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Abstract. We study the problem of aggregating distributions, such as budget propos-
als, into a collective distribution. An ideal aggregation mechanism would be Pareto
efficient, strategyproof, and fair. Most previous work assumes that agents evalu-
ate budgets according to the ℓ1 distance to their ideal budget. We investigate and
compare different models from the larger class of star-shaped utility functions—a
multi-dimensional generalization of single-peaked preferences. For the case of two
alternatives, we extend existing results by proving that under very general assumptions,
the uniform phantom mechanism is the only strategyproof mechanism that satisfies
proportionality—a minimal notion of fairness introduced by Freeman et al. [21]. Mov-
ing to the case of more than two alternatives, we establish sweeping impossibilities for
ℓ1 and ℓ∞ disutilities: no mechanism satisfies efficiency, strategyproofness, and pro-
portionality. We then propose a new kind of star-shaped utilities based on evaluating
budgets by the ratios of shares between a given budget and an ideal budget. For these
utilities, efficiency, strategyproofness, and fairness become compatible. In particular,
we prove that the mechanism that maximizes the Nash product of individual utilities
is characterized by group-strategyproofness and a core-based fairness condition.
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1. Introduction Social choice theory is concerned with the aggregation of individual prefer-
ences into a collective outcome [e.g., 1, 2]. An important special case arises when the potential
collective outcomes are distributions over a fixed set of alternatives. These distributions may rep-
resent how a budget should be divided among public projects in a city or among departments in
an organization. Alternatively, they may reflect how time or space ought to be allotted between
different types of activities at a social event. This scenario is sometimes referred to as budget
aggregation or portioning and falls under the framework of participatory budgeting, which has
received increasing interest in recent years [6, 18].

In order to reason about the agents’ satisfaction with the collective outcome, one needs to make
some assumptions about their preferences. Importantly, in our setting, the realized outcome is
a distribution. Therefore, restricting attention to rankings over alternatives is insufficient, as an
agent’s most preferred outcome is typically a non-degenerate distribution over the alternatives.
This is particularly evident in participatory budgeting problems, where even if an agent has a
favorite project, she normally also likes other projects and does not want them to be left completely
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unfunded. This is in contrast to probabilistic social choice [see, e.g., 14], where the final outcome is
a single alternative picked at random from the distribution, so typically the agents’ most-preferred
distributions are degenerate.

In this paper, consistent with previous research in this domain, we mainly consider utility models
where agents’ preferences are completely determined by their favorite distribution: their “peak”.
This keeps the amount of required information from each agent at a manageable level. We assume
that each agent’s utility decreases as the actual distribution moves away from her peak (see the
formal definition in Section 3). Such utility functions are called star-shaped [12].

For two alternatives, i.e., outcomes on the unit interval [0,1], star-shaped utilities are equivalent
to single-peaked preferences. According to a famous characterization by Moulin [32], there is a
rather restrictive class of mechanisms that are strategyproof for all single-peaked preferences, the
so-called generalized median rules. Moulin’s characterization leaves open the possibility that, for
restricted subdomains of single-peaked preferences, other mechanisms than generalized median
rules are strategyproof. In Section 4, we obtain characterizations of continuous mechanisms which
hold not only for single-peaked, but also for any subdomain of single-peaked preferences. Our
characterizations refine results by Freeman et al. [21] and Aziz et al. [5].

For more than two alternatives, most of the previous work on budget aggregation assumes that
preferences are given via the ℓ1 norm [e.g., 16, 21, 22, 25, 30]. According to ℓ1 preferences,
agent 𝑖’s disutility for a distribution q = (𝑞1, . . . , 𝑞𝑚) over 𝑚 alternatives is given by the ℓ1 distance
∥p𝑖 − q∥1 =

∑𝑚
𝑗=1 |𝑝𝑖, 𝑗 − 𝑞 𝑗 |, where p𝑖 = (𝑝𝑖,1, . . . , 𝑝𝑖,𝑚) is the agent’s peak. We assume without

loss of generality that the sum of all components in a distribution is 1. Under this utility model,
Lindner et al. [30] and Goel et al. [25] showed that a mechanism that maximizes utilitarian welfare
(i.e., minimizes the sum of agents’ disutilities) is both strategyproof and efficient; however, this
mechanism has a tendency to overweight majority preferences. Freeman et al. [21] proposed a
mechanism, called the independent markets mechanism, which satisfies strategyproofness along
with a weak fairness notion dubbed proportionality. Proportionality requires that the collective
distribution is given by the uniform distribution over the agents’ peaks whenever all peaks are
degenerate. The independent markets mechanism violates efficiency, and Freeman et al. raised the
question whether there are mechanisms that satisfy all three properties simultaneously. In Section 6,
we settle this question by proving that no such mechanism exists under ℓ1 as well as under ℓ∞
preferences.

Using ℓ1 distances to define preferences over distributions has some shortcomings when aim-
ing for a suitable representation of alternatives in the collective distribution. For instance, if the
agents are deciding the amount of time that should be allotted to three countries at an interna-
tional conference, an agent with an ideal distribution of (10%,40%,50%) would find the outcome
(0%,45%,55%) to be quite desirable according to the ℓ1 distance, despite the fact that this outcome
leaves the first country completely unrepresented. Moreover, any distance-based metric that aggre-
gates coordinate-wise differences, such as ℓ2 or ℓ∞ (or ℓ𝑝 for any 𝑝 ≥ 1) has similar shortcomings.
For example, if a citizen believes that the two larger districts deserve 40% of the city budget each
and the two smaller districts 10% each, then for any 𝑝 ≥ 1, ℓ𝑝 preferences dictate that she is indif-
ferent between the distributions (50%,30%,10%,10%) and (40%,40%,20%,0%), since for both
distributions, the multiset of coordinate-wise differences is {0%,0%,10%,10%}. But intuitively,
the latter distribution is worse, as it leaves the last district without any funds. As a consequence,
a different type of utility function is necessary to capture the representation of alternatives with
respect to the ideal distribution.

We introduce a new class of utility functions to the budget aggregation setting where each agent
has an ideal distribution and the agent’s utility for a distribution equals the smallest quotient, over all
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alternatives, that the distribution preserves in comparison to the ideal distribution. Formally, agent 𝑖’s
utility for a distributionq is given by min 𝑗 𝑞 𝑗/𝑝𝑖, 𝑗 , where the minimum is taken over all alternatives 𝑗
for which 𝑝𝑖, 𝑗 > 0. These utility functions are a special case of Leontief utility functions as
commonly studied in economics, especially in consumer theory, with goods corresponding to
alternatives [see, e.g., 24, 28, 34]. In our setting, the total amount of goods is fixed, which allows us
to interpret the relative distribution of Leontief weights as an ideal distribution. Agents then want
all alternatives to receive as large a fraction as possible of their ideal amounts. We will refer to these
utility functions as Leontief utility functions in the following. Leontief utilities are arguably more
suitable than ℓ1 preferences in applications where the representation of the alternatives is crucial—
indeed, for both examples in the previous paragraph, distributions that allocate none of the budget
to some alternative are least preferred among all distributions according to Leontief utilities. Not
surprisingly, mechanisms that provide desirable properties such as strategyproofness with respect
to ℓ1 preferences may fail to do so with Leontief utilities.1 Therefore, one needs to find different
mechanisms when dealing with Leontief utilities. In Section 7, we show that maximizing Nash
welfare, i.e., the product of agents’ utilities, results in a mechanism with several desirable properties.
In fact, the impossibility for ℓ1 preferences established in Section 6 can be turned into a complete
characterization for Leontief utilities: only the Nash product rule satisfies group-strategyproofness
and a natural core-based fairness notion, which strengthens both efficiency and proportionality.
Thus, in contrast to ℓ1 preferences, Leontief utilities allow for the efficient, strategyproof, and fair
aggregation of budgets via a unique attractive mechanism.

2. Related work Various streams of research have investigated the strategyproof aggregation
of preferences when the space of alternatives is a subset of multi-dimensional Euclidean space.

Convex preferences. Zhou [37] proved an impossibility theorem for convex spaces of alterna-
tives that is reminiscent of the Gibbard-Satterthwaite impossibility. Here, the space of alternatives is
an arbitrary subset of Euclidean space, and the admissible domain contains all preference relations
that are convex and continuous. He then showed that every strategyproof mechanism whose image
has dimension at least 2 is dictatorial.2

The negative consequences of this and related theorems [e.g., 7, 8, 33] strongly hinge on the
richness of the domain of preferences. More restricted domains of preferences allow for more
positive results [see, e.g., 21].

Linear preferences. Any model in which preferences over the set of all lotteries Δ𝑚 are
aggregated to a collective lottery, including literature on probabilistic social choice [e.g., 23] and fair
mixing [e.g., 11], can be interpreted in the context of budget aggregation. However, the underlying
assumptions of linear preferences (vNM utilities) are hardly applicable to budget aggregation
because there is always a degenerate ideal distribution.

Peak-based preferences. To the best of our knowledge, Intriligator [26] was the first to
consider a model in which each agent has a unique ideal distribution, and the considered mechanisms
only need to aggregate individual distributions into a collective distribution. He proposed three
simple axioms for this setting, which characterize the rule that returns the average (i.e., the arithmetic
mean) of all individual distributions. Intriligator was not concerned with strategyproofness, and

1 Concretely, suppose that there are 𝑛 = 2 agents and 𝑚 = 3 alternatives. The agents’ ideal distributions are p1 = (0.8,0.2,0) and
p2 = (0.8,0,0.2), respectively. The independent markets mechanism of Freeman et al. [21] returns the distributionq = (0.6,0.2,0.2).
However, if the first agent reports p′

1 = (0.82,0.18,0) instead, the mechanism returns q′ = (0.62,0.18,0.2), which the agent prefers
to q under Leontief utilities.

2 Zhou also showed that this result already holds for the subdomain of quadratic preferences.
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therefore did not consider agents’ preferences over distributions, but it is fairly obvious that the
average rule is highly manipulable for almost any reasonable definition of preferences.

Border and Jordan [12] studied separable star-shaped preferences when the space of alternatives
is the 𝑚-dimensional Euclidean space R𝑚. They focused on quadratic preferences, a generalization
of ℓ2-based preferences, and show that strategyproof mechanisms can be decomposed into one-
dimensional mechanisms. However, their results do not carry over to budget aggregation because
the space of alternatives is the full Euclidean space.
ℓ1-based preferences. Lindner et al. [30] initiated the study of strategyproof mechanisms for

the space of all distributions Δ𝑚 when preferences are based on the ℓ1-norm [see also 25, 29]. They
showed that the utilitarian rule (i.e., minimizing the sum of ℓ1 distances) satisfies strategyproofness
and efficiency when breaking ties appropriately.

Freeman et al. [21] expanded the idea of Moulin’s generalized median rules for two alternatives
to strategyproof moving phantom mechanisms for larger numbers of alternatives 𝑚. Intuitively,
the 𝑛 + 1 phantoms are not “fixed” like in Moulin’s characterization but increase continuously
from 0 to 1 over time. For any point in time and any alternative 𝑗 , the mechanism computes the
median of 𝑝1, 𝑗 , . . . , 𝑝𝑛, 𝑗 and the phantom voters. Freeman et al. then showed that there exists a
well-defined point in time where the 𝑚 medians sum up to 1 and thus form a valid distribution.
Furthermore, they proved that within this class, maximizing utilitarian welfare is the unique efficient
mechanism. A different mechanism in this class, the independent markets mechanism, is inefficient
but satisfies a fairness notion they called proportionality: when all voters have degenerate peaks,
the collective distribution is the arithmetic mean of these peaks. Freeman et al. observed an
“inherent tradeoff between Pareto optimality and proportionality” for strategyproof mechanisms.
We prove this tradeoff formally in Theorem 3, which shows that all three properties are incompatible.
Proportionality was generalized by Caragiannis et al. [16], who measured the “disproportionality”
of a mechanism as the worst-case ℓ1 distance between the mechanism outcome and the mean.
Similarly, Freeman and Schmidt-Kraepelin [22] measured disproportionality using the ℓ∞ distance.
Both papers present variants of moving phantom mechanisms that guarantee low disproportionality.
Elkind et al. [19] defined various axioms for budget aggregation with ℓ1 disutilities, analyzed the
implications between axioms, and determined which axioms are satisfied by common aggregation
rules.

Belief aggregation. Belief aggregation is a setting in which several experts have different
beliefs, expressed as probability density functions over a set of potential outcomes. The goal is to
construct a single aggregated distribution. Technically, the problem is similar to budget aggregation;
however, the utility functions are often different. Varloot and Laraki [36] assumed that the outcomes
are linearly ordered (for example: outcome 𝑗 is an earthquake of magnitude 𝑗). Then, an expert
whose belief is 3 with probability 1 would prefer the outcome 6 with probability 1 to the outcome
9 with probability 1, even though the ℓ1 distance is 2 in both cases. Varloot and Laraki suggested
preferences based on distance between the cumulative distribution functions, and characterized
aggregation rules satisfying appropriate strategyproofness and proportionality axioms.

Donor Coordination. Brandt et al. [15] studied donor coordination, where individual mone-
tary contributions by agents are distributed on projects based on the agents’ preferences. Assuming
Leontief preferences, they proposed the equilibrium distribution rule (EDR), which maximizes
Nash welfare and distributes the contributions of the donors in such a way that no subset of donors
has an incentive to redistribute their contributions. EDR can be interpreted as a budget aggregation
mechanism, by setting the contribution of each agent to 1/𝑛 (where 𝑛 is the number of agents, so the
total contribution is 1) and setting the ideal distribution of an agent to the distribution given by the
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relative proportions of the Leontief weights. This allows the transfer of positive results concerning
efficiency and strategyproofness of EDR from donor coordination to budget aggregation (see Sec-
tion 7). However, other properties considered by Brandt et al., like contribution-monotonicity and
being in equilibrium, are irrelevant in budget aggregation, whereas properties like core fair share
and proportionality have not been considered in donor coordination.

3. Preliminaries Let 𝑁 = [𝑛] be a set of agents and 𝑀 = [𝑚] be a set of alternatives, where
[𝑘] := {1, . . . , 𝑘} for each positive integer 𝑘 . We denote by Δ𝑚 the standard simplex with 𝑚 vertices,
that is, the set of vectors q = (𝑞1, . . . , 𝑞𝑚) with nonnegative entries 𝑞 𝑗 such that

∑
𝑗∈𝑀 𝑞 𝑗 = 1. Every

element q ∈ Δ𝑚 is called a distribution; here, 𝑞 𝑗 denotes the fraction of a public resource (e.g.,
money or time) allocated to alternative 𝑗 . The support of distribution q is given by supp(q) := { 𝑗 ∈
𝑀 : q 𝑗 > 0}. For a set of alternatives 𝑇 ⊆ 𝑀 , we denote q(𝑇) :=

∑
𝑗∈𝑇 𝑞 𝑗 .

Each agent 𝑖 has a utility function 𝑢𝑖 over distributions; we denote by U the set of all possible
utility functions and leave this set unspecified for now.

The ideal distribution or peak of agent 𝑖 is denoted by p𝑖 := arg maxq∈Δ𝑚 𝑢𝑖 (q), which is assumed
to be unique. We further assume that “walking” towards an agent’s peak strictly increases her utility.
Formally, if agent 𝑖 has peak p𝑖 and utility function 𝑢𝑖, then, for any distribution q ≠ p𝑖, the agent
prefers to q any distribution on the line between q and p𝑖. That is, for all 𝜆 ∈ (0,1),

𝑢𝑖 (p𝑖) > 𝑢𝑖 (𝜆p𝑖 + (1−𝜆)q) > 𝑢𝑖 (q). (1)

This constitutes a generalization of single-peakedness [10] and is referred to as star-shaped or
star-convex preferences [e.g., 12].3

The utility functions considered in this paper belong to a subclass of star-shaped preferences that
we refer to as peak-linear. A utility function is peak-linear if for any distribution q and 𝜆 ∈ [0,1],

𝑢𝑖 (𝜆p𝑖 + (1−𝜆)q) = 𝜆𝑢𝑖 (p𝑖) + (1−𝜆)𝑢𝑖 (q). (2)

Every distribution q ∈ Δ𝑚 lies on a line between p and some point q𝐵 on the boundary of Δ𝑚,
that is, there is a unique 𝜆 such that q = 𝜆p𝑖 + (1 − 𝜆)q𝐵. Therefore, peak-linear preferences are
completely characterized by an agent’s peak p𝑖 and by how much utility she assigns to these
boundary distributions q𝐵 (in fact, it is sufficient to know how much utility she assigns to boundary
distributions with supp(p𝑖) ⊈ supp(q𝐵)).

Unless explicitly stated otherwise, we further assume that p𝑖 completely determines 𝑢𝑖, so we
can identify a profile 𝑃 ∈ P := (Δ𝑚)𝑛 with the matrix (𝑝𝑖, 𝑗 )𝑖∈𝑁, 𝑗∈𝑀 containing the peaks p1, . . . ,p𝑛

as rows.
A mechanism 𝑓 : P → Δ𝑚 aggregates individual distributions into a collective distribution. In

the following, we define desirable properties of aggregated distributions and mechanisms.

3 Braga de Freitas et al. [13] use a weaker definition to star-shaped preferences: for every distribution q, the set of distributions that
are weakly-preferred to q is a star domain. This definition is implied by the definition we use, as for any distribution q, if q′ is
preferred to q, then all distributions on the line from p to q′ are also preferred to q, so the set of distributions weakly-preferred to
q is a star domain with respect to p.
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3.1. Properties of distributions Two important properties of distributions are efficiency and
fairness.

Definition 1. A distribution q ∈ Δ𝑚 satisfies (Pareto) efficiency if there does not exist a distri-
bution q′ ∈ Δ𝑚 such that 𝑢𝑖 (q′) ≥ 𝑢𝑖 (q) for all 𝑖 ∈ 𝑁 and 𝑢𝑖 (q′) > 𝑢𝑖 (q) for at least one 𝑖 ∈ 𝑁 .

The following is a weaker efficiency property [see, e.g., 19, 21]:
Definition 2. A distribution q ∈ Δ𝑚 is range-respecting for profile 𝑃 if min𝑖∈𝑁 p𝑖 𝑗 ≤ 𝑞 𝑗 ≤

max𝑖∈𝑁 p𝑖 𝑗 for all 𝑗 ∈ 𝑀 .
Our first fairness axiom is inspired by the core in cooperative game theory and was transferred

to participatory budgeting by Fain et al. [20] and to fair mixing by Aziz et al. [4] under the name of
core fair share. We slightly adapt the notation to account for the fact that, in the end, we still need to
choose a probability distribution 𝑝 (and not just a partial distribution ( |𝑁′|/𝑛)𝑝). In fact, this leads
us back to the original definition of the core due to Aumann [3] and Scarf [35].

Definition 3. A distribution q satisfies core fair share (CFS) if for every group of agents
𝑁′ ⊆ 𝑁 , there is no distribution q′ such that the following hold for every q′′ ∈ Δ𝑚:

𝑢𝑖 (( |𝑁′|/𝑛)q′ + (1− |𝑁′|/𝑛)q′′) ≥ 𝑢𝑖 (q) for all 𝑖 ∈ 𝑁′, and
𝑢𝑖 (( |𝑁′|/𝑛)q′ + (1− |𝑁′|/𝑛)q′′) > 𝑢𝑖 (q) for at least one 𝑖 ∈ 𝑁′.

A distribution q satisfies weak core fair share if we replace the above two conditions with:

𝑢𝑖 (( |𝑁′|/𝑛)q′ + (1− |𝑁′|/𝑛)q′′) > 𝑢𝑖 (q) for all 𝑖 ∈ 𝑁′.

Intuitively, if there is a distribution q′ that satisfies these inequalities (so CFS is violated), then
𝑁′ can take their share of the decision power (|𝑁′|/𝑛), and redistribute it via q′ so that no member
of 𝑁′ loses and at least one member (or, in the case of weak CFS, all members) gains utility
compared to q, even if the remaining probability is distributed in the worst possible way q′′ (e.g.,
on an alternative that no agent from 𝑁′ values).

It is easy to see that efficiency is the special case of CFS where 𝑁′ = 𝑁 .
Proposition 1. Core fair share implies efficiency.
For some utility models, even weak CFS implies efficiency; see Corollary 1. We consider another,

weaker fairness axiom that is only informative on specific profiles in the next subsection.

3.2. Properties of aggregation mechanisms
Definition 4. A mechanism 𝑓 satisfies efficiency (resp., core fair share) if for every profile

𝑃 ∈ P, 𝑓 (𝑃) satisfies efficiency (resp., core fair share).
The next axioms ensure that agents and alternatives are treated independently of their identities.
Definition 5. A mechanism 𝑓 satisfies anonymity if for every profile 𝑃 ∈ P and permutation 𝜋

of the agents in 𝑃, it holds that 𝑓 (𝑃) = 𝑓 (𝜋 ◦ 𝑃).
Definition 6. A mechanism 𝑓 satisfies neutrality if for every profile 𝑃 ∈ P and permutation 𝜋

of the alternatives resulting in profile 𝑃′, it holds that 𝑓 (𝑃′) = 𝜋 ◦ 𝑓 (𝑃).
As agents report a peak in Δ𝑚, we do not want small perturbations of the peaks arising from

uncertainties of the agents about their exact peak or inaccuracies during the aggregation process to
have a large influence on the outcome.
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Definition 7. A mechanism 𝑓 satisfies continuity if

∀𝑃 ∈ P : ∀𝜀 > 0 : ∃𝛿 > 0 : ∀𝑃′ ∈ P : ∥𝑃 − 𝑃′∥1 < 𝛿 =⇒ ∥ 𝑓 (𝑃) − 𝑓 (𝑃′)∥1 < 𝜀.

For simplicity, we define continuity using the ℓ1 distance, but note that due to the norm equivalence
on finite-dimensional vector spaces, our results are the same for every other norm-based distance.

As P = (Δ𝑚)𝑛 is compact with respect to the ℓ1 distance (or other equivalent norms), the Heine-
Cantor theorem implies that a continuous mechanism 𝑓 is also uniformly continuous, i.e.,

∀𝜀 > 0 : ∃𝛿 > 0 : ∀𝑃, 𝑃′ ∈ P : ∥𝑃 − 𝑃′∥1 < 𝛿 =⇒ ∥ 𝑓 (𝑃) − 𝑓 (𝑃′)∥1 < 𝜀.

This insight will play an important role in the proof of Theorem 5.
Another common goal is to prevent agents from misreporting their peaks on purpose.
Definition 8. A mechanism 𝑓 satisfies group-strategyproofness if for all 𝑁′ ⊆ 𝑁 and all 𝑃, 𝑃′ ∈

P withp𝑖 = p′
𝑖
for 𝑖 ∉ 𝑁′, either 𝑢𝑖 ( 𝑓 (𝑃)) > 𝑢𝑖 ( 𝑓 (𝑃′)) for at least one 𝑖 ∈ 𝑁′ or 𝑢𝑖 ( 𝑓 (𝑃)) = 𝑢𝑖 ( 𝑓 (𝑃′))

for all 𝑖 ∈ 𝑁′, where 𝑢𝑖 refers to the utility function of agent 𝑖 with peak at p𝑖. The mechanism 𝑓

satisfies strategyproofness if the above statement holds for |𝑁′| = 1.
Finally, we consider another fairness property called proportionality by Freeman et al. [21]. It

restricts the set of outcomes only on profiles where all agents are “single-minded”, thus representing
a rather weak form of “traditional” proportionality considered, e.g., in fair division.

Definition 9. A profile 𝑃 ∈ P is called single-minded if 𝑝𝑖, 𝑗 ∈ {0,1} for all 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 .
Definition 10. A mechanism 𝑓 satisfies proportionality if for all single-minded profiles 𝑃 ∈ P,

it holds that 𝑓 (𝑃) 𝑗 =
∑

𝑖∈𝑁 𝑝𝑖, 𝑗/𝑛.
The following diagram shows logical relationships between efficiency and the fairness notions

we consider.

Core fair share Weak core fair share Efficiency Proportionality

Proposition 1

Proposition 2 (Leontief)
Proposition 3 (ℓ1, ℓ∞, Leontief)

4. The case of two alternatives For two alternatives 𝑀 = {𝑎, 𝑏}, the set of outcomes can be
identified with the unit interval [0,1], where the endpoints 0 and 1 correspond to allocating the
entire budget to alternatives 𝑎 and 𝑏, respectively. The class of star-shaped utilities coincides with
the well-studied class of single-peaked utilities. Denote by U𝑆𝑃 the set of all single-peaked utility
functions. We denote agent 𝑖’s peak 𝑝𝑖 as a scalar in [0,1] representing her favorite distribution
[1− 𝑝𝑖 : 𝑎, 𝑝𝑖 : 𝑏].

In this section, we relax our assumption that U has to contain exactly one utility function per
peak in [0,1]; we only demand that U contains at least one utility function per peak and implicitly
assume that property from now on for all U ⊆ U𝑆𝑃. The “at least one” requirement is needed
to allow agents to misreport their peak to any other peak in [0,1]. Note that we still require our
mechanisms to be tops-only, i.e., depend only on the agents’ peaks. This generalization is possible
because the mechanisms we characterize satisfy strategyproofness and further desirable properties
without relying on any knowledge of the agents’ utility functions except their peaks.
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Under the assumption that U = U𝑆𝑃, Moulin [32] characterized the set of all strategyproof
mechanisms as generalized median rules. This characterization assumes that the rules have to handle
all profiles in U𝑆𝑃. As a consequence, it no longer holds when restricting U to a strict subset of
U𝑆𝑃. In principle, allowing rules to handle only a subset of U𝑆𝑃 may enable a greater selection of
strategyproof rules. This possibility has been studied in some later works [5, 9, 12, 21, 31], which
extended Moulin’s result for some alternative axioms and to some specific subdomains of U𝑆𝑃.

We substantially generalize these results by proving that Moulin’s characterization holds for any
subdomain U ⊆U𝑆𝑃, when assuming continuity of the mechanism in addition.

We start with a characterization for a single agent; this will be used in further characterizations.

Lemma 1. For 𝑚 = 2 and 𝑛 = 1, a mechanism 𝑓 on a domain U ⊆ U𝑆𝑃 is continuous and
strategyproof if and only if there exist 𝛼0 ≤ 𝛼1 in [0,1] such that

𝑓 (𝑝) = med(𝑝, 𝛼0, 𝛼1).

Proof. The “if” direction is obvious; we focus on the “only if”.
Let 𝑓 be a continuous strategyproof mechanism for 𝑛 = 1 and any 𝑚. Let 𝑆 := 𝑓 (Δ𝑚) be the

image of 𝑓 . By continuity, 𝑆 is a closed set. By strategyproofness, for all p ∈ Δ𝑚 we have 𝑓 (p) ∈
arg max

q∈𝑆
𝑢(q). Moreover, 𝑆 must be convex, since if a segment with endpoints in 𝑆 is not contained

in 𝑆, then some internal point of this segment would be a discontinuity point of arg max.
For 𝑛 = 1 and 𝑚 = 2, this boils down to 𝑆 being a closed interval, 𝑆 = [𝛼0, 𝛼1] for some 𝛼0 ≤ 𝛼1

in [0,1], and 𝑓 being a function that maps each 𝑝 to the point nearest to 𝑝 in [𝛼0, 𝛼1]. This is
equivalent to 𝑓 (𝑝) = med(𝑝, 𝛼0, 𝛼1). □

Continuity is essential for the characterization. For example, the following discontinuous mech-
anism is strategyproof:

𝑓 (𝑝) :=

{
0 𝑝 < 0.5;
1 𝑝 ≥ 0.5.

We now move on to mechanisms for any number of agents. The following lemma shows that,
for 𝑚 = 2, any continuous strategyproof mechanism is completely determined by its outcomes on
single-minded profiles.

Lemma 2. For 𝑚 = 2 and arbitrary domain U ⊆ U𝑆𝑃, if two continuous and strategyproof
mechanisms yield the same distribution for all single-minded profiles, then they yield the same
distribution for all profiles.

Proof. Let 𝑓 and 𝑔 be two continuous strategyproof mechanisms. Let 𝑃 a profile for which
𝑓 (𝑃) ≠ 𝑔(𝑃). We prove that there is a single-minded profile 𝑃′ for which 𝑓 (𝑃′) ≠ 𝑔(𝑃′).

At a high level, the proof works as follows. Step by step, each agent with peak on the left side
of 𝑓 (𝑃) moves her peak closer and closer to 0 and each agent with peak on the right side moves
to 1. Continuity and strategyproofness imply that 𝑓 (𝑃) cannot change in the process. Finally, for
all agents with peaks at 𝑓 (𝑃), move their peaks to the alternative that is not “separated” from the
peak by 𝑔(𝑃). In the process, 𝑓 (𝑃) can only move further away from 𝑔(𝑃).
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In detail, assume that 𝑓 (𝑃) < 𝑔(𝑃); the case 𝑓 (𝑃) > 𝑔(𝑃) can be handled analogously. Denote
𝑞 := 𝑓 (𝑃).

Partition the set of agents into four groups: 𝑁 = 𝑁01 ∪ 𝑁− ∪ 𝑁= ∪ 𝑁+, where 𝑁01 = {𝑖 ∈ 𝑁 : 𝑝𝑖 ∈
{0,1}}, 𝑁− = {𝑖 ∈ 𝑁 \ 𝑁01 : 𝑝𝑖 < 𝑞}, 𝑁= = {𝑖 ∈ 𝑁 \ 𝑁01 : 𝑝𝑖 = 𝑞}, and 𝑁+ = {𝑖 ∈ 𝑁 \ 𝑁01 : 𝑝𝑖 > 𝑞}.
Our overall goal is to “move” all agents to 𝑁01 while keeping the chosen distribution different from
𝑔(𝑃).

Take any agent 𝑖 ∈ 𝑁−, and consider the function 𝐹 : [0,1] → [0,1] defined by 𝐹 (𝑝) := 𝑓 (𝑝, 𝑃−𝑖).
Since 𝑓 is continuous and strategyproof, so is 𝐹, as a mechanism for a single agent. Hence, by
Lemma 1, 𝐹 (𝑝) = med(𝑝, 𝛼0, 𝛼1) for some constants 𝛼0 ≤ 𝛼1. Note that 𝐹 (𝑝𝑖) = 𝑓 (𝑃) > 𝑝𝑖 as
𝑖 ∈ 𝑁−, so 𝑝𝑖 < med(𝑝𝑖, 𝛼0, 𝛼1). The median properties imply that 𝐹 (𝑝) = 𝐹 (𝑝𝑖) also for all 𝑝 < 𝑝𝑖.
In particular, 𝐹 (0) = 𝐹 (𝑝𝑖) = 𝑓 (𝑃).

Denote the profile where agent 𝑖 changed her peak to 0 by 𝑃{𝑖}; then 𝑓 (𝑃{𝑖}) = 𝐹 (0) = 𝑓 (𝑃). The
same argument applies to all other agents from 𝑁−, so 𝑓 (𝑃𝑁− ) = 𝑓 (𝑃), where 𝑃𝑁− denotes the
profile resulting from 𝑃 after all agents in 𝑁− moved their peak to 0. Also, 𝑔(𝑃𝑁− ) = 𝑔(𝑃), as all
agents from 𝑁− were also on the left side of 𝑔(𝑃) due to 𝑓 (𝑃) < 𝑔(𝑃), so moving them further left
does not change the distribution returned by 𝑔.

For an agent 𝑖 ∈ 𝑁+, define 𝐹 (𝑝) := 𝑓 (𝑝, 𝑃𝑁−
−𝑖 ). One can show analogously that 𝐹 (𝑝) = 𝐹 (𝑃𝑖) =

𝑓 (𝑃𝑁− ) = 𝑓 (𝑃) for all 𝑝 ≥ 𝑝𝑖, so the outcome remains 𝑓 (𝑃) when 𝑖 moves her peak to 1. Therefore,
𝑓 (𝑃𝑁−∪𝑁+) = 𝑓 (𝑃), where 𝑃𝑁−∪𝑁+ denotes the profile resulting from 𝑃 after all agents in 𝑁− moved
their peak to 0 and all agents in 𝑁+ moved their peak to 1. Also, 𝑔(𝑃𝑁−∪𝑁+) ≥ 𝑔(𝑃𝑁− ) as moving
peaks to the right can only increase the median returned by 𝑔. Therefore, 𝑓 (𝑃𝑁−∪𝑁+) < 𝑔(𝑃𝑁−∪𝑁+)
still holds.

We now consider an agent 𝑖 ∈ 𝑁=, for whom 𝑝𝑖 = 𝑓 (𝑃) < 𝑔(𝑃) ≤ 𝑔(𝑃𝑁−∪𝑁+). Define 𝐹′(𝑝) :=
𝑓 (𝑝, 𝑃𝑁−∪𝑁+

−𝑖 ). As it is continuous and strategyproof, Lemma 1 implies that 𝐹′(𝑝) = med(𝑝, 𝛼0, 𝛼1)
for some constants 𝛼0 ≤ 𝛼1. As the median is a weakly monotone function of its arguments,
𝐹′(𝑝) ≤ 𝐹′(𝑝𝑖) for 𝑝 ≤ 𝑝𝑖. Thus, with 𝑃𝑁−∪𝑁+∪{𝑖} denoting the profile where agent 𝑖 moved her peak
to 0, 𝑓 (𝑃𝑁−∪𝑁+∪{𝑖}) ≤ 𝑓 (𝑃𝑁−∪𝑁+) < 𝑔(𝑃𝑁−∪𝑁+) = 𝑔(𝑃𝑁−∪𝑁+∪{𝑖}). If 𝑓 (𝑃𝑁−∪𝑁+∪{𝑖}) = 𝑓 (𝑃𝑁−∪𝑁+),
repeat the procedure with the next agent from 𝑁=. If 𝑓 (𝑃𝑁−∪𝑁+∪{𝑖}) < 𝑓 (𝑃𝑁−∪𝑁+), all remaining
agents from 𝑁= now have their peak on the right side of 𝑓 (𝑃𝑁−∪𝑁+∪{𝑖}) and can move their peak
to 1 without changing the chosen distribution, as in the case 𝑖 ∈ 𝑁+. Again, the outcome from 𝑔 can
only move to the right or stay fixed.

Let 𝑃𝑁−∪𝑁+∪𝑁= denote the profile after all agents in 𝑁−∪𝑁+∪𝑁= have moved their peaks. This
profile is single-minded, as all agents have their peaks at 0 or 1, and 𝑓 (𝑃𝑁−∪𝑁+∪𝑁=) < 𝑔(𝑃𝑁−∪𝑁+∪𝑁=),
as required. □

Remark 1. Border and Jordan [12] considered a property called uncompromisingness, which
states that the outcome cannot change when agents from 𝑁− and 𝑁+ move their peaks to 0 and 1,
respectively (i.e., there is no compromise with agents who express extreme preferences). They
showed that uncompromisingness implies continuity. By contrast, we assume continuity and obtain
uncompromisingness. As a result, all our characterizations hold if we replace continuity with
uncompromisingness.

Using Lemma 2, we can now prove several characterizations.

4.1. Characterizing generalized median rules The following theorem generalizes Moulin’s
proof from U𝑆𝑃 to any domain U ⊆U𝑆𝑃 when requiring continuity in addition.
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Theorem 1. For 𝑚 = 2 and arbitrary domain U ⊆U𝑆𝑃, a continuous mechanism 𝑓 satisfies
anonymity and strategyproofness if and only if there exist 𝛼0 ≤ 𝛼1 ≤ · · · ≤ 𝛼𝑛 in [0,1] such that

𝑓 (𝑃) = med(𝑝1, . . . , 𝑝𝑛, 𝛼0, . . . , 𝛼𝑛).

Proof. The “if” direction is obvious; we focus on the “only if”.
For any 𝑘 ∈ {0, . . . , 𝑛}, let 𝑃𝑘 be a single-minded profile in which some 𝑘 agents have their peak

at 1 and the other 𝑛 − 𝑘 have their peak at 0. Let 𝛼𝑘 := 𝑓 (𝑃𝑘 ); due to the anonymity of 𝑓 , it holds
that 𝛼𝑘 does not depend on the selection of 𝑃𝑘 .

Since 𝑓 is strategyproof, 𝛼𝑘 ≤ 𝛼𝑘+1 for all 𝑘 ∈ {0, . . . , 𝑛−1}; otherwise, in profile 𝑃𝑘 , some agent
with peak at 0 could gain from reporting a peak at 1.

Let 𝑔(𝑃) := med(𝑝1, . . . , 𝑝𝑛, 𝛼0, . . . , 𝛼𝑛). Then for any 𝑘 ∈ {0, . . . , 𝑛}, 𝑔(𝑃𝑘 ) = 𝛼𝑘 , as 𝑛 arguments
of the median are at most 𝛼𝑘 and 𝑛 arguments are at least 𝛼𝑘 . This means that 𝑓 and 𝑔 agree on all
single-minded profiles. By Lemma 2, 𝑓 ≡ 𝑔. □

It is possible to obtain two additional characterizations in a similar way:
1. A continuous mechanism 𝑓 satisfies anonymity, strategyproofness, and efficiency if and only

if there exist 𝛼1 ≤ · · · ≤ 𝛼𝑛−1 in [0,1] such that

𝑓 (𝑃) = med(𝑝1, . . . , 𝑝𝑛, 𝛼1, . . . , 𝛼𝑛−1).

2. A continuous mechanism 𝑓 satisfies strategyproofness if and only if there exist 2𝑛 constants,
𝛼𝐺 ∈ [0,1] for all 𝐺 ⊆ 𝑁 , such that

𝑓 (𝑃) = max
𝐺⊆𝑁

min(𝛼𝐺 ,min
𝑖∈𝐺

𝑝𝑖).

4.2. Characterizing the uniform phantom rule The uniform phantom rule is a special case
of the generalized median rule in which the peaks are distributed uniformly in [0,1], that is,
𝛼𝑘 = 𝑘/𝑛 for 𝑘 ∈ {0, . . . , 𝑛}. It is range-respecting, as at least 𝑛 + 1 arguments to the median
(namely, 𝛼0, 𝑝1, . . . , 𝑝𝑛) are at most max𝑖 𝑝𝑖, and at least 𝑛 + 1 arguments to the median (namely,
𝛼𝑛, 𝑝1, . . . , 𝑝𝑛) are at least min𝑖 𝑝𝑖.

Freeman et al. [21] showed that the uniform phantom rule is the only mechanism that ensures
proportionality in addition to all axioms from Theorem 1. Aziz et al. [5] strengthened this result
by pointing out that continuity, strategyproofness, and proportionality suffice for characterizing
the uniform phantom mechanism for symmetric single-peaked preferences. Note that proportion-
ality already contains some form of anonymity: when all agents have peaks at [1 : 𝑎] or [1 : 𝑏],
proportionality requires picking a specific distribution that is independent of the agents’ identities.

Recently, Jennings et al. [27] showed that the uniform phantom rule is the unique mechanism
that satisfies strategyproof and proportionality, among all rules defined on U𝑆𝑃. Again, we present
a characterization that holds for every subset of U𝑆𝑃, whether symmetric or not.

Theorem 2. For 𝑚 = 2 and arbitrary domain U ⊆U𝑆𝑃, the only continuous mechanism that
satisfies strategyproofness and proportionality is the uniform phantom rule.
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Proof. Let 𝑔 be the uniform phantom mechanism. Then 𝑔 is proportional. Since proportionality
completely specifies the outcomes for all single-minded profiles, any proportional mechanism
agrees with 𝑔 on all single-minded profiles. By Lemma 2, any such mechanism must equal 𝑔. □

For 𝑚 = 2, an outcome is efficient for a profile 𝑃 if and only if it is range-respecting, which means
that the uniform phantom rule is efficient. Thus, for only two alternatives, there is a unique way
to aggregate utilities in an efficient, strategyproof, and fair manner, even without knowledge of the
specific underlying utility model.

5. Utility functions for three or more alternatives In this and the following sections, we
move to the multi-dimensional setting and consider domains with 𝑚 ≥ 3 alternatives. We initially
discuss some typical star-shaped utility functions, for which we will present results in the next
section.

5.1. ℓ𝑝 preferences A natural approach for specifying a utility function based on a single
peak is to measure the distance to the peak using some metric 𝑑 : Δ𝑚 ×Δ𝑚 →R≥0. Given an agent
with peak p𝑖, her utility for a distribution q is then defined as 𝑢𝑖 (q) = −𝑑 (p𝑖,q).

Among such models, ℓ𝑝 norms, given by ∥q∥𝑝 :=
(∑

𝑗∈𝑀 |𝑞 𝑗 |𝑝
)1/𝑝

for 𝑝 ≥ 1, are the most studied
utility functions. In particular, the special case of 𝑝 = 1 has received considerable attention.

Definition 11. An agent 𝑖 with peak p𝑖 has ℓ𝑝 preferences if 𝑢𝑖 (q) = −∥p𝑖 −q∥𝑝.
We will also sometimes refer to these preferences as ℓ𝑝 disutilities. In this paper, we focus on ℓ1
preferences (𝑢𝑖 (q) = −∑

𝑗∈𝑀 |𝑝𝑖, 𝑗 − 𝑞 𝑗 |) and ℓ∞ preferences (𝑢𝑖 (q) = −max 𝑗∈𝑀 |𝑝𝑖, 𝑗 − 𝑞 𝑗 |). It can
be easily shown that ℓ𝑝 preferences are star-shaped for 𝑝 ≥ 1. This does not hold for arbitrary
metrics, e.g., consider the trivial metric, 𝑑 (𝑥, 𝑦) = 0 if 𝑥 = 𝑦 and 𝑑 (𝑥, 𝑦) = 1 otherwise. Moreover,
ℓ𝑝 preferences are peak-linear. The utility of every point in Δ𝑚 can be computed using (2) with
𝑢𝑖 (p𝑖) = 0 and 𝑢𝑖 (q) = −∥𝑝𝑖 − 𝑞∥𝑝 for all distributions q on the boundary of Δ𝑚.

5.2. Leontief utilities In contrast to ℓ𝑝 preferences, Leontief utilities are not based on a
metric. In particular, they are not symmetric and also not based on disutilities. As discussed in
the introduction, metric-based preferences fail to capture important aspects of certain practical
situations, notably the need to guarantee that all alternatives are adequately represented. This
requirement is captured by Leontief utilities.

Let 𝑀𝑖 := { 𝑗 ∈ 𝑀 : 𝑝𝑖, 𝑗 > 0} be the set of alternatives to which 𝑖 wants to allocate a positive
amount; note that 𝑀𝑖 ≠ ∅. The Leontief utility that agent 𝑖 derives from a distribution q is given by

𝑢𝑖 (q) = min
𝑗∈𝑀𝑖

𝑞 𝑗

𝑝𝑖, 𝑗
.

Observe that 0 ≤ 𝑢𝑖 (q) ≤ 1 for all distributions q. Moreover, 𝑢𝑖 (q) = 1 if and only if q = p𝑖, and
𝑢𝑖 (q) = 0 if and only if 𝑞 𝑗 = 0 for some 𝑗 ∈ 𝑀𝑖. As discussed in Section 1, Leontief utilities are
based on the assumption that agents want all alternatives to receive as large a fraction of their ideal
amounts as possible. The indifference curves of ℓ1 preferences and Leontief utilities are illustrated
in Figure 1.

Leontief utility functions are peak-linear with 𝑢𝑖 (p𝑖) = 1 and 𝑢𝑖 (q) = 0 for all boundary distri-
butions q. In fact, as explained in the preliminaries, Leontief utilities are characterized by these
properties: they are the only peak-linear utilities that assign utility 1 to the peak and utility 0 to all
boundary distributions.

It is possible to refine Leontief utilities further by considering the leximin over the quotients—
that is, breaking ties in the smallest quotient using the second smallest quotient, and so on. This
refinement is discussed in Appendix E.
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Figure 1. Illustration of indifference classes for Leontief utilities and ℓ1 disutilities for 3 alternatives.

(a) Leontief utilities (b) ℓ1 disutilities

Note. The ideal distribution (0.1,0.4,0.5) is represented by the black point. The main triangle is the simplex of distributions
among three alternatives. Its vertices represent the degenerate distributions (1,0,0), (0,1,0), and (0,0,1). For each type of utilities,
the peak forms an indifference class by itself, and three other indifference classes are displayed with different line widths.

A useful concept when dealing with Leontief utilities is that of critical alternatives.
Definition 12. Given a distribution q, we define the set of agent 𝑖’s critical alternatives

𝑇q,𝑖 := arg min
𝑗∈𝑀𝑖

𝑞 𝑗

𝑝𝑖, 𝑗
.

Critical alternatives allow for a characterization of efficient distributions.
Lemma 3 (Brandt et al. [15, Lem. 4.8]). With Leontief utilities, a distribution q is efficient if

and only if every alternative 𝑗 with 𝑞 𝑗 > 0 is critical for some agent.
Furthermore, it turns out that both core fairness notions coincide for Leontief utilities.
Proposition 2. With Leontief utilities, weak core fair share and core fair share are equivalent.
The proof can be found in Appendix A. Combining Propositions 1 and 2 results in the following

corollary.
Corollary 1. With Leontief utilities, weak core fair share implies efficiency.
We now give a sufficient condition and another necessary condition for CFS with Leontief

utilities. For any subset of agents 𝐺 ⊆ 𝑁 , let 𝑇q,𝐺 :=
⋃

𝑖∈𝐺 𝑇q,𝑖 denote the set of alternatives critical
to at least one agent from 𝐺.

Lemma 4. With Leontief utilities, if q(𝑇q,𝐺) ≥ |𝐺 |/𝑛 for all subsets 𝐺 ⊆ 𝑁 , then q satisfies
weak core fair share, hence also core fair share.

Proof. Assume for contradiction that q violates weak CFS for some 𝐺 ⊆ 𝑁 . Then, there exists
q′ ∈ Δ𝑚 such that for every q′′ ∈ Δ𝑚,

𝑢𝑖 (( |𝐺 |/𝑛)q′ + (1− |𝐺 |/𝑛)q′′) > 𝑢𝑖 (q) for all 𝑖 ∈𝐺.

Note that 𝑇q,𝐺 =𝑀 cannot hold; otherwise, by Lemma 3, q would be efficient not only for 𝑁 but
already for 𝐺, contradicting that q does not satisfy core fair share for 𝐺. Therefore, there exists a
distributionq′′ with 𝑞′′

𝑗
= 0 for every 𝑗 ∈ 𝑇q,𝐺 . Choosing such a distributionq′′ in the above inequality

shows that ( |𝐺 |/𝑛)𝑞′
𝑗
> 𝑞 𝑗 for all 𝑗 ∈ 𝑇q,𝐺 . Thus, q(𝑇q,𝐺) :=

∑
𝑗∈𝑇q,𝐺 𝑞 𝑗 < ( |𝐺 |/𝑛) ·∑ 𝑗∈𝑇q,𝐺 𝑞′

𝑗
≤

|𝐺 |/𝑛. □



Draft – September 30, 2024 13

The opposite direction of Lemma 4 does not hold even for 𝑛 = 2 and 𝑚 = 2. For example, suppose
p1 = (1/2,1/2), p2 = (1/3,2/3), and q = (1/3,2/3). Then, q satisfies CFS as the utility of each
agent is at least 1/2, but q(𝑇q,1) = 1/3 < 1/2.

Lemma 5. With Leontief utilities, if q satisfies weak core fair share, then 𝑞 𝑗 = 0 if and only if
𝑝𝑖, 𝑗 = 0 for all 𝑖 ∈ 𝑁 .

Proof. If 𝑞 𝑗 = 0 for some 𝑗 ∈ 𝑀 , then 𝑢𝑖 (q) = 0 for all agents with 𝑝𝑖, 𝑗 > 0, meaning that weak
core fair share is violated for each of these agents.

Conversely, 𝑝𝑖, 𝑗 = 0 for all 𝑖 ∈ 𝑁 implies that 𝑞 𝑗 = 0 for every efficient mechanism, where
efficiency follows from Corollary 1. □

5.3. Weak core fair share and proportionality We conclude this section by showing that
core fair share is a stronger fairness axiom than proportionality for ℓ1 and ℓ∞ preferences as well as
Leontief utilities.

Proposition 3. With ℓ1 preferences, ℓ∞ preferences, or Leontief utilities, weak core fair share
implies proportionality.

Proof. Assume that a mechanism 𝑓 is not proportional for some single-minded profile 𝑃 ∈ P.
Denote q := 𝑓 (𝑃), and let 𝑁′ ⊆ 𝑁 be a maximal subset of agents where all agents in 𝑁′ allocate 1
to the same alternative 𝑗∗ and proportionality is violated, i.e., 𝑞 𝑗∗ < 𝑟 for 𝑟 := |𝑁′|/𝑛.

Let q′ be the peak of all agents 𝑖 ∈ 𝑁′, i.e., 𝑞′
𝑗∗ = 1 and 𝑞′

𝑗
= 0 for all 𝑗 ≠ 𝑗∗. We claim that

𝑢𝑖 (𝑟q′ + (1− 𝑟)q′′) > 𝑢𝑖 (q) for all distributions q′′ ∈ Δ𝑚.
With ℓ1, ℓ∞, and Leontief preferences, for all 𝑖 ∈ 𝑁′, 𝑢𝑖 (q) depends only on 𝑞 𝑗∗ , and it is an

increasing function of 𝑞 𝑗∗ . Specifically, with ℓ1 preferences 𝑢𝑖 (q) = −2(1−𝑞 𝑗∗), with ℓ∞ preferences
𝑢𝑖 (q) = −(1− 𝑞 𝑗∗), and with Leontief preferences 𝑢𝑖 (q) = 𝑞 𝑗∗ .

Since (𝑟q′ + (1 − 𝑟)q′′) 𝑗∗ ≥ 𝑟 > 𝑞 𝑗∗ for all q′′ ∈ Δ𝑚, we have 𝑢𝑖 (𝑟q′ + (1 − 𝑟)q′′) > 𝑢𝑖 (q), so 𝑓

violates weak core fair share. □
As the proof shows, CFS implies a property even stronger than proportionality: we do not need

that 𝑝𝑖, 𝑗 ∈ {0,1} for all 𝑖 ∈ 𝑁 but the guarantee is for every single-minded agent group, independently
of the other agents’ preferences.

Note that the proof of Proposition 3 does not work for ℓ2 preferences even for core fair share.
For example, suppose 𝑛 = 𝑚 = 3 and some two agents have their peak at (1,0,0). A rule that
returns q = 𝑓 (𝑃) = (0.64,0.18,0.18) violates proportionality but does not violate CFS, as for both
𝑖 ∈ 𝑁′, 𝑢𝑖 (q) > −

√
0.2, but for q′′ = (0,1,0), we have 𝑟q′ + (1 − 𝑟)q′′ = (2/3,1/3,0), which leads

to 𝑢𝑖 = −
√︁

2/9 < −
√

0.2. In fact, proportionality does not seem to be a very natural notion for such
preferences, as the proportionality guarantee for single-minded agents, who put 1 on alternative 𝑗 ,
concerns only the distribution on alternative 𝑗 , whereas ℓ2 agents care also about the distribution
on alternatives other than 𝑗 .

6. Impossibilities for ℓ1 and ℓ∞ preferences In this section, we show that efficiency, strat-
egyproofness, and the rather weak fairness condition of proportionality are incompatible when
agents have ℓ1 or ℓ∞ preferences.

6.1. ℓ1 preferences Under ℓ1 preferences, Freeman et al. [21] observed that the utilitarian
welfare maximizing mechanism is the only efficient mechanism in their class of moving phantom
mechanisms. However, maximizing utilitarian welfare violates weak fairness axioms such as pro-
portionality. We prove that this tradeoff between efficiency and fairness is inevitable in the presence
of strategyproofness.
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Theorem 3. With ℓ1 preferences, no mechanism satisfies efficiency, strategyproofness, and
proportionality when 𝑚 ≥ 3 and 𝑛 ≥ 3.

For the proof of this theorem, we consider disutilities 𝑑𝑖 (the ℓ1 distance to an agent’s peak
𝑝𝑖) instead of utilities, i.e., 𝑑𝑖 (q) = ∥p𝑖 − q∥1. It is also important to keep the following simple
observations in mind.

Observation 1 With ℓ1 preferences, if some agent 𝑖 has 𝑝𝑖, 𝑗 = 1, then for any distribution q,
𝑑𝑖 (q) = 2 − 2𝑞 𝑗 , regardless of the distribution on alternatives other than 𝑗 . Therefore, agent 𝑖 is
indifferent if some amount is moved between alternatives other than 𝑗 .

Observation 2 With ℓ1 preferences, 𝑑𝑖 (q) ≥ 2 · |𝑝𝑖, 𝑗 − 𝑞 𝑗 | for all 𝑗 ∈ 𝑀 and 𝑖 ∈ 𝑁 .

Proof of Theorem 3. We start with the case 𝑚 = 3 and 𝑛 = 3. For 𝑚 = 3, we set 𝑀 = {𝑎, 𝑏, 𝑐}
and write q = (𝑞𝑎, 𝑞𝑏, 𝑞𝑐). For simplicity, we number profiles by a superscript (𝑘). We denote the
disutility function of agent 𝑖 in profile 𝑘 by 𝑑

(𝑘)
𝑖

, and the returned distribution in profile 𝑘 by q(𝑘) .
Sometimes, we cannot determine q(𝑘) completely. In these cases, we give lower or upper bounds
on the entries of 𝑞 (𝑘) .

Consider first the following two profiles. The outcome in Profile 2 must be (1/3,1/3,1/3) by
proportionality. For Profile 1, the last row of the table gives lower bounds on q(1)

𝑎 ,q(1)
𝑏

and an upper
bound on q(1)

𝑐 , which we justify below.

Profile 1
a b c

1/2 1/2 0
0 1 0
0 0 1

q(1) ≥1/6 ≥1/2 ≤1/3

Profile 2
a b c
1 0 0
0 1 0
0 0 1

q(2) 1/3 1/3 1/3
As Agent 1 can manipulate between Profile 1 and Profile 2, strategyproofness requires that

Agent 1 does not gain from either manipulation. This implies

𝑑
(1)
1 (q(1)) ≤ 𝑑

(1)
1 (q(2)) = 2/3 and (3)

𝑑
(2)
1 (q(1)) ≥ 𝑑

(2)
1 (q(2)) = 4/3. (4)

By (3) and Observation 2, 𝑞 (1)𝑎 ≥ 1/6 (implying 𝑞
(1)
𝑏

≤ 5/6), 𝑞 (1)
𝑏

≥ 1/6, and 𝑞
(1)
𝑐 ≤ 1/3. By (4)

and Observation 1, 𝑞 (1)𝑎 ≤ 1/3, implying 𝑞
(1)
𝑏

+ 𝑞 (1)𝑐 ≥ 2/3, and thus 𝑞 (1)
𝑏

≥ 1/3.
The left figure below illustrates both inequalities. The blue area corresponds to the set of

distributions q(1) with 𝑑
(1)
1 (q(1)) ≤ 2/3 whereas the red area consists of all distributions q(1)

satisfying (4). Strategyproofness requires q(1) to be inside the intersection of the two areas, i.e., the
purple region. Hence,

1/6 ≤ 𝑞
(1)
𝑎 ≤ 1/3, 1/3 ≤ 𝑞

(1)
𝑏

≤ 5/6, and 0 ≤ 𝑞
(1)
𝑐 ≤ 1/3.



Draft – September 30, 2024 15

By efficiency, we can even show that 𝑞 (1)
𝑏

≥ 1/2. Otherwise, as 𝑞 (1)𝑎 > 0, some small amount could
be moved from 𝑎 to 𝑏. Agent 3 is indifferent due to Observation 1 and agent 2 strictly gains.
Furthermore, this does not change agent 1’s disutility as 𝑞 (1)

𝑏
< 1/2.

Next, we consider the following two profiles.

Profile 3
a b c

1/4 3/4 0
0 1 0
0 0 1

q(3) 0 2/3 1/3

Profile 4
a b c
0 1 0
0 1 0
0 0 1

q(4) 0 2/3 1/3
The outcome in Profile 4 follows from proportionality. We now prove that the outcome in Profile 3

must be identical. As Agent 1 can manipulate between Profile 3 and Profile 4, strategyproofness
requires that Agent 1 does not gain from either manipulation. This implies that

𝑑
(3)
1 (q(3)) ≤ 𝑑

(3)
1 (q(4)) = 2/3, and (5)

𝑑
(4)
1 (q(3)) ≥ 𝑑

(4)
1 (q(4)) = 2/3. (6)

By (5), 𝑞 (3)𝑐 ≤ 1/3, implying 𝑞
(3)
𝑎 + 𝑞 (3)

𝑏
≥ 2/3. By (6), 𝑞 (3)

𝑏
≤ 2/3. Graphically, strategyproofness

for Agent 1 implies that q(3) must be in the purple region in the right figure on the previous page.
However, by efficiency, if 𝑞 (3)𝑎 > 0 then 𝑞

(3)
𝑏

≥ 3/4. Otherwise, some small amount can be moved
from 𝑎 to 𝑏. Agent 3 is indifferent due to Observation 1 and Agent 2 strictly gains. Furthermore,
this does not change agent 1’s disutility as 𝑞 (3)

𝑏
< 3/4. Therefore, 𝑞 (3)𝑎 = 0 must hold, and the only

outcome compatible with strategyproofness is q(3) = (0,2/3,1/3).
Now that we know q(3) , we consider a manipulation of Agent 1 from Profile 3 to Profile 1.

Strategyproofness implies

𝑑
(3)
1 (q(1)) ≥ 𝑑

(3)
1 (q(3)) = 2/3.

.

𝑎 𝑏

𝑐

p(1)
1

p(2)
1

(a) Inequalities (3) and (4)

𝑎 𝑏

𝑐

p(3)
1

p(4)
1

(b) Inequalities (5) and (6)
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But the bounds we already have for q(1) imply that 𝑑 (3)
1 (q(1)) ≤ 2/3 as 𝑞 (1)𝑎 ≥ 1/6 and 𝑞

(1)
𝑏

≥ 1/2.
Therefore, 𝑑 (3)

1 (q(1)) = 2/3 together with 𝑞
(1)
𝑎 = 1/6 and 𝑞

(1)
𝑏

= 1/2. Hence, q(1) = (1/6,1/2,1/3).
Finally, we consider Profiles 5 and 6.

Profile 5
a b c

1/2 1/2 0
0 1 0
0 1/2 1/2

q(5)

Profile 6
a b c
1 0 0
0 1 0
0 1/2 1/2

q(6) 1/3 1/2 1/6

The distribution q(6) is determined by arguments analogous to those for q(1) , reasoning about
Agent 3 instead of Agent 1.

We now consider a manipulation of Agent 1 from Profile 5 to Profile 6. It follows from strate-
gyproofness that 𝑑 (5)

1 (q(5)) ≤ 𝑑
(5)
1 (q(6)) = 1/3, which implies that 𝑞 (5)𝑐 ≤ 1/6. Similarly, we con-

sider a manipulation of Agent 3 from Profile 5 to Profile 1. It follows from strategyproofness that
𝑑
(5)
3 (q(5)) ≤ 𝑑

(5)
3 (q(1)) = 1/3, which implies that 𝑞 (5)𝑐 ≥ 1/2− 1/6 = 1/3, a contradiction.

Graphically, both inequalities are shown in the figure on the
right. The blue area on the right contains the points satisfying
the first inequality, and the red area on the left contains the
points satisfying the second inequality. It is evident that the
two inequalities cannot be satisfied simultaneously.

𝑎 𝑏

𝑐

p(5)
1

p(5)
3

This example can be extended to arbitrary numbers of alternatives and agents in the following
way.

To increase the number of alternatives, simply add alternatives 𝑗+ with 𝑝𝑖, 𝑗+ = 0 for all agents 𝑖.
These new alternatives do not affect the argument, as efficiency implies range-respect, which
ensures that none of them ever receives a positive amount.

Adding agents is more involved, as our proof relies on explicit distributions induced by propor-
tionality and thus depends on the number of agents. However, we note that, throughout the proof,
Agent 2 always has the same peak, which puts all mass on alternative 𝑏. Therefore, when adding
agents 𝑖+ with 𝑝𝑖+,𝑏 = 1, we can run through the exact same proof but with adapted distributions.
The generalized proof can be found in Appendix B. □

Remark 2. The bounds 𝑚 ≥ 3 and 𝑛 ≥ 3 in Theorem 3 are tight. Indeed, there exists a moving
phantoms mechanism that satisfies strategyproofness, proportionality, and range-respect [21, p. 22],
and it is known that range-respect and efficiency coincide when 𝑚 = 2 or 𝑛 = 2 [19, Sec. 8].

The three axioms required for the impossibility are independent. Indeed, efficiency and strat-
egyproofness (without proportionality) are satisfied by the mechanism that maximizes utilitarian
welfare [30]; strategyproofness and proportionality (without efficiency) are satisfied by the inde-
pendent markets mechanism [21]; and proportionality and efficiency (without strategyproofness)
are satisfied by a natural generalization of the maximum Nash welfare mechanism studied by Aziz
et al. [5].
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Freeman et al. [21, p. 30] posed the question of whether every anonymous, neutral, continuous,
and strategyproof mechanism can be represented as a moving phantoms mechanism. While such a
characterization might have the potential to simplify the previous proof, it does not hold in general;
see Appendix C.

6.2. ℓ∞ preferences ℓ1 preferences take a special role among ℓ𝑝 disutilities in terms of effi-
ciency: indifference curves partially move along distributions with a constant sum on “approved”
(𝑝𝑖, 𝑗 > 0) alternatives. As an example, consider 𝑀 = {𝑎, 𝑏, 𝑐, 𝑑} and an agent 𝑖 with peak p𝑖 =

(1/2,1/2,0,0). With ℓ1 preferences, she is indifferent between all distributionsqwith 𝑞𝑎 +𝑞𝑏 = 1/2.
This implies that if we have two agents and the second agent 𝑖′ has p𝑖′ = (0,0,0,1), every efficient
distribution q with 𝑞𝑎 + 𝑞𝑏 = 1/2 (equivalently 𝑞𝑐 + 𝑞𝑑 = 1/2) must put 0 on alternative 𝑐 and 1/2
on alternative 𝑑. By contrast, when considering, e.g., ℓ2 preferences, it also matters for agent 𝑖 how
1/2 is distributed on 𝑐 and 𝑑. As a result, more distributions become efficient, which weakens the
role of efficiency for a potential impossibility when 𝑝 > 1.

We proceed by proving an impossibility for the preference model at the other end of the spectrum:
ℓ∞ preferences. These preferences behave similarly to ℓ1 disutilities (Observation 1), which is
helpful when arguing about efficiency.

Observation 3 With ℓ∞ preferences, if some agent 𝑖 has 𝑝𝑖, 𝑗 = 1, then for any distribution q,
𝑑𝑖 (q) = 1 − 𝑞 𝑗 , regardless of the distribution on alternatives other than 𝑗 . Therefore, agent 𝑖 is
indifferent if some amount is moved between alternatives other than 𝑗 .

Theorem 4. With ℓ∞ preferences, no mechanism satisfies efficiency, strategyproofness, and
proportionality when 𝑚 ≥ 3 and 𝑛 ≥ 3.

The proof of Theorem 4 can be found in Appendix D. It uses the same profiles as the one for
Theorem 3, but needs more involved arguments when reasoning about efficiency and extending
the argument to 𝑚 > 3 alternatives. The reason is that, with ℓ∞ disutilities (in contrast to ℓ1),
efficiency does not imply range-respect, and an efficient distribution might allocate a positive
amount to an alternative to which all agents allocate 0. For example, let 𝑚 = 4 and 𝑛 = 2 with peaks
(1/2,1/4,1/4,0) and (1/4,1/2,1/4,0). Then, (3/8,3/8,1/8,1/8) is efficient, as the maximal
distance is 1/8 for both agents and if Agent 1 is better off in distribution q, this means 𝑞1 > 3/8
which decreases Agent 2’s utility.

Remark 3. Theorem 4 requires 𝑚 ≥ 3, since for 𝑚 = 2 all metrics are equivalent (and thus
induce the same preferences), and there are mechanisms that satisfy all requirements (see Remark 2).
Moreover, 𝑛 ≥ 3 is required because, for 𝑚 = 3, the ℓ∞ and ℓ1 metrics are equivalent—the ℓ1 distance
is always twice the ℓ∞ distance. Therefore, for 𝑚 = 3 and 𝑛 = 2, the same mechanisms satisfy all the
requirements.

Similar to the impossibility for ℓ1 preferences, we expect all axioms to be independent. However,
to the best of our knowledge, this does not follow from existing results, as ℓ∞ preferences have been
studied significantly less than ℓ1.

We conjecture that the incompatibility of efficiency, strategyproofness, and weak fairness con-
ditions holds for ℓ𝑝 disutilities for any 1 ≤ 𝑝 ≤ ∞, when 𝑚 ≥ 3 and 𝑛 ≥ 3.

In the next section, we demonstrate that the impossibility does not generalize to arbitrary peak-
linear utility functions.
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7. The Nash product rule From now on, we assume that utilities are given by Leontief
utilities. Inspired by the positive results obtained by maximizing the product of utilities in similar
contexts [in particular, 15], we define the Nash product rule for budget aggregation as follows. For
any 𝑃 ∈ P,

NASH [𝑃] = arg max
q∈Δ𝑚

∏
𝑖∈𝑁

𝑢𝑖 (q).

NASH is well-defined as it always returns exactly one distribution [15]. The following exam-
ple illustrates the difference between NASH for Leontief utilities and the independent markets
mechanism for ℓ1 utilities.

Example 1. Let 𝑚 = 3 and 𝑛 = 2. Assume that the two agents’ ideal distributions are
(4/5,1/5,0) and (4/5,0,1/5). One can check that the independent markets mechanism returns
(3/5,1/5,1/5), which gives each agent a utility of 3/4, while NASH returns the distribution
(2/3,1/6,1/6), which gives each agent a utility of 5/6.
Interestingly, NASH and independent markets coincide for 𝑚 = 2; see Proposition 6.

Analogously to its application in donor coordination [15], we can also interpret the outcome
of NASH as a Nash equilibrium where each agent 𝑖 reports a vector s𝑖 ∈ Δ𝑚 and the outcome is
determined by adding up the score

∑
𝑖∈𝑁 𝑠𝑖, 𝑗 of each alternative 𝑗 . Here, the strategy set is the set

of preferences. This interpretation will be useful for proving certain properties of NASH.
Definition 13 (Decomposition). A decomposition of a distribution q is a vector of nonnega-

tive score vectors (s𝑖)𝑖∈𝑁 with∑︁
𝑖∈𝑁

𝑠𝑖, 𝑗 = 𝑞 𝑗 for all 𝑗 ∈ 𝑀;∑︁
𝑗∈𝑀

𝑠𝑖, 𝑗 =
1
𝑛

for all 𝑖 ∈ 𝑁.

An alternative characterization of the NASH outcome uses the notion of critical alternatives.
Lemma 6 (Brandt et al. [15, Sec. 4.3]). A distribution q maximizes the Nash product if and

only if it has a decomposition (s𝑖)𝑖∈𝑁 such that 𝑠𝑖, 𝑗 = 0 for every alternative 𝑗 ∉𝑇q,𝑖.

7.1. Properties In this section, we investigate properties of NASH for budget aggregation.
Anonymity follows immediately from the fact that multiplication is commutative. Neutrality is

also straightforward as NASH does not take into account the identities of the alternatives. Another
fact to keep in mind is that utilities and efficient outcomes admit a one-to-one correspondence.

Lemma 7 (Brandt et al. [15, Lem. 4.10]). Let q and q′ be efficient distributions inducing the
same utility vector, that is, 𝑢𝑖 (q) = 𝑢𝑖 (q′) for all 𝑖 ∈ 𝑁 . Then, q = q′.

With ℓ1 preferences, every efficient distribution q must be range-respecting (that is, 𝑞 𝑗 must
be between min𝑖 𝑝𝑖, 𝑗 and max𝑖 𝑝𝑖, 𝑗 for all 𝑗 ∈ 𝑀). However, with Leontief utilities, this is not the
case. In fact, NASH is efficient but not range-respecting, as shown in Example 1. Intuitively, NASH
prefers to decrease the distribution for alternative 1 below the minimum peak, in order to increase
the distribution for other alternatives whose ratio is smaller. Nevertheless, an efficient distribution
always satisfies one direction of range-respect.
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Lemma 8. With Leontief utilities, if q is an efficient distribution, then 𝑞 𝑗 ≤ max𝑖 𝑝𝑖, 𝑗 for all
𝑗 ∈ 𝑀 . In particular, this holds for any distribution returned by NASH.

Proof. Suppose by contradiction that, for some 𝑗 ∈ 𝑀 , it holds that 𝑞 𝑗 > 𝑝𝑖, 𝑗 for all 𝑖 ∈ 𝑁 .
Construct a new distribution q′ from q by removing some amount from 𝑗 and allocating it equally
among the other alternatives, such that 𝑞 𝑗 > 𝑝𝑖, 𝑗 for all 𝑖 ∈ 𝑁 still holds.

Note that, for any agent 𝑖 with Leontief utilities, 𝑢𝑖 (q) ≤ 1 for all q. Therefore, the decrease in
𝑞 𝑗 does not decrease the Leontief utility of any agent, as 𝑞 𝑗/𝑝𝑖, 𝑗 > 1. But the increase in allocation
to other alternatives must increase the utilities of all agents. Therefore, q′ is a Pareto improvement
of q, contradicting efficiency. □

NASH also satisfies continuity, which will be important for the axiomatic characterization we
give in the next section.

Proposition 4. With Leontief utilities, NASH is continuous.

Proof. Suppose we are given a sequence of profiles 𝑃1, 𝑃2, . . . converging to 𝑃∗, i.e.,
lim𝑘→∞ 𝑝𝑘

𝑖, 𝑗
= 𝑝∗

𝑖, 𝑗
for every agent 𝑖 ∈ 𝑁 and alternative 𝑗 ∈ 𝑀 . Denote by 𝑢𝑘

𝑖
the utility of agent 𝑖

in profile 𝑃𝑘 , and 𝑢∗
𝑖

the utility in profile 𝑃∗. Denote q𝑘 = NASH [𝑃𝑘 ] for every 𝑘 ∈ N and q∗ =
NASH [𝑃∗]. By boundedness, it suffices to show that every convergent subsequence of q1, q2, . . .
converges to q∗. Take such a subsequence, which must exist by the Bolzano-Weierstrass theorem,
and denote its limit by q𝐿 . With abuse of notation, we now refer to this subsequence as q1, q2, . . . .
Our goal is to show that q𝐿 = q∗.

Case 1: 𝑞∗
𝑗
> 0 for all alternatives 𝑗 ∈ 𝑀 . Denote by NASH [q, 𝑃] the Nash welfare of the

outcome q when the profile is 𝑃. By definition of NASH on 𝑃𝑘 , we have

NASH [q∗, 𝑃𝑘 ] ≤ NASH [q𝑘 , 𝑃𝑘 ]

for every 𝑘 . We take the limit of both sides as 𝑘 →∞.
• The left-hand side is a product of utilities 𝑢𝑘

𝑖
(q∗), where the distribution is fixed and only

the utility functions change. Each utility is a minimum of ratios 𝑞∗
𝑗
/𝑝𝑘

𝑖, 𝑗
where all numerators are

at least 𝜀, for some 𝜀 > 0. Since the minimum is always at most 1, elements with 𝑝𝑘
𝑖, 𝑗

< 𝜀 do not
affect the minimum and can be ignored. Therefore, the minimum is determined only by ratios with
𝑝𝑘
𝑖, 𝑗

≥ 𝜀. In this domain, the ratios are continuous functions of 𝑝𝑘
𝑖, 𝑗

, and their minimum is continuous
too. Therefore, lim𝑘→∞ 𝑢𝑘

𝑖
(q∗) = 𝑢∗

𝑖
(q∗), so the limit of the product at the left-hand side equals

NASH [q∗, 𝑃∗].
• The right-hand side is a product of utilities 𝑢𝑘

𝑖
(q𝑘 ), where both the distribution and the utility

functions change. There may be agents 𝑖 and alternatives 𝑗 for which both 𝑞𝑘
𝑗

and 𝑝𝑘
𝑖, 𝑗

approach 0
as 𝑘 → ∞, so the limit of 𝑢𝑘

𝑖
(q𝑘 ) may differ from 𝑢∗

𝑖
(q𝐿). For example, if p𝑘

𝑖
= (2/𝑘,1 − 2/𝑘)

and q𝑘 = (1/𝑘,1 − 1/𝑘) then 𝑢𝑘
𝑖
(q𝑘 ) = 1/2 for all 𝑘 , but q𝐿 = (0,1) so 𝑢∗

𝑖
(q𝐿) = 1. However, any

alternative 𝑗 for which 𝑝∗
𝑖, 𝑗

= lim𝑘→∞ 𝑝𝑘
𝑖, 𝑗

= 0 is removed from the minimum, so the minimum at
the limit profile can only be larger than the limit of minima. Therefore, lim𝑘→∞ 𝑢𝑘

𝑖
(q𝑘 ) ≤ 𝑢∗

𝑖
(q𝐿),

and the limit of the product at the right-hand side is at most NASH [q𝐿 , 𝑃∗].
Therefore, we have NASH [q∗, 𝑃∗] ≤ NASH [q𝐿 , 𝑃∗]. By definition and uniqueness of NASH on

𝑃∗, we get q𝐿 = q∗.
Case 2: 𝑞∗

𝑗
= 0 for some alternatives 𝑗 ∈ 𝑀 . Define 𝑍 = { 𝑗 ∈ 𝑀 : 𝑞∗

𝑗
= 0}. As q∗ maximizes Nash

welfare for 𝑃∗, we have 𝑝∗
𝑖, 𝑗

= 0 for every 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑍; otherwise, an agent 𝑖 with 𝑝∗
𝑖, 𝑗

> 0 would
receive zero utility causing the whole product to become zero. Consequently, lim𝑘→∞ 𝑝𝑘

𝑖, 𝑗
= 0 for
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every 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑍 . By Lemma 8, the amount allocated to alternatives in 𝑍 by q𝑘 also tends to zero
for 𝑘 →∞. Hence, 𝑞∗

𝑗
= 0 implies 𝑞𝐿

𝑗
= 0.

Now, we will measure utilities and Nash welfare only with respect to the alternatives outside 𝑍 .
Let 𝑤𝑘 be the total amount allocated to alternatives outside 𝑍 in q𝑘 , so we know that 𝑤𝑘 converges
to 1 for 𝑘 →∞. By definition of NASH on 𝑃𝑘 , we have

NASH [𝑤𝑘 ·q∗, 𝑃𝑘 ] ≤ NASH [q𝑘 , 𝑃𝑘 ] .

As in Case 1, we take the limit of both sides, the left-hand side equals NASH [q∗, 𝑃∗], and the
right-hand side is at most NASH [q𝐿 , 𝑃∗]. Since in 𝑃∗ all agents assign zero to alternatives in 𝑍 ,
these two quantities remain the same even if we take the alternatives in 𝑍 back into account for
the Nash welfare. Hence, as in Case 1, we get NASH [q∗, 𝑃∗] ≤ NASH [q𝐿 , 𝑃∗]. By definition and
uniqueness of NASH on 𝑃∗, we conclude that q𝐿 = q∗. □

In addition, NASH satisfies efficiency and group-strategyproofness [15].4 We show next that
NASH furthermore satisfies core fair share (and thus also proportionality).

Proposition 5. With Leontief utilities, NASH satisfies core fair share.

Proof. Let 𝐺 be any subset of agents. By Lemma 6, the NASH distribution can be decomposed
in such a way that every agent from 𝐺 only contributes her share of 1/𝑛 to alternatives in 𝑇q,𝐺 .
Thus, q(𝑇q,𝐺) ≥ |𝐺 |/𝑛. By Lemma 4, NASH satisfies core fair share. □

There exists an interesting connection of NASH to the independent markets mechanism for ℓ1
preferences, which follows immediately from the mechanisms’ axiomatic properties.

Proposition 6. With two alternatives, NASH for Leontief utilities is equivalent to the uniform
phantom mechanism for ℓ1 preferences.

Proof. For 𝑚 = 2, Leontief utilities as well as ℓ1 preferences are subsets of U𝑆𝑃, each of
which contains one utility function per peak. Both mechanisms are continuous, strategyproof,
and proportional. Therefore, they need to be equivalent on their respective utility models by
Theorem 2. □

However, this equivalence no longer holds when 𝑚 > 2, as shown in Example 1.

7.2. Characterization Next, we show that NASH admits an appealing characterization via
strategyproofness and fairness.

Theorem 5. With Leontief utilities, NASH is the only continuous mechanism that satisfies
group-strategyproofness and weak core fair share.

Let 𝑓 be a mechanism satisfying the properties in the theorem statement. The proof is divided
into three lemmas and has the following structure. Starting at an arbitrary profile 𝑃, we first show
in Lemma 9 that moving to a “key” profile 𝑃∗ cannot change the outcome: 𝑓 (𝑃∗) = 𝑓 (𝑃). Then,
Lemma 10 states that 𝑓 (𝑃∗) = NASH [𝑃∗]. Finally, Lemma 11 proves NASH [𝑃∗] = NASH [𝑃],
which completes the proof as we then have 𝑓 (𝑃) = NASH [𝑃].

Let q := 𝑓 (𝑃). By weak core fair share and Lemma 5, 𝑞 𝑗 = 0 if and only if 𝑝𝑖, 𝑗 = 0 for all 𝑖 ∈ 𝑁 .

4 Our notion of group-strategyproofness is slightly different as agents do not have variable contributions. Specifically, we only need
to consider manipulations of the individual peaks. However, this is a subset of all manipulations considered by Brandt et al. [15], so
NASH also satisfies our notion of group-strategyproofness.
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Denote by 𝑃∗ the profile with peaks

𝑝∗𝑖, 𝑗 =

{
𝑝𝑖, 𝑗/p𝑖 (𝑇q,𝑖) for 𝑗 ∈ 𝑇q,𝑖;
0 for 𝑗 ∉𝑇q,𝑖,

where p𝑖 (𝑇q,𝑖) :=
∑︁
𝑗∈𝑇q,𝑖

𝑝𝑖, 𝑗 . That is, in 𝑃∗, each agent moves her peak so that it is nonzero only

on alternatives critical for her under q. For example, suppose p𝑖 = (0.1,0.2,0.3,0.4) and q =

(0.1,0.1,0.6,0.2). Then 𝑇q,𝑖 = {2,4}, p𝑖 (𝑇q,𝑖) = 0.6, and p∗
𝑖
= (0,1/3,0,2/3). Note that, for an

agent 𝑖 with 𝑇q,𝑖 =𝑀 , it holds that p𝑖 = p∗
𝑖
.

Lemma 9. With Leontief utilities, if 𝑓 is a continuous mechanism satisfying group-
strategyproofness and efficiency, then

(a) the outcome does not change, that is, 𝑓 (𝑃∗) = 𝑓 (𝑃) = q;
(b) the sets of critical alternatives do not change, that is, 𝑇q,𝑖 =𝑇∗

q,𝑖 for every 𝑖 ∈ 𝑁 .
Proof. (a) We move the peak of each agent in turn. For each agent 𝑖, we change p𝑖 towards p∗

𝑖

gradually, to some p̂𝑖 := 𝜆p∗
𝑖
+ (1−𝜆)p𝑖, for some 𝜆 ∈ [0,1] to be computed later. Then we proceed

along this line until we reach p∗
𝑖
. In the above example, 𝜆 = 0.3 gives p̂𝑖 = (0.07,0.24,0.21,0.48).

If p𝑖 = p∗
𝑖
, it is clear that the outcome does not change, so assume that p𝑖 ≠ p∗

𝑖
. The change from p𝑖

to p̂𝑖 has a simple structure:
• 𝑝𝑖, 𝑗 > 𝑝𝑖, 𝑗 for all 𝑗 ∈ 𝑇q,𝑖, and the ratio 𝑝𝑖, 𝑗/𝑝𝑖, 𝑗 = 𝜆/p𝑖 (𝑇q,𝑖) + (1 − 𝜆) =: 𝜆+, a constant

independent of 𝑗 (in the example, 𝜆+ = 1.2);
• 𝑝𝑖, 𝑗 < 𝑝𝑖, 𝑗 for all 𝑗 ∉𝑇q,𝑖, and the ratio 𝑝𝑖, 𝑗/𝑝𝑖, 𝑗 = (1−𝜆) =: 𝜆−, again independent of 𝑗 (in the

example, 𝜆− = 0.7).
Now, consider the ratios 𝑞 𝑗/𝑝𝑖, 𝑗 versus the ratios 𝑞 𝑗/𝑝𝑖, 𝑗 . For each 𝑗 ∈ 𝑇q,𝑖, we have 𝑞 𝑗/𝑝𝑖, 𝑗 >
𝑞 𝑗/𝑝𝑖, 𝑗 because 𝑝𝑖, 𝑗 > 𝑝𝑖, 𝑗 , whereas for each 𝑗 ∉𝑇q,𝑖, we have 𝑞 𝑗/𝑝𝑖, 𝑗 < 𝑞 𝑗/𝑝𝑖, 𝑗 because 𝑝𝑖, 𝑗 < 𝑝𝑖, 𝑗 .
Furthermore, for all 𝑗 ∈ 𝑇q,𝑖, the ratios 𝑞 𝑗/𝑝𝑖, 𝑗 remain equal (as 𝑝𝑖, 𝑗/𝑝𝑖, 𝑗 is constant) when moving
from p to p̂, and they remain the smallest ratios for agent 𝑖. This implies that 𝑇q,𝑖 =𝑇q,𝑖.

Moreover, the entire ordering of alternatives by the ratio 𝑞 𝑗/𝑝𝑖, 𝑗 is identical to the ordering of
alternatives by the ratio 𝑞 𝑗/𝑝𝑖, 𝑗 , as the smallest ratio is divided by 𝜆+ > 1 and the other ratios are
divided by 𝜆− < 1. In other words, suppose we partition the alternatives into subsets according to
the ratio 𝑞 𝑗/𝑝𝑖, 𝑗 , and denote the subset with the smallest ratio by 𝑇q,𝑖,1 ≡ 𝑇q,𝑖, the subset with the
second-smallest ratio by 𝑇q,𝑖,2, etc., then 𝑇q,𝑖,𝑟 =𝑇q,𝑖,𝑟 for all 𝑟 ≥ 1.

Computing 𝜆. We pick 𝜆 sufficiently small such that no new alternative becomes critical for 𝑖 in
the new distribution yielded by 𝑓 . Specifically, set

𝜀 := min
𝑗∈𝑇q,𝑖 , 𝑗 ′∉𝑇q,𝑖

(𝑞 𝑗 ′ 𝑝𝑖, 𝑗 − 𝑞 𝑗 𝑝𝑖, 𝑗 ′) ≤ min
𝑗∈𝑇q,𝑖 , 𝑗 ′∉𝑇q,𝑖

𝑞 𝑗 ′ 𝑝𝑖, 𝑗 − 𝑞 𝑗 𝑝𝑖, 𝑗 ′

𝑝𝑖, 𝑗 + 𝑝𝑖, 𝑗 ′
.

Note that 𝜀 > 0, as 𝑞 𝑗 ′/𝑝𝑖, 𝑗 ′ > 𝑞 𝑗/𝑝𝑖, 𝑗 , by definition of critical alternatives.
By uniform continuity of 𝑓 , there exists 𝛿 > 0 such that ∥ 𝑓 (𝑃) − 𝑓 (𝑃′)∥1 < 2𝜀 for all 𝑃′ with

∥𝑃 − 𝑃′∥1 ≤ 𝛿. Set

𝜆 := min
(
1,

𝛿

∥p𝑖 −p∗
𝑖
∥1

)
,

and define 𝑃 as a profile identical to 𝑃 except that 𝑖 changes her peak fromp𝑖 to p̂𝑖 := 𝜆p∗
𝑖
+ (1−𝜆)p𝑖.

Note that ∥𝑃 − 𝑃∥1 = 𝜆∥p𝑖 −p∗
𝑖
∥1 ≤ 𝛿, so ∥q− q̂∥1 < 2𝜀, where q = 𝑓 (𝑃) and q̂ = 𝑓 (𝑃).
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The choice of 𝜀 ensures that𝑇q̂,𝑖 ⊆ 𝑇q,𝑖, as for arbitrary 𝑗 ∈ 𝑇q,𝑖 and 𝑗 ′ ∉𝑇q,𝑖 it holds that 𝑞 𝑗 < 𝑞 𝑗 +𝜀
and 𝑞 𝑗 ′ > 𝑞 𝑗 ′ − 𝜀, so

𝑞 𝑗 ′

𝑝𝑖, 𝑗 ′
>
𝑞 𝑗 ′ − 𝜀

𝑝𝑖, 𝑗 ′
≥

𝑞 𝑗 ′

𝑝𝑖, 𝑗 ′
−

𝑞 𝑗 ′ 𝑝𝑖, 𝑗 − 𝑞 𝑗 𝑝𝑖, 𝑗 ′

𝑝𝑖, 𝑗 ′ (𝑝𝑖, 𝑗 + 𝑝𝑖, 𝑗 ′)
=
𝑞 𝑗 ′ 𝑝𝑖, 𝑗 ′ + 𝑞 𝑗 𝑝𝑖, 𝑗 ′

𝑝𝑖, 𝑗 ′ (𝑝𝑖, 𝑗 + 𝑝𝑖, 𝑗 ′)
=

𝑞 𝑗 ′ + 𝑞 𝑗

𝑝𝑖, 𝑗 + 𝑝𝑖, 𝑗 ′

=
𝑞 𝑗 𝑝𝑖, 𝑗 + 𝑞 𝑗 ′ 𝑝𝑖, 𝑗

𝑝𝑖, 𝑗 (𝑝𝑖, 𝑗 + 𝑝𝑖, 𝑗 ′)
=

𝑞 𝑗

𝑝𝑖, 𝑗
+
𝑞 𝑗 ′ 𝑝𝑖, 𝑗 − 𝑞 𝑗 𝑝𝑖, 𝑗 ′

𝑝𝑖, 𝑗 (𝑝𝑖, 𝑗 + 𝑝𝑖, 𝑗 ′)
≥
𝑞 𝑗 + 𝜀
𝑝𝑖, 𝑗

>
𝑞 𝑗

𝑝𝑖, 𝑗
.

So every 𝑗 ′ which is not critical for 𝑖 under q cannot be critical for 𝑖 under q̂. Therefore,

𝑇q̂,𝑖 ⊆ 𝑇q,𝑖 =𝑇q,𝑖 .

Proving that the outcome does not change. Consider a manipulation of agent 𝑖 who manipulates
between reporting p𝑖 and p̂𝑖. Strategyproofness for 𝑖 implies both 𝑢𝑖 (q) ≥ 𝑢𝑖 (q̂) and �̂�𝑖 (q̂) ≥ �̂�𝑖 (q).

The latter condition implies that, for every alternative 𝑗 ∈ 𝑇q,𝑖,

𝑞 𝑗

𝑝𝑖, 𝑗
= �̂�𝑖 (q) since 𝑗 ∈ 𝑇q,𝑖 =𝑇q,𝑖,

≤ �̂�𝑖 (q̂) by strategyproofness,

≤
𝑞 𝑗

𝑝𝑖, 𝑗
by the definition of Leontief utilities.

So 𝑞 𝑗 ≤ 𝑞 𝑗 for each alternative 𝑗 ∈ 𝑇q,𝑖. Together with 𝑇q̂,𝑖 ⊆ 𝑇q,𝑖, this implies 𝑢𝑖 (q) ≤ 𝑢𝑖 (q̂).
Therefore, 𝑢𝑖 (q) = 𝑢𝑖 (q̂). Furthermore, if �̂�𝑖 (q̂) > �̂�𝑖 (q), then 𝑞 𝑗 > 𝑞 𝑗 for all 𝑗 ∈ 𝑇q,𝑖 ⊇ 𝑇q̂,𝑖, which
means that 𝑢𝑖 (q) < 𝑢𝑖 (q̂), contradicting 𝑢𝑖 (q) = 𝑢𝑖 (q̂). Thus, �̂�𝑖 (q̂) = �̂�𝑖 (q).

Moreover, if the utility of some other agent 𝑖′ increases, group-strategyproofness is violated for
the pair {𝑖, 𝑖′}, as this pair could profitably manipulate from q to q̂. Similarly, if the utility of some
other agent 𝑖′ decreases, group-strategyproofness is again violated for the pair {𝑖, 𝑖′}, as this pair
could profitably manipulate from q̂ to q. Thus, 𝑢𝑟 (q) = 𝑢𝑟 (q̂) for all 𝑟 ∈ 𝑁 . Since q is efficient with
respect to 𝑃, so is q̂. By Lemma 7, q = q̂.

Applying this argument repeatedly, we get a sequence of profiles (𝑃𝑘 ) with 𝑃0 = 𝑃 where p𝑘
𝑖

lies on the line 𝜆p∗
𝑖
+ (1 − 𝜆)p𝑖 for every 𝑘 . It remains to show that (p𝑘 ) reaches p∗

𝑖
after a finite

number of steps. For that, consider the expression in the definition of 𝜀:

min
𝑗∈𝑇q,𝑖 , 𝑗 ′∉𝑇q,𝑖

(𝑞 𝑗 ′ 𝑝𝑖, 𝑗 − 𝑞 𝑗 𝑝𝑖, 𝑗 ′).

As p𝑖 comes closer to p∗
𝑖
, 𝑝𝑖, 𝑗 increases and 𝑝𝑖, 𝑗 ′ decreases while q and 𝑇q,𝑖 stay the same, so

overall the expression increases. Thus, we can take the 𝜀 (and the corresponding 𝛿) from the first
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step for every step. Furthermore, ∥𝑃𝑘 − 𝑃𝑘+1∥1 = 𝛿 (unless 𝜆 = 1, but then we have reached p∗
𝑖
)

implying that we reach p∗
𝑖

after at most ⌈∥p𝑖 − p∗
𝑖
∥1/𝛿⌉ steps; as we move on a line of length

∥𝑃𝑘 − 𝑃𝑘 ′ ∥1 =
∑𝑘 ′−1

ℓ=𝑘 ∥𝑃ℓ − 𝑃ℓ+1∥1 for 𝑘′ ≥ 𝑘 .
After the first agent has reached her desired peak p∗

𝑖
, we turn to the next agent and repeat the

procedure. In that way, we eventually arrive at 𝑃∗.
(b) To see that 𝑇∗

q,𝑖 =𝑇q,𝑖 for all 𝑖 ∈ 𝑁 , note that for every non-critical alternative 𝑗 ∉𝑇q,𝑖 we have
𝑝∗
𝑖, 𝑗

= 0, so 𝑗 ∉𝑇∗
q,𝑖. Furthermore, for any critical alternative 𝑗 ∈ 𝑇q,𝑖 and any other 𝑗 ′ ∈ 𝑇q,𝑖,

𝑞 𝑗

𝑝∗
𝑖, 𝑗

=
𝑞 𝑗 ·p𝑖 (𝑇q,𝑖)

𝑝𝑖, 𝑗
=
𝑞 𝑗 ′ ·p𝑖 (𝑇q,𝑖)

𝑝𝑖, 𝑗 ′
=

𝑞 𝑗 ′

𝑝∗
𝑖, 𝑗 ′

,

so 𝑗 ∈ 𝑇∗
q,𝑖. Therefore, 𝑇q,𝑖 =𝑇∗

q,𝑖. □
Lemma 10. Let 𝑃∗ be a profile and q be a distribution in which every agent values every non-

critical alternative at 0 ( 𝑗 ∉𝑇∗
q,𝑖 implies 𝑝∗

𝑖, 𝑗
= 0 for any agent 𝑖). If q satisfies weak core fair share,

then q = NASH(𝑃∗).
Proof. Let 𝑃∗ be an arbitrary profile and let q ≠ NASH(𝑃∗) be a distribution such that 𝑗 ∉𝑇∗

q,𝑖
implies 𝑝∗

𝑖, 𝑗
= 0. In particular, q does not maximize Nash welfare. By Lemma 4.12 of Brandt et al.

[15], there exists a group 𝑁− of agents such that the total amount given to alternatives critical for
some agent from 𝑁− is less than |𝑁− |/𝑛. That is,

q(𝑇∗
q,𝑁−

) < |𝑁− |
𝑛

, (7)

where 𝑇∗
q,𝑁−

:=
⋃

𝑖∈𝑁− 𝑇
∗
q,𝑖.

We will now show that weak core fair share is violated for this 𝑁−. This is clear if q(𝑇∗
q,𝑁−

) = 0,
so assume that q(𝑇∗

q,𝑁−
) > 0.

Define a new distribution in which only alternatives in 𝑇∗
q,𝑁−

are funded:

q′ :=

{
𝑞 𝑗/q(𝑇∗

q,𝑁−
) for 𝑗 ∈ 𝑇∗

q,𝑁−
;

0 for 𝑗 ∉𝑇∗
q,𝑁−

.

For every 𝑖 ∈ 𝑁−, as 𝑝∗
𝑖, 𝑗

= 0 for 𝑗 ∉ 𝑇∗
q,𝑁−

⊇ 𝑇∗
q,𝑖, the utility 𝑢∗

𝑖
(q′) equals 𝑢∗

𝑖
(q)/q(𝑇∗

q,𝑁−
), which

is larger than 𝑢∗
𝑖
(q)/(|𝑁− |/𝑛) by (7). Therefore, the utility 𝑢∗

𝑖
(( |𝑁− |/𝑛)q′ + (1− |𝑁− |/𝑛) q′′) is at

least ( |𝑁− |/𝑛)𝑢∗𝑖 (q′) > 𝑢∗
𝑖
(q) for every q′′ ∈ Δ𝑚, contradicting weak core fair share for 𝑁−. □

Lemma 11. Let 𝑃∗ and 𝑃 be profiles where 𝑇∗
q,𝑖 = 𝑇q,𝑖 for q = NASH[𝑃∗] and all 𝑖 ∈ 𝑁 . Then,

NASH[𝑃] = q.
Proof. As q maximizes Nash welfare in 𝑃∗, by Lemma 6 there exists a decomposition (s𝑖)𝑖∈𝑁

such that 𝑠𝑖, 𝑗 = 0 for every 𝑖 ∈ 𝑁 and 𝑗 ∉𝑇∗
q,𝑖. Due to 𝑇∗

q,𝑖 =𝑇q,𝑖, the same decomposition proves that
q also maximizes Nash welfare in 𝑃 by Lemma 6, thus NASH [𝑃] = q. □
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Proof of Theorem 5. Let 𝑃 be an arbitrary profile, and 𝑃∗ a modified profile defined as in
Lemma 9. Then,

𝑓 (𝑃) 𝐿𝑒𝑚𝑚𝑎 9
= 𝑓 (𝑃∗) 𝐿𝑒𝑚𝑚𝑎 10

= NASH [𝑃∗] 𝐿𝑒𝑚𝑚𝑎 11
= NASH [𝑃],

where Lemma 11 uses the fact that the sets of critical alternatives under q did not change when
moving from 𝑃 to 𝑃∗. □

The condition of group-strategyproofness is used only in Lemma 9. If we assume that agents
have Leximin-Leontief preferences (that is, subject to maximizing the smallest ratio, they maximize
the second smallest ratio, etc.), then this condition can be weakened to ordinary strategyproofness;
the proof is given in Appendix E.

Theorem 6. With Leximin-Leontief preferences, NASH is the only continuous mechanism that
satisfies strategyproofness and weak core fair share.

As to the independence of the axioms, it is easy to see that weak core fair share is required for
Theorem 5 since any constant mechanism satisfies continuity and group-strategyproofness. The
necessity of (group-)strategyproofness can be shown by slightly perturbing the outcome of NASH.
For example, consider 𝑛 = 𝑚 = 2 and the two peaks at 1/4 and 3/4, respectively. NASH returns
q = (1/2,1/2) with 𝑢𝑖 (q) = 2/3. However, core fair share only guarantees utility 1/2 for agent 𝑖.
So any distribution which puts at least 3/8 on both alternatives satisfies core fair share. This “gap”
can be used to slightly change the outcome without violating CFS. Defining such changes in a
continuous way (note that if both agents have the same peak, that change is 0) should result in a
different continuous mechanism satisfying CFS.

We conjecture that continuity is required for the characterization as well.

8. Conclusion Aggregating individual distributions into a collective distribution constitutes
an important problem in social choice theory. Our work shows that understanding how agents form
their preferences has crucial implications on the possibility of optimal aggregation mechanisms.

When agents’ utilities are based on metrics such as ℓ1 and ℓ∞, no rule simultaneously guar-
antees strategyproofness, efficiency, and proportionality. However, when agents’ utilities are
non-metric and based on quotients (Leontief utilities), the Nash product rule guarantees group-
strategyproofness and weak core fair share, which implies both efficiency and proportionality.
Moreover, this rule is characterized by group-strategyproofness, weak core fair share, and continuity.

The Nash product rule satisfies further desirable properties such as reinforcement and partici-
pation. The former states that when aggregating distributions for two disjoint electorates results in
the same distribution, then the mechanism should return the same distribution for the union of both
electorates. The latter requires that agents are never better off by not participating in the aggregation
mechanism. Both statements follow trivially from the definition of the Nash product rule and hold
for arbitrary utility models with nonnegative utilities.

It would be interesting to identify other sensible utility models for which the Nash product
rule is a most attractive aggregation mechanism, and to pinpoint domain conditions that cause
impossibilities similar to Theorems 3 and 4. Some concrete open questions are:

• Does Theorem 5 also hold when weakening group-strategyproofness to strategyproofness? Is
continuity required for the characterization of the Nash product rule?

• Are there classes of peak-linear or star-shaped utility functions, other than Leontief, for which
mechanisms satisfying core fair share and strategyproofness exist? In particular, for ℓ𝑝 preferences
with 1 ≤ 𝑝 ≤ ∞ such as ℓ2, are there strategyproof mechanisms that satisfy weak core fair share?
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tionsergebnisse. Ph.D. thesis, Karlsruhe Institute of Technology.
[30] Lindner T, Nehring K, Puppe C (2008) Allocating public goods via the midpoint rule. Proceedings of the 9th

International Meeting of the Society of Social Choice and Welfare.
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Appendix A: Proof of Proposition 2
Proposition 2. With Leontief utilities, weak core fair share and core fair share are equivalent.

Proof. Assume that q violates core fair share for some set of agents 𝑁′ ⊆ 𝑁 . For brevity, denote
𝑟 := |𝑁′|/𝑛. So there is a distribution q′ for which the following hold for every q′′ ∈ Δ𝑚:

𝑢𝑖 (𝑟q′ + (1− 𝑟)q′′) ≥ 𝑢𝑖 (q) for all 𝑖 ∈ 𝑁′, and (8)
𝑢𝑖′ (𝑟q′ + (1− 𝑟)q′′) > 𝑢𝑖′ (q) for at least one 𝑖′ ∈ 𝑁′.

The latter condition implies that every alternative 𝑗 ∈ 𝑇q,𝑖′ is allocated strictly more in (𝑟q′ + (1−
𝑟)q′′) than in q. In particular, 𝑇q,𝑖′ ≠ 𝑀 . As q′′ might allocate nothing to alternatives in 𝑇q,𝑖′ , this
implies that 𝑟𝑞′

𝑗
> 𝑞 𝑗 for all 𝑗 ∈ 𝑇q,𝑖′ .

We now construct a new distribution q∗ from q′, by taking a small amount 𝑚𝜀 from some
𝑗0 ∈ 𝑇q,𝑖′ , such that 𝑟𝑞∗

𝑗0
> 𝑞 𝑗0 still holds, and then adding 𝜀 to every 𝑗 ∈ 𝑀 . Now we have

𝑟𝑞∗𝑗0 > 𝑞 𝑗0 ,

𝑟𝑞∗𝑗 > 𝑟𝑞′𝑗 for all 𝑗 ≠ 𝑗0.
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Therefore, for every distribution q′′,

𝑟𝑞∗𝑗0 + (1− 𝑟)𝑞′′𝑗0 > 𝑞 𝑗0 ,

𝑟𝑞∗𝑗 + (1− 𝑟)𝑞′′𝑗 > 𝑟𝑞′𝑗 + (1− 𝑟)𝑞′′𝑗 for all 𝑗 ≠ 𝑗0.

Denoting q+ := 𝑟q∗ + (1− 𝑟)q′′, the above becomes:

𝑞+𝑗0 > 𝑞 𝑗0 , (9)
𝑞+𝑗 > 𝑟𝑞′𝑗 + (1− 𝑟)𝑞′′𝑗 for all 𝑗 ≠ 𝑗0.

We claim that 𝑢𝑖 (q+) > 𝑢𝑖 (q) for all 𝑖 ∈ 𝑁′. Indeed, for all 𝑖 ∈ 𝑁′, if 𝑗0 ∈ 𝑀𝑖:

𝑢𝑖 (q+) = min
𝑗∈𝑀𝑖

𝑞+
𝑗

𝑝𝑖, 𝑗
(by definition of Leontief utilities)

= min

(
𝑞+
𝑗0

𝑝𝑖, 𝑗0
, min

𝑗∈𝑀𝑖 , 𝑗≠ 𝑗0

𝑞+
𝑗

𝑝𝑖, 𝑗

)
(by min properties)

> min

(
𝑞 𝑗0

𝑝𝑖, 𝑗0
, min

𝑗∈𝑀𝑖 , 𝑗≠ 𝑗0

𝑟𝑞′
𝑗
+ (1− 𝑟)𝑞′′

𝑗

𝑝𝑖, 𝑗

)
(by (9))

≥ min

(
𝑞 𝑗0

𝑝𝑖, 𝑗0
, min

𝑗∈𝑀𝑖

𝑟𝑞′
𝑗
+ (1− 𝑟)𝑞′′

𝑗

𝑝𝑖, 𝑗

)
(by min properties)

= min
(
𝑞 𝑗0

𝑝𝑖, 𝑗0
, 𝑢𝑖 (𝑟q′ + (1− 𝑟)q′′)

)
(by definition of Leontief utilities)

≥ min
(
𝑞 𝑗0

𝑝𝑖, 𝑗0
, 𝑢𝑖 (q)

)
(by (8), as 𝑖 ∈ 𝑁′)

= 𝑢𝑖 (q) (by definition of Leontief utilities).

If 𝑗0 ∉𝑀𝑖, we can repeat a similar argument to arrive again at 𝑢𝑖 (q+) > 𝑢𝑖 (q). To sum up, for every
distribution q′′, we have 𝑢𝑖 (𝑟q∗ + (1− 𝑟)q′′) > 𝑢𝑖 (q) for all 𝑖 ∈ 𝑁′. Hence, the distribution q∗ shows
that q violates weak core fair share. □

Appendix B: Impossibility of efficiency, strategyproofness, and proportionality for ℓ1 pref-
erences and arbitrary 𝑛 ≥ 3 In this section, we present the proof of Theorem 3 for arbitrary 𝑛 ≥ 3
but still fixed 𝑚 = 3. Again, we set 𝑀 = {𝑎, 𝑏, 𝑐} and write q = (𝑞𝑎, 𝑞𝑏, 𝑞𝑐). Note that in contrast to
the case 𝑛 = 3, we now also need to denote the number of agents with certain peaks in a profile.

Consider first the following two profiles.
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Profile 1
# agents a b c

1 3/2𝑛 (2𝑛− 3)/2𝑛 0
𝑛− 2 0 1 0

1 0 0 1

q(1) ≥1/2𝑛 ≥(2𝑛− 3)/2𝑛 ≤1/𝑛

Profile 2
# agents a b c

1 1 0 0
𝑛− 2 0 1 0

1 0 0 1

q(2) 1/𝑛 (𝑛− 2)/𝑛 1/𝑛
The outcome in Profile 2 must be (1/𝑛, (𝑛 − 2)/𝑛,1/𝑛) by proportionality. We now justify the

bounds on the outcome in Profile 1. As Agent 1 can manipulate between Profile 1 and Profile 2,
strategyproofness requires that Agent 1 does not gain from either manipulation. This implies that

𝑑
(1)
1 (q(1)) ≤ 𝑑

(1)
1 (q(2)) = 2/𝑛, (10)

𝑑
(2)
1 (q(1)) ≥ 𝑑

(2)
1 (q(2)) = (2𝑛− 2)/𝑛. (11)

By (10), 𝑞 (1)𝑎 ≥ 1/2𝑛 (implying 𝑞
(1)
𝑏

≤ (2𝑛−1)/2𝑛), 𝑞 (1)
𝑏

≥ (2𝑛−5)/2𝑛, and 𝑞
(1)
𝑐 ≤ 1/𝑛. By (11),

𝑞
(1)
𝑎 ≤ 1/𝑛, implying 𝑞

(1)
𝑏

+ 𝑞 (1)𝑐 ≥ (𝑛− 1)/𝑛, and thus 𝑞 (1)
𝑏

≥ (𝑛− 2)/𝑛.
By efficiency, we can even show that 𝑞 (1)

𝑏
≥ (2𝑛 − 3)/2𝑛. Otherwise, as 𝑞

(1)
𝑎 > 0, some small

amount could be moved from 𝑎 to 𝑏. Agent 𝑛 is indifferent due to Observation 1 and agents
2, . . . , 𝑛−1 strictly gain. Furthermore, this does not change agent 1’s disutility as 𝑞 (1)

𝑏
< (2𝑛−3)/2𝑛.

Profile 3
# agents a b c

1 1/(𝑛 + 1) 𝑛/(𝑛 + 1) 0
𝑛− 2 0 1 0

1 0 0 1

q(3) 0 (𝑛− 1)/𝑛 1/𝑛

Profile 4
# agents a b c

1 0 1 0
𝑛− 2 0 1 0

1 0 0 1

q(4) 0 (𝑛− 1)/𝑛 1/𝑛
Next, we consider Profiles 3 and 4. The outcome in Profile 4 follows from proportionality. We now

prove that the outcome in Profile 3 must be the same. As Agent 1 can manipulate between Profile 3
and Profile 4, strategyproofness requires that Agent 1 does not gain from either manipulation. This
implies that

𝑑
(3)
1 (q(3)) ≤ 𝑑

(3)
1 (q(4)) = 2/𝑛, (12)

𝑑
(4)
1 (q(3)) ≥ 𝑑

(4)
1 (q(4)) = 2/𝑛. (13)

By (12), 𝑞 (3)𝑐 ≤ 1/𝑛, implying 𝑞
(3)
𝑎 + 𝑞 (3)

𝑏
≥ (𝑛− 1)/𝑛. By (13), 𝑞 (3)

𝑏
≤ (𝑛− 1)/𝑛.

However, by efficiency, if 𝑞 (3)𝑎 > 0 then 𝑞
(3)
𝑏

≥ 𝑛/(𝑛 + 1). Otherwise, some small amount can be
moved from 𝑎 to 𝑏. Agent 𝑛 is indifferent due to Observation 1 and Agents 2, . . . , 𝑛−1 strictly gain.
Furthermore, this does not change Agent 1’s disutility as 𝑞 (3)

𝑏
< 𝑛/(𝑛 + 1). Therefore, 𝑞 (3)𝑎 = 0 must

hold, and the only outcome compatible with strategyproofness is q(3) = (0, (𝑛− 1)/𝑛,1/𝑛).
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Now that we know q(3) , we consider a manipulation of Agent 1 from Profile 3 to Profile 1.
Strategyproofness implies

𝑑
(3)
1 (q(1)) ≥ 𝑑

(3)
1 (q(3)) = 2/𝑛.

But the bounds we already have for q(1) imply that 𝑑 (3)
1 (q(1)) ≤ 2/𝑛 as 𝑞

(1)
𝑎 ≥ 1/2𝑛 and 𝑞

(1)
𝑏

≥
(2𝑛− 3)/2𝑛. Therefore, 𝑑 (3)

1 (q(1)) = 2/𝑛 together with 𝑞
(1)
𝑎 = 1/2𝑛 and 𝑞

(1)
𝑏

= (2𝑛− 3)/2𝑛. Hence,
q(1) = (1/2𝑛, (2𝑛− 3)/2𝑛,1/𝑛).

Finally, we consider the following two profiles.

Profile 5
# agents a b c

1 3/2𝑛 (2𝑛− 3)/2𝑛 0
𝑛− 2 0 1 0

1 0 (2𝑛− 3)/2𝑛 3/2𝑛

q(5)

Profile 6
# agents a b c

1 1 0 0
𝑛− 2 0 1 0

1 0 (2𝑛− 3)/2𝑛 3/2𝑛

q(6) 1/𝑛 (2𝑛− 3)/2𝑛 1/2𝑛
The distribution q(6) is determined by arguments analogous to those for q(1) , reasoning about

Agent 𝑛 instead of Agent 1.
We now consider a manipulation of Agent 1 from Profile 5 to Profile 6. It follows from strate-

gyproofness that

𝑑
(5)
1 (q(5)) ≤ 𝑑

(5)
1 (q(6)) = 1/𝑛,

which implies that 𝑞 (5)𝑐 ≤ 1/2𝑛. Similarly, we consider a manipulation of Agent 𝑛 from Profile 5 to
Profile 1. It follows from strategyproofness that

𝑑
(5)
3 (q(5)) ≤ 𝑑

(5)
3 (q(1)) = 1/𝑛,

which implies that 𝑞 (5)𝑐 ≥ 3/2𝑛− 1/2𝑛 = 1/𝑛, a contradiction. □

Appendix C: Not every anonymous, neutral, continuous, and strategyproof rule is moving
phantoms For a formal definition of moving phantom mechanisms, see Definition 6 of Freeman
et al. [21].

Proposition 7. With ℓ1 preferences, not every anonymous, neutral, continuous, and strate-
gyproof mechanism can be represented as a moving phantoms mechanism, for any 𝑛 ≥ 1 and 𝑚 ≥ 3
and for any number of phantom functions.

Proof. We first prove the claim for 𝑛 = 1 and 𝑚 = 3. Consider the mechanism which, in general,
returns the agent’s peak but cannot put more than 0.9 on an alternative. If (without loss of generality)
𝑝1,1 > 0.9, the mechanism returns 𝑞1 = 0.9, 𝑞2 = 𝑝1,2+ (𝑝1,1−0.9)/2, and 𝑞3 = 𝑝1,3+ (𝑝1,1−0.9)/2.
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Since this outcome minimizes the ℓ1 distance of agent 1 among all “legal” distributions, the
mechanism is strategyproof.

Anonymity is trivially satisfied as there is only one agent. For neutrality, if 𝑝1, 𝑗 = 𝑝1,𝑘 , then both
alternatives receive the same probability share. In particular, if 𝑝1,𝑙 > 0.9 for the third alternative 𝑙,
then 𝑗 and 𝑘 both receive 𝑝1, 𝑗 + (𝑝1,𝑙 −0.9)/2, and the distribution of the surplus does not depend on
the identity of the alternatives. For continuity, the only “critical” points are those where 𝑝1, 𝑗 > 0.9
approaches 0.9 from above. For such peaks, 𝑞 𝑗 = 0.9 is constant and the “surplus” 𝑝1, 𝑗 − 0.9 is
distributed on the other two alternatives in a continuous manner. Thus, the mechanism also satisfies
continuity.

Suppose by contradiction that the above mechanism can be represented as a moving phantoms
mechanism with phantom functions h; let 𝑘 be the number of phantoms. Let p1 = (0.91,0.08,0.01).
Given this profile, the mechanism returns q = (0.9,0.085,0.015). This implies that, for some
𝑡 ∈ [0,1], 0.085 is the median of 0.08 and ℎ1(𝑡), . . . , ℎ𝑘 (𝑡), so the number of phantoms larger than
or equal to 0.085 should be at least 𝑘/2 + 1 (for even 𝑘) or (𝑘 + 3)/2 (for odd 𝑘).5 By similar
considerations, since 0.015 is the median of 0.01 and ℎ1(𝑡), . . . , ℎ𝑘 (𝑡), the number of phantoms
smaller than or equal to 0.015 should be at least 𝑘/2 (for even 𝑘) or (𝑘 − 1)/2 (for odd 𝑘). These
two observations are contradictory as there are only 𝑘 phantoms in total.

A similar construction also works for larger 𝑚. Moreover, since the considered properties do not
relate instances with different 𝑛, such a construction can be extended to a rule for arbitrary 𝑛 by
using this mechanism when 𝑛 = 1 and moving phantoms when 𝑛 ≥ 2. □

Note that the proof of Proposition 7 does not assume continuity or any other property of the
phantom functions.

After constructing this counterexample, we learned that de Berg et al. [17] independently came
up with a similar construction with a more natural extension to larger 𝑛, that does not coincide with
a moving phantoms mechanism for 𝑛 > 1.

Appendix D: Impossibility of efficiency, strategyproofness and proportionality for ℓ∞ pref-
erences and 𝑛,𝑚 ≥ 3 In this section, we present the proof of Theorem 4 for arbitrary 𝑛 ≥ 3 and
𝑚 ≥ 3. We start by fixing 𝑚 = 3 and considering 𝑛 ≥ 3.

Lemma 12. With ℓ∞ preferences, no mechanism satisfies efficiency, strategyproofness, and
proportionality when 𝑚 = 3 and 𝑛 ≥ 3.

Proof. We use the same notation as in the proof of Theorem 3.

Profile 1
# agents a b c

1 3/2𝑛 (2𝑛− 3)/2𝑛 0
𝑛− 2 0 1 0

1 0 0 1

q(1) ≥1/2𝑛 ≥(2𝑛− 3)/2𝑛 ≤1/𝑛

Profile 2
# agents a b c

1 1 0 0
𝑛− 2 0 1 0

1 0 0 1

q(2) 1/𝑛 (𝑛− 2)/𝑛 1/𝑛

Consider first Profiles 1 and 2. The outcome in Profile 2 must be (1/𝑛, (𝑛 − 2)/𝑛,1/𝑛) by
proportionality. We now justify the bounds on the outcome in Profile 1. As Agent 1 can manipulate

5 We assume that when 𝑘 is odd, the median of 𝑘 + 1 elements is the ((𝑘 + 1)/2)-th element.
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between Profile 1 and Profile 2, strategyproofness requires that Agent 1 does not gain from either
manipulation. This implies that

𝑑
(1)
1 (q(1)) ≤ 𝑑

(1)
1 (q(2)) = 1/𝑛, (14)

𝑑
(2)
1 (q(1)) ≥ 𝑑

(2)
1 (q(2)) = (𝑛− 1)/𝑛. (15)

By (14), 𝑞 (1)𝑎 ≥ 1/2𝑛 (implying 𝑞
(1)
𝑏

≤ (2𝑛−1)/2𝑛), 𝑞 (1)
𝑏

≥ (2𝑛−5)/2𝑛, and 𝑞
(1)
𝑐 ≤ 1/𝑛. By (15),

𝑞
(1)
𝑎 ≤ 1/𝑛, implying 𝑞

(1)
𝑏

+ 𝑞 (1)𝑐 ≥ (𝑛− 1)/𝑛, and thus 𝑞 (1)
𝑏

≥ (𝑛− 2)/𝑛.
By efficiency, we can even show that 𝑞 (1)

𝑏
≥ (2𝑛 − 3)/2𝑛. Otherwise, 𝑞 (1)

𝑏
< (2𝑛 − 3)/2𝑛 and

𝑞
(1)
𝑐 + 𝑞 (1)𝑎 > 3/2𝑛, and some small amount can be moved from 𝑎 to 𝑏. Agent 𝑛 is indifferent due to

Observation 3 and Agents 2, . . . , 𝑛 − 1 strictly gain. Furthermore, this does not increase Agent 1’s
disutility as 𝑑 (1)

1 (q(1)) ≥ 𝑞
(1)
𝑐 > 3/2𝑛− 𝑞

(1)
𝑎 and 𝑞

(1)
𝑏

< (2𝑛− 3)/2𝑛. Hence, 𝑞 (1)
𝑏

≥ (2𝑛− 3)/2𝑛.

Profile 3
# agents a b c

1 1/(𝑛 + 1) 𝑛/(𝑛 + 1) 0
𝑛− 2 0 1 0

1 0 0 1

q(3)

Profile 4
# agents a b c

1 0 1 0
𝑛− 2 0 1 0

1 0 0 1

q(4) 0 (𝑛− 1)/𝑛 1/𝑛
Assume for contradiction that 𝑞 (1)𝑐 ≤ 3/4𝑛.
Consider a manipulation of Agent 1 from Profile 3 to Profile 1. Note that 𝑑 (3)

1 (q(1)) ≤ 3/4𝑛 with
the bounds established for q(1) . By strategyproofness for Agent 1, 𝑞 (3)𝑐 ≤ 3/4𝑛.

By efficiency, 𝑞 (3)
𝑏

≥ 𝑛/(𝑛 + 1). Otherwise, 𝑞 (3)
𝑏

< 𝑛/(𝑛 + 1) and 𝑞
(3)
𝑎 > 1/(𝑛 + 1) − 𝑞

(3)
𝑐 , and

some small amount can be moved from 𝑎 to 𝑏. Agent 𝑛 is indifferent due to Observation 3
and Agents 2, . . . , 𝑛 − 1 strictly gain. Furthermore, this does not increase agent 1’s disutility as
𝑑
(3)
1 (q(3)) ≥ 𝑞

(3)
𝑐 > 1/(𝑛 + 1) − 𝑞

(3)
𝑎 and 𝑞

(3)
𝑏

< 𝑛/(𝑛 + 1). Hence, 𝑞 (3)
𝑏

≥ 𝑛/(𝑛 + 1). However, as
𝑛/(𝑛 + 1) > (𝑛 − 1)/𝑛, this contradicts strategyproofness for Agent 1 manipulating from Profile 4
to Profile 3, where q(4) = (0, (𝑛− 1)/𝑛,1/𝑛) follows from proportionality.

Profile 5
# agents a b c

1 1 0 0
𝑛− 2 0 1 0

1 0 (2𝑛− 3)/2𝑛 3/2𝑛

q(5) ≤1/𝑛 ≥(2𝑛− 3)/2𝑛 ≥1/2𝑛

Profile 6
# agents a b c

1 3/2𝑛 (2𝑛− 3)/2𝑛 0
𝑛− 2 0 1 0

1 0 (2𝑛− 3)/2𝑛 3/2𝑛

q(6)

Therefore, 𝑞 (1)𝑐 > 3/4𝑛 has to hold. By analogous arguments with reversed roles of Agents 1
and 𝑛, the same bounds for q(5) as well as 𝑞 (5)𝑎 > 3/4𝑛 hold.

Since 𝑞
(1)
𝑏

≥ (2𝑛 − 3)/2𝑛, we must have 𝑞
(1)
𝑎 < 3/4𝑛. Consider a manipulation of Agent 𝑛

from Profile 6 to Profile 1. Note that 𝑑 (6)
𝑛 (q(1)) < 3/4𝑛, as 𝑞

(1)
𝑏

≥ (2𝑛 − 3)/2𝑛 and 𝑞
(1)
𝑐 > 3/4𝑛.

By strategyproofness for agent 𝑛, we have 𝑑
(6)
𝑛 (q(6)) ≤ 𝑑

(6)
𝑛 (q(1)) < 3/4𝑛, and thus 𝑞

(6)
𝑎 < 3/4𝑛.

Finally, consider a manipulation of Agent 1 from Profile 6 to Profile 5. Analogously, 𝑑 (6)
1 (q(6)) ≤

𝑑
(6)
1 (q(5)) < 3/4𝑛, which implies 𝑞 (6)𝑎 > 3/2𝑛− 3/4𝑛 = 3/4𝑛, a contradiction. □
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We finish the proof of Theorem 4 by showing that this argument remains valid under the addition
of alternatives 𝑗+ with 𝑝𝑖, 𝑗+ = 0 for all agents 𝑖 ∈ 𝑁 .

Proof of Theorem 4. We prove that no efficient mechanism puts positive probability on new
alternatives 𝑗+ with 𝑝𝑖, 𝑗+ = 0 for all agents 𝑖 ∈ 𝑁 in any of the six profiles used for the proof of
Lemma 12. Together with Lemma 12, this completes the proof of Theorem 4.

Proportionality directly implies that adding such an alternative 𝑗+ to Profiles 2 and 4 does not
change the distribution.

Next, consider Profile 1. If | (2𝑛− 3)/2𝑛− 𝑞
(1)
𝑏

| < 𝑑
(1)
1 (q(1)), or | (2𝑛− 3)/2𝑛− 𝑞

(1)
𝑏

| = 𝑑
(1)
1 (q(1))

and 𝑞
(1)
𝑏

< (2𝑛−3)/2𝑛, moving some amount of probability from 𝑗+ to 𝑏 cannot increase Agent 1’s
disutility, does not change Agent 𝑛’s disutility by Observation 3, and decreases the disutilities
of all other agents. Therefore, such a redistribution would correspond to a Pareto improvement.
Note that | (2𝑛 − 3)/2𝑛 − 𝑞

(1)
𝑏

| = 𝑑
(1)
1 (q(1)) and 𝑞

(1)
𝑏

= (2𝑛 − 3)/2𝑛 cannot hold simultaneously, as
𝑞
(1)
𝑗+ > 0. Hence, the only remaining case we need to consider is | (2𝑛−3)/2𝑛−𝑞

(1)
𝑏

| = 𝑑
(1)
1 (q(1)) and

𝑞
(1)
𝑏

> (2𝑛−3)/2𝑛. This implies 3/2𝑛− 𝑞
(1)
𝑎 ≤ 𝑑

(1)
1 (q(1)) and thus, 𝑞 (1)𝑎 + 𝑞 (1)

𝑏
≥ 3/2𝑛− 𝑑

(1)
1 (q(1)) +

(2𝑛− 3)/2𝑛 + 𝑑 (1)
1 (q(1)) = 1, contradicting 𝑞

(1)
𝑗+ > 0. The argument for Profile 5 works analogously.

For Profile 3, moving some amount of probability from 𝑗+ to 𝑏 can only potentially increase the
disutility of one agent, namely Agent 1, if 𝑞 (3)

𝑏
≥ 𝑛/(𝑛 + 1) and 𝑑

(3)
1 (q(3)) = 𝑞

(3)
𝑏

− 𝑛/(𝑛 + 1). But
then, 1/(𝑛 + 1) − 𝑞

(3)
𝑎 ≤ 𝑑

(3)
1 (q(3)) and again, 𝑞 (3)𝑎 + 𝑞 (3)

𝑏
= 1, contradicting 𝑞

(3)
𝑗+ > 0.

Finally, for Profile 6, moving some amount of probability from 𝑗+ to 𝑏 can only potentially
increase the disutilities of two agents, namely Agents 1 and 𝑛, if 𝑞 (6)

𝑏
≥ (2𝑛−3)/2𝑛 and 𝑑

(6)
𝑘

(q(6)) =
𝑞
(6)
𝑏

− (2𝑛 − 3)/2𝑛 holds for at least one 𝑘 ∈ {1, 𝑛}, without loss of generality for 𝑘 = 1. But then,
3/2𝑛− 𝑞

(6)
𝑎 ≤ 𝑑

(6)
1 (q(6)) and again, 𝑞 (6)𝑎 + 𝑞 (6)

𝑏
= 1, contradicting 𝑞

(6)
𝑗+ > 0. □

Appendix E: Leximin-Leontief preferences Leontief utilities, as defined in Section 5.2,
assume that agents rank distributions only by the smallest ratio, min 𝑗∈𝑀𝑖

𝑞 𝑗/𝑝𝑖, 𝑗 . In this section, we
assume that agents rank distributions with the same smallest ratio by the second-smallest ratio, and
distributions with the same smallest and second-smallest ratio by the third-smallest ratio, and so
on. We call these preferences Leximin-Leontief preferences. We denote the strict Leximin-Leontief
preferences of each agent 𝑖 by ≻𝑙𝑒𝑥

𝑖
, and the weak relation by ⪰𝑙𝑒𝑥

𝑖
. When we want to emphasize that

the leximin relation uses a specific peak p𝑖, we write ≻𝑙𝑒𝑥
p𝑖

and ⪰𝑙𝑒𝑥
p𝑖

.
We still define the NASH rule based on the minimum ratio only, which we continue to denote by

𝑢𝑖 (q). Therefore, the NASH distribution remains a continuous function of the peaks (even though
the Leximin-Leontief preferences are not continuous). However, the change of preferences may
potentially affect some properties of the rule. In particular, q ⪰𝑙𝑒𝑥

𝑖
q′ implies 𝑢𝑖 (q) ≥ 𝑢𝑖 (q′), but

for the strict relation the opposite direction is true: 𝑢𝑖 (q) > 𝑢𝑖 (q′) implies q ≻𝑙𝑒𝑥
𝑖

q′. Therefore,
properties defined by the weak relation only, such as strategyproofness and weak core fair share,
are stronger with Leximin-Leontief preferences than with Leontief utilities. However, properties
defined by both the weak and the strict relations, such as group-strategyproofness, core fair share,
and efficiency, are not a priori stronger or weaker with Leximin-Leontief preferences than with
Leontief utilities.

First, we claim that Lemma 3 still holds, where the critical alternatives are defined as in Defini-
tion 12 (based on the minimum ratio only).

Lemma 13. With Leximin-Leontief preferences, an outcome q is efficient if and only if every
alternative 𝑗 with 𝑞 𝑗 > 0 is critical for some agent.
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Proof sketch of Lemma 13. ⇒: Suppose that some alternative 𝑗 with 𝑞 𝑗 > 0 is not critical for
any agent. We can construct a new outcome q′ by removing a sufficiently small amount from 𝑗 and
distributing it equally among all other alternatives. This increases min 𝑗 𝑞 𝑗/𝑝𝑖, 𝑗 for all agents, and
thus makes the new distribution strictly leximin-better for all agents. Hence, q is not efficient.

⇐: Suppose that every alternative 𝑗 with 𝑞 𝑗 > 0 is critical for some agent. Let q′ be any outcome
different than q, and let 𝑦 be an alternative with 𝑞′𝑦 < 𝑞𝑦. As 𝑞𝑦 > 0, the assumption implies that 𝑦
is critical to some agent; denote one such agent by 𝑖𝑦. Then

min
𝑗

𝑞′
𝑗

𝑝𝑖𝑦 , 𝑗
≤

𝑞′𝑦
𝑝𝑖𝑦 ,𝑦

<
𝑞𝑦

𝑝𝑖𝑦 ,𝑦

= min
𝑗

𝑞 𝑗

𝑝𝑖𝑦 , 𝑗
, (as 𝑦 is critical for 𝑖𝑦 under q)

so q′ is leximin-worse for 𝑖 than q. Hence, q′ does not Pareto-dominate q. This holds for all q′,
which implies that q is efficient. □

Lemma 13 implies that q is efficient for Leximin-Leontief preferences if and only if it is efficient
for the corresponding Leontief utilities. In particular, NASH remains efficient. Moreover, NASH is
still neutral and Lemma 8 (efficiency implies one-sided range-respect) remains valid as well.

Next, we show that NASH remains group-strategyproof too. We need a lemma.
Lemma 14. Let q′ and q′′ be two distributions, and 𝑖 ∈ 𝑁 an agent. If q′′ ⪰𝑙𝑒𝑥

𝑖
q′, then every

alternative in 𝑇q′,𝑖 receives at least as much in q′′ as in q′, that is, 𝑞′′𝑦 ≥ 𝑞′𝑦 for all 𝑦 ∈ 𝑇q′,𝑖.
Proof. For every alternative 𝑦 ∈ 𝑇q′,𝑖:

𝑞′𝑖 = 𝑝𝑖,𝑦 · 𝑢𝑖 (q′) (as 𝑦 is critical for 𝑖 under q′)
≤ 𝑝𝑖,𝑦 · 𝑢𝑖 (q′′) (since q′′ ⪰𝑙𝑒𝑥

𝑖 q′ implies 𝑢𝑖 (q′′) ≥ 𝑢𝑖 (q′))

= 𝑝𝑖,𝑦 · min
𝑗∈𝑀𝑖

𝑞′′
𝑗

𝑝𝑖, 𝑗
(by definition of 𝑢𝑖)

≤ 𝑝𝑖,𝑦 ·
𝑞′′𝑦
𝑝𝑖,𝑦

(since 𝑦 ∈ 𝑇q′,𝑖 ⊆ 𝑀𝑖)

= 𝑞′′𝑦 ,

completing the proof. □
Theorem 7. With Leximin-Leontief preferences, NASH is group-strategyproof.

Proof. Assume for contradiction that there exist profiles 𝑃 and 𝑃′ with NASH distributions
q ≠ q′ respectively, and an inclusion-maximal group of agents 𝐺 ⊆ 𝑁 which do not lose from the
manipulation from 𝑃 to 𝑃′. Let 𝑇q,𝐺 :=

⋃
𝑖∈𝐺 𝑇q,𝑖 be the set of alternatives critical to at least one

agent from 𝐺 under q. As no agent from 𝐺 loses from the manipulation, Lemma 14 implies that
𝑞′𝑥 ≥ 𝑞𝑥 for all 𝑥 ∈ 𝑇q,𝐺 .

As q′ ≠ q, there is an alternative 𝑦 ∈ 𝑀 for which 𝑞′𝑦 > 𝑞𝑦. Denote 𝐵 :=𝑇q,𝐺 ∪ {𝑦} (it is possible
that 𝑦 ∈ 𝑇q,𝐺). Then, q′(𝐵) > q(𝐵).
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We now consider the decompositions of q and q′ guaranteed to exist by Lemma 6. Since
q′(𝐵) > q(𝐵), there exists an agent 𝑗 ∈ 𝑁 who contributes more to 𝐵 in the decomposition of q′
than in the decomposition of q. This implies that, in the decomposition of q, agent 𝑗 contributes
some of her share of 1/𝑛 to alternatives not in 𝐵. It follows that 𝑇q, 𝑗 ⊈ 𝐵, so 𝑗 ∉𝐺, and thus 𝑢 𝑗 = 𝑢′

𝑗

(as 𝑗 is not a part of the manipulating group).
In the decomposition of q′, agent 𝑗 must contribute a positive amount to some alternative

𝑥 ∈ 𝐵, which means that 𝑥 is critical for 𝑗 under q′. Since 𝑢 𝑗 = 𝑢′
𝑗
, we have 𝑢 𝑗 (q′) = 𝑢′

𝑗
(q′) =

𝑞′𝑥/𝑝′𝑗 ,𝑥 ≥ 𝑞𝑥/𝑝′𝑗 ,𝑥 ≥ 𝑢 𝑗 (q). Therefore, all agents in 𝐺 ∪ { 𝑗} do not lose from the manipulation,
which contradicts the maximality of 𝐺. □

We now extend Proposition 5 to Leximin-Leontief preferences.
Proposition 8. With Leximin-Leontief preferences, NASH satisfies core fair share.

Proof. Assume for contradiction that there exists 𝑃 ∈ P such that q := NASH [𝑃] does not
satisfy core fair share for some 𝐺 ⊆ 𝑁 . Then, there exists q′ ∈ Δ𝑚 such that, for every q′′ ∈ Δ𝑚,

( |𝐺 |/𝑛)q′ + (1− |𝐺 |/𝑛)q′′ ⪰𝑙𝑒𝑥
𝑖 q for all 𝑖 ∈𝐺, and

( |𝐺 |/𝑛)q′ + (1− |𝐺 |/𝑛)q′′ ≻𝑙𝑒𝑥
𝑖 q for at least one 𝑖 ∈𝐺.

Let 𝑇q,𝐺 :=
⋃

𝑖∈𝐺 𝑇q,𝑖 be the set of alternatives critical to at least one agent from 𝐺.
Note that 𝑇q,𝐺 = 𝑀 cannot hold. Otherwise, by Lemma 13, q would be efficient not only for 𝑁

but already for 𝐺, contradicting that q does not satisfy core fair share for 𝐺. Therefore, there
exists a distribution q′′ with 𝑞′′

𝑗
= 0 for every 𝑗 ∈ 𝑇q,𝐺 . Choosing such a distribution q′′ shows that

( |𝐺 |/𝑛)𝑞′
𝑗
≥ 𝑞 𝑗 ; otherwise some agent from 𝐺 for whom 𝑗 is critical would have a smaller utility.

Thus, q(𝑇q,𝐺) :=
∑

𝑗∈𝑇q,𝐺 𝑞 𝑗 ≤ (|𝐺 |/𝑛) ·∑ 𝑗∈𝑇q,𝐺 𝑞′
𝑗
≤ |𝐺 |/𝑛.

By Lemma 6, the NASH distribution can be decomposed in such a way that every agent from 𝐺

only contributes her share of 1/𝑛 to alternatives in𝑇q,𝐺 . Thus, q(𝑇q,𝐺) ≥ |𝐺 |/𝑛. All in all, q(𝑇q,𝐺) =
|𝐺 |/𝑛 and ( |𝐺 |/𝑛)𝑞′

𝑗
= 𝑞 𝑗 for every 𝑗 ∈ 𝑇q,𝐺 . But this also implies that ( |𝐺 |/𝑛) · q′(𝑇q,𝐺) = |𝐺 |/𝑛,

so q′(𝑇q,𝐺) = 1. This means that q′ only allocates to alternatives in 𝑇q,𝐺 . As the allocation to
alternatives in 𝑇q,𝐺 is the same in q and ( |𝐺 |/𝑛)q′, no agent in 𝐺 can have a better leximin vector
in ( |𝐺 |/𝑛)q′ than in q. □

We now consider the characterization (Theorem 5) for Leximin-Leontief preferences. It turns
out that group-strategyproofness can be weakened to strategyproofness.

As in the proof of Theorem 5, to show the statement, we would like to change 𝑃 gradually to
𝑃∗, where each agent’s peak puts 0 on non-critical alternatives. However, in order to exploit the
fact that Leximin-Leontief preferences constitute a refinement of Leontief utilities, which allows
us to weaken group-strategyproofness to strategyproofness, we need to adapt the proof. We first
show that 𝑓 coincides with NASH on all strictly-positive profiles, that is, all profiles 𝑃 ∈ P+, where
P+ := {𝑃 ∈ P : 𝑝𝑖, 𝑗 > 0 for all 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀}.

Lemma 15. If 𝑓 is a continuous mechanism satisfying strategyproofness, then when moving
from 𝑃 to 𝑃∗,

(a) the outcome does not change, that is, 𝑓 (𝑃∗) = 𝑓 (𝑃) = q for 𝑃 ∈ P+;
(b) the sets of critical alternatives do not change, that is, 𝑇q,𝑖 =𝑇∗

q,𝑖 for every 𝑖 ∈ 𝑁 .

Proof. We first show the statement for a slightly perturbed �̃�∗
𝜀

with p̃∗
𝑖
= (1 − 𝜀)p∗

𝑖
+ 𝜀p𝑖 and

arbitrary small but fixed 𝜀 > 0. Note that 𝑃∗ may not be in P+, but �̃�∗
𝜀

is always in P+. Note also
that, for an agent 𝑖 with 𝑇q,𝑖 =𝑀 , it holds that p𝑖 = p̃∗

𝑖
= p∗

𝑖
.
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Again, we move the peak of each agent in turn. For each agent 𝑖, we change p𝑖 towards p̃∗
𝑖

gradually, to some p̂𝑖 := 𝜆p̃∗
𝑖
+ (1−𝜆)p𝑖, for some 𝜆 ∈ [0,1] to be computed later. Then we proceed

along this line until we reach 𝜆 = 1 and p̃∗
𝑖
.

Given the outcome q = 𝑓 (𝑃), we partition the alternatives of each agent 𝑖 into critical classes,
i.e., subsets with the same ratio 𝑞 𝑗/𝑝𝑖, 𝑗 . Here we use the fact that 𝑃 ∈ P+, so 𝑝𝑖, 𝑗 > 0 for all 𝑖, 𝑗 .
Denote the subset with the smallest ratio by 𝑇q,𝑖,1 ≡ 𝑇q,𝑖, the subset with the second-smallest ratio
by 𝑇q,𝑖,2, and so on, up to 𝑇q,𝑖,𝑤, where 𝑤 is the number of different ratios. Also, for 𝑟 ∈ [𝑤], denote
𝑇q,𝑖,≤𝑟 :=𝑇q,𝑖,1 ∪ · · · ∪𝑇q,𝑖,𝑟 , and define 𝑇q,𝑖,>𝑟 analogously.

As p̂𝑖 lies along the line between p𝑖 and p∗
𝑖
, the change from p𝑖 to p̂𝑖 has a simple structure:

• 𝑝𝑖, 𝑗 > 𝑝𝑖, 𝑗 for all 𝑗 ∈ 𝑇q,𝑖,1, and the ratio 𝑝𝑖, 𝑗/𝑝𝑖, 𝑗 = 𝜆(1− 𝜀)/p𝑖 (𝑇q,𝑖,1) + 𝜆𝜀 + (1− 𝜆) =: 𝜆+, a
constant independent of 𝑗 ;

• 𝑝𝑖, 𝑗 < 𝑝𝑖, 𝑗 for all 𝑗 ∈ 𝑇q,𝑖,>1, and the ratio 𝑝𝑖, 𝑗/𝑝𝑖, 𝑗 = 𝜆𝜀+ (1−𝜆) =: 𝜆−, again independent of 𝑗 .
Computing 𝜆. We pick 𝜆 sufficiently small such that no new alternative becomes critical for 𝑖,

and moreover, critical classes do not mix, i.e., 𝑞′
𝑗
/𝑝𝑖, 𝑗 ′ > 𝑞 𝑗/𝑝𝑖, 𝑗 implies 𝑞 𝑗 ′/𝑝𝑖, 𝑗 ′ > 𝑞 𝑗/𝑝𝑖, 𝑗 for all

𝑗 , 𝑗 ′ ∈ 𝑀 . Specifically, set
𝜀 := min

𝑗∈𝑇q,𝑖,𝑟 , 𝑗 ′∈𝑇q,𝑖,𝑠

𝑞 𝑗 ′ 𝑝𝑖, 𝑗 − 𝑞 𝑗 𝑝𝑖, 𝑗 ′

𝑝𝑖, 𝑗 + 𝑝𝑖, 𝑗 ′

where the minimum is taken over all 𝑟, 𝑠 ∈ [𝑤] and 𝑠 > 𝑟. Note that 𝜀 > 0, as 𝑞 𝑗 ′/𝑝𝑖, 𝑗 ′ > 𝑞 𝑗/𝑝𝑖, 𝑗 , by
definition of critical classes.

By uniform continuity of 𝑓 , there exists 𝛿 > 0 such that ∥ 𝑓 (𝑃) − 𝑓 (𝑃′)∥1 < 2𝜀 for all 𝑃′ with
∥𝑃 − 𝑃′∥1 ≤ 𝛿. Set

𝜆 := min
(
1,

𝛿

∥p𝑖 − p̃∗
𝑖
∥1

)
,

and define 𝑃 as a profile identical to 𝑃 except that 𝑖 changes her peak fromp𝑖 to p̂𝑖 := 𝜆p̃∗
𝑖
+ (1−𝜆)p𝑖.

Note that ∥𝑃 − 𝑃∥1 = 𝜆∥p𝑖 − p̃∗
𝑖
∥1 ≤ 𝛿, so ∥q− q̂∥1 < 2𝜀, where q = 𝑓 (𝑃) and q̂ = 𝑓 (𝑃).

The choice of 𝜀 ensures that for arbitrary 𝑟, 𝑠 ∈ [𝑤] with 𝑠 > 𝑟, 𝑗 ∈ 𝑇q,𝑖,𝑟 , and 𝑗 ′ ∈ 𝑇q,𝑖,𝑠,

𝑞 𝑗 ′

𝑝𝑖, 𝑗 ′
>
𝑞 𝑗 ′ − 𝜀

𝑝𝑖, 𝑗 ′
≥

𝑞 𝑗 ′

𝑝𝑖, 𝑗 ′
−

𝑞 𝑗 ′ 𝑝𝑖, 𝑗 − 𝑞 𝑗 𝑝𝑖, 𝑗 ′

𝑝𝑖, 𝑗 ′ (𝑝𝑖, 𝑗 + 𝑝𝑖, 𝑗 ′)
=
𝑞 𝑗 ′ 𝑝𝑖, 𝑗 ′ + 𝑞 𝑗 𝑝𝑖, 𝑗 ′

𝑝𝑖, 𝑗 ′ (𝑝𝑖, 𝑗 + 𝑝𝑖, 𝑗 ′)
=

𝑞 𝑗 ′ + 𝑞 𝑗

𝑝𝑖, 𝑗 + 𝑝𝑖, 𝑗 ′

=
𝑞 𝑗 𝑝𝑖, 𝑗 + 𝑞 𝑗 ′ 𝑝𝑖, 𝑗

𝑝𝑖, 𝑗 (𝑝𝑖, 𝑗 + 𝑝𝑖, 𝑗 ′)
=

𝑞 𝑗

𝑝𝑖, 𝑗
+
𝑞 𝑗 ′ 𝑝𝑖, 𝑗 − 𝑞 𝑗 𝑝𝑖, 𝑗 ′

𝑝𝑖, 𝑗 (𝑝𝑖, 𝑗 + 𝑝𝑖, 𝑗 ′)
≥
𝑞 𝑗 + 𝜀
𝑝𝑖, 𝑗

>
𝑞 𝑗

𝑝𝑖, 𝑗
.

Therefore, we have 𝑇q,𝑖,𝑟 =𝑇q,𝑖,𝑟 for all 𝑟 ∈ [𝑤].
Proving that the outcome does not change.
Consider a manipulation of agent 𝑖 who manipulates between reporting p𝑖 and p̂𝑖. Strategyproof-

ness for agent 𝑖 implies both q ⪰𝑙𝑒𝑥
p𝑖

q̂ and q̂ ⪰𝑙𝑒𝑥
p̂𝑖

q.
We now prove, by induction on 𝑟, that 𝑞 𝑗 = 𝑞 𝑗 for all 𝑗 ∈ 𝑇q,𝑖,𝑟 . For the base case 𝑟 = 1, consider

the alternatives in 𝑇q,𝑖,1.
• As all alternatives in 𝑇q,𝑖,1 are at the bottom of the ordering by 𝑞 𝑗/𝑝𝑖, 𝑗 (by definition) as

well as by 𝑞 𝑗/𝑝𝑖, 𝑗 (by the choice of 𝜀), the relation q ⪰𝑙𝑒𝑥
p𝑖

q̂ implies the same relation among the
sub-vectors corresponding to the alternatives in 𝑇q,𝑖,1, that is,

[𝑞 𝑗 | 𝑗 ∈ 𝑇q,𝑖,1] ⪰𝑙𝑒𝑥
p𝑖

[𝑞 𝑗 | 𝑗 ∈ 𝑇q,𝑖,1] . (16)
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• Similarly, all alternatives in 𝑇q,𝑖,1 = 𝑇q,𝑖,1 are at the bottom of the ordering by 𝑞 𝑗/𝑝𝑖, 𝑗 by
construction. Therefore, the relation q̂ ⪰𝑙𝑒𝑥

p̂𝑖
q implies

[𝑞 𝑗 | 𝑗 ∈ 𝑇q,𝑖,1] ⪰𝑙𝑒𝑥
p̂𝑖

[𝑞 𝑗 | 𝑗 ∈ 𝑇q,𝑖,1] . (17)

• But since 𝑝𝑖, 𝑗 differs from 𝑝𝑖, 𝑗 by a constant factor 𝜆+ for all 𝑗 ∈ 𝑇q,𝑖,1, (17) implies the same
inequality with ⪰𝑙𝑒𝑥

p𝑖
instead of ⪰𝑙𝑒𝑥

p̂𝑖
. Combining this with (16), we get

[𝑞 𝑗 | 𝑗 ∈ 𝑇q,𝑖,1] ≃𝑙𝑒𝑥
p𝑖

[𝑞 𝑗 | 𝑗 ∈ 𝑇q,𝑖,1] .

As 𝑞 𝑗/𝑝𝑖, 𝑗 is constant for 𝑗 ∈ 𝑇q,𝑖,1, lexicographic equivalence with respect to p𝑖 implies 𝑞 𝑗/𝑝𝑖, 𝑗 =
𝑞 𝑗/𝑝𝑖, 𝑗 for all 𝑗 ∈ 𝑇q,𝑖,1. Thus, 𝑞 𝑗 = 𝑞 𝑗 must hold for all 𝑗 ∈ 𝑇q,𝑖,1.

For the induction step, assume that 𝑞 𝑗 = 𝑞 𝑗 holds for all 𝑗 ∈ 𝑇q,𝑖,≤𝑟 , for some 𝑟 ∈ [𝑤 − 1]. Next,
consider the alternatives in 𝑇q,𝑖,𝑟+1 =𝑇q,𝑖,𝑟+1.

• As 𝑞 𝑗 = 𝑞 𝑗 holds for all other alternatives with smaller ratios, the relation q ⪰𝑙𝑒𝑥
p𝑖

q̂ implies the
same relation for the subset 𝑇q,𝑖,𝑟+1, that is, [𝑞 𝑗 | 𝑗 ∈ 𝑇q,𝑖,𝑟+1] ⪰𝑙𝑒𝑥

p𝑖
[𝑞 𝑗 | 𝑗 ∈ 𝑇q,𝑖,𝑟+1].

• Similarly, the relation q̂ ⪰𝑙𝑒𝑥
p̂𝑖

q implies [𝑞 𝑗 | 𝑗 ∈ 𝑇q,𝑖,𝑟+1] ⪰𝑙𝑒𝑥
p̂𝑖

[𝑞 𝑗 | 𝑗 ∈ 𝑇q,𝑖,𝑟+1].
• But since 𝑝𝑖, 𝑗 differs from 𝑝𝑖, 𝑗 by a constant factor 𝜆− for all 𝑗 ∈ 𝑇q,𝑖,𝑟+1, q̂ ⪰𝑙𝑒𝑥

p̂𝑖
q implies

q̂ ⪰𝑙𝑒𝑥
p𝑖

q, so all in all [𝑞 𝑗 | 𝑗 ∈ 𝑇q,𝑖,𝑟+1] ≃𝑙𝑒𝑥
p𝑖

[𝑞 𝑗 | 𝑗 ∈ 𝑇q,𝑖,𝑟+1] must hold. This means that 𝑞 𝑗 = 𝑞 𝑗

must hold for all 𝑗 ∈ 𝑇q,𝑖,𝑟+1.
Therefore, q̂ = q.

Applying this argument repeatedly, we get a sequence of profiles (𝑃𝑘 ) with 𝑃0 = 𝑃 where p𝑘
𝑖

lies on the line 𝜆p̃∗
𝑖
+ (1 − 𝜆)p𝑖 for every 𝑘 . It remains to show that (p𝑘 ) reaches p̃∗

𝑖
after a finite

number of steps. For that, consider the expression in the definition of 𝜀:

min
𝑗∈𝑇q,𝑖,𝑟 , 𝑗 ′∈𝑇q,𝑖,𝑠

𝑞 𝑗 ′ 𝑝𝑖, 𝑗 − 𝑞 𝑗 𝑝𝑖, 𝑗 ′

𝑝𝑖, 𝑗 + 𝑝𝑖, 𝑗 ′
.

For 𝑟 = 1, as p𝑖 comes closer to p̃∗
𝑖
, 𝑝𝑖, 𝑗 increases and 𝑝𝑖, 𝑗 ′ decreases while q and the critical

classes stay the same, so overall the expression increases. For 𝑠 > 𝑟 > 1, note that 𝑝𝑖, 𝑗 and 𝑝𝑖, 𝑗 ′ both
decrease by the same factor 𝜆− while q and the critical classes stay the same. Thus, we can take
the 𝜀 (and the corresponding 𝛿) from the first step for every step. Furthermore, ∥𝑃𝑘 − 𝑃𝑘+1∥1 = 𝛿

(unless 𝜆 = 1, but then we have reached p̃∗
𝑖
) implying that we reach p̃∗

𝑖
after at most ⌈∥p𝑖 − p̃∗

𝑖
∥1/𝛿⌉

steps; as we move on a line of length ∥𝑃𝑘 − 𝑃𝑘 ′ ∥1 =
∑𝑘 ′−1

ℓ=𝑘 ∥𝑃ℓ − 𝑃ℓ+1∥1 for 𝑘′ ≥ 𝑘 .
After the first agent has reached her desired peak p̃∗

𝑖
, we turn to the next agent and repeat the

procedure. In that way, we eventually arrive at �̃�∗
𝜀
.

As 𝜀 was chosen arbitrarily and we have lim𝜀→0 𝑃
∗
𝜀
= 𝑃∗ for arbitrary 𝑃 ∈ P+, continuity of 𝑓

implies 𝑓 (𝑃) = 𝑓 (𝑃∗).
Statement (b) now follows analogously to the one in Lemma 9. □
Proof of Theorem 6. As Lemmas 10 and 11 still hold for Leximin-Leontief preferences,

𝑓 (𝑃) = NASH [𝑃] for all 𝑃 ∈ P+. Noting that P+ is dense in P (and 𝑓 and NASH are continuous),
𝑓 has to coincide with NASH on all profiles in P. □


