊆ 𝑁 such that |𝐼 | = 𝑡 and 𝑎 ≻𝑖 𝑥 for all 𝑖 ∈ 𝐼 because 𝑎 is
the Condorcet winner in 𝑅. Next, consider the profile 𝑅′ derived
from 𝑅 by letting the voters 𝑖 ∈ 𝐼 reinforce 𝑎 until it is their most
preferred alternative. Clearly, 𝑅′ ∈ D4 and we infer that 𝑓 (𝑅′, 𝑥) =∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅′, 𝑥). On the other hand, we do not move 𝑥 in the

transition from 𝑅 to 𝑅′ as all voters in 𝐼 already prefer 𝑎 to 𝑥 . Hence,
𝑑𝑖 (𝑅, 𝑥) = 𝑑𝑖 (𝑅′, 𝑥) for all voters 𝑖 ∈ 𝑁 and localizedness shows
that 𝑓 (𝑅, 𝑥) = 𝑓 (𝑅′, 𝑥) = ∑

𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅, 𝑥). Finally, since this holds
for all 𝑥 ∈ 𝐴 \ {𝑎}, it follows that 𝑓 (𝑅, 𝑎) = 1−∑

𝑥∈𝐴\{𝑎} 𝑓 (𝑅, 𝑥) =
1−∑

𝑖∈𝑁 : 𝑟 (≻𝑖 ,𝑎)>1 𝛾𝑖 = 𝛾𝐶 +∑𝑖∈𝑁 : 𝑟 (≻𝑖 ,𝑎)=1 𝛾𝑖 = 𝛾𝐶COND(𝑅, 𝑎) +∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅, 𝑎). In particular, we use here that 𝛾𝐶 = 1 −∑

𝑖∈𝑁 𝛾𝑖
by the definition in Step 5. Since 𝑅 is chosen arbitrarily, this proves
that 𝑓 (𝑅) = 𝛾𝐶COND(𝑅) +

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for all 𝑅 ∈ D𝑎

𝐶
. □

Next, we turn to the proof of Theorem 2.

Theorem 2. Assume𝑛 ≥ 4 is even, let ▷ ∈ R be a preference relation,
and D ⊆ R𝑁 be a connected domain. The following claims hold.

(1) Assume D = D▷
𝐶
. An SDS on D is strategyproof and non-impo-

sing if and only if it is a mixture of a random dictatorship and
the tie-breaking Condorcet rule COND▷.

(2) Assume D▷
𝐶
⊊ D. An SDS on D is strategyproof and non-impo-

sing if and only if it is a random dictatorship.



Proof. Assume 𝑛 ≥ 4 is even, fix a preference relation ▷ ∈ R, and
consider an arbitrary connected domain D with D▷

𝐶
⊆ D. First,

we show that every strategyproof and non-imposing SDS on D
is ex post efficient. For this, we assume for contradiction that 𝑓 is
such an SDS but fails ex post efficiency, which means that there are
a profile 𝑅1 ∈ D and two alternatives 𝑥,𝑦 ∈ 𝐴 such that 𝑥 ≻1

𝑖
𝑦

for all 𝑖 ∈ 𝑁 but 𝑓 (𝑅1, 𝑦) > 0. By connectedness and localizedness,
it follows that 𝑓 (𝑅2, 𝑦) > 0 for the profile 𝑅2 derived from 𝑅1 by
making 𝑥 into the favorite alternative of every voter. On the other
hand, there is by non-imposition a profile 𝑅3 such that 𝑓 (𝑅3, 𝑥) = 1.
If 𝑥 is the Condorcet winner in (𝑅3,▷), we can reinforce 𝑥 until
it is top-ranked by all voters and derive a contradiction just as in
Lemma 2.

Hence, suppose that there is an alternative 𝑧 ∈ 𝐴 such that
𝑔(𝑅3,▷) (𝑧, 𝑥) > 0. Moreover, if there are multiple such alternatives,
we assume that 𝑧 is the best alternative according to ▷, i.e., 𝑧 ▷ 𝑧′ if
𝑔(𝑅3,▷) (𝑧, 𝑥) > 0 and 𝑔(𝑅3,▷) (𝑧′, 𝑥) > 0. Now, let 𝐼 = {𝑖 ∈ 𝑁 : 𝑧 ≻3

𝑖

𝑥} denote the set of voters who prefer 𝑧 to 𝑥 in 𝑅3 and note that
|𝐼 | ≥ 𝑛

2 . We consider the profile 𝑅4 derived from 𝑅3 by letting
the voters 𝑖 ∈ 𝐼 make 𝑧 into their favorite alternative and the
voters 𝑖 ∈ 𝑁 \ 𝐼 ranks 𝑧 directly below 𝑥 . Our next goal is to
show that 𝑅4 ∈ D▷

𝐶
⊆ D because 𝑧 is the Condorcet winner in

(𝑅4,▷). If |𝐼 | > 𝑛
2 , this is clear and we hence suppose that |𝐼 | = 𝑛

2 .
This means that 𝑧 ▷ 𝑥 as otherwise 𝑔(𝑅3,▷) (𝑧, 𝑥) < 0. If 𝑧 was
not the Condorcet winner in (𝑅4,▷), there is another alternative
𝑧′ ∈ 𝐴 \ {𝑥} such that 𝑔(𝑅4,▷) (𝑧′, 𝑧) > 0. This is only possible
if all voters 𝑖 ∈ 𝑁 \ 𝐼 prefer 𝑧′ to 𝑧 and if 𝑧′ ▷ 𝑧. Because all
voters 𝑖 ∈ 𝑁 \ 𝐼 rank 𝑧 directly below 𝑥 in 𝑅4, 𝑧′ ≻4

𝑖
𝑧 implies

𝑧′ ≻4
𝑖
𝑥 for all 𝑖 ∈ 𝑁 \ 𝐼 and the transitivity of ▷ shows that 𝑧′ ▷ 𝑥 .

However, then 𝑔(𝑅3,▷) (𝑧′, 𝑥) > 0 and 𝑧′ ▷ 𝑧, which contradicts the
definition of 𝑧. Hence, no such alternative 𝑧′ exists and 𝑧 is indeed
the Condorcet winner in (𝑅4,▷). Moreover, note that 𝑈 (≻3

𝑖
, 𝑥) =

𝑈 (≻4
𝑖
, 𝑥) for all 𝑖 ∈ 𝑁 . Localizedness and connectedness thus show

that 𝑓 (𝑅3, 𝑥) = 𝑓 (𝑅4, 𝑥). From this observation on, we can derive a
contradiction analogous to the proof of Lemma 2. Hence, it follows
that every strategyproof and non-imposing SDS on D is indeed ex
post efficient.

Next, we will prove Claims (1) and (2).
Proof of Claim (1): Suppose thatD = D▷

𝐶
. We first prove the di-

rection from right to left and show that the tie-breaking Condorcet
COND▷ rule is strategyproof and non-imposing on D▷

𝐶
. For this,

note that for every 𝑅 ∈ D▷
𝐶
, the profile (𝑅,▷) is in the Condorcet

domain for 𝑛 + 1 voters. Even more, COND▷ (𝑅) = COND(𝑅,▷) for
all these profiles. Since COND is strategyproof on the Condorcet do-
main, this implies that COND▷ is strategyproof on the tie-breaking
Condorcet domain D▷

𝐶
. Moreover, COND▷ is clearly non-imposing

as it chooses an alternative with probability 1 if it is unanimously
top-ranked. It follows now from the same arguments as in the proof
of Claim (1) of Theorem 1 that every mixture of a random dicta-
torship and the tie-breaking Condorcet rule is strategyproof and
non-imposing on D▷

𝐶
.

For the other direction, let 𝑓 denote a strategyproof and non-
imposing SDS on the tie-breaking Condorcet domain D▷

𝐶
. By our

previous arguments, it follows that 𝑓 is ex post efficient. Hence,
Lemma 3 applies for 𝑓 and shows that for every alternative 𝑥 ∈ 𝐴,

there are values 𝛾𝑥
𝐶
and 𝛾𝑥

𝑖
≥ 0 for all 𝑖 ∈ 𝑁 such that 𝑓 (𝑅′) =

𝛾𝑥
𝐶
COND(𝑅′) +∑

𝑖∈𝑁 𝛾𝑥
𝑖
𝑑𝑖 (𝑅′) for all 𝑅′ ∈ D𝑥

𝐶
. From this observa-

tion on, we proceed in multiple steps to prove Claim (1). In par-
ticular, we show first that 𝛾𝑥

𝐶
= 𝛾

𝑦

𝐶
and 𝛾𝑥

𝑖
= 𝛾

𝑦

𝑖
for all 𝑖 ∈ 𝐼 and

𝑥,𝑦 ∈ 𝐴. This means that 𝑓 (𝑅) = 𝛾𝐶COND▷ (𝑅′) +
∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅)

for all profiles 𝑅 ∈ D𝐶 , where 𝛾𝐶 = 𝛾𝑥
𝐶
and 𝛾𝑖 = 𝛾𝑥

𝑖
for all 𝑖 ∈ 𝑁 and

some alternative 𝑥 ∈ 𝐴. As our next step, we fix an alternative 𝑎 ∈ 𝐴

and consider the domainD▷,𝑎
𝐶

that precisely consists of the profiles
𝑅 such that 𝑎 is the Condorcet winner in (𝑅,▷). For this domain,
we prove in three steps that 𝑓 (𝑅) = 𝛾𝐶COND▷ (𝑅) +

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅)

for all profiles 𝑅 ∈ D▷,𝑎
𝐶

. Finally, we show that 𝛾𝐶 ≥ 0, which
completes the proof of the theorem since 𝑎 is chosen arbitrarily.

Step 1: Consider two alternatives 𝑎, 𝑏 ∈ 𝐴. We will show that
𝛾𝑎
𝐶
= 𝛾𝑏

𝐶
and 𝛾𝑎

𝑖
= 𝛾𝑏

𝑖
≥ 0 for all voter 𝑖 ∈ 𝐼 . For this, let 𝑖 denote

an arbitrary voter, 𝑐 an alternative in 𝐴 \ {𝑎, 𝑏}, and consider the
profiles 𝑅1 and 𝑅2.

𝑅1: 𝑖 :𝑐, 𝑎, 𝑏 . . . 𝑁 \{𝑖}: 𝑎, 𝑏, 𝑐 . . .
𝑅2: 𝑖 :𝑐, 𝑎, 𝑏 . . . 𝑁 \{𝑖}: 𝑏, 𝑎, 𝑐 . . .

Clearly, 𝑎 is the Condorcet winner in 𝑅1 and 𝑏 in 𝑅2. Hence,
𝑓 (𝑅1, 𝑐) = 𝛾𝑎

𝑖
and 𝑓 (𝑅2, 𝑐) = 𝛾𝑏

𝑖
. Moreover, since D▷

𝐶
is connected,

there is an ad-path from 𝑅1 to 𝑅2 that does not move 𝑐 . Thus,
localizedness shows that 𝛾𝑎

𝑖
= 𝛾𝑏

𝑖
. Since this holds for all voters,

we also infer that 𝛾𝑎
𝐶
= 1 −∑

𝑖∈𝑁 𝛾𝑎
𝑖
= 1 −∑

𝑖∈𝑁 𝛾𝑏
𝑖
= 𝛾𝑏

𝐶
. Now, let

𝛾𝐶 = 𝛾𝑎
𝐶
and 𝛾𝑖 = 𝛾𝑎

𝑖
for all voters 𝑖 ∈ 𝑁 and some 𝑎 ∈ 𝐴. It is easy

to see that 𝑓 (𝑅) = 𝛾𝐶COND▷ (𝑅) +
∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for all 𝑅 ∈ D𝐶 . In

particular, we use here that COND▷ (𝑅) = COND(𝑅) for all profiles
𝑅 ∈ D𝐶 if 𝑛 is even.

Step 2: Fix a set of voters 𝐼 ⊆ 𝑁 with |𝐼 | = 𝑛
2 and an alternative

𝑎 ∈ 𝐴. In this step, we consider the domain D𝐼 ,𝑎
1 which consists

of all profiles 𝑅 such that 𝑎 is the Condorcet winner in (𝑅,▷) and
top-ranked by all voters 𝑖 ∈ 𝐼 . Our goal is to show that 𝑓 (𝑅, 𝑎) =
𝛾𝐶COND▷ (𝑅, 𝑎) +

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅, 𝑎) for all profiles 𝑅 ∈ D𝐼 ,𝑎

1 .
First, note that this claim follows immediately from Step 1 for all

profiles 𝑅 ∈ D𝐶 ∩𝐷
𝐼 ,𝑎
1 . Hence, we focus on profiles 𝑅 ∈ D𝐼 ,𝑎

1 \D𝐶 .
Since 𝑎 is by definition the Condorcet winner in (𝑅,▷) for all these
profiles 𝑅, there is an alternative 𝑏 ∈ 𝐴 \ {𝑎} such that 𝑏 ≻𝑖 𝑎

for all voters 𝑖 ∈ 𝑁 \ 𝐼 and 𝑎 ▷ 𝑏. In particular, this means that
no voter in 𝑁 \ 𝐼 top-ranks 𝑎, and we thus need to show that
𝑓 (𝑅, 𝑎) = 𝛾𝐶 +∑

𝑖∈𝐼 𝛾𝑖 for all such profiles 𝑅.
For doing so, consider a profile𝑅1 ∈ D𝐼 ,𝑎

1 \D𝐶 and let𝑏 denote an
alternative such that 𝑏 ≻1

𝑖
𝑎 for all 𝑖 ∈ 𝑁 \ 𝐼 and 𝑎 ▷ 𝑏. Furthermore,

let 𝑅2 denote the profile derived from 𝑅1 by letting all voters 𝑖 ∈
𝑁 \ 𝐼 make 𝑏 into their favorite alternative, and all voters 𝑖 ∈ 𝐼

make 𝑏 into their second best alternative (after 𝑎). Since 𝑎 is the
Condorcet winner in (𝑅1,▷) and𝑈 (≻1

𝑖
, 𝑎) = 𝑈 (≻2

𝑖
, 𝑎) for all 𝑖 ∈ 𝑁 ,

it is also the Condorcet winner in (𝑅2,▷). Moreover, we can use
connectedness and localizedness to derive that 𝑓 (𝑅1, 𝑎) = 𝑓 (𝑅2, 𝑎)
since we did not move 𝑎 for transforming 𝑅1 to 𝑅2. Next, observe
that 𝑓 (𝑅2, 𝑥) = 0 for all 𝑥 ∈ 𝐴 \ {𝑎, 𝑏} as 𝑏 Pareto-dominates all
those alternatives. Finally, consider the profile 𝑅3, which we derive
from 𝑅2 by letting all voter 𝑖 ∈ 𝑁 \ 𝐼 make 𝑎 into their second best
alternative. Connectedness implies that there is an ad-path from 𝑅2

to 𝑅3 along which 𝑏 is never swapped and thus 𝑓 (𝑅2, 𝑏) = 𝑓 (𝑅3, 𝑏).
On the other hand, ex post efficiency still requires that 𝑓 (𝑅3, 𝑥) = 0



for 𝑥 ∈ 𝐴 \ {𝑎, 𝑏} and thus, 𝑓 (𝑅2, 𝑎) = 1 − 𝑓 (𝑅2, 𝑏) = 1 − 𝑓 (𝑅3, 𝑏) =
𝑓 (𝑅3, 𝑎).

Now, to prove that 𝑓 (𝑅1, 𝑎) = 𝑓 (𝑅3, 𝑎) = 𝛾𝐶 +∑
𝑖∈𝐼 𝛾𝑖 , we con-

sider the following profiles, where 𝑐 is an arbitrary alternative in
𝐴 \ {𝑎, 𝑏} and 𝑖∗ is a voter in 𝑁 \ 𝐼 . Note that all these profiles are
in D▷

𝐶
: for 𝑅 ∈ {𝑅4, 𝑅5, 𝑅6}, it is easy to see that 𝑎 is the Condorcet

winner in (𝑅,▷) because 𝑎 ▷ 𝑏 and 𝑛 ≥ 4. For 𝑅7, 𝑐 is the Condorcet
winner in (𝑅7,▷) because it is top-ranked by all voters but one.

𝑅4: 𝐼 : 𝑎, 𝑏, 𝑐, . . . 𝑁 \(𝐼∪{𝑖∗}): 𝑏, 𝑐, 𝑎, . . . 𝑖∗: 𝑏, 𝑎, 𝑐, . . .
𝑅5: 𝐼 : 𝑎, 𝑐, 𝑏, . . . 𝑁 \(𝐼∪{𝑖∗}): 𝑐, 𝑏, 𝑎, . . . 𝑖∗: 𝑏, 𝑎, 𝑐, . . .
𝑅6: 𝐼 : 𝑎, 𝑐, 𝑏, . . . 𝑁 \(𝐼∪{𝑖∗}): 𝑐, 𝑏, 𝑎, . . . 𝑖∗: 𝑎, 𝑏, 𝑐, . . .
𝑅7: 𝐼 : 𝑐, 𝑎, 𝑏, . . . 𝑁 \(𝐼∪{𝑖∗}): 𝑐, 𝑏, 𝑎, . . . 𝑖∗: 𝑏, 𝑎, 𝑐, . . .

In 𝑅4, all alternatives but 𝑎 and 𝑏 are still Pareto-dominated and
thus have probability 0. Moreover,𝑈 (≻3

𝑖
, 𝑏) = 𝑈 (≻4

𝑖
, 𝑏) for all 𝑖 ∈ 𝑁 ,

which implies that 𝑓 (𝑅4, 𝑏) = 𝑓 (𝑅3, 𝑏) because D▷
𝐶
is connected

and 𝑓 is localized. In turn, we derive that 𝑓 (𝑅4, 𝑎) = 1 − 𝑓 (𝑅4, 𝑏) =
1 − 𝑓 (𝑅3, 𝑏) = 𝑓 (𝑅3, 𝑎). Next, we can again use localizedness and
connectedness to infer that 𝑓 (𝑅5, 𝑎) = 𝑓 (𝑅4, 𝑎).

As last step, note that 𝑎 is the Condorcet winner in 𝑅6 and 𝑐 is
the Condorcet winner in 𝑅7. Hence, for 𝑥 ∈ {6, 7}, 𝑅𝑥 ∈ D𝐶 and
𝑓 (𝑅𝑥 ) = 𝛾𝐶COND▷ (𝑅𝑥 ) +

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅𝑥 ) by Step 1. This obser-

vation means that 𝑓 (𝑅6, 𝑐) = ∑
𝑖∈𝑁 \(𝐼∪{𝑖∗ }) 𝛾𝑖 and 𝑓 (𝑅7, 𝑏) = 𝛾𝑖∗ .

Next, note that 𝑈 (≻5
𝑖
, 𝑐) = 𝑈 (≻6

𝑖
, 𝑐) and 𝑈 (≻5

𝑖
, 𝑏) = 𝑈 (≻7

𝑖
, 𝑏) for

all 𝑖 ∈ 𝑁 . Hence, there is an ad-path from 𝑅5 to 𝑅6 (resp. 𝑅5 to
𝑅7) along which 𝑐 (resp. 𝑏) is never swapped because D▷

𝐶
is con-

nected. We infer now from localizedness that 𝑓 (𝑅5, 𝑐) = 𝑓 (𝑅6, 𝑐) =∑
𝑖∈𝑁 \(𝐼∪{𝑖∗ }) 𝛾𝑖 and 𝑓 (𝑅5, 𝑏) = 𝑓 (𝑅7, 𝑐) = 𝛾𝑖∗ . Moreover, ex post

efficiency requires that 𝑓 (𝑅5, 𝑥) = 0 for all 𝑥 ∈ 𝐴 \ {𝑎, 𝑏, 𝑐}. We can
therefore deduce that 𝑓 (𝑅5, 𝑎) = 1− 𝑓 (𝑅5, {𝑏, 𝑐}) = 1−∑

𝑖∈𝑁 \𝐼 𝛾𝑖 =
𝛾𝐶 +

∑
𝑖∈𝐼 𝛾𝑖 . Since 𝑓 (𝑅1, 𝑎) = 𝑓 (𝑅3, 𝑎) = 𝑓 (𝑅5, 𝑎), this proves Step 2.

Step 3: For the third step, we fix a set of voters 𝐼 ⊆ 𝑁 with |𝐼 | = 𝑛
2

and an alternative 𝑎 ∈ 𝐴. We will show that 𝑓 (𝑅) = 𝛾𝐶COND▷ (𝑅) +∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for all profiles 𝑅 ∈ D𝐼 ,𝑎

1 .
For this, consider a profile 𝑅1 ∈ D𝐼 ,𝑎

1 . If there is a voter 𝑖 ∈
𝑁 \ 𝐼 who top-ranks 𝑎 in 𝑅1, then 𝑅1 ∈ D𝐶 and the claim follows
from Step 1. On the other hand, if there is no such voter, consider
the profile 𝑅2 derived from 𝑅1 by making 𝑎 into the second best
alternative of all voters 𝑖 ∈ 𝑁 \𝐼 . Since none of these voters top-rank
𝑎 in 𝑅1, it holds that𝑈 (≻2

𝑖
, 𝑎) ⊆ 𝑈 (≻1

𝑖
, 𝑎) for all 𝑖 ∈ 𝑁 . In particular,

we can transform 𝑅1 into 𝑅2 by only reinforcing 𝑎 against a single
alternative in every step. Hence, there is an ad-path (𝑅1, . . . , 𝑅𝑙 )
from 𝑅1 to 𝑅2 along which 𝑎 is only reinforced. In particular, it is
easy to see that𝑎 is the Condorcet winner in (𝑅𝑘 ,▷) for every profile
𝑅𝑘 on this ad-path. We therefore do not leave the domain D𝐼 ,𝑎

1
during this process. Moreover, it follows from this observation that
𝑓 (𝑅𝑘 , 𝑎) = 𝛾𝐶 +∑𝑖∈𝐼 𝛾𝑖 for all 𝑘 ∈ {1, . . . , 𝑙} because of the insights
of Step 2. Next, localizedness shows that 𝑓 (𝑅𝑘 , 𝑧) = 𝑓 (𝑅𝑘−1, 𝑧) for
all alternatives 𝑧 ∈ 𝐴 except the alternative 𝑥 that is weakened
against 𝑎. However, since 𝑓 (𝑅𝑘 , 𝑎) = 𝑓 (𝑅𝑘−1, 𝑎) the probability of
𝑥 cannot change either. This proves that 𝑓 (𝑅𝑘 ) = 𝑓 (𝑅𝑘−1) for all
𝑘 ∈ {2, . . . , 𝑙} and therefore that 𝑓 (𝑅1) = 𝑓 (𝑅2).

Now, if 𝑎 is the Condorcet winner in 𝑅2, then 𝑓 (𝑅1) = 𝑓 (𝑅2) =
𝛾𝐶COND▷ (𝑅2) +∑𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅2) = 𝛾𝐶COND𝑅 (𝑅1) +∑𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅1),
where the last equality follows because no voter changes his favorite

alternative. On the other hand, if 𝑅2 ∉ D𝐶 , then all voters in 𝑁 \ 𝐼
top-rank another alternative 𝑏. In particular, this means that all
alternatives 𝑥 ∈ 𝐴 \ {𝑎, 𝑏} are Pareto-dominated by 𝑎 and thus,
𝑓 (𝑅1, 𝑏) = 𝑓 (𝑅2, 𝑏) = 1− 𝑓 (𝑅2, 𝑎) = 1− (𝛾𝐶 +∑𝑖∈𝐼 𝛾𝑖 ) =

∑
𝑖∈𝑁 \𝐼 𝛾𝑖 .

Hence, it holds again that 𝑓 (𝑅1) = 𝛾𝐶COND▷ (𝑅1) +∑𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅1),
which completes the proof of this step.

Step 4:Next, we show that 𝑓 (𝑅) = 𝛾𝐶COND▷ (𝑅)+
∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅)

for all profiles 𝑅 ∈ D▷,𝑎
𝐶

. For this, consider an arbitrary profile
𝑅 in this domain and an alternative 𝑥 ∈ 𝐴 \ {𝑎}. Since 𝑎 is the
Condorcet winner in (𝑅,▷), there are at least 𝑛

2 voters in 𝑅 who
prefer 𝑎 to 𝑥 . Now, consider the profile 𝑅′ derived from 𝑅 by let-
ting these voters make 𝑎 into their best alternative. By the con-
nectedness of D▷

𝐶
, there is an ad-path from 𝑅 to 𝑅′ along which

𝑥 is never moved. Hence, localizedness implies that 𝑓 (𝑅, 𝑥) =

𝑓 (𝑅′, 𝑥). On the other hand, 𝑅′ ∈ D𝐼 ,𝑎
1 for some set 𝐼 and thus,

𝑓 (𝑅′, 𝑥) =
∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅′, 𝑥). Moreover, 𝑥 was not top-ranked by

any of the voters who reinforced 𝑎 because 𝑎 ≻′
𝑖
𝑥 . Therefore,

𝑓 (𝑅, 𝑥) = ∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅, 𝑥). Since 𝑥 is chosen arbitrarily in 𝐴 \ {𝑎},

we infer that 𝑓 (𝑅, 𝑥) =
∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅, 𝑥) for all 𝑥 ∈ 𝐴 \ {𝑎} and

𝑅 ∈ D▷,𝑎
𝐶

. This implies that 𝑓 (𝑅, 𝑎) = 1 − ∑
𝑥∈𝐴\{𝑎} 𝑓 (𝑅, 𝑥) =

1 − ∑
𝑖∈𝑁 : 𝑟 (≻𝑖 ,𝑎)>1 𝛾𝑖 = 𝛾𝐶 + ∑

𝑖∈𝑁 : 𝑟 (≻𝑖 ,𝑎)=1 𝛾𝑖 . We thus derive
that 𝑓 (𝑅) = 𝛾𝐶COND▷ (𝑅) +

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for all profiles 𝑅 ∈ D▷,𝑎

𝐶
.

Step 5: Finally, we show that 𝛾𝐶 ≥ 0. For this, let 𝑎, 𝑏, 𝑐 denote
three distinct alternatives with 𝑎 ▷ 𝑏 ▷ 𝑐 . Moreover, we partition
the voters in three disjoint sets 𝐼1, 𝐼2, and 𝐼3 with |𝐼1 | = |𝐼2 | = 𝑛

2 −1
and |𝐼3 | = 2. Since 𝑛 ≥ 4, none of these sets is empty. Now, consider
the following three profiles, where 𝐼3 = {𝑖, 𝑗}.

𝑅1: 𝐼1 :𝑎, 𝑏, 𝑐 . . . 𝐼2: 𝑏, 𝑎, 𝑐 . . . 𝐼3: 𝑐, 𝑎, 𝑏
𝑅2: 𝐼1 :𝑎, 𝑏, 𝑐 . . . 𝐼2: 𝑏, 𝑎, 𝑐 . . . 𝑖: 𝑐, 𝑎, 𝑏 𝑗 : 𝑐, 𝑏, 𝑎
𝑅3: 𝐼1 :𝑎, 𝑏, 𝑐 . . . 𝐼2: 𝑏, 𝑎, 𝑐 . . . 𝐼3: 𝑐, 𝑏, 𝑎

All three profiles are in D▷
𝐶
: in (𝑅1,▷) and (𝑅2,▷), 𝑎 is the Con-

dorcet winner, and 𝑏 is the Condorcet winner in (𝑅3,▷). Next, ob-
serve that two applications of non-perversity show that 𝑓 (𝑅1, 𝑎) ≥
𝑓 (𝑅3, 𝑎). On the other hand, we have that 𝑓 (𝑅1, 𝑎) = 𝛾𝐶 +∑

𝑖∈𝐼 1 𝛾𝑖
and 𝑓 (𝑅3, 𝑎) = ∑

𝑖∈𝐼 1 𝛾𝑖 . Hence, it follows immediately that 𝛾𝐶 ≥ 0.
This completes the proof of Claim (1) because we already know
that 𝑓 (𝑅) = 𝛾𝐶COND▷ (𝑅) +

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for all profiles 𝑅 ∈ D▷,𝑥

𝐶

and alternatives 𝑥 ∈ 𝐴 and D▷
𝐶
=
⋃

𝑥∈𝐴 D▷,𝑥
𝐶

.
Proof of Claim (2): For the second claim, suppose thatD▷

𝐶
⊊ D.

It is obvious that random dictatorships are strategyproof and non-
imposing on D. We thus focus on the converse claim and let 𝑓
denote a strategyproof and non-imposing SDS on D. First, by the
reasoning before the proof of Claim (1), it follows that 𝑓 is ex post
efficient. Consequently, 𝑓 is strategyproof and non-imposing on
D▷

𝐶
. We can therefore use Claim (1) to infer that there are values

𝛾𝐶 ≥ 0 and 𝛾𝑖 ≥ 0 for all 𝑖 ∈ 𝑁 such that 𝑓 (𝑅) = 𝛾𝐶COND▷ (𝑅) +∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for all 𝑅 ∈ D▷

𝐶
. We thus have to show that 𝛾𝐶 = 0

and to extend this representation to the larger domain D.
For this, consider a profile 𝑅 ∈ D \D▷

𝐶
and an alternative 𝑥 ∈ 𝐴.

We define 𝐵 = {𝑦 ∈ 𝐴 : 𝑔(𝑅,▷) (𝑦, 𝑥) > 0} and note that 𝐵 ≠ ∅
because there is no Condorcet winner in (𝑅,▷). Let 𝑦 denote the
maximal alternative in 𝐵 according to ▷, i.e.,𝑦 ▷ 𝑧 for all 𝑧 ∈ 𝐵\{𝑦}.
Moreover, we define 𝐼 = {𝑖 ∈ 𝑁 : 𝑦 ≻𝑖 𝑥} as the set of voters who
prefer 𝑦 to 𝑥 in 𝑅 and note that |𝐼 | ≥ 𝑛

2 . Next, consider the profile



𝑅′ derived from 𝑅 by letting all voters 𝑖 ∈ 𝐼 make 𝑦 into their best
alternative and all voters 𝑖 ∈ 𝑁 \ 𝐼 move up 𝑦 until it is directly
below 𝑥 . If |𝐼 | > 𝑛

2 , then 𝑦 is the Condorcet winner in (𝑅′,▷)
and 𝑅′ ∈ D▷

𝐶
. If |𝐼 | = 𝑛

2 , it must hold that 𝑦 ▷ 𝑥 as otherwise
𝑔(𝑅,▷) (𝑦, 𝑥) < 0. We claim also in this case that 𝑦 is the Condorcet
winner in (𝑅′,▷). If this was not the case, there is an alternative 𝑧
such that 𝑔(𝑅′,▷) (𝑧,𝑦) > 0. Since all voters 𝑖 ∈ 𝐼 top-rank 𝑦 in 𝑅′,
this means that 𝑧 ≻′

𝑖
𝑦 for all 𝑖 ∈ 𝑁 \ 𝐼 and 𝑧 ▷ 𝑦. Moreover, because

all voters 𝑖 ∈ 𝑁 \ 𝐼 rank 𝑦 directly below 𝑥 , it follows that 𝑧 ≻𝑖 𝑥
for all these voters. However, we then have that 𝑧 ∈ 𝐵 and 𝑧 ▷ 𝑦,
which contradicts the the definition of 𝑦. This proves that 𝑅′ ∈ D▷

𝐶
,

and we can now use the same analysis as for proof of Claim (2) in
Theorem 1 to complete the proof. □

As last result, we discuss the proof of Theorem 3.
Theorem 3. Assume 𝑛 ≥ 3 and let D ⊆ R𝑁 denote an arbitrary
domain. The following claims are true.

(1) Assume D = D𝐶 . An SDS on D is group-strategyproof and non-
imposing if and only if it is a dictatorship or the Condorcet rule.

(2) Assume D𝐶 ⊊ D and that there is a profile 𝑅 ∈ D such that
for each 𝑥 ∈ 𝐴, there is 𝑦 ∈ 𝐴 with 𝑔𝑅 (𝑦, 𝑥) > 0. An SDS on
D is group-strategyproof and non-imposing if and only if it is a
dictatorship.

Proof. For the direction from right to left of both claims, we refer to
the proof sketch in the main body as it discusses in detail why the
Condorcet rule and dictatorships satisfy the required axioms. We
focus here on the direction from left to right and consider therefore a
group-strategyproof and non-imposing SDS 𝑓 on a domain D with
D𝐶 ⊆ D. First, we show by contradiction that 𝑓 is ex post efficient.
Hence, assume that there are alternatives 𝑥,𝑦 ∈ 𝐴 and a profile
𝑅 ∈ D such that 𝑓 (𝑅,𝑦) > 0 even though 𝑥 Pareto-dominates 𝑦 in
𝑅. On the other hand, there is a profile 𝑅′ such that 𝑓 (𝑅′, 𝑥) = 1
by non-imposition. It is now easy to see that the set of all voters
𝑁 can group-manipulate by deviating from 𝑅 to 𝑅′ because all
voters prefer 𝑥 to 𝑦. The initial assumption is therefore wrong and
𝑓 satisfies ex post efficiency.

Since group-strategyproofness implies strategyproofness, we
can now invoke Lemma 3 to derive that for every alternative 𝑥 ∈ 𝐴,
there are values 𝛾𝑥

𝐶
and 𝛾𝑥

𝑖
≥ 0 for all 𝑖 ∈ 𝑁 such that 𝑓 (𝑅) =

𝛾𝑥
𝐶
COND(𝑅) + ∑

𝑖∈𝑁 𝛾𝑥
𝑖
𝑑𝑖 (𝑅) for all 𝑅 ∈ D𝑥

𝐶
. We show next that

𝛾𝑥
𝑖

= 𝛾
𝑦

𝑖
for all voters 𝑖 ∈ 𝑁 and alternatives 𝑥,𝑦 ∈ 𝐴. For this,

consider the profiles 𝑅1 and 𝑅2 shown below, where 𝑖 is an arbitrary
voter and 𝑎, 𝑏, 𝑐 denote three distinct alternatives.

𝑅1: 𝑖: 𝑐, 𝑎, 𝑏, . . . 𝑁 \{𝑖}: 𝑎, 𝑏, 𝑐, . . .
𝑅2: 𝑖: 𝑐, 𝑎, 𝑏, . . . 𝑁 \{𝑖}: 𝑏, 𝑎, 𝑐, . . .

Since 𝑛 ≥ 3, it holds that 𝑎 is the Condorcet winner in 𝑅1 and
𝑏 in 𝑅2. This entails that 𝑓 (𝑅1, 𝑐) = 𝛾𝑎

𝑖
and 𝑓 (𝑅2, 𝑐) = 𝛾𝑏

𝑖
. Finally,

group-strategyproofness implies that 𝑓 (𝑅1, {𝑎, 𝑏}) = 𝑓 (𝑅2, {𝑎, 𝑏})
because otherwise, the group 𝑁 \ {𝑖} can group-manipulate by
deviating from 𝑅1 to 𝑅2 or vice versa. For instance, if 𝑓 (𝑅1, {𝑎, 𝑏}) <
𝑓 (𝑅2, {𝑎, 𝑏}), then 𝑓 (𝑅1) �SD

𝑗
𝑓 (𝑅2) for all 𝑗 ∈ 𝑁 \{𝑖}, which proves

that this is indeed a group-manipulation. Since all other alternatives

are Pareto-dominated, we thus infer that 𝛾𝑎
𝑖
= 𝑓 (𝑅1, 𝑐) = 𝑓 (𝑅2, 𝑐) =

𝛾𝑏
𝑖
. Analogous to the proof of Theorem 1, it follows now that 𝛾𝑎

𝐶
=

𝛾𝑏
𝐶
and there are thus 𝛾𝐶 and 𝛾𝑖 ≥ 0 for 𝑖 ∈ 𝑁 such that 𝑓 (𝑅) =

𝛾𝐶COND(𝑅) +
∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 (𝑅) for all 𝑅 ∈ D𝐶 .

Next, we show that if 𝛾𝑖 > 0, then 𝛾𝑖 = 1. Assume for contradic-
tion that this is not the case, i.e., there is a voter 𝑖 ∈ 𝑁 with 𝛾𝑖 > 0
and 𝛾𝑖 ≠ 1. To derive a contradiction, we consider the profiles 𝑅3

and 𝑅4 shown below.
𝑅3: 𝑖: 𝑐, 𝑎, 𝑏, . . . 𝑁 \{𝑖}: 𝑏, 𝑎, 𝑐, . . .
𝑅4: 𝑖: 𝑎, 𝑏, 𝑐, . . . 𝑁 \{𝑖}: 𝑎, 𝑏, 𝑐, . . .

Since 𝑏 is the Condorcet winner in 𝑅3 and 0 < 𝛾𝑖 , we have that
𝑓 (𝑅3, 𝑐) = 𝛾𝑖 > 0. In particular, this implies that 𝛾𝑖 ≤ 1 as 𝑓 is
otherwise not well-defined. In turn, our contradiction assumption
entails that 𝛾𝑖 < 1 and therefore 𝑓 (𝑅3, 𝑏) = 1 − 𝑓 (𝑅3, 𝑐) > 0
because 𝑅3 ∈ D𝐶 . On the other hand, ex post efficiency shows that
𝑓 (𝑅4, 𝑎) = 1. However, this means that the group of all voters can
group-manipulate by deviating from 𝑅3 to 𝑅4 because 𝑓 (𝑅3,𝑈 (≻3

𝑗

, 𝑎)) < 1 = 𝑓 (𝑅4,𝑈 (≻3
𝑗
, 𝑎)) for all voters 𝑖 ∈ 𝑁 . This contradicts

that 𝑓 is group-strategyproof and thus, if 𝛾𝑖 > 0, then 𝛾𝑖 = 1.
Furthermore, it is not possible that 𝛾𝑖 = 1 and 𝛾 𝑗 = 1 for distinct
voters 𝑖, 𝑗 . This follows by considering the profile 𝑅5 ∈ D𝐶 shown
below: if both 𝛾𝑖 = 1 and 𝛾 𝑗 = 1, then 𝑓 (𝑅5, 𝑏) = 𝑓 (𝑅5, 𝑐) = 1 which
violates the definition of an SDS.

𝑅5: 𝑁 \{𝑖, 𝑗}: 𝑎, 𝑏, 𝑐, . . . 𝑖: 𝑏, 𝑎, 𝑐, . . . 𝑗 : 𝑐, 𝑎, 𝑏, . . .
As a consequence, we infer for all profiles 𝑅 ∈ D𝐶 that either

𝑓 (𝑅) = 𝑑𝑖 (𝑅) for some 𝑖 ∈ 𝑁 or 𝑓 (𝑅) = COND(𝑅). This proves
Claim (1): only dictatorial SDSs and the Condorcet rule are group-
strategyproof and non-imposing on the Condorcet domain.

For proving the second claim, we assume that there is a profile
𝑅∗ ∈ D such that for every alternative 𝑥 ∈ 𝐴, there is another
alternative 𝑦 ∈ 𝐴 \ {𝑥} such that 𝑔𝑅∗ (𝑦, 𝑥) > 0. Now, let 𝑎 denote
an alternative such that 𝑓 (𝑅∗, 𝑎) > 0. Moreover, let 𝑏 denote an
alternative with 𝑔𝑅∗ (𝑏, 𝑎) > 0 and let 𝐼 denote the set of voters
with 𝑏 ≻∗

𝑖
𝑎. We consider the profile 𝑅′ derived from 𝑅∗ by letting

all voters 𝑖 ∈ 𝐼 make 𝑏 into their best alternative. Clearly, 𝑏 is the
Condorcet winner in 𝑅′ because |𝐼 | > 𝑛

2 , which entails that 𝑅′ ∈ D.
If 𝑓 (𝑅′) = COND(𝑅′), the voters 𝑖 ∈ 𝐼 can group-manipulate by
deviating from 𝑅 to 𝑅′ because they all prefer 𝑏 to 𝑎. Hence, 𝑓 (𝑅) is
not the Condorcet rule for profiles on D𝐶 , which means that there
is a voter 𝑖 ∈ 𝑁 such that 𝑓 (𝑅) = 𝑑𝑖 (𝑅) for all 𝑅 ∈ D𝐶 .

For completing the proof, we need to show that voter 𝑖 dictates
the outcome in all profiles. For doing so, consider an arbitrary
profile 𝑅 ∈ D and let 𝑥 denote voter 𝑖’s favorite alternative in
𝑅. We suppose for contradiction that 𝑓 (𝑅, 𝑥) < 1. Now, consider
the profile 𝑅′ in which all voters 𝑗 ∈ 𝑁 \ {𝑖} prefer an alternative
𝑦 ∈ 𝐴 \ {𝑥} the most and 𝑥 the least, and voter 𝑖 reports ≻𝑖 . Clearly,
𝑦 is the Condorcet winner in 𝑅′ and thus 𝑓 (𝑅′, 𝑥) = 𝑑𝑖 (𝑅′, 𝑥) = 1.
Now, it is easy to see that if 𝑓 (𝑅, 𝑥) < 1, then the voters in 𝑁 \ {𝑖}
can group-manipulate by deviating from 𝑅′ to 𝑅 because they prefer
every other lottery to 𝑓 (𝑅′). Hence, the assumption that 𝑓 (𝑅, 𝑥) <
1 contradicts the group-strategyproofness of 𝑓 . This proves that
𝑓 (𝑅) = 𝑑𝑖 (𝑅) for all 𝑅 ∈ D and thus proves Claim (2). □
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