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Abstract

The formation of stable coalitions is a central concern in multiagent systems.
A considerable stream of research defines stability via the absence of beneficial
deviations by single agents. While most of the literature focuses on deviations
constrained by unanimous consent, we also study consent decided by majority
vote, and introduce two new stability notions that can be seen as local variants
of popularity. We investigate these notions in additively separable hedonic games
by pinpointing boundaries to computational complexity depending on the type
of consent and friend-oriented utility restrictions. Many of our positive results
follow from a new combinatorial observation that we call the Deviation Lemma
and that we leverage to prove the convergence of simple and natural single-agent
dynamics under fairly general conditions. Our negative results cover in particular
the complexity of contractual Nash stability.

Keywords: Computational Social Choice, Algorithmic Game Theory, Hedonic
Games, Single-Agent Stability, Dynamics

1. Introduction

Coalition formation is a central concern in multi-agent systems and considers
the question of grouping a set of agents, e.g., humans or machines, into coalitions
such as teams, clubs, or societies. A prominent framework for studying coalition
formation is that of hedonic games, where agents’ utilities are solely based on
the coalition they are part of, and which thus disregards inter-coalitional rela-
tionships (Drèze and Greenberg, 1980). Hedonic games have been successfully
used to model various scenarios evolving from operations research or the mathe-
matical social sciences, such as research team formation (Alcalde and Revilla,

⋆This paper unifies and expands results that appeared in the Proceedings of the 36th
AAAI Conference on Artificial Intelligence (AAAI) (Brandt et al., 2022) and the Proceedings
of the 47th International Symposium on Mathematical Foundations of Computer Science
(MFCS) (Bullinger, 2022).
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2004), task allocation (Saad et al., 2011), or community detection (Aziz et al.,
2019). Identifying desirable coalition structures is often based on the prospect of
coalitions to stay together. To this end, various notions of stability have been
introduced and studied. A coalition structure (henceforth partition) is stable
when no individual or group of agents benefits by joining another coalition or by
forming a new coalition.

In this paper, we focus on deviations by single agents. The simplest example
is a Nash deviation where some agent unilaterally decides to leave her current
coalition in order to join another coalition. While such a deviation clearly captures
the incentive of single agents to perform deviations, it completely ignores the
other agents’ opinions about the deviation. To overcome this shortcoming,
various restrictions of Nash deviations have been proposed. This has motivated
stability notions, such as individual stability or contractual Nash stability, which
consider the unanimous consent of some or all of the coalitions directly affected
by the deviation. While unanimous consent is in fact used in the formation
process of international bodies like the EU or the NATO, it might be impractical
and even undesirable in small- or medium-scale coalition formation scenarios. As
a compromise, we also study intermediate notions of stability based on majority
votes among the involved coalitions. This setting has received little attention
so far (Gairing and Savani, 2019), and we will also define new majority-based
stability notions.

Since the number of coalitions an agent can be part of is not polynomially
bounded, a lot of effort has been put into identifying reasonable and succinct
classes of hedonic games (see, e.g., Aziz et al., 2019; Ballester, 2004; Bogomolnaia
and Jackson, 2002; Elkind and Wooldridge, 2009). In many such classes, agents
extract cardinal preferences from a weighted graph by some aggregation method.
Perhaps the most natural and thoroughly studied way to aggregate preferences
is by taking the sum of the weights of edges towards agents in one’s own
coalition. This leads to the concept of additively separable hedonic games
(ASHGs) (Bogomolnaia and Jackson, 2002). ASHGs allow the modeling of
settings where agents have friends and enemies, and their goal is to simultaneously
maximize the number of friends and minimize the number of enemies, while one
of these two goals can have higher priority than the other one (Dimitrov et al.,
2006). Our work provides a computational analysis of single-agent stability in
ASHGs with a focus on friend-oriented utility restrictions.

1.1. Contribution

A recent line of research on stability notions focuses on the dynamical aspects
leading to the formation of stable outcomes (see, e.g., Bilò et al., 2018; Hoefer
et al., 2018; Carosi et al., 2019; Brandt et al., 2021). This yields an important
distributed perspective on the coalition formation process. The value of some
positive computational results in the context of hedonic games is diminished
by the fact that they implicitly assume that a central authority has the means
to collect all individual preferences, compute a stable partition, and enforce
this partition on the agents. In contrast, simple dynamics based on single-
agent deviations provide a much more plausible explanation for the formation
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of stable partitions. A versatile tool to prove the convergence of dynamics
are potential functions, which guide the dynamics towards stable states (see,
e.g., Bogomolnaia and Jackson, 2002; Suksompong, 2015; Brandt et al., 2021;
Bullinger and Suksompong, 2023).

We extend the applicability of this approach by considering non-monotonic
potential functions, i.e., potential functions that might decrease in some rounds
of the dynamic process. This is possible because the total number of rounds
can be bounded by observing the potential function from a global perspective
using a new general combinatorial insight that we call the Deviation Lemma. We
demonstrate the power of this lemma by providing three applications, which in
particular yield polynomial running time of dynamics in friend-oriented games for
various stability concepts. The Deviation Lemma is not restricted to additively
separable utilities or the specific type of single-agent deviations. For instance,
the combinatorial relationship of the lemma also arises naturally in the analysis
of deviation dynamics in classes of games beyond the scope of this paper, such as
anonymous hedonic games (Bogomolnaia and Jackson, 2002). In fact, the lemma
holds for every sequence of partitions such that each partition evolves from its
predecessor by having one element move to another partition class. It establishes
a relationship between the development of the sizes of coalitions involved in
deviations to information solely based on the starting partition and the terminal
partition of the sequence.

For the special case of symmetric utility functions, additively separable hedo-
nic games are well understood: the standard notion of utilitarian social welfare
represents an increasing potential function for the dynamics induced by Nash
stability (Bogomolnaia and Jackson, 2002), but finding stable states (even under
unanimous consent of the welcoming coalition) leads to PLS-complete problems
(Gairing and Savani, 2019). As we will see, this implies worst-case exponential
running time of the dynamics. By contrast, our results hold for restricted sets
of non-symmetric utility functions and our computational boundaries lie be-
tween polynomial-time computability and NP-completeness. In fact, whenever
we identify a potential function guaranteeing the existence of stable outcomes,
we are also able to prove that, from any starting partition, the corresponding
simple dynamics of single-agent deviations converges to a stable partition in a
polynomial number of rounds.

In contrast to the positive results obtained by means of the Deviation Lemma,
we also find strong computational boundaries. We obtain NP-hardness of the
existence problem for Nash stability in severely restricted ASHGs as well as the
existence problem of contractually Nash-stable coalition structures in general
ASHGs. Despite knowing that additively separable hedonic games that do not
admit a contractually Nash-stable coalition structure exist (Sung and Dimitrov,
2007), previous investigations of single-agent stability have left the complexity
of the associated existence problem open (Sung and Dimitrov, 2010). Hence, we
complete the picture of the complexity of unanimity-based single-agent stability
concepts in ASHGs.

In addition, we also find computational boundaries for majority-based stability
concepts. This complements the results obtained by the Deviation Lemma.
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Together, we completely pinpoint the complexity of majority-based stability
notions in appreciation-of-friends games, aversion-to-enemies games, and friends-
and-enemies games. Notably, a major step towards these hardness results is the
construction of No-instances, which then can be levered in hardness reductions.

Our results are in line with the repeatedly observed theme in hedonic games
research that the existence of counterexamples is the key to computational
intractability (see, e.g., Dimitrov et al., 2006; Sung and Dimitrov, 2010; Aziz
et al., 2013; Brandt et al., 2021).1 On the other hand, we demonstrate that
the observed intractabilities lie at the computational boundary by carving out
further weak restrictions that lead to the existence and efficient computability
of stable states.

1.2. Related Work

The study of hedonic games was initiated by Drèze and Greenberg (1980)
but was only popularized two decades later by Banerjee et al. (2001), Cechlárová
and Romero-Medina (2001), and Bogomolnaia and Jackson (2002). Aziz and
Savani (2016) provide an overview of many important concepts. Two important
research questions concern the design of reasonable computationally manageable
subclasses of hedonic games and the detailed investigation of their computational
properties. The former has led to a broad landscape of game representations.
Some of these representations are ordinal and fully expressive, i.e., they can,
in principle, express every preference relation over coalitions (Ballester, 2004;
Elkind and Wooldridge, 2009). Still, representing certain preference relations
requires exponential space. These representations are contrasted by cardinal
representations based on weighted graphs (Aziz et al., 2019; Bogomolnaia and
Jackson, 2002; Olsen, 2012), which are not fully expressive but only require
polynomial space (except when weights are artificially large). Apart from the
already discussed additively separable hedonic games, important aggregation
methods consider the average of weights leading to the classes fractional hedonic
games (Aziz et al., 2019) and modified fractional hedonic games (Olsen, 2012).

The computational properties of hedonic games have been extensively studied
and we focus on literature related to additively separable hedonic games. Various
versions of stability have been investigated (Dimitrov et al., 2006; Sung and
Dimitrov, 2010; Aziz and Brandl, 2012; Aziz et al., 2013; Gairing and Savani,
2019). In particular, Sung and Dimitrov (2010) perform a detailed computational
study of single-agent stability. Gairing and Savani (2019) settle the complexity
of single-agent stability for symmetric input graphs. Apart from stability, other
desirable axioms concern efficiency and fairness. Aziz et al. (2013) cover a wide
range of axioms, whereas Elkind et al. (2020) and Bullinger (2020) focus on
Pareto optimality, and Brandt and Bullinger (2022) investigate popularity, an
axiom combining ideas from stability and efficiency, which is also related to a
majority-based stability notion that we will introduce.

1A notable exception is provided by Bullinger and Kober (2021) who identify a class of
hedonic games where partitions in the core always exist, but are still hard to compute.
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The dynamical aspects of the coalition formation process have been studied
in a series of very recent papers (Bilò et al., 2018; Hoefer et al., 2018; Carosi
et al., 2019; Fanelli et al., 2021; Brandt et al., 2021; Boehmer et al., 2023;
Bullinger and Suksompong, 2023). Most related is the work by Bilò et al. (2018)
who consider Nash stability in fractional hedonic games and by Brandt et al.
(2021) who consider dynamics based on individual stability in several classes of
hedonic games. Bullinger and Suksompong (2023) consider a generalization of
additively separable hedonic games and a stability concept analogous to Nash
stability. Hoefer et al. (2018); Carosi et al. (2019), and Fanelli et al. (2021)
consider dynamics based on group deviations. Finally, very recently, Boehmer
et al. (2023) propose a dynamical version of hedonic games where utilities are
modified based on the history of the performed deviations. They study both
single-agent and group stability. Similar dynamic processes have been studied in
the domain of matchings (see, e.g., Roth and Vande Vate, 1990; Abeledo and
Rothblum, 1995; Brandt and Wilczynski, 2019).

2. Preliminaries and Model

In this section we introduce hedonic games and stability concepts. We use
the notation [k] = {1, . . . , k} for any positive integer k.

2.1. Hedonic Games

Throughout the paper, we consider settings with a set N = [n] of n agents.
The goal of coalition formation is to find a partition of the agents into different
disjoint coalitions according to their preferences. A partition of N is a subset
π ⊆ 2N such that

⋃
C∈π C = N , and for every pair C,D ∈ π, it holds that

C = D or C ∩D = ∅. An element of a partition is called coalition, and given a
partition π, we denote by π(i) the coalition containing agent i. We refer to the
partition π given by π(i) = {i} for every agent i ∈ N as the singleton partition,
and to π = {N} as the grand coalition.

Let Ni denote all possible coalitions containing agent i, i.e., Ni = {C ⊆
N : i ∈ C}. A hedonic game is defined by a tuple (N,≿), where N is an agent
set and ≿ = (≿i)i∈N is a tuple of weak orders ≿i over Ni which represent the
preferences of the respective agent i. Hence, agents express preferences only
over the coalitions which they are part of without considering externalities. The
strict part of an order ≿i is denoted by ≻i, i.e., C ≻i D if and only if C ≿i D
and not D ≿i C.

The generality of the definition of hedonic games gives rise to many interesting
subclasses of games that have been proposed in the literature. Many of these
classes rely on cardinal utility functions vi : N → R for every agent i. Following
Bogomolnaia and Jackson (2002), an additively separable hedonic game (ASHG)
(N, v) consists of an agent set N and a tuple v = (vi)i∈N of utility functions
vi : N → R such that π(i) ≿i π

′(i) if and only if
∑

j∈π(i) vi(j) ≥
∑

j∈π′(i) vi(j).
Clearly, ASHGs are a subclass of hedonic games, and we can assume without
loss of generality that vi(i) = 0 (or set the utility of an agent for herself to an
arbitrary constant).
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Every ASHG can be naturally represented by a complete directed graph
G = (N,E) with weight vi(j) on arc (i, j). An ASHG is called symmetric if
vi(j) = vj(i) for every pair of agents i and j, and it can then be represented by
a complete undirected graph with weight vi(j) on edge {i, j}. There are various
subclasses of ASHGs that allow a natural interpretation in terms of friends
and enemies. An agent j ∈ N is called a friend (or enemy) of agent i ∈ N if
vi(j) > 0 (or vi(j) < 0). An ASHG is called a friends-and-enemies game (FEG)
if vi(j) ∈ {−1, 1} for every pair of agents i, j ∈ N (Brandt et al., 2022). Further,
following Dimitrov et al. (2006), an ASHG is called an appreciation-of-friends
game (AFG) (or an aversion-to-enemies game (AEG)) if vi(j) ∈ {−1, n} (or
vi(j) ∈ {−n, 1}). In all of these games, agents pursue the objective to maximize
their number of friends while minimizing their number of enemies. In the case
of an FEG, these two goals have equal priority, while there is a strict priority
for one of the goals in AFGs and AEGs. Based on the friendship of agents, we
define the friendship relation (or enemy relation) as the subset R ⊆ N × N
where (i, j) ∈ R if and only if vi(j) > 0 (or vi(j) < 0).

2.2. Stability Based on Single-Agent Deviations

We want to study stability under single agents’ incentives to deviate. A single-
agent deviation performed by agent i transforms a partition π into a partition π′

where π(i) ̸= π′(i) and, for all agents j ̸= i, it holds that π(j) \ {i} = π′(j) \ {i}.
We write π

i−→ π′ to denote a single-agent deviation performed by agent i
transforming partition π to partition π′.

We consider myopic agents whose rationale is to only engage in a deviation
if it immediately makes them better off. A Nash deviation is a single-agent
deviation performed by agent i making her better off, i.e., π′(i) ≻i π(i). Any
partition in which no Nash deviation is possible is said to be Nash-stable (NS).

This concept of stability is very strong and comes with the drawback that
only the preferences of the deviating agent are considered. Therefore, various
refinements have been proposed which additionally require the consent of the
abandoned and the welcoming coalition. For a compact representation, we
introduce them via the notion of favor sets. Let C ⊆ N be a coalition and
i ∈ N an agent. The favor-in set of C with respect to i is the set of agents in
C (excluding i) that strictly favor having i inside C rather than outside, i.e.,
Fin(C, i) = {j ∈ C \ {i} : C ∪ {i} ≻j C \ {i}}. The favor-out set of C with
respect to i is the set of agents in C (excluding i) that strictly favor having i
outside C rather than inside, i.e., Fout(C, i) = {j ∈ C \ {i} : C \ {i} ≻j C ∪ {i}}.

An individual deviation (or contractual deviation) is a Nash deviation π
i−→ π′

such that Fout(π
′(i), i) = ∅ (or Fin(π(i), i) = ∅). Then, a partition is said to be

individually stable (IS) or contractually Nash-stable (CNS) if it allows for no
individual or contractual deviation, respectively. A related weakening of both
stability concepts is contractual individual stability (CIS), based on deviations
that are both individual and contractual deviations (Bogomolnaia and Jackson,
2002; Dimitrov and Sung, 2007).
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While these stability concepts include agents affected by the deviation,
they require unanimous consent, which might be unnecessarily strong in some
settings. Based on this observation, we define several hybrid stability concepts
where the possibility of a deviation by some agent is decided via majority

votes of the involved agents. A Nash deviation π
i−→ π′ is called a majority-

in deviation (or majority-out deviation) if |Fin(π
′(i), i)| ≥ |Fout(π

′(i), i)| (or
|Fout(π(i), i)| ≥ |Fin(π(i), i)|). A single-agent deviation that is both a majority-
in deviation and a majority-out deviation is called separate-majorities deviation.
Similar to before, a partition is said to be majority-in stable (MIS), majority-out
stable (MOS), or separate-majorities stable (SMS) if it allows for no majority-in,
majority-out, or separate-majorities deviation, respectively. The concepts MIS
and MOS are special cases of the voting-based stability notions by Gairing and
Savani (2019) for a threshold of 1/2.

Finally, it is possible to relax SMS by performing one joint vote instead of two

separate votes. A Nash deviation π
i−→ π′ is called a joint-majority deviation if

|Fout(π(i), i)|+ |Fin(π
′(i), i)| ≥ |Fin(π(i), i)|+ |Fout(π

′(i), i)|. A partition is then
called joint-majority stable (JMS) if it allows for no joint-majority deviations.
JMS is particularly interesting as it is a natural local version of popularity, an
axiom recently studied in the context of hedonic games (Gärdenfors, 1975; Cseh,
2017; Brandt and Bullinger, 2020).2

Also note that while CIS is a refinement of Pareto optimality, there is no
logical relationship between other (majority-based) stability concepts and Pareto
optimality. In particular, we denote the stability concepts based on single-
agent deviations by S, i.e., S = {NS, IS,CNS,CIS,MIS,MOS,SMS, JMS}. A
taxonomy of our and related solution concepts is provided in Figure 1. For a
more concise notation, we refer to deviations with respect to stability concept
α ∈ S as α deviations, e.g., IS deviations for α = IS.

All these stability concepts naturally induce dynamics where we choose some
starting partition and obtain a successor partition by having some agent perform
a deviation from the current partition. More precisely, given a stability concept
α ∈ S, an execution of α dynamics is an infinite or finite sequence (πj)j≥0 of
partitions and a corresponding sequence (ij)j≥1 of (deviating) agents such that

πj−1
ij−→ πj is an α deviation for every j. The partition π0 is then called the

starting partition. Given a hedonic game G, and a stability concept α ∈ S, we
say that the dynamics converges for starting partition π0 if every execution of
the α dynamics on G with starting partition π0 is finite. Additionally, the α
dynamics converges on G if it converges for every starting partition.

Proving convergence of dynamics is a very natural way to prove the existence
of stable states and underlines the robustness of the stability concept. It
complements a static solution concept with a decentralized process to reach a

2Informally speaking, a partition is popular if there is no other partition preferred by a
majority of the agents. JMS partitions can only be challenged by partitions evolving through
Nash deviations.
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Nash

Majority-Out Joint-Majority Majority-In

Contractual Nash Separate-Majorities Individual

Contractual Individual

Popularity

Pareto Optimality

Figure 1: Logical relationships between stability notions and other solutions concepts. An
arrow from concept α to concept β indicates that if a partition satisfies α, it also satisfies
β. Majority-based stability notions are highlighted in blue, other single-agent based stability
notions in black.

solution.

3. Computational Boundaries for Single-Agent Stability

In the next sections, we present our results. We start with computational
boundaries for classical solution concepts.

First, we consider the notion of Nash stability. In the absence of negative
utility values, the partition consisting solely of the grand coalition is Nash-stable.
Conversely, in the absence of positive utility values, the singleton partition is
Nash-stable. It is therefore necessary for an ASHG to have both positive and
negative utility values in order to admit a non-trivial Nash-stable partition (see
also Gairing and Savani, 2019).

Sung and Dimitrov (2010) showed that deciding whether an ASHG has an
NS partition is NP-hard by a reduction from Exact Cover by 3-Sets. This
reduction produces an ASHG with four distinct positive utility values and one
negative utility value. We improve upon this result by showing that a reduction
is possible with only one positive and one negative utility value. Moreover, it is
possible for any choice of these two utility values, as long as the absolute value
of the negative utility value is at least as large as the positive utility value. We
state the theorem in a general way allowing the positive and negative utility
value to be dependent on the number of agents of the particular instance. In this
way, we simultaneously cover several important cases. For instance, the hardness
holds for fixed constant positive and negative utility values as in FEGs, or for
AFGs and AEGs. Note that for all of our stability notions, a stable partition is
a polynomial-time verifiable certificate: one can simply check whether any agent
can perform a deviation, and if no one can, the partition is stable. Therefore,
we omit the proof of membership in NP in all of our reductions.
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All of our hardness reductions are from the NP-complete problem Exact
Cover by 3-Sets (E3C) (Karp, 1972). An instance of E3C consists of a tuple
(R,S), where R is a ground set together with a set S of 3-element subsets of
R. A Yes-instance is an instance such that there exists a subset S′ ⊆ S that
partitions R. All omitted proofs can be found in the appendix.

Theorem 1. Let f+ : N → Q>0 and f− : N → Q<0 be two polynomial-time
computable functions satisfying |f−(m)| ≥ f+(m) for all m ∈ N. Then, the prob-
lem of deciding whether an ASHG with utility values restricted to {f−(n), f+(n)}
has an NS partition is NP-complete.

Theorem 1 requires the negative utility value to be at least as large in absolute
value as the positive utility value. While we leave open the computational
complexity for completely arbitrary pairs of negative and positive values, we can
show that the problem is also hard when the positive utility value is significantly
larger than the absolute value of the negative utility value. The reduction is a
variant of the reduction in Theorem 1.

Theorem 2. Deciding whether an AFG has an NS partition is NP-complete.

Our next result settles the computational complexity of contractual Nash
stability in ASHGs. Before giving the complete proof, we briefly describe the
key ideas.

Given an instance (R,S) of Exact Cover by 3-Sets, the reduced instance
consists of three types of gadgets. First, every element in R is represented by a
subgame that does not contain a CNS partition. In principle, any such game
can be used for a reduction, and we use a simple game identified by Sung and
Dimitrov (2007). Moreover, we have further auxiliary gadgets that also consist
of the same No-instance. The number of these auxiliary gadgets is equal to
the number of sets in S that would remain after removing an exact cover of R,
i.e., there are |S| − |R|/3 such gadgets. By design, the agents in the subgames
corresponding to No-instances have to form coalitions with agents outside of
their subgame in every CNS partition. The only agents that can achieve this are
agents in gadgets corresponding to elements in S. A gadget corresponding to an
element s ∈ S can either prevent non-stability caused by exactly one auxiliary
gadget, or by the three gadgets corresponding to the elements r ∈ R with r ∈ s.
Hence, the only possibility to deal with all No-instances simultaneously is if
there exists an exact cover of R by sets in S. Then, the gadgets corresponding to
elements in R can be dealt with by the cover and there are just enough elements
in S to additionally deal with the other auxiliary gadgets.

Theorem 3. Deciding whether an ASHG contains a CNS partition is NP-
complete.

Proof. We provide a reduction from E3C. Let (R,S) be an instance of E3C and
set a = |S| − |R|/3 (this is the number of additional sets in S if removing some
exact cover). Without loss of generality, a ≥ 0. We define an ASHG (N, v) as
follows. Let N = NR ∪NS ∪ N̄S ∪NA where
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• NR = ∪r∈RNr with Nr = {ri : i ∈ [4]} for r ∈ R,

• NS = ∪s∈SNs with Ns = {sr : r ∈ s} for s ∈ S,

• N̄S = ∪s∈SN̄s with N̄s = {s̄r : r ∈ s} for s ∈ S, and

• NA = ∪1≤j≤aN
j with N j = {xj

i : i ∈ [4]} for 1 ≤ j ≤ a.

We define valuations v as follows:

• For each r ∈ R, i ∈ [3]: vri(r4) = 1.

• For each r ∈ R, (i, j) ∈ (1, 2), (2, 3), (3, 1): vri(rj) = 0.

• For each 1 ≤ j ≤ a, i ∈ [3]: vxj
i
(xj

4) = 1.

• For each 1 ≤ j ≤ a, (i, k) ∈ (1, 2), (2, 3), (3, 1): vxj
i
(xj

k) = 0.

• For each s ∈ S, r ∈ s: vsr (r4) = 1.

• For each s ∈ S, r ∈ s, 1 ≤ j ≤ a: vsr (x
j
4) = vxj

4
(sr) = 0.

• For each s ∈ S, r, r′ ∈ s: vsr (sr′) = 0.

• For each s ∈ S, r, r′ ∈ s, r ≠ r′, z ∈ (NS ∪ NA) \ Ns: vs̄r(sr) = 3,
vs̄r (sr′) = −2, and vs̄r (z) = 0.

• All other valuations are −4.

An illustration of the game is given in Figure 2. The agents in NR in the
reduced instance form gadgets consisting of a subgame without CNS partition
for every element in R. The agents in NA constitute further such gadgets. The
agents in NS consist of triangles for every set in S and are the only agents who
can bind agents in the gadgets in any CNS partition. Finally, agents in N̄S avoid
having agents in NS in separate coalitions to bind agents in NA.

We claim that (R,S) is a Yes-instance if and only if (N, v) contains a CNS
partition.

=⇒ . Suppose first that S′ ⊆ S partitions R. Consider any bijection ϕ : S\S′ →
[a]. Define a partition π by taking the union of the following coalitions:

• For every r ∈ R, i ∈ [3], form {ri}.

• For s ∈ S′, r ∈ s, form {sr, r4}.

• For s ∈ S \ S′, form {sr : r ∈ s} ∪ {xϕ(s)
4 }.

• For s ∈ S, r ∈ s, form {s̄r}.

• For 1 ≤ j ≤ a, i ∈ [3], form {xj
i}.

We claim that π is CNS. We will show that no agent can perform a deviation.
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Figure 2: Schematic of the reduction from the proof of Theorem 3. We depict the reduced
instance for the instance (R,S) of E3C where R = {a, b, c, d, e, f}, and S = {s, t, u}, with
s = {a, b, c}, t = {b, c, d}, and u = {d, e, f}. Fully drawn edges mean a positive utility, which
is usually 1 except between agents of the types s̄r and sr, where vs̄r (sr) = 3. Dashed edges
represent a utility of 0. For agents in N̄S , only the single positive utility is displayed. Other
omitted edges represent a negative utility of −4.

• For r ∈ R, i ∈ [3], it holds that vri(π) = 0 and joining any other coalition
results in a negative utility. In particular, vri(π(r4) ∪ {ri}) = −3.

• For r ∈ R, r4 is not allowed to leave her coalition.

• For s ∈ S′, r ∈ s, it holds that vsr (π) = 1 and joining any other coalition
results in a negative utility. The agent sr is in a most preferred coalition.

• For s ∈ S \ S′, r ∈ s, it holds that vsr(π) = 0 and joining any other
coalition results in a negative utility. In particular, vsr (π(r4)∪{sr}) = −3.

• For s ∈ S′, r ∈ s, the agent s̄r obtains a non-positive utility by joining any
other coalition. In particular, vs̄r (π(sr) ∪ {s̄r}) = −1.

• For s ∈ S \ S′, r ∈ s, the agent s̄r obtains a non-positive utility by joining
any other coalition. In particular, vs̄r (π(sr) ∪ {s̄r}) = −1.

• For 1 ≤ j ≤ a, i ∈ [3], it holds that vxj
i
(π) = 0 and joining any other

coalition results in a negative utility. In particular, vxj
i
(π(xj

4)∪{x
j
i}) = −11.

• For 1 ≤ j ≤ a, xj
4 is in a best possible coalition (achieving utility 0).

⇐= . Conversely, assume that (N, v) contains a CNS partition π. Define
S′ = {s ∈ S : π(sr) ∩NR ≠ ∅ for some r ∈ s}. We will show first that S′ covers
all elements in R and then show that |S′| = |R|/3.

Let r ∈ R. Then, for all i ∈ [3], π(ri) ⊆ Nr. This follows because there is no
agent who favors ri in her coalition. Therefore, she would leave any coalition

11
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with an agent outside Nr to receive non-negative utility in a singleton coalition.
Further, if there is no s ∈ S with r ∈ s such that r4 ∈ π(rs), then π(r4) ⊆ Nr.
Indeed, if r4 forms any coalition except a singleton coalition, she will receive
negative utility, and then there must exist an agent who favors her in the coalition.
Consequently, if r4 /∈ π(rs) for all s ∈ S with r ∈ s, then r4 is in a singleton
coalition, or there exists i ∈ [3] with r4 ∈ π(ri), for which we already know that
π(ri) ⊆ Nr.

Assume now that π(r4) ⊆ Nr. For i, i′ ∈ [3], ri /∈ π(ri′) because then one
of them would receive a negative utility and could perform a CNS deviation
to form a singleton coalition. If {r4} ∈ π, then r1 would deviate to join her.
Hence, there exists exactly one i ∈ [3] with {ri, r4} ∈ π. Suppose without loss
of generality that {r1, r4} ∈ π. But then, r3 would perform a CNS deviation to
join them, a contradiction. We can conclude that there exists s ∈ S with r ∈ s
such that r4 ∈ π(rs). Hence, s ∈ S′ and we have shown that S′ covers R.

To bound the cardinality of S′, we will show that, for every 1 ≤ j ≤ a, there
exists s ∈ S \ S′ with Ns ⊆ π(xj

4). Let therefore 1 ≤ j ≤ a and let C = π(xj
4).

Similar to the considerations about agents in Nr, we know that π(xj
i ) ⊆ Xj for

i ∈ [3], and that it cannot happen that C ⊆ Xj , and therefore C ∩Xj = {xj
4}.

In particular, there must be an agent y ∈ N \Xj with y ∈ C. Since no agent
in C favors xj

4 to be in her coalition, we know that vxj
4
(π) ≥ 0 and therefore

C ⊆ {xj
4} ∪ NS . Let s ∈ S and r ∈ s with sr ∈ C. As we already know that

s̄r /∈ C, it must hold that Ns ⊆ C to prevent her from joining. It follows

that s /∈ S′. Since π(xj
4) ∩ π(xj′

4 ) = ∅ for 1 ≤ j′ ≤ a with j′ ̸= j, we find an

injective mapping ϕ : [a] → S \ S′ such that, for every 1 ≤ j ≤ a, Nϕ(j) ⊆ π(xj
4).

Consequently, |S′| ≤ |S| − |ϕ([a])| ≤ |S| − a = |R|/3. Hence, S′ covers all
elements from R with (at most) |R|/3 sets and therefore is an exact cover.

The reduction in the previous proof only uses a very limited number of differ-
ent weights, namely the weights in the set {1, 0,−2,−4}, where the weight −4
may be replaced by an arbitrary smaller weight. By contrast, we will see that
CNS partitions always exist if the utility functions of an ASHG assume at most
one nonpositive value, and can be computed efficiently in this case (cf. Theo-
rem 5). This encompasses for instance FEGs, AFGs, and AEGs. Hence, the
hardness result is close to the boundary of computational feasibility.

4. Deviation Lemma and Applications

By contrast, restricting the utility values to one positive and one negative
value leads to positive results for other notions of stability. These results can be
shown in a unified manner using a potential function argument that crucially
hinges on the following general observation.

Lemma 1 (Deviation Lemma). Let π0
i1−→ π1

i2−→ . . .
ik−→ πk be a sequence of k

12
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single-agent deviations. Then, the following identity holds:∑
j∈[k]

|πj(ij)| − |πj−1(ij)| =
1

2

∑
i∈N

|πk(i)| − |π0(i)|. (1)

Proof. Let π0
i1−→ π1

i2−→ . . .
ik−→ πk be a sequence of k single-agent deviations

and fix some j ∈ [k]. Then, the following facts hold:

|πj(ij)| =

 ∑
i∈πj(ij)\{ij}

|πj(i)| − |πj−1(i)|

+ 1,

|πj−1(ij)| =

 ∑
i∈πj−1(ij)\{ij}

|πj−1(i)| − |πj(i)|

+ 1,

πj(i) = πj−1(i) ∀i ∈ N \ (πj(ij) ∪ πj−1(ij)) .

Combining these facts allows us to express the difference of the deviator’s
coalition sizes as follows:

|πj(ij)| − |πj−1(ij)| =

 ∑
i∈πj(ij)\{ij}

|πj(i)| − |πj−1(i)|


−

 ∑
i∈πj−1(ij)\{ij}

|πj−1(i)| − |πj(i)|


+

∑
i∈N\(πj(ij)∪πj−1(ij))

|πj(i)| − |πj−1(i)|

=
∑

i∈N\{ij}

|πj(i)| − |πj−1(i)|.

Adding |πj(ij)| − |πj−1(ij)| to both sides yields

2 (|πj(ij)| − |πj−1(ij)|) =
∑
i∈N

|πj(i)| − |πj−1(i)|.

Summing these terms for all j ∈ [k], interchanging summation order, and
telescoping gives∑

j∈[k]

2 (|πj(ij)| − |πj−1(ij)|) =
∑
j∈[k]

∑
i∈N

|πj(i)| − |πj−1(i)|

2
∑
j∈[k]

|πj(ij)| − |πj−1(ij)| =
∑
i∈N

∑
j∈[k]

|πj(i)| − |πj−1(i)|

2
∑
j∈[k]

|πj(ij)| − |πj−1(ij)| =
∑
i∈N

|πk(i)| − |π0(i)|.

Dividing both sides by 2 completes the proof.

13
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The Deviation Lemma is especially useful as the right-hand side of Equa-
tion (1) does not depend on k, and we can therefore also find bounds for its
left-hand side solely depending on the number of players n.

Lemma 2. Consider a sequence of k successive single-agent deviations

π0
i1−→ π1

i2−→ . . .
ik−→ πk.

Then, the following bounds hold:

−n(n− 1)

2
≤

∑
j∈[k]

|πj(ij)| − |πj−1(ij)| ≤
n(n− 1)

2
.

Proof. Observe that for all i ∈ N and all partitions π, we have

1 ≤ |π(i)| ≤ n.

Thus, we can find the bounds

−n(n− 1) ≤
∑
i∈N

|πk(i)| − |π0(i)| ≤ n(n− 1).

Applying Lemma 1 yields the desired result.

We demonstrate the power of the Deviation Lemma by proving convergence
of the dynamics for a variety of deviation types and classes of ASHGs.

Theorem 4. The dynamics of IS deviations always converges in ASHGs with
at most one nonnegative utility value.

Proof. Let (N, v) be an ASHG such that the vi take on at most one nonnegative
value. If there are no nonnegative valuations, all IS deviations are singleton
formations, so after at most n deviations, we reach a stable partition. Now,
suppose that there is exactly one nonnegative utility value x ≥ 0. If there are no
negative valuations, then in case x = 0 we terminate immediately, and in case
x > 0 the grand coalition will form after at most n2 deviations. The latter holds
because every deviation increases the number of pairs of agents which are part
of the same coalition. Thus, we will now assume that in addition to the single
nonnegative utility value x, there is at least one negative utility value, and we
denote the largest absolute value of a negative utility value by y. Further, define
∆ = min{vi(C)− vi(C

′) : i ∈ N, C,C ′ ∈ Ni, vi(C) > vi(C
′)}. Intuitively, ∆ > 0

is the minimum improvement any agent is guaranteed to have when making a
NS deviation. Further, consider the potential function Φ defined by the social
welfare of a partition as Φ(π) =

∑
i∈N vi(π).

14
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Let us investigate how this potential changes for a single IS deviation π
i−→ π′.

Φ(π′)− Φ(π) = vi(π
′)− vi(π)︸ ︷︷ ︸
deviator

+
∑

j∈π′(i)\{i}

vj(π
′)− vj(π)︸ ︷︷ ︸

welcoming coalition

+
∑

j∈π(i)\{i}

vj(π
′)− vj(π)︸ ︷︷ ︸

abandoned coalition

= vi(π
′)− vi(π) +

∑
j∈π′(i)\{i}

vj(i)−
∑

j∈π(i)\{i}

vj(i)

= vi(π
′)− vi(π) + x (|π′(i)| − 1)−

∑
j∈π(i)\{i}

vj(i)

≥ ∆+ x (|π′(i)| − 1)− x (|π(i)| − 1)

= ∆+ x (|π′(i)| − |π(i)|) .

The third equality comes from the fact that i performs an IS deviation, so all
agents j ∈ π′(i) \ {i} must accept i, which means they must have vj(i) = x.
Now, let π0 be any initial partition and consider any sequence of k successive IS
deviations

π0
i1−→ π1

i2−→ . . .
ik−→ πk.

Telescoping and termwise application of the above inequality yields Φ(πk) −
Φ(π0) =

∑
j∈[k] Φ(πj) − Φ(πj−1) ≥

∑
j∈[k] ∆+ x (|πj(ij)| − |πj−1(ij)|) = k∆+

x
∑

j∈[k]|πj(ij)| − |πj−1(ij)|. We recognize the sum from the Deviation Lemma,
which can be bounded from below using Lemma 2:

Φ(πk)− Φ(π0) ≥ k∆− x
n(n− 1)

2
. (2)

As the right hand side is unbounded in k, the sequence must be finite. To be
precise, we can bound the potentials of the initial and final partitions by

Φ(π0) ≥ −n(n− 1)y, Φ(πk) ≤ n(n− 1)x.

Substituting in these bounds and rearranging for k gives

k ≤ (2y + 3x)n(n− 1)

2∆
. (3)

There are a few important insights gained by the previous proof. First, the
bound obtained via the Deviation Lemma does not mean that the potential
function Φ is increasing in every round. In fact, since utilities are not necessarily
symmetric, the deviating agent might move from a rather large coalition to a
smaller coalition only improving her utility by ∆ whereas the utility of all agents
in the abandoned coalition are decreased by x. In fact, the Deviation Lemma
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does not give us control of the potential function in a single round. Also, it does
not control the utility changes caused by the deviator. We apply it to control the
utility changes of agents involved in deviations except for the deviator to obtain
Equation (2). Hence, we can bound their utility changes by a global constant
solely depending on input data. The utility changes caused by the deviator will
then eventually lead to the potential reaching a local maximum.

Second, we can easily obtain polynomial bounds on the running time of the
dynamics. If x and y are polynomially bounded in n and all valuations are
integer, polynomial running time is directly obtained from Equation (3). In
particular, this is the case for FEGs, AFGs, and AEGs, so individually stable
partitions can be found in polynomial time for these games. After showing two
more applications of the Deviation Lemma for other types of deviations, we will
capture this observation in Corollary 1.

Third, the previous theorem is tight in the sense that the dynamics can cycle
if we have two nonnegative utility values. Indeed, in an instance with agent set
N = [3] and utility values vi(j) = 1, vj(i) = 0 for (i, j) ∈ {(1, 2), (2, 3), (3, 1)}, the
dynamics can infinitely cycle among the partitions {{1, 2}, {3}}, {{1}, {2, 3}},
and {{1, 3}, {2}}. However, the partition consisting of the grand coalition is
individually stable and can be reached through the dynamics.

Our next application of the Deviation Lemma considers contractual Nash
stability, where we obtain a similar result if we allow at most one nonpositive
value. The proof is completely analogous and is therefore omitted. Note that
this result also breaks down if we simultaneously allow the utility values −1 and
0 by constructing a similar cycle as in the previous example.

Theorem 5. The dynamics of CNS deviations always converges in ASHGs with
at most one nonpositive utility value.

Theorems 4 and 5 use the Deviation Lemma to derive positive results for the
single-sided unanimity-based stability notions IS and CNS. In a third application
of the deviation lemma, we show that this technique is also applicable to majority-
based stability notions, at least when we involve both the welcoming and the
abandoned coalition in the vote. The key idea is a suitable arrangement of the
terms occurring in the difference of the potential with respect to the agents
affected by a deviation.

Theorem 6. The dynamics of JMS deviations always converges in ASHGs with
at most two distinct utility values.

Proof. Let (N, v) be an ASHG such that the vi take on at most two distinct
values, and consider once again the potential

Φ(π) =
∑
i∈N

vi(π).

If the vi take on only one value or both values are nonnegative (resp., nonpositive),
convergence is clear, as Φ increases with every JMS deviation. So suppose that
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the vi are restricted to {−y, x} with y > 0 and x > 0. As in the proof of
Theorem 4, set ∆ = min{vi(C)− vi(C

′) : i ∈ N, C,C ′ ∈ Ni, vi(C) > vi(C
′)}.

Let us now investigate a single JMS deviation π
i−→ π′. To reduce notational

clutter, set Fin = Fin(π(i), i), Fout = Fout(π(i), i), F
′
in = Fin(π

′(i), i), and F ′
out =

Fout(π
′(i), i). Note that, by definition of a JMS deviation, we have |F ′

in|+|Fout| ≥
|F ′

out|+ |Fin|, from which we can conclude

|F ′
in| − |Fin| ≥

|F ′
in| − |Fin|+ |F ′

out| − |Fout|
2

≥ |F ′
out| − |Fout|.

Further, note that due to restriction of the utility values to {−y, x}, we have

∀j ∈ Fin ∪ F ′
in : vj(i) = x,∀j ∈ Fout ∪ F ′

out : vj(i) = −y

and
|Fin|+ |Fout| = |π(i)| − 1, |F ′

in|+ |F ′
out| = |π′(i)| − 1.

Combining with our inequality from above, we obtain

|F ′
in| − |Fin| ≥

|π′(i)| − |π(i)|
2

≥ |F ′
out| − |Fout|.

The change in Φ through the JMS deviation can then be bounded as

Φ(π′)− Φ(π) = vi(π
′)− vi(π)︸ ︷︷ ︸
deviator

+
∑

j∈π′(i)\{i}

vj(π
′)− vj(π)︸ ︷︷ ︸

welcoming coalition

+
∑

j∈π(i)\{i}

vj(π
′)− vj(π)︸ ︷︷ ︸

abandoned coalition

= vi(π
′)− vi(π) +

∑
j∈π′(i)\{i}

vj(i)−
∑

j∈π(i)\{i}

vj(i)

= vi(π
′)− vi(π) + x|F ′

in| − y|F ′
out| − x|Fin|+ y|Fout|

= vi(π
′)− vi(π) + x (|F ′

in| − |Fin|)− y (|F ′
out| − |Fout|)

≥ ∆+ x
|π′(i)| − |π(i)|

2
− y

|π′(i)| − |π(i)|
2

.

Now, let π0 be any initial partition and consider any sequence of k successive
JMS deviations

π0
i1−→ π1

i2−→ . . .
ik−→ πk.

Telescoping and termwise application of the above inequality gives

Φ(πk)− Φ(π0) =
∑
j∈[k]

Φ(πj)− Φ(πj−1)

≥
∑
j∈[k]

∆+ x
|πj(ij)| − |πj−1(ij)|

2
− y

|πj(ij)| − |πj−1(ij)|
2

= k∆+
x− y

2

∑
j∈[k]

|πj(ij)| − |πj−1(ij)|.
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The sum from Lemma 1 appears for prefactors of different sign, and can be
bounded using Lemma 2:

Φ(πk)− Φ(π0) ≥ k∆− x+ y

2

n(n− 1)

2

= k∆− (x+ y)n(n− 1)

4
.

As the right hand side is unbounded in k, the sequence must be finite. To be
precise, we can bound the potentials of the initial and final partitions by

Φ(π0) ≥ −n(n− 1)y, Φ(πk) ≤ n(n− 1)x.

Substituting in these bounds and rearranging for k gives

k ≤ (5x+ 5y)n(n− 1)

4∆
.

Note that since every JMS deviation is also an SMS deviation, the previous
result holds for SMS as well. As in the discussion after Theorem 4, we obtain a
polynomial running time of the dynamics for appropriate restrictions of the cases.
We collect important consequences in the following corollary. In particular, we
extend results by Dimitrov et al. (2006) and Aziz and Brandl (2012) who proved
the existence of IS partitions for AFGs and AEGs, respectively.3

Corollary 1. The dynamics of IS, CNS, and JMS deviations always converges
in polynomial time in AFGs, AEGs, and FEGs.

We would like to stress that convergence of the dynamics does not guarantee
a polynomial running time in general. An example is the case of symmetric
utility values in ASHGs. For NS this can be directly inferred from the PLS
reduction by Gairing and Savani (2019), which satisfies tightness, a property of
reductions defined by Schäffer and Yannakakis (1991).

Proposition 1. The dynamics of NS deviations in symmetric ASHGs may
require exponentially many rounds before converging to an NS partition.

Proof. It is easy to verify that the PLS reduction from PartyAffiliation
under the Flip neighborhood by Gairing and Savani (2019, Observation 2) is
tight. Schäffer and Yannakakis (1991, Lemma 3.3) showed that tight reductions
preserve the existence of exponentially long running times of the standard local
search algorithm, i.e., the NS dynamics in our case. Note that the standard local
search algorithm of the source problem can have an exponential running time,
because PartyAffiliation is a generalization of MaxCut whose standard

3These contributions actually show existence of partitions satisfying properties stronger
than IS.
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u1 u2 v0f0
n(2) f0

n(1) f0
n(0)

G0 G1 G2 Gn

Figure 3: Exponential length IS dynamics inspired by Monien and Tscheuschner (2010). The
starting partition into two coalitions is indicated by the coloring of the vertices.

local search algorithm can run in exponential time with respect to the flip
neighborhood (Schäffer and Yannakakis, 1991, Theorem 5.15).4

While the previous proposition uses a nonconstructive argument avoiding to
construct an explicit example with an exponential running time, it is possible
to construct such an example even in the more restricted case of IS dynamics.
To this end, it is possible to modify an example for MaxCut provided by
Monien and Tscheuschner (2010) by essentially reverting the sequence of flips
for MaxCut to obtain an execution of the IS dynamics. Thus, we generalize
the previous proposition via a constructive proof.

Proposition 2. The dynamics of IS deviations in symmetric ASHGs may
require exponentially many rounds before converging to an IS partition.

Proof. Let the agent set be N = {u1, u2, v0} ∪n
i=1 Ni with Ni =

{vi, ui,1, ui,2, ui,3, ui,4}, and consider the symmetric ASHG on this set of agents
with utility values induced by the graph presented in Figure 3, where the weights
of the building component Gi are depicted in Figure 4.5 More precisely, the
weight function is given by f i

n(k) = k + 5(2n−i+1 − 1).6 All weights on missing
edges are 0.

The underlying combinatorial structure consists of a short path G0 together
with n copies of the same graph with exponentially growing weights. Graph
Gi−1 and Gi are connected by an edge {vi−1, ui,1}.

Consider the partition of N indicated by the blue and green vertices and de-
fined by π = {{u1, v0} ∪

⋃n
i=1{vi, ui,2, ui,4}, {u2} ∪

⋃n
i=1{ui,1, ui,3}}. We claim

that there is an execution of the IS dynamics starting with π where agent vi
performs 2i+1 deviations for i ∈ {0, 1, . . . , n}.

4We refer to the respective references for formal definitions of the involved combinatorial
problems.

5Note that it is necessary in this example that the edge weights grow exponentially. If they
were polynomially bounded, then the IS dynamics would run in polynomial time, because
every deviation increases the social welfare.

6Note that there is a typo in the weight function by Monien and Tscheuschner (2010). They
probably meant to use a similar weight function as the one used here.
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Figure 4: Weights of the building component Gi

We will recursively construct such a sequence of deviations. In the i-th step of
the recursion, agent vi will already perform 2i+1 deviations, and no agent in Nj

will performs a deviation for j > i. Then, we will insert appropriate subsequences
propagating through the graph. These insertions change the coalition ui+1,1

was part of when vi performs an IS deviation. However, this is not a problem,
because the IS deviations of vi are valid independently of the coalition that
ui+1,1 is part of. For i = 0, consider the sequence of deviations performed by
(v0, u2, v0), where v0 performs 2 = 20+1 deviations.

Now, let k ≥ 1 and assume that the sequence is constructed for k − 1. We
extend the sequence of deviations by inserting suitable subsequences. right before
vk−1 performs her m-th deviation, then we insert{

(vk, uk,3, vk, uk,2, uk,3, vk, uk,1) if m odd
(uk,2, vk, uk,1) if m even

By the choice of the utility values and the initial partition, this sequence
consists of NS deviations. Since all edge utility values are nonnegative, the
sequence consists indeed of IS deviations. The most interesting deviations
to check are the ones performed by agents ui,1. Whenever they perform a
deviation, they leave the coalition of ui,2 and vi to join the coalition of vi−1.
Indeed, this yields an improvement in utility, because f i−1

n (0) = 5(2n−i+2 − 1) >
4+10(2n−i+1−1) = f i

n(3)+f i
n(1). Note that after every even m, the subpartition

of vertices in Gk is the same as in the initial partition π. Moreover, the agent
vk performs 2k+1 deviations.

In particular, for k = n, we have found an ASHG with a number of agents
linear in n and (exponential) utility values which also require polynomial space.
However, the constructed execution of the IS dynamics takes exponentially many
rounds.

5. Complexity of Stability under Majority Consent

In this section, we study stability under majority consent.
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c3 c4

−n
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(a) AEG without MIS partition.

d1 d2

d3 d4−n

−n

−n

−n

−n−n

(b) AEG without MOS partition.

Figure 5: Aversion-to-enemies games without MIS and MOS partitions from the proof ofPropo-
sition 3. Omitted edges have weight 1.

5.1. Aversion-To-Enemies Games

First, the existential results of Theorem 4 and Theorem 5 are contrasted
with the non-existence of stable partitions in AEGs under the majority-based
relaxations of the respective stability concepts.

Proposition 3. There exists an AEG which contains no MIS (or MOS) partition.

Proof. First, we provide an AEG with no MIS partition. Let N = {c1, c2, c3, c4},
i.e., there are n = 4 agents, and valuations defined as vc1(c2) = vc3(c4) = −n
and all other valuations set to 1. The AEG is illustrated in Figure 5a.

Assume for contradiction that there exists an MIS partition π. Then, c1 /∈
π(c2) and c3 /∈ π(c4). Also, |π(c1)| ≤ 1 (and |π(c3)| ≤ 1), because otherwise, c2
(or c4) would join via an MIS deviation. But then π(c1) = {c1} and π(c3) = {c3},
and c1 could deviate to join π(c3), a contradiction.

Second, we provide an AEG without MOS partition. Let N = {d1, d2, d3, d4},
and define valuations for all i, j ∈ [4] with i < j as vdi

(dj) = 1 and vdj
(di) = −4.

An illustration is provided in Figure 5b.
Assume for contradiction that there exists an MOS partition π. Then, every

coalition C ∈ π must fulfill |C| ≤ 2. Otherwise, the agent of C with the second
smallest index would form a singleton via an MOS deviation. In addition, there
cannot be a singleton, because if some agent is in a singleton, there must be a
second such agent, and then the one with the smaller index would join the other
one. Hence, π consists of two pairs. But then d1 would deviate to the pair not
containing her, a contradiction.

We can leverage the AEGs provided in the previous proposition as gadgets
in reductions to show hardness of the associated decision problems. This can
be interpreted as a more exact boundary (compared to Theorem 1) of the
tractabilities encountered in Theorem 4 and Theorem 5 for the special case of
AEGs.

Theorem 7. It is NP-complete to decide if there exists an MIS (or MOS)
partition in AEGs.

5.2. Appreciation-Of-Friends Games

The utility restrictions in Theorem 7 are not as flexible as in the negative
result for Nash stability in Theorem 1 or the positive results for unanimity-based
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dynamics in Theorem 4 and Theorem 5. In fact, the picture for majority-based
notions is more diverse, because we obtain another positive result in the class of
AFGs.

Theorem 8. When starting from the grand coalition, the dynamics of MIS
deviations converges after at most n rounds in AFGs.

Proof. The key insight is that there can only be deviations to form a new
singleton coalition yielding no more than n deviations. Let π0 = {N} be the
initial partition, and consider a sequence of k MIS deviations

π0
i1−→ π1

i2−→ . . .
ik−→ πk.

We inductively define coalitions evolving from the grand coalition if removing
the deviator as G0 = N , and Gj = Gj−1 \ {ij} for j > 0.

Now, we proceed to simultaneously prove the following claims by induction:

1. ∀j ∈ [k] : πj−1(ij) = Gj−1.

2. ∀j ∈ [k] : πj(ij) = {ij}.

3. ∀j ∈ [k] :
{
i ∈ πj−1(ij) : vij (i) = n

}
= ∅.

The base case j = 1 is immediate. For the induction step, let 2 ≤ j ≤ k
and suppose the claims are true for all 1 ≤ l < j. We start with the first claim.
By the induction hypothesis, πj−1 = {Gj−1} ∪ {{il} : 1 ≤ l < j}. This means
that if πj−1(ij) ̸= Gj−1, we must have πj−1(ij) = {ij}, indicating ij = il for
some l < j. Then, the welcoming coalition cannot be Gj−1, as ij , by induction
hypothesis, abandoned Gl−1 due to not having any friends in Gl−1, and thus
has, by Gj−1 ⊆ Gl−1, no friends in Gj−1, either. The alternative is that ij joins
another singleton coalition {im} to form a pair. However, if im abandoned Gm

at some point m < l, then she dislikes ij , and won’t allow her to join. If im
abandoned Gm at some point m > l, then ij dislikes im, and has no incentive to
join. Hence, πj−1(ij) = Gj−1. For the second claim, note that ij cannot join
another singleton {im}, because im abandoned Gm−1 at some point m < j and
thus dislikes ij . Hence, ij must form a singleton πj(ij) = {ij}, which she only
wants to do if

{
i ∈ πj−1(ij) : vij (i) = n

}
= ∅. This accomplishes the third claim,

and completes the induction proof.
Finally, as there can be at most n singletons, the dynamics must terminate

after at most n rounds.

By contrast, we show in our next result that MOS partitions need not exist
in AFGs. In other words, despite their conceptual complementarity, the stability
concepts MOS and MIS lead to very different behavior in a natural subclass of
ASHGs. The constructed game has a sparse friendship relation in the sense that
almost all agents only have a single friend. After discussing the counterexample,
we show how requiring slightly more sparsity yields a positive result.

Proposition 4. There exists an AFG without an MOS partition.
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Figure 6: AFG without an MOS partition. The depicted (directed) edges represent friends,
i.e., a utility of n, whereas missing edges represent a utility of −1.

Proof. We define the game formally. An illustration is given in Figure 6. Let
N = {z}∪

⋃
x∈{a,b,c} Nx, where Nx = {xi : i ∈ [5]} for x ∈ {a, b, c}. In the whole

proof, we read indices modulo 5, mapping to the respective representative in [5].
The utilities are given as:

• For all i ∈ [5], x ∈ {a, b, c} : vxi
(xi+1) = n.

• For all x ∈ {a, b, c} : vx1
(z) = n.

• All other valuations are −1.

The AFG consists of 3 cycles with 5 agents each, together with a special
agent that is liked by a fixed agent of each cycle and has no friends herself. The
key insight to understanding why there exists no MOS partition is that agents
of type x1 where x ∈ {a, b, c} have conflicting candidate coalitions in a potential
MOS partition. Either, they want to be with z (a coalition that has to be small
because z prefers to stay alone) or they want to be with x2 which requires a
rather large coalition containing their cycle.

Before going through the proof that this game has no MOS partition, it is
instructional to verify that, for cycles of 5 agents, the unique MOS partition
is the grand coalition, i.e., the unique MOS partition of the game restricted to
Nx is {Nx}, where x ∈ {a, b, c}. This is a key idea of the construction and is
implicitly shown in Case 2 of the proof for x = b.

Assume for contradiction that the defined AFG admits an MOS partition π.
To derive a contradiction, we perform a case distinction over the coalition sizes
of z.

Case 1: |π(z)| = 1.. In this case, it holds that π(z) = {z}. Then, π(a1) ∈
{{a1, a2}, {a1, a5}}. Indeed, if π(a1) ̸= {a1, a2}, then a1 has an NS deviation to
join z, and is allowed to perform it unless π(a1) = {a1, a5}. We may therefore
assume that {ai, ai+1} ∈ π for some i ∈ {1, 5}. Then, π(ai−1) = {ai−1, ai−2} =:
C. Otherwise, ai−1 can perform an MOS deviation to join {ai, ai+1}. But then
ai+2 can perform an MOS deviation to join C. This is a contradiction and
concludes the case that |π(z)| = 1.
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Case 2: |π(z)| > 1.. Let F := {a1, b1, c1}, i.e., the set of agents that have z as a
friend. Note that z can perform an NS deviation to be a singleton. Hence, as π
is MOS, |F ∩ π(v)| ≥ |π(z)|/2. In particular, there exists an x ∈ {a, b, c} with
π(z) ∩Nx = {x1}. We may assume without loss of generality that π(z) ∩Na =
{a1}. Then, π(a5) = {a4, a5}. Otherwise, a5 has an MOS deviation to join π(z).
Similarly, π(a3) = {a2, a3} (because of the potential deviation of a3 who would
like to join {a4, a5}). Now, note that va1({a1, a2, a3}) = n− 1. We can conclude
that |π(z)| ≤ 3 as a1 would join {a2, a3} by an MOS deviation, otherwise. Hence,
we find x ∈ {b, c} with Nx ∩ π(z) = ∅. Assume without loss of generality that
x = b has this property.

Assume first that π(b1) = {b1, b5}. Then, π(b4) = {b3, b4}. Otherwise, b4
has an MOS deviation to join {b1, b5}. But then b2 has an MOS deviation to
join {b3, b4}, a contradiction. Hence, π(b1) ̸= {b1, b5}. Note that we have now
excluded the only case where b1 is not allowed to perform an NS deviation. In
all other cases, no majority of agents prefers her to stay in the coalition. We can
conclude that b2 ∈ π(b1) because otherwise, b1 can perform an MOS deviation to
join π(z). If b5 /∈ π(b1), then π(b5) = {b4, b5} (to prevent a potential deviation
by b5). But then b3 has an MOS deviation to join them. Hence, b5 ∈ π(b1).
Similarly, if b4 /∈ π(b1), then π(b4) = {b3, b4} and b2 has an MOS deviation to join
{b3, b4} (which is permissible because b5 ∈ π(b1)). Hence {b1, b2, b4, b5} ⊆ π(b1),
and therefore even Nb ⊆ π(b1). Hence, b1 has an MOS deviation to join π(v)
(recall that |π(v)| ≤ 3). This is the final contradiction, and we can conclude that
π is not MOS.

Note that most agents in the previous example have at most 1 friend (only
three agents have 2 friends). By contrast, if every agent has at most one friend,
MOS partitions are guaranteed to exist. This is interesting because it covers
in particular directed cycles, which cause problems for Nash stability. The
constructive proof of the following proposition can be directly converted into a
polynomial-time algorithm.

Proposition 5. Every AFG where every agent has at most one friend admits
an MOS partition.

Proof. We prove the statement by induction over n. Clearly, the grand coalition
is MOS for n = 1. Now, assume that (N, v) is an AFG with n ≥ 2 such that
every agent has at most one friend. Consider the underlying directed graph
G = (N,A) where (x, y) ∈ A if and only if vx(y) > 0, i.e., y is a friend of x. By
assumption, G has a maximum out-degree of 1, hence it can be decomposed into
directed cycles and a directed acyclic graph.

Assume first that there exists C ⊆ N such that C induces a directed cycle
in G. We call an agent y reachable by agent x if there exists a directed path
in G from x to y. Let c ∈ C and define R = {x ∈ N : c reachable by x}. Note
that C ⊆ R and that R is identical to the set of agents that can reach any agent
in C. By induction, there exists an MOS partition π′ of the subgame of (N, v)
induced by N \R that is MOS. Define π = π′ ∪ {R}. We claim that π is MOS.
Let x ∈ N \R. By our assumptions on π′, there exists no MOS deviation of x
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to join π(y) for y ∈ N \R. In particular, if x is allowed to perform a deviation,
then x must have a non-negative utility (otherwise, she can form a singleton
coalition contradicting that π′ is MOS). So her only potential deviations are to
a coalition where she has a friend. Note that x has no friend in R. Indeed, if y
was a friend of x in R, then c is reachable for x in G through the concatenation
of (x, y) and the path from y to c. Hence, x has no MOS deviation. Now, let
x ∈ R. Then, vx(π) > 0 because she forms a coalition with her unique friend.
By assumption, x has no friend in any other coalition. Therefore, x has no MOS
deviation either.

We may therefore assume that G is a directed acyclic graph. Hence, there
exists an agent x ∈ N with in-degree 0. If x has no friend, let T = {x}. If x has
a friend y, we claim that there exists an agent w such that (i) w is the friend of
at least one agent and (ii) every agent that has w as a friend has in-degree 0,
i.e., such agents are not the friend of any agent. We provide a simple linear-time
algorithm that finds such an agent. We will maintain a tentative agent w that
will continuously fulfill (i) and update w until this agent also fulfills (ii). Start
with w = y. Note that this agent w fulfills (i) because y is a friend of x. If w is
the friend of some agent z that is herself the friend of some other agent, update
w = z. For the finiteness (and efficient computability) of this procedure, consider
a topological order σ of the agents N in the directed acyclic graph G (Kahn,
1962), i.e., a function σ : N → [n] such that σ(a) < σ(b) whenever (a, b) ∈ A.
Note that if w is replaced by the agent z in the procedure, then σ(z) < σ(w).
Hence, w is replaced at most n times, and our procedure finds the desired agent
w after a linear number of steps. Now, define T = {a ∈ N : w reachable by a},
i.e., T contains precisely w and all agents that have w as a friend.

We are ready to find the MOS partition. By induction, we find a partition
π′ that is MOS for the subgame induced by N \ T . Consider π = π′ ∪ {T}.
Then, a ∈ T \ {w} has no incentive to deviate, because she has no friend in
any other coalition and has w as a friend. Also, w is not allowed to perform a
deviation, because the non-empty set of agents T \ {w} unanimously prevents
that. Possible deviations by agents in N \ T can be excluded as in the first
part of the proof because these agents have no friend in T . Together, we have
completed the induction step and found an MOS partition.

On the other hand, it is NP-complete to decide whether an AFG contains an
MOS partition. For a proof, we use the game constructed in Proposition 4 as
a gadget in a greater game. The difficulty is to preserve bad properties about
the existence of MOS partitions because the larger game might allow for new
possibilities to create coalitions with the agents in the counterexample.

Theorem 9. Deciding whether an AFG contains an MOS partition is NP-
complete.

5.3. Friends-And-Enemies Games

We have already seen that friends-and-enemies games contain efficiently
computable stable coalition structures with respect to the unanimity-based
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Figure 7: FEG without an MOS partition. The depicted (directed) edges represent friends.
The double arrow means that every agent to the left of the tail of the arrow has every agent
below the arrow as a friend.

stability concepts IS and CNS (cf. Corollary 1). In this section, we will see that
the transition to majority-based consent crosses the boundary of tractability. The
closeness to this boundary is also emphasized by the fact that it is surprisingly
difficult to even construct No-instances for MOS and MIS, i.e., FEGs which do
not contain an MOS or MIS partition, respectively. Indeed, the smallest such
games that we can construct are games with 23 and 183 agents, respectively. We
will start by considering MOS.

Proposition 6. There exists an FEG without an MOS partition.

Proof sketch. We only give a brief overview of the instance by means of the
illustration in Figure 7. The FEG consists of a triangle of agents together with 4
sets of agents whose friendship relation is complete and transitive, together with
one additional agent each that gives a temptation for the agent of the transitive
substructures with the most friends.

An important reason for the non-existence of MOS partitions is that there
is a high incentive for the transitive structures to form coalitions. This gives
incentive to agents zi to join them. If z1, z2, and z3 are in disjoint coalitions,
then they would chase each other according to their cyclic structure. If they are
all in the same coalition, then agents x0 for x ∈ {a, b, c, d} prevent the complete
transitive structures to be part of this coalition and other transitive structures
are more attractive.

In the previous proof, it is particularly useful to establish disjoint coalitions
of groups of agents who dislike each other. On the other hand, if we make the
further assumption that one agent from every pair of agents likes the other
agent, then this does not work anymore and the grand coalition is MOS. This
condition essentially means completeness of the friendship relation.7 Note that

7Technically, the friendship relation may not be reflexive, but we can set vi(i) = 1 for all
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this proposition is not true for other stability concepts such as NS or even IS.

Proposition 7. The grand coalition is MOS in every FEG with complete
friendship relation.

Proof. Let (N, v) be an FEG with complete friendship relation, and let π be the
grand coalition. We claim that π is MOS. Suppose that there is an agent x ∈ N
who can perform an NS deviation to form a singleton.

Then, vx(N) < 0 and therefore |{y ∈ N \ {x} : vx(y) = −1}| > {y ∈
N \ {x} : vx(y) = 1}|. Hence,

|Fin(N, x)| ≥ |{y ∈ N \ {x} : vx(y) = −1}|
> |{y ∈ N \ {x} : vx(y) = 1}|
≥ |Fout(N, x)|.

In the first inequality, we use that x is a friend of all of her enemies. In the
final inequality, we use that x can only be an enemy of her friends. Hence, x is
not allowed to perform an MOS deviation.

Still, the non-existence of MOS partitions in FEGs shown in Proposition 6
can be leveraged to prove an intractability result. Interestingly, in contrast to
the proofs of Theorem 3 and Theorem 9, the next theorem merely uses the
existence of an FEG without an MOS partition to design a gadget and does not
exploit the specific structure of a known counterexample.

Theorem 10. Deciding whether an FEG contains an MOS partition is NP-
complete.

In our next result, we construct an FEG without an MIS partition. Despite
a lot of structure, the game is quite large encompassing 183 agents.

Proposition 8. There exists an FEG without an MIS partition.

Proof sketch. We illustrate the example with the aid of Figure 8 and briefly
discuss some key features. Again, the central element is a directed cycle of three
agents. These agents are connected to five copies of the same gadget. This
gadget consists of a main clique {a0i , . . . , a9i } of 10 mutual friends and further
cliques that cause certain temptations for agents in the main clique. Cliques are
linked by agents that have an incentive to be part of two cliques, which are part
of disjoint coalitions. Since it is possible to balance all diametric temptations,
the instance does not admit an MIS partition.

Similar to Proposition 7, it is easy to see that the singleton partition is MIS
in every FEG with complete enemy relation. Indeed, then an agent either has
no incentive to join another agent, or the other agent will deny her consent.
Hence, MIS can also prevent typical run-and-chase games which do not admit
NS partitions. We are ready to prove hardness of deciding on the existence of
MIS partitions in FEGs.

i ∈ N in an FEG to formally achieve completeness.
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j ∈ {0, 1, . . . , 9}

Figure 8: FEG without an MIS partition. The depicted edges represent friends. Undirected
edges represent mutual friendship. For i ∈ [5], some of the edges of agents in Ai are omitted.
In fact, these agents form cliques. Also, each Ki represents a clique of 11 agents.

Theorem 11. Deciding whether an FEG contains an MIS partition is NP-
complete.

5.4. Joint-Majority and Separate-Majorities Stability

The computational boundaries in this section encountered so far only hold
for one-sided stability notions where either the welcoming or the abandoned
coalition takes a vote. On the other hand, Theorem 6 shows that these are
opposed by tractabilities under two-sided majority consent.

For general utilities, existence of SMS (and therefore JMS) partitions is not
guaranteed anymore.

Proposition 9. There exists an ASHG without SMS partition.

Proof. Let N = [5] and consider the utilities according to Table 1 below.

Table 1: Valuations for an ASHG without SMS partition.

v 1 2 3 4 5
1 0 2 −1 −3 1
2 1 0 2 −1 −3
3 −3 1 0 2 −1
4 −1 −3 1 0 2
5 2 −1 −3 1 0

See Figure 9 for a graphical representation of this example. We show that no
partition can be SMS by an exhaustive case analysis. Let +[5] denote addition
modulo 5, mapping to the representative in [5]. Assume for contradiction that π
is SMS, and C ∈ π is a coalition of largest cardinality.
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1

Figure 9: The ASHG without SMS partition from Proposition 9. Outgoing edges with weights
have been drawn explicitly only for one agent, they are the same for each agent (up to rotation).

• Suppose |C| = 5. Then π = {N}, and all agents can form a singleton via
an SMS deviation.

• Suppose |C| = 4. Then we can write it as
{
i, i+[5] 1, i+[5] 2, i+[5] 3

}
for

some i ∈ N , and agent i can form a singleton via an SMS deviation.

• Suppose |C| = 3. Then it is either of the form
{
i, i+[5] 1, i+[5] 2

}
or of the

form
{
i, i+[5] 1, i+[5] 3

}
for some i ∈ N . In the first case, agent i+[5] 2

can form a singleton coalition, in the second case, agent i+[5] 3 can form a
singleton coalition.

• Suppose |C| = 2. Then π also has to contain a singleton {i}. If π(i+[5] 1) ∈{{
i+[5] 1

}
,
{
i+[5] 1, i+[5] 2

}}
, then i can join i+[5]1 via an SMS deviation.

If π(i+[5] 1) ∈
{{

i+[5] 1, i+[5] 3
}
,
{
i+[5] 1, i+[5] 4

}}
, then i+[5] 1 can join

i via an SMS deviation.

• Suppose |C| = 1. Then any agent i can join i+[5] 1 via an SMS deviation.

We can leverage game constructed in the proof of Proposition 9 to oppose
Theorem 6 with a hardness result in general ASHGs.

Theorem 12. Deciding whether an ASHG contains an SMS (or JMS) partition
is NP-complete.

6. Conclusion and Discussion

We studied stability based on single-agent deviations in additively separable
hedonic games with a particular focus on games with restricted utility functions
that can be naturally interpreted in terms of friends and enemies. We identified
a computational boundary between Nash stability and stability with unanimous
consent. The picture is less clear when deviations are governed by majority con-
sent. While stable partitions always exist when considering both the abandoned

29



Draft – March 10, 2023

and the welcoming coalition of the deviating agent, we obtain mostly negative
results if only one of these coalitions is considered. Table 2 summarizes our
results and compares them with related results from the literature. Notably,
we obtain all of our positive results through the convergence of simple and
natural dynamics. This also extends previously known results about IS. Aziz and
Brandl (2012) obtain a polynomial algorithm essentially by running a dynamics
from the singleton partition, whereas Dimitrov et al. (2006) take a different,
graph-theoretical approach considering strongly connected components. The
construction of CIS partitions by Aziz et al. (2013) is done by iteratively identi-
fying specific coalitions, and it is not known whether CIS dynamics converge in
polynomial time for natural starting partitions such as the singleton partition
or grand coalition. An important tool in establishing our results concerning
convergence of dynamics is the Deviation Lemma, a general combinatorial insight
that allows us to study dynamics from a global perspective.

In addition, we have determined strong boundaries to the efficient com-
putability of stable partitions. First, we resolve the computational complexity
of computing CNS partitions, which considers the last open unanimity-based
stability notion in unrestricted ASHGs. Second, our intractability concerning
AFGs stands in contrast to the positive results for all other consent-based
stability notions, and can also be circumvented by considering AFGs with a
sparse friendship relation. Finally, we provide sophisticated hardness proofs
for majority-based stability concepts in FEGs. These turn into computational
feasibilities when transitioning to unanimity-based stability, or under further
assumptions to the structure of the friendship graph.

A key step of all hardness results in restricted classes of ASHGs was to
construct the first No-instances, that is, games that do not admit stable partitions
for the respective stability notion. This is no trivial task as can be seen from
the complexity of the constructed games. Once No-instances are found, we can
leverage them as gadgets of hardness reductions, which is a typical approach
for complexity results about hedonic games. We have provided both reductions
where the explicit structure of the determined No-instances is used as well as
reductions where the mere existence of No-instances is sufficient and used as a
black box.

Together, our results give a complete picture of the computational complexity
for all considered stability notions and game classes. Still, majority-based
stability notions deserve further attention because they offer a natural degree of
consent to perform deviations. Their thorough investigation in other classes of
hedonic games might lead to interesting discoveries. Another intriguing further
direction is to study further applications of the Deviation Lemma, particularly
in domains other than coalition formation.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft under
grants BR 2312/11-2 and BR 2312/12-1.

30



Draft – March 10, 2023

Table 2: Overview of our computational results. A red cell means existence of games without
stable partition and usually comes with computational intractability. A green cell means that
a stable partition can be constructed in polynomial time (Function-P), and in the case of our
results even by executing a dynamics.
a: Aziz and Brandl (2012), b: Aziz et al. (2013), c: Dimitrov et al. (2006), d: Sung and
Dimitrov (2010)

General FEGs AEGs AFGs

NS NP-cd NP-c (Th. 1) NP-c (Th. 1) NP-c (Th. 2)
IS NP-cd FP (Th. 4) FPa (Th. 4) FPc (Th. 4)
CNS NP-c (Th. 3) FP (Th. 5) FP (Th. 5) FP (Th. 5)
CIS FPb FPb FPb FPb

MIS NP-c (Th. 7) NP-c (Th. 11) NP-c (Th. 7) FP (Th. 8)
MOS NP-c (Th. 7) NP-c (Th. 10) NP-c (Th. 7) NP-c (Th. 9)
JMS NP-c (Th. 12) FP (Th. 6) FP (Th. 6) FP (Th. 6)
SMS NP-c (Th. 12) FP (Th. 6) FP (Th. 6) FP (Th. 6)
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Cechlárová, K., Romero-Medina, A., 2001. Stability in coalition formation games.
International Journal of Game Theory 29, 487–494.

32



Draft – March 10, 2023
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Appendix

In the appendix, we provide the proofs missing in the body of the paper.

Appendix A. Missing Proofs in Section 3

Theorem 1. Let f+ : N → Q>0 and f− : N → Q<0 be two polynomial-time
computable functions satisfying |f−(m)| ≥ f+(m) for all m ∈ N. Then, the prob-
lem of deciding whether an ASHG with utility values restricted to {f−(n), f+(n)}
has an NS partition is NP-complete.

Proof. Let f+, f− be two functions as defined above and consider the class of
ASHGs with utility values restricted to {f−(n), f+(n)}. We provide a reduction
from the NP-complete problem Exact Cover by 3-Sets (E3C) (Karp, 1972).
An instance of Exact Cover by 3-Sets consists of a tuple (R,S), where R is
a ground set together with a set S of 3-element subsets of R. A ‘yes’-instance is
an instance such that there exists a subset S′ ⊆ S that partitions R. Given an
instance (R,S) of E3C, for every r ∈ R, we define Sr = {s ∈ S : r ∈ s}, i.e., Sr

comprises the elements of S containing r, and nr = |Sr|.
Now, let (R,S) be an instance of E3C. We produce an ASHG (N, v) satisfying

vi(j) ∈ {f−(n), f+(n)} for all i, j ∈ N such that (R,S) has an exact cover if and
only if (N, v) has an NS partition π. Define the agent set as N = {c}∪

⋃
s∈S As∪⋃

r∈R{bri : i ∈ [nr − 1]}, where As =
{
asr1 , a

s
r2 , a

s
r3 , a

s
}
for s = {r1, r2, r3} ∈ S.

Hence, the agent set consists of copies of the elements in R corresponding to the
frequency they occur in the sets of S minus 1, copies for the elements in sets of
S together with one specific agent for each such set, and an auxiliary agent c.
Now, define the following valuations v:

• For each s ∈ S, a ̸= a′ ∈ As : va(a
′) = f+(n).

• For each r ∈ R, s ∈ Sr, i ∈ [nr − 1] : vas
r
(bri ) = vbri (a

s
r) = vbri (c) = f+(n).

• All other valuations are f−(n).

This reduction can be performed in polynomial time, as there are at most
4|S|+ |R||S|+ 1 agents, and f+, f− can be computed in polynomial time. We
claim that (R,S) admits an exact cover S′ ⊆ S if and only if (N, v) has an NS
partition π.

=⇒ . Suppose (R,S) has an exact cover S′ ⊆ S. We construct an NS partition
π.

• We have coalitions corresponding to the cover, i.e., for each s ∈ S : As ∈
π ⇐⇒ s ∈ S′.

• This leaves for each r ∈ R exactly nr − 1 sets s ∈ Sr such that As ̸∈ π.
Arbitrarily number these sets s1, . . . , snr−1 and define for each i ∈ [nr − 1]
the coalition {asir , bri }.
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Figure A.10: The reduction from the proof of Theorem 1 for the Yes-instance of E3C
({1, . . . , 6}, {s, t, u}) with s = {1, 2, 3}, t = {2, 3, 4} and u = {4, 5, 6}. Drawn edges have weight
f+(n), omitted edges have weight f−(n). The partition corresponding to the exact cover
{s, u} is highlighted.

• All agents as with As ̸∈ π are in a singleton: π(as) = {as}.

• Agent c is also in a singleton: π(c) = {c}.

To see that this partition is NS, we perform a case analysis for the various types
of agents in order to show that no agent has an incentive to deviate.

• An agent a with π(a) = As has va(π) = 3f+(n), whereas every other
coalition contains at most one agent she likes. So she has no incentive to
deviate.

• An agent asr with π(asr) ̸= As is in a pair with an agent bri , and so are the
other two agents asr′ from As. Thus, vas

r
(π) = f+(n), whereas every other

coalition contains at most one agent she likes. So she has no incentive to
deviate.

• An agent as with π(as) ̸= As is alone, but all other agents asr ∈ As are in
a pair with an agent bri that she dislikes, and as f+(n) + f−(n) ≤ 0, she
has no incentive to deviate.

• An agent bri is in a pair with an agent asr, so she has vbri (π) = f+(n). The
best alternative would be joining c, which does not yield an improvement
in utility, so she has no incentive to deviate.

• Finally, c has vc(π) = 0, which is her most desired outcome, as she dislikes
all other agents.

Together, we conclude that π is NS.
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⇐= . Suppose (N, v) contains an NS partition π. We show that then there
must be an exact cover S′ ⊆ S of R. We begin with some observations:

1. Agent c must be in a singleton coalition, otherwise she would deviate to a
singleton coalition.

2. Agents bri must have utility vbri (π) ≥ f+(n), otherwise they would join {c}.

3. Coalitions of agents as satisfy π(as) ∩ As′ = ∅ for s′ ≠ s. Suppose for
contradiction that there is an agent a ∈ π(as) ∩ As′ . Consider the sets
A = {i ∈ π(as) : va(i) = f+(n)} and A′ = {i ∈ π(as) : vas(i) = f+(n)}.
Then, we have A∩A′ = ∅. If |A| ≤ |A′|, then a has an incentive to deviate
to a singleton as she dislikes all agents from A′ as well as as. Similarly, if
|A′| ≤ |A|, then as has an incentive to form a singleton coalition as she
dislikes all agents from A as well as a.

4. Using observation 3, we must have π(as) ̸= π(bri ), as otherwise vbri (π) ≤ 0,
contradicting observation 2. Hence, we have π(as) ⊆ As for all s ∈ S.

5. Now, consider an agent bri . Define the sets A = {asr : s ∈ Sr} and
B =

{
brj : j ∈ [nr − 1]

}
. By observation 2, we must have |A ∩ π(bri )| ≥

|π(bri ) \A|. We show that we must have |A ∩ π(bri )| = |π(bri ) \A|. Sup-
pose for contradiction that |A ∩ π(bri )| > |π(bri ) \A|. Then, each agent
asr ∈ A ∩ π(bri ) has vas

r
(π) ≤ 0 and would, by observation 4, rather deviate

to π(as). Moreover, we show that we must have π(bri ) \A ⊆ B. Suppose
for contradiction that this is not true. Then there are two cases. In the
first case, there is an agent br

′

j ∈ π(bri ) \A with r ̸= r′. This agent dislikes
all agents in A, and so would rather deviate to join {c}. In the second
case, there is an agent asr′ ∈ π(bri ) \A with r ≠ r′. This agent dislikes all
but one agent from A as well as bri , so would rather deviate to join π(as).

Observation 5 shows that coalitions of agents bri are of the form A ⊎B, where
A ⊆ {asr : s ∈ Sr}, B ⊆

{
brj : j ∈ [nr − 1]

}
and |A| = |B|. This leaves for each

r ∈ R exactly one agent asr that is not in such a coalition. For these agents we
have π(asr) = As, yielding a cover S′ = {s ∈ S : As ∈ π}.

The proof of the next theorem is similar to the proof of Theorem 1. The
essential difference is that we represent now every element in the ground set of
an E3C-instance by a pair of agents.

Theorem 2. Deciding whether an AFG has an NS partition is NP-complete.

Proof. We provide another reduction from E3C. Let (R,S) be an instance of
E3C. We produce an AFG (N, v) such that (R,S) has an exact cover if and
only if (N, v) has a NS partition. Define the agent set N = {d} ∪

⋃
s∈S As ∪⋃

r∈R({cr1, cr2} ∪ {bri : i ∈ [nr − 1]), where As = {asr : r ∈ s} for s ∈ S.
Also, define the following valuations v:

• For each s ∈ S, a ̸= a′ ∈ As : va(a
′) = n.
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• For each r ∈ R, s ∈ Sr, i ∈ [nr − 1] : vas
r
(bri ) = vbri (a

s
r) = vbri (d) = n.

• For each r ∈ R, s ∈ Sr : vcr1(a
s
r) = vcr1(c

r
2) = vcr2(c

r
1) = vcr2(d) = n.

• All other valuations are −1.

This reduction can be performed in polynomial time, as there are only polyno-
mially many agents. We now claim that (R,S) has an exact cover S′ ⊆ S if and
only if (N, v) has a NS partition.

=⇒ . Suppose (R,S) has an exact cover S′ ⊆ S. We construct a NS partition
π.

• We have coalitions corresponding to the cover, i.e., for each s ∈ S : As ∈
π ⇐⇒ s ∈ S′.

• This leaves for each r ∈ R exactly nr − 1 sets s ∈ Sr such that As ̸∈ π.
Arbitrarily number these sets s1, . . . , snr−1 and define for each i ∈ [nr − 1]
the coalition {asir , bri }.

• For each r ∈ R with nr > 1, the agents cr1 and cr2 are in a pair {cr1, cr2}.

• Agent d is in a singleton {d}.

In this partition, each agent is together with some number of friends and no
enemies. Every alternative coalition has at most as many friends as the current
coalition, so no agent has incentive to deviate.

⇐= . Suppose (N, v) has a NS partition π. We show that then there must be
an exact cover S′ ⊆ S of R. We begin with some observations:

1. Agent d must be in a singleton coalition, because her value for any other
agent is negative.

2. An agent cr2 must be in a pair with cr1, otherwise she would join {d}.

3. An agent bri must be in a coalition with at least one agent asr, otherwise
she would join {d}.

4. Agents asr and as
′

r with s ̸= s′ must be in distinct coalitions, otherwise cr1
would join them.

5. Combining observations 3 and 4, we get that each agent bri must be in a
pair with exactly one agent asr.

Define S′ = {s ∈ S : π(asr) ∩ {bri : i ∈ [nr − 1]} = ∅ for some r ∈ s}. We
claim that S′ partitions R. First, we now know that for each r ∈ R, exactly
nr − 1 of the agents asr must be in pairs with agents bri . This leaves exactly
one agent asr not in a pair, and therefore not in a coalition with any agent from
{bri : i ∈ [nr − 1]}. Hence, every agent in R is covered by S.
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Now, assume for contradiction that there are s1, s2 ∈ S with s1 ∩ s2 ≠ ∅. Let
j ∈ [2]. Then, there exists rj ∈ sj with π(a

sj
rj ) ∩

{
b
rj
i : i ∈ [nr − 1]

}
= ∅ Since π

is NS, it must be the case that π(a
sj
rj ) contains at least one friend of a

sj
rj and

therefore |π(asjrj ) ∩Asj | ≥ 2. Now, every agent in Asj \ π(asjrj ) can have at most
one friend and would therefore perform an NS deviation to join π(a

sj
rj ). Hence,

there can be no such agent and therefore Asj ⊆ π(a
sj
rj ). Hence, for r ∈ s1 ∩ s2,

at most nr − 2 agents can be in pairs with agents bri . This is a contradiction.
Thus, the sets in S′ are disjoint and therefore S′ partitions R.

Appendix B. Missing Proofs in Section 5.1

Theorem 7. It is NP-complete to decide if there exists an MIS (or MOS)
partition in AEGs.

We split the proof into two separate reductions provided in Lemma 3 and
Lemma 4. We start with the proof for MIS.

Lemma 3. It is NP-complete to decide if there exists an MIS partition in AEGs.

Proof. By reduction from E3C. Let (R,S) be an instance of E3C. We produce
an AEG (N, v) such that (R,S) admits an exact cover if and only if (N, v)

contains an MIS partition. Define N =
⋃

s∈S As ∪
⋃

r∈R

⋃nr−1
i=1 Br

i , where

As =
{
asr1 , a

s
r2 , a

s
r3 , a

s
}
for s = {r1, r2, r3} ∈ S, and Br

i =
{
bri,j : j ∈ [4]

}
for

r ∈ R, i ∈ [nr − 1]. Define valuations v as:

• For each s ∈ S, a ̸= a′ ∈ As: va(a
′) = 1.

• For each r ∈ R, s ∈ Sr, i ∈ [nr − 1]: vas
r
(bri,1) = vbri,1(a

s
r) = 1.

• Each Br
i has internal valuations as in the first example of Proposition 3,

i.e., if v′ denotes the valuations of this example, then vbri,j (b
r
i,k) = v′cj (ck),

where the negative valuations are adapted to the specific number of agents
in the instance.

• All other valuations are −n.

We proceed to prove correctness of the reduction.

=⇒ . Suppose (R,S) has an exact cover S′ ⊆ S. We construct an MIS partition
π as follows.

• We have coalitions corresponding to the cover, i.e. for each s ∈ S : As ∈
π ⇐⇒ s ∈ S′.

• This leaves for each r ∈ R exactly nr − 1 sets s ∈ Sr such that As ̸∈ π.
Arbitrarily number these sets s1, . . . , snr−1 and define for each i ∈ [nr − 1]
the coalitions {asi},

{
asir , bri,1

}
,
{
bri,2, b

r
i,4

}
, and

{
bri,3

}
.

No agent has an incentive to deviate, making the partition NS and thus MIS.
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⇐= . Suppose (N, v) has an MIS partition π. We construct an exact cover
S′ ⊆ S. We begin with some observations:

1. No agent is in a coalition with someone she dislikes, otherwise she would
deviate to a singleton coalition. In particular, this means π(as) ⊆ As and
π(bri,j) ⊆ Br

i for j ∈ {2, 3, 4}.

2. Each agent of type bri,1 must be in a coalition with exactly one agent asr.
If π(bri,1) ⊆ Br

i , we would contradict the fact that the subgame induced
by Br

i has no stable partition (see Proposition 3). As bri,1 cannot form a
coalition with someone she dislikes, at least one agent c of the type asr
must be in her coalition. Finally, no other agent giving positive utility to
bri,1 can be in a common coalition with c.

Now, we know that for each r ∈ R, exactly nr − 1 of the agents asr must be
in pairs with bri,1. This leaves exactly one agent asr not in a pair. We claim
that for these agents we have π(asr) = As. Indeed, it is clear that we then
must have π(asr) ⊆ As. If π(asr) = {asr}, she would deviate to join π(as). Then,
|π(asr)| ≥ 2, and members from As \ π(asr) would have an incentive to join π(asr).
It follows that As \ π(asr) = ∅, and therefore π(asr) = As. Hence, we obtain a
cover S′ = {s ∈ S : As ∈ π}.

Note that it can be shown that a partition in the reduced instances in the
reduction of the previous lemma is NS if and only if it is MIS. Hence, the lemma
provides yet another proof to the respective statement about Nash stability first
shown by Sung and Dimitrov (2010) (and already revisited in Theorem 1). We
proceed with the complementary proof for MOS.

Lemma 4. It is NP-complete to decide if there exists an MOS partition in
AEGs.

Proof. Again, we reduce from E3C. Let (R,S) be an instance of E3C. We

produce an AEG (N, v) with agent set N =
⋃

s∈S As ∪
⋃

r∈R

⋃nr−1
i=1 Br

i , where

As =
{
asr1 , a

s
r2 , a

s
r3 , a

s
}
for s = {r1, r2, r3} ∈ S, and Br

i =
{
bri,j : j ∈ [4]

}
for

r ∈ R, i ∈ [nr − 1]. Define the following valuations v:

• For each s ∈ S, a ̸= a′ ∈ As: va(a
′) = 1.

• For each r ∈ R, s ∈ Sr, i ∈ [nr − 1]: vas
r
(bri,1) = 1.

• Each Br
i has internal valuations as in the second example constructed in

the proof of Proposition 3, i.e., if v′ are the valuations from this example,
then vbri,j (b

r
i,k) = v′dj

(dk), where the negative valuations are adapted to the
specific number of agents in the instance.

• All other valuations are −n.

We claim that (R,S) has an exact cover if and only if (N, v) has an MOS
partition.
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=⇒ . Suppose (R,S) has an exact cover S′ ⊆ S. We construct an MOS
partition π.

• We have coalitions corresponding to the cover, i.e. for each s ∈ S : As ∈
π ⇐⇒ s ∈ S′.

• This leaves for each r ∈ R exactly nr − 1 sets s ∈ Sr such that As ̸∈ π.
Arbitrarily number these sets s1, . . . , snr−1 and define for each i ∈ [nr − 1]
the coalitions {asi},

{
asir , bri,1

}
,
{
bri,2, b

r
i,3

}
, and

{
bri,4

}
.

The only agents that have an incentive to deviate are agents of types bri,1 and

bri,3. However, there is some s ∈ S such that π(bri,1) =
{
bri,1, a

s
r

}
, and asr ensures

that bri cannot leave. Similarly, π(bri,3) =
{
bri,3, b

r
i,2

}
, and bri,2 ensures that bri,3

cannot leave. Note that agents as for s /∈ S′ cannot deviate, because all their
friends form a coalition with an enemy. Hence, π is MOS.

⇐= . Suppose now that (N, v) has an MOS partition π. We construct an exact
cover S′ ⊆ S. First, we make some observations:

1. Agents bri,2 must have π(bri,2) ⊆ Br
i . If there was an agent a ∈ π(bri,2) \Br

i ,
then, as vbri,2(a) = −n, bri,2 would rather be in a singleton, and could form

one, as
∣∣Fout(π(b

r
i,2), b

r
i,2)

∣∣ ≥ |{a}| = 1 =
∣∣{bri,1}∣∣ ≥ ∣∣Fin(π(b

r
i,2), b

r
i,2)

∣∣.
2. Using observation 1, we can conclude that agents bri,3 must also have

π(bri,3) ⊆ Br
i .

3. Using observations 1 and 2, we can conclude that agents bri,4 must also
have π(bri,4) ⊆ Br

i .

4. Agents a ∈ As and a′ ∈ As′ with s ≠ s′ satisfy π(a) ̸= π(a′). For
contradiction, suppose this is not the case, i.e., there are a ∈ As and
a′ ∈ As′ with s ̸= s′ such that π(a) ̸= π(a′) =: C. Clearly, both prefer
to be in a singleton coalition. Further, we can assume without loss of

generality that |As ∩ C| ≤
∣∣∣As′ ∩ C

∣∣∣ (otherwise, we can just swap them).

Then, as |Fout(C, a)| ≥
∣∣∣As′ ∩ C

∣∣∣ ≥ |As ∩ C| > |Fin(C, a)|, agent a could

deviate to form a singleton coalition, a contradiction.

5. Agents bri,1 must be in a coalition with no other agents from Br
i and at

least one other agent from N \ Br
i . This follows from observations 1, 2,

and 3 in conjunction with the fact that the subgame induced by Br
i is

identical to the example from the second part of Proposition 3 which has
no MOS partition. Due to the valuations for agent bi,1, some agent asr
must be in her coalition, and due to observation 4, there can be at most
one such agent in her coalition. If there were further agents from As in
her coalition, bri,1 could deviate to a singleton coalition. Thus, the only
possibility is that bri,1 is in a pair with exactly one agent asr.
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Figure C.11: Schematic of the reduction from the proof of Theorem 9. We depict the reduced
instance for the instance (R,S) of E3C where R = {α, β, γ, δ, ϵ, ζ} and S = {s, t, u} with
s = {α, β, γ}, t = {β, γ, δ}, and u = {δ, ϵ, ζ}. Directed edges indicate a utility of n, and missing
edges a utility of −1. Every element in R is represented by a gadget identical to the game in
Proposition 4.

We now know that for each r ∈ R, exactly nr − 1 of the agents asr must be
in pairs with bri,1. This leaves exactly one agent asr not in a pair. For these
agents we have π(asr) ⊆ As. Also, π(as) ⊆ As, as any agent outside would like
to leave and there is at most 1 vote for her to stay. Consequently, |π(asr)| ≥ 2,
and members from As \ π(asr) would have an incentive to join π(asr). Hence,
π(asr) = As, and we obtain a cover S′ = {s ∈ S : As ∈ π}.

Appendix C. Missing Proof in Section 5.2

Theorem 9. Deciding whether an AFG contains an MOS partition is NP-
complete.

Proof. We provide a reduction from E3C. Let (R,S) be an instance of E3C.
We define an ASHG (N, v) as follows. Let N = NR ∪NS where NR = ∪r∈RN

r

and NS = ∪s∈SNs with Nr = {ari , bri , cri : i ∈ [5]} ∪ {zr} for r ∈ R and Ns =
{sr : r ∈ s} ∪ {s0} for s ∈ S. In the whole proof, we read indices of agents ari ,
bri , and cri modulo 5, mapping to the representative in [5].

We define utilities v as follows:

• For all s ∈ S, r ∈ s: vsr (s0) = n.

• For all s ∈ S, r, r′ ∈ s, r ̸= r′: vsr (sr′) = n.

• For all s ∈ S, r ∈ s: vsr (a
r
1) = n.

• For all r ∈ R, i ∈ [5], and x ∈ {a, b, c}: vrxi
(xr

i+1) = n.

• For all r ∈ R, x ∈ {a, b, c}: vxr
1
(z) = n.

• All other valuations are −1.
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An illustration of the reduction is provided in Figure C.11. Intuitively,
the reduced instance consists of two types of gadgets. The elements in the
ground set R are represented by R-gadgets which are subgames identical to the
counterexample in Proposition 4. The sets in S are represented by S-gadgets
consisting of a triple of agents representing its elements in R which are linked to
the respective R-gadgets. Furthermore, there is one special agent without any
friends attracting the other agents in the S-gadget.

We claim that (R,S) is a Yes-instance if and only if the reduced AFG contains
an MOS partition.

=⇒ . Suppose first that S′ ⊆ S partitions R. We define a partition π by taking
the union of the following coalitions:

• For r ∈ R, x ∈ {a, b, c}, form {xr
2, x

r
3}, {xr

4, x
r
5}, and {br1, cr1, zr}.

• For s ∈ S′, r ∈ s, form {sr, ar1}.

• For s ∈ S′, form {s0}.

• For s ∈ S \ S′, form Ns.

We prove that π is MOS by performing a case analysis to show that no agent
can perform a deviation.

• For r ∈ R and x ∈ {a, b, c}, the agents xr
3 and xr

5 are not allowed to
perform an MOS deviation. Moreover, the agents xr

2 and xr
4 are in their

most preferred coalitions, and have therefore no incentive to perform a
deviation.

• For r ∈ R, the agents ar1 and zr are not allowed to perform an MOS
deviation.

• For r ∈ R and x ∈ {b, c}, the agent xr
1 has no incentive to deviate. It

holds that vxr
1
(π) = n− 1, whereas no deviation increases her utility. In

particular, joining π(xr
2) only yields the same utility.

• For s ∈ S and r ∈ s, the agent sr has at most one friend after any possible
deviation. However, she has at least two friends in π, and therefore no
incentive to perform a deviation.

• For s ∈ S′, the agent s0 is in her most preferred coalition and has no
incentive to perform a deviation. Finally, for s ∈ S \ S′, the agent s0 is
not allowed to perform an MOS deviation.

⇐= . Conversely, assume that the reduced instance contains an MOS partition
π. We show that it originates from a Yes-instance. We split the proof into
several claims.

Claim 1. For all s ∈ S, it holds that π(s0) = {s0} or Ns ⊆ π(s0).
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Proof. Let s ∈ S, say s = {u,w, x}, and define C = π(s0) and D = {su, sw, sx}.
Assume that C ⊋ {s0}. Then, since s0 has no friends, she would prefer to stay
in a singleton coalition. Hence, C ∩D ̸= ∅, say su ∈ C.

Assume for contradiction that D \ C ̸= ∅, say sw /∈ C. Then, sx ∈ π(sw).
Indeed, if sx /∈ π(sw), then sw has at most one friend in her coalition, and no
agent would prevent her from performing an MOS deviation to join C. Hence,
sx ∈ π(sw). Then, C = {s0, su}, as s0 could leave her coalition to form a
singleton coalition if any other agent was part of it. But then, su has an
incentive to join π(sw), and could perform a valid MOS deviation to do so. This
is a contradiction and therefore D ⊆ C. ◁

In the next claim, we improve upon Claim 1 and show that there are in fact
only two possible coalitions for s0.

Claim 2. For all s ∈ S, it holds that π(s0) = {s0} or π(s0) = Ns.

Proof. Let s ∈ S and define C = π(s0). Assume that C ⊋ {s0}. By Claim 1, it
holds that Ns ⊆ C and since s0 has an NS deviation to form a singleton coalition,
even |C| ≤ 6. This means in particular that every agent y ∈ C \Ns must have a
friend in C. Indeed, if this was not the case, then such an agent y would like
to deviate to form a singleton coalition and this is an MOS deviation as it is
supported by at least three agents in Ns. Hence, C \Ns ̸= ∅ can only happen if
there are two more agents in C who are a friend of each other. By the design
of the utilities, the only possibility for this to happen is that there exists t ∈ S
with t ̸= s and u, v ∈ t with C = Ns ∪ {tu, tv}. Then, by Claim 1, {t0} ∈ π,
implying that tu has an MOS deviation to join t0. This is a contradiction and
we can therefore conclude that π(s0) = Ns. ◁

Next, we consider the coalitions of other agents in gadgets related to sets in
S.

Claim 3. For all s ∈ S and r ∈ R, it holds that π(sr) = {sr, ar1} or Ns \ {s0} ⊆
π(sr).

Proof. Let s ∈ S, say s = {r, u, w}, and define C = π(sr). If s0 ∈ C, then
C = Ns by Claim 2 and the assertion is true. Suppose therefore that s0 /∈ C.
Assume now that there is x ∈ s with sx /∈ C, say su /∈ C. If sw /∈ C, then
no agent in C has sr as a friend and could therefore vote against a deviation.
Moreover, since the deviation of sr to join s0 is not an MOS deviation, it must
be the case that vsr(π) = n, which can, under the given assumptions, only be
the case if π(sr) = {sr, ar1}.

It remains to consider the case that sw ∈ C. But then, su is in a coalition
with at most one friend (note that it is excluded that s0 ∈ π(su) by Claim 2) and
no agent in her coalition has her as a friend. Hence, su has an MOS deviation
to join C, a contradiction. Together, we have shown that if there is x ∈ s with
sx /∈ C, then π(sr) = {sr, ar1}, which proves this claim. ◁

In the next claim, we gain even more insight on the coalitions of agents of
the type sr.
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Claim 4. For all s ∈ S, r ∈ s, and u ∈ R, it holds that if π(sr) ∩Nu ≠ ∅, then
r = u and π(sr) = {sr, au1}.

Proof. Let s ∈ S, r ∈ s, and u ∈ R. The assertion is true if π(sr) = {sr, ar1}.
Hence, by Claim 3, we may assume that Ns \ {s0} ⊆ C. we will show that
π(sr)∩Nu = ∅. First, note that since zu has an NS deviation to form a singleton
coalition whenever she is not in such a coalition already and because only three
agents have zu as a friend, it holds that zu forms a coalition with at most two
agents that have her as an enemy. This implies in particular that zu /∈ C and
that |π(zu)| ≤ 6.

Assume for contradiction that there exists an agent y ∈ Nu ∩C. We already
know that y ̸= zu. Next, if y ̸= au1 , then y must have a friend in C. Indeed, at
most one agent in C can have y as a friend, but the three agents in Ns \ {s0}
favor y to leave. Hence, y could perform an MOS deviation to form a singleton
coalition, otherwise. In addition, if y = au1 , then y must also have a friend in
C. Note that at most two agents in (Nu ∪Ns) ∩ C favor her to stay while all
other agents in (Nu ∪Ns) ∩ C (of which there are at least 2 agents) favor her
to leave. The only possibility that there is another agent who favors au1 to stay
is if there exists t ∈ S with u ∈ t and tu ∈ C. But then, Claim 3 implies that
Nt \ {t0} ⊆ C, a majority of which favors au1 to leave. Together, au1 is favored
to leave C by a (weak) majority of agents. Therefore, she must not have an
incentive to form a singleton coalition, and therefore has a friend in C.

Now, assume that there exists x ∈ {a, b, c} and i ∈ [5] with xu
i ∈ C. Then,

our previous observation implies that {xu
i : i ∈ [5]} ⊆ C. Hence, |C| ≥ 8 and

therefore vxu
1
(π) ≤ n−6 < n−5 ≤ vxu

1
(π(zu)∪{xu

1}). Hence, xu
1 could perform an

MOS deviation, a contradiction. Therefore, we have shown that π(sr) ∩Nu = ∅.
◁

Now, we show that coalitions of agents in different sets of the type Nr are
disjoint.

Claim 5. For all r, u ∈ R and agents w ∈ Nr, y ∈ Nu, it holds that π(w)∩π(y) =
∅.

Proof. Let r, u ∈ R and assume for contradiction that there exist agents w ∈ Nr

and y ∈ Nu with π(w) = π(y). Define C = π(w). By Claim 2 and Claim 4,
it holds that C ∩ Ns = ∅ for all s ∈ S. We may assume without loss of
generality that |C ∩Nr| ≤ |C ∩Nu|. Since every agent in C ∩Nr is preferred
to leave by a majority of agents in C, it holds that zr /∈ C and every agent in
C ∩ Nr must have a friend in C. The remaining proof of this step is similar
to the proof of Claim 4. Let x ∈ {a, b, c} and i ∈ [5] with xr

i ∈ C. Then,
{xr

i : i ∈ [5]} ⊆ C and therefore |C| ≥ 10. As in the previous claim, |π(zr)| ≤ 6.
Hence, vxr

1
(π) ≤ n− 8 < n− 5 ≤ vxr

1
(π(zr) ∪ {xr

1}), a contradiction. ◁

Finally, we can conclude the proof by showing that there exists S′ ⊆ S
partitioning R. Therefore, let S′ = {s ∈ S : π(sr) = {sr, ar1} for some r ∈ s}.
We show that S′ partitions R by showing that it covers all elements from R and
that its elements are disjoint sets.
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For the first part, let r ∈ R. By the proof of Proposition 4, if π(y) ⊆ Nr

for all y ∈ Nr, then the partition π is not MOS. Hence, some agent in Nr must
form a coalition with an agent outside of Nr. Combining Claim 2, Claim 4,
and Claim 5, this can only be the case if there exists s ∈ S with r ∈ s and
π(sr) = {sr, ar1}. Consequently, S′ covers R.

For the second part, assume for contradiction that some element in R is
covered at least twice by sets in S′. Then, there exists s ∈ S′ with r ∈ s
and {sr, ar1} /∈ π. By Claim 3, Ns \ {s0} ⊆ π(sr). But then, according to the
definition of S′, it follows that s /∈ S′, a contradiction. Hence, the elements of
S′ are disjoint sets. This completes the proof.

Appendix D. Missing Proofs in Section 5.3

In this section, we provide missing proofs about majority-based stability
concepts in FEGs.

Proposition 6. There exists an FEG without an MOS partition.

Proof. Recall that the game is illustrated in Figure 7. Formally, let N =
Nz ∪Na ∪Nb ∪Nc ∪Nd, where Nz = {z1, z2, z3} and Nx = {x0, x1, x2, x3, x4}
for x ∈ {a, b, c, d}. Utilities are given as

• vx(y) = 1 if (x, y) ∈ {(z1, z2), (z2, z3), (z3, z1)},

• vxi
(xj) = 1 if x ∈ {a, b, c, d}, i, j ∈ [4], i < j,

• vx1(x0) = 1 if x ∈ {a, b, c, d},

• vzi(xj) = 1 if x ∈ {a, b, c, d}, i ∈ [3], j ∈ [4], and

• all other valuations are −1.

Assume for contradiction that this FEG admits an MOS partition π. We
will derive a contradiction in 4 steps. First, Claim 6 describes possible coalitions
of agents x0 where x ∈ {a, b, c, d}. Second, Claim 7 establishes that coalitions
from agents of different sets of Nx, x ∈ {a, b, c, d}, are disjoint. Then, Claim 8
excludes that all agents in Nz are in a joint coalition. Finally, we complete
the proof by performing a case analysis for two disjoined coalitions containing
different agents from Nz.

Claim 6. It holds that π(x0) ∈ {{x0}, {x0, x1}} for x ∈ {a, b, c, d}.

Proof. Let x ∈ {a, b, c, d} and suppose that |π(x0)| > 1. Then, x0 has an NS
deviation to form a singleton. The claim follows because the only agent that
prevents her to leave the coalition is x1. ◁

Claim 7. It holds that xi /∈ π(yj) for x, y ∈ {a, b, c, d}, x ̸= y, and i, j ∈ [4].
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Proof. Assume for contradiction that there exist x, y ∈ {a, b, c, d}, x ̸= y, and
i, j ∈ [4] with xi ∈ π(yj). Without loss of generality, x = a and y = b.
Define Γ := π(bj). Again, without loss of generality, we may assume that
|Γ ∩Na| ≥ |Γ ∩Nb|. Let j∗ = min{j ∈ [4] : bj ∈ Γ}.

By Claim 6, x0 /∈ Γ for x ∈ {a, b, c, d}. Hence, bj∗ wants to perform an NS
deviation to form a singleton and is only favored to stay by agents in Nz. As
ai ∈ Fout(Γ, bj∗), at least two agents must favor bj∗ to stay. We conclude that

• |Γ ∩Nz| ≥ 2 (∗)

• |Γ \Nz| ≤ 3 (∗∗)

There, (∗∗) follows because at most 3 agents favor bj∗ to stay, and she can
therefore have at most two enemies. To conclude this step, we distinguish two
cases.

Case 1: It holds that |Nz ∩ Γ| = 3, i.e., Nz ⊆ Γ.. We consider now the agents in
Nc. By Claim 6, (∗), and Nz ⊆ Γ, we derive that π(ci) ⊆ Nc \ {c0} for i = 2, 3, 4,
and π(c1) ⊆ Nc. If π(c1) = {c0, c1}, then there is a coalition of size at least 2
consisting of agents in C \ {c0, c1}, and c1 could perform an MOS deviation to
join them. Hence, using Claim 6, it follows that π(c1) ⊆ C \ {c0}.

Let Φ ⊆ C \ {c0} be a coalition of largest size. Note that C \ {c0} cannot
contain (at least) 2 singleton coalitions. Then, the singleton with the lower index
would join the other singleton. If |Φ| = 2, then C \ {c0} consists of two pairs
and c1 has an MOS deviation to join the other pair. Next, assume that |Φ| = 3.
If c1 or c2 remain as a singleton, they would join Φ. If c3 or c4 remain as a
singleton, then c2 performs an MOS deviation to join her. This leaves only the
case |Φ| = 4 and we can conclude that C \ {c0} ∈ π. But then, by (∗∗), zk has
an MOS deviation to join C \ {c0} for k ∈ [3], a contradiction. This concludes
Case 1.

Case 2: It holds that |Nz ∩ Γ| = 2.. Then, |Γ \ Nz| ≤ 2 which means that
Γ \Nz = {ai, bj} and it follows that Γ ∩Nc = Γ ∩Nd = ∅. Let k∗ ∈ [3] be the
unique index with zi∗ /∈ Γ, say without loss of generality k∗ = 1. Using (∗), it
must also be the case that π(z1) ∩Nc = ∅ or π(z1) ∩Nd = ∅, say without loss of
generality π(z1) ∩Nc = ∅. The identical arguments as in the previous case show
that C \ {c0} ∈ π. But then z3 could perform an MOS deviation to join C \ {c0},
a contradiction. This concludes Case 2 and therefore the proof of the claim. ◁

Claim 8. There exists no Γ ∈ π with Nz ⊆ Γ.

Proof. Assume for contradiction that there exists Γ ∈ π with Nz ⊆ Γ. By
Claim 6 and Claim 7, there exists x ∈ {a, b, c, d} with Γ ⊆ Nz ∪Nx. Without
loss of generality, assume that Γ ⊆ Nz ∪ Na. By Claim 6, a0 /∈ Γ. We
claim that |Γ ∩ Na| ≤ 3. For the contrary, assume that |Γ ∩ Na| = 4. Then,
Claim 6 implies that {a0} ∈ π. Also, va1

(π) = 0 and |Fin(Γ, a1)| = |Nz| =
|{a2, a3, a4}| = |Fout(Γ, a1)|. Hence, a1 can perform an MOS deviation to join
{a0}, a contradiction. Thus, |Γ ∩Na| ≤ 3, as claimed.
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As in the proof of Claim 7, we can show that B \ {b0} ∈ π. But then zk has
an MOS deviation to join this coalition for every k ∈ [3], a contradiction. This
concludes the proof of this claim. ◁

We are ready to obtain a final contradiction. By Claim 8, there exist i, j ∈ [3]
with zi /∈ π(zj). Without loss of generality, we may assume that i = 2 and j = 1.

Case 1: It holds that z3 ∈ π(z2).. By Claim 6, vzk(x) = 1 for all k ∈ [3], x ∈
(π(z1)∪ π(z2)) \Nz. Let m1 = |π(z2)| − 2 = |π(z2) \Nz| and m2 = |π(z1)| − 1 =
|π(z1) \Nz|.

If m2 ≥ m1, then z3 can perform an NS deviation to join π(z1). This is also
an MOS deviation unless π(z2) = {z2, z3}. But in this case we find a coalition
of the form Nx \ {x0} for some x ∈ {a, b, c, d} as in the previous steps. Then, z2
has an MOS deviation to join this coalition.

On the other hand, if m2 < m1, then z1 can perform an MOS deviation to
join π(z2). This concludes Case 1. By symmetry, this covers even all cases where
at least two agents from Nz are in the same coalition. Hence, it remains one
final case.

Case 2: The agents in Nz are in pairwise disjoint coalitions.. Let pk = |π(zk)|
for k ∈ [3] and k∗ = argmaxk∈[3] pi. Without loss of generality, k∗ = 1. As in
the previous case, it follows from Claim 6 that vzk(x) = 1 for all k ∈ [3], x ∈⋃

l∈[3] π(zl) \Nz. But then z3 has an MOS deviation to join π(z1). This is the
final contradiction and completes the proof.

Towards the hardness reduction, we start with a useful lemma. It lets us
separate the agent set into subsets such that agents from different subsets cannot
form joint coalitions within an MOS partition.

Lemma 5. Consider an FEG (N, v) with an MOS partition π. Let i, j ∈ N be
two agents with vi(j) = vj(i) = −1 and assume that, for every agent k ∈ N\{i, j},
it holds that

• vi(k) = −1 or vj(k) = −1,

• vk(i) = −1 or vk(j) = −1,

• vk(i) = −1 whenever vj(k) = 1, and

• vk(j) = −1 whenever vi(k) = 1.

Then, i /∈ π(j).

Proof. Let an FEG (N, v) be given together with an MOS partition π, and
let i, j ∈ N be two agents satisfying the assumptions of the lemma. Assume
for contradiction that i ∈ π(j), and define C := π(j). We will use the first
assumption of the lemma to show that either i or j can perform an NS deviation
to form a singleton coalition, and the other conditions to argue that there is
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even a valid MOS deviation. First, note that the first assumption implies that,
for every agent k ∈ N \ {i, j}, it holds that vi(k) + vj(k) ≤ 0. Hence,

vi(π) + vj(π) = −2 +
∑

k∈π(j)\{i,j}

vi(k) + vj(k) ≤ −2.

Therefore, vi(π) < 0 or vj(π) < 0, and thus either i or j can perform an NS
deviation to form a singleton coalition.

In addition, our second assumption implies that, for every agent k ∈ N \{i, j},
it holds that k ∈ Fout(C, i) or k ∈ Fout(C, j). Hence, a similar averaging
argument as the previous consideration shows that |Fout(C, i)| > |C|/2 or
|Fout(C, j)| > |C|/2.

Assume first that vi(π) < 0 and vj(π) < 0. Then, our second observation
implies that one of i and j can perform an MOS deviation to form a singleton
coalition, a contradiction. Hence, we may assume without loss of generality that
vi(π) < 0 and vj(π) ≥ 0. Then,

|Fin(C, i)| − |Fout(C, i)| = |{l ∈ C \ {i} : vl(i) = 1}| − |{l ∈ C \ {i} : vl(i) = −1}|
≤ |{l ∈ C \ {i} : vj(l) = −1}| − |{l ∈ C \ {i} : vj(l) = 1}| = −vj(π) ≤ 0.

In the inequality, we have used the third assumption of the lemma (the forth
assumption is necessary for the symmetric case where i and j swap roles). Hence,
agent i can perform an MOS deviation to form a singleton coalition. This is a
contradiction and we can conclude that i /∈ π(j).

We proceed with proving the hardness result.

Theorem 10. Deciding whether an FEG contains an MOS partition is NP-
complete.

Proof. We provide a reduction from E3C. Let (R,S) be an instance of E3C.
We define a reduced FEG (N, v) as follows. By Proposition 6, there exists an
FEG without an MOS partition and we may assume that (N ′, v′) is such an
FEG with the additional property that there exists an agent x ∈ N ′ such that
the FEG restricted to N ′ \ {x} contains an MOS partition π′. Indeed, an FEG
with the additional property can be obtained simply by removing agents until
the property is satisfied.

Now, let N = NR ∪NS where NR = ∪r∈RN
r with Nr = {yr : y ∈ N ′} for

r ∈ R and NS = ∪s∈SNs with Ns = {s0} ∪ {sr : r ∈ s} for s ∈ S. Specifically,
we denote the agent corresponding to the special agent x ∈ N ′ by xr. Agents of
the type sr will receive a positive utility from forming a coalition with xr and
therefore have the capability of forcing xr to stay in a coalition of size 2 with
them.

We define utilities v as follows:

• For all s ∈ S, y, z ∈ Ns: vy(z) = 1.

• For all s ∈ S, r ∈ s: vsr (x
r) = 1.
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• For all r ∈ R and y, z ∈ N ′: vyr(zr) = v′y(z), i.e., the internal valuations
for agents in Nr are identical to the valuations in the counterexample
(N ′, v′).

• All other valuations are −1.

We claim that (R,S) is a Yes-instance if and only if the reduced FEG contains
an MOS partition.

=⇒ . Suppose first that S′ ⊆ S partitions R. We define a partition π as follows.

• For s ∈ S \ S′: Ns ∈ π and for s ∈ S′: {s0} ∈ π.

• For s ∈ S′, r ∈ s: {sr, xr} ∈ π.

• For r ∈ R and z ∈ N ′ \ {x}: π(zr) = {yr ∈ y ∈ π′(x)}.

We claim that the partition π is MOS.

• Let r ∈ R and consider an agent y ∈ N ′ \{x}. Then, yr cannot perform an
MOS deviation to join π(zr) for any z ∈ N ′ \ {x}, because π′ restricted to
N ′ \ {x} is an MOS partition. Moreover, joining π(z) for any z ∈ N \Nr

yields utility at most 0 (in fact, the only such coalition that yr could
join to obtain a utility of 0 is π(xr)). Hence, if this constituted an
MOS deviation, then forming a singleton coalition would also be an MOS
deviation, contradicting the fact that π′ is an MOS partition.

• Let r ∈ R. Then, xr is not allowed to leave her coalition by means of an
MOS deviation.

• Let s ∈ S′. Then vs0(π) = 0 and joining any other coalition yields utility
at most 0. In particular, vs0(π(sr) ∪ {s0}) = 0 for all r ∈ s. Moreover, for
r ∈ s, vsr(π) = 1 and joining any other coalition yields utility at most 1.
In particular, vsr (π(s0) ∪ {sr}) = 1.

• Let s ∈ S \ S′. Then, π(s0) is s0’s most preferred coalition and she has no
incentive to perform an MOS deviation. Moreover, for r ∈ s, vsr(π) = 3
and joining any other coalition yields a utility of at most 0.

Together, we have shown that π is an MOS partition.

⇐= . For the reverse implication, assume that π is an MOS partition for the
reduced instance (N, v). We start by determining the coalitions of agents of the
type s0.

Claim 9. Let s ∈ S. Then, π(s0) = {s0} or π(x) ⊆ Ns for all x ∈ Ns.

Proof. Let s ∈ S and define C := π(s0). A close inspection of the utilities in
the definition of the reduced instance lets us apply Lemma 5 multiple times to
conclude that

• for all s′ ∈ S \ {s}, C ∩Ns′ = ∅,
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• for all r ∈ R \ s, C ∩Nr = ∅, and

• for all r ∈ s, C ∩Nr ⊆ {xr}.

Together, C ⊆ Ns ∪ {xr : r ∈ s}. Even more, for r ∈ s, if xr ∈ C, then
vxr(π) < 0. In addition, Fin(C, x

r) ⊆ {sr} and s0 ∈ Fout(C, x
r). Hence, xr

could perform an MOS deviation to form a singleton coalition. We can therefore
conclude that C ⊆ Ns.

Assume that C ⊋ {s0}. If |C| = 3, then there exists a unique r ∈ s with
sr /∈ C. Since sr has only one friend outside C, this would imply that vsr (π) ≤ 1
whereas vsr(C ∪ {sr}) = 3 and Fin(π(sr), sr) = ∅. Hence, sr could perform an
MOS deviation to join C, a contradiction. Hence, |C| = 2 or |C| = 4. As the
latter case corresponds to the situation that C = Ns, we only need to consider
the former case.

Suppose that s = {r1, r2, r3} and that C = {s0, sr1}. Then, it holds that sr3 ∈
π(sr2), as otherwise vsr2 (π) ≤ 1 whereas vsr (C∪{sr2}) = 3 and Fin(π(sr2), sr2) =
∅. But then, π(sr2) = {sr2 , sr3}. Any other agent would only have enemies in
π(sr2) and is allowed to leave by a weak majority. This concludes the proof of
the claim. ◁

Our next claim investigates elements s ∈ S for which {s0} ∈ π.

Claim 10. Let s ∈ S such that {s0} ∈ π. Then, for every r ∈ s, it holds that
π(sr) = {sr, xr}.

Proof. Let s ∈ S with {s0} ∈ π and consider any r ∈ s. Define C := π(sr) and
assume for contradiction that there exists r′ ∈ s with r′ ̸= r and sr′ ∈ C. We
can combine the following observations:

• Claim 9 shows that s′0 /∈ C for every s′ ∈ S \ {s}.

• Let r̂ ∈ R. We can apply Lemma 5 for sr (or sr′) and an agent in N r̂ to
show that C ∩N r̂ = ∅ if r̂ ̸= r (or if r̂ = r).

• Let s′ ∈ S and r̂ ∈ s′. We can apply Lemma 5 for sr (or sr′) and s′r̂ to
show that s′r̂ /∈ C if r̂ ̸= r (or r̂ = r).

Together, the observations show that C ⊆ Ns. But then, vs0(C ∪ {s0}) ≥ 2, and
s0 could perform an MOS deviation to join C. This is a contradiction and we
can conclude that C ∩Ns = {rs}.

This means in particular, that Fin(C, sr) = ∅. Since vsr({s0, sr}) = 1, it
must hold that vsr(π) = 1. Since the unique friend of sr outside Ns is xr, we
can conclude that π(sr) = {sr, xr}. ◁

We are ready to finish the proof. Therefore, let S′ := {s ∈ S : {s0} ∈ π}. We
show that S′ partitions R in two steps. First, the sets in S′ are disjoint. Indeed,
if s, s′ ∈ S′ with s ̸= s′ and r ∈ s ∩ s′, then Claim 10 implies that {sr, xr} ∈ π
and {s′r, xr} ∈ π, contradicting the fact that π is a partition.

It remains to show that all elements of R are covered by a set in S′. Therefore,
consider an arbitrary r ∈ R and let y ∈ N ′. By Lemma 5, π(yr)∩Nr′ = ∅ for all
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r′ ∈ R with r′ ̸= r. Moreover, Claim 9 and Claim 10 imply that π(yr) ∩Ns = ∅
for all s ∈ S with r /∈ s. Assume for contradiction that there exists no s ∈ S′

with r ∈ s. Then, Claim 9 implies that π(yr) ∩Ns = ∅ for all s ∈ S with r ∈ s.
Together, π(yr) ⊆ Nr. This means that π restricted to the agents in Nr is
an MOS partition, contradicting the fact that such a partition does not exist.
Hence, r must be covered by some set in S′.

Now, we provide the full proof for investigating the FEG without MIS
partition. First, we prove a useful lemma showing that certain agents in cliques
of mutual friendship playing identical roles have to be in joint coalitions in every
MIS partition. This will concern the agents in the sets Ki and Bj

i for i, j ∈ [5]
(cf. Figure 8).

Lemma 6. Consider an FEG (N, v) with an MIS partition π. Let W ⊆ N such
that the following conditions hold:

1. For all i, j ∈ W , k ∈ N : vi(j) = 1.

2. For all i, j ∈ W , k ∈ N : vi(k) = vj(k).

3. For all i ∈ W , k ∈ N : vi(k) = 1 implies vk(i) = 1.

Then, there exists a coalition C ∈ π with W ⊆ C.

Proof. Let an FEG (N, v) be given together with an MIS partition π, and let
W ⊆ N be a subset of agents that fulfills the three conditions of the assertion.
Assume for contradiction that there exist i, j ∈ W with π(i) ̸= π(j). We may
assume without loss of generality that vi(π) ≥ vj(π). Consider the deviation
where agent j joins π(i). Then,

vj(π(i) ∪ {j}) (1),(2)
= 1 + vi(π) > vj(π).

Hence, this constitutes an NS deviation. Moreover, since π is MIS, it holds
that vi(π) ≥ 0 and therefore, because the game is an FEG,

|{x ∈ π(i) \ {i} : ui(x) = 1}| ≥ |{x ∈ π(i) \ {i} : ui(x) = −1}|. (∗)

It follows that

|Fin(π(i), j)|
(1)
= |{x ∈ π(i) \ {i} : ux(j) = 1}|+ 1

(3)

≥ |{x ∈ π(i) \ {i} : uj(x) = 1}|+ 1
(2)
= |{x ∈ π(i) \ {i} : ui(x) = 1}|+ 1

(∗)
≥ |{x ∈ π(i) \ {i} : ui(x) = −1}|+ 1

(2)
= |{x ∈ π(i) \ {i} : uj(x) = −1}|+ 1

(3)

≥ |{x ∈ π(i) \ {i} : ux(j) = −1}|+ 1 = |Fout(π(i), j)|+ 1 > |Fout(π(i), j)|.

Hence, this is even an MIS deviation, a contradiction.

Proposition 8. There exists an FEG without an MIS partition.
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Proof. We define an FEG for which we prove that it does not contain an MIS
partition. As discussed before, the game is rather large (the number of agents is
183), but it has a lot of structure and an illustration was already provided in
Figure 8. Formally, the agent set is given by N = Z∪

⋃
i∈[5](Ai∪Bi∪Ki), where

the exact definitions and interpretation of the subsets of agents is as follows:

• The set of agents Z = {z1, z2, z3} forms a directed triangle.

• For i ∈ [5], the sets Ai = {aji : j = {0, 1, . . . , 9} form cliques which are
liked by agents in Z, except for the special agent a0i . In turn, all of them
like the agents in Z.

• For i ∈ [5], the sets Ki = {kji : j ∈ [11]} form cliques not liked by agents in
Z, but a0i likes these agents.

• For i ∈ [5], define Bi =
⋃5

j=1 B
j
i , where Bj

i = {bj,li : l ∈ [3]}. The set

Bj
i forms a small clique which tries to tempt agent aji to join if Bj

i is a
coalition.

The utilities are defined as

• vx(y) = 1 if (x, y) ∈ {(z1, z2), (z2, z3), (z3, z1)},

• vzi(a
l
j) = 1 if i ∈ [3], j ∈ [5], and l ∈ [9],

• vaj
i
(ali) = 1 if i ∈ [5], j, l ∈ {0, 1, . . . , 9},

• vaj
i
(zl) = 1 if i ∈ [5], j ∈ {0, 1, . . . , 9}, and l ∈ [3],

• va0
i
(kji ) = vkj

i
(a0i ) = 1 if i ∈ [5], j ∈ [11],

• vaj
i
(bj,li ) = 1 if i, j ∈ [5], l ∈ [3],

• vbj,li
(bj,l

′

i ) = 1 if i, j ∈ [5], l, l′ ∈ [3],

• vkj
i
(kli) = 1 if i ∈ [5], j, l ∈ [11], and

• all other valuations are −1.

Assume for contradiction that π is an MIS partition for this game. The
following observation is helpful in various places:

Every agent receives non-negative utility in π, i.e.,

vi(π) ≥ 0 for all i ∈ N . (∗)

The observation is true because every agent of negative utility could perform
an MIS deviation to form a singleton coalition. We will now derive a contradiction
proving several claims. The first one is a direct application of Lemma 6 for the
agents in sets Ki for i ∈ [5].
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Claim 11. For all i ∈ [5], there exists C ∈ π with Ki ⊆ C.

The next claim improves upon the previous claim.

Claim 12. If i ∈ [5], then Ki ∈ π or Ki ∪ {a0i } ∈ π.

Proof. Let i ∈ [5] and assume for contradiction that there exists C ∈ π with
Ki ⊆ C and C \ (Ki ∪ {a0i }) ̸= ∅. By (∗), vk1

i
(π) ≥ 0 and therefore |C \

(Ki ∪ {a0i })| ≤ |Ki ∪ {a0i }| − 1 = 11. Let x ∈ C \ (Ki ∪ {a0i }). Then, a0i ∈ C,
|C \ (Ki ∪ {a0i })| = 11, and vx(y) = 1 for all y ∈ C \ (Ki ∪ {a0i }). Otherwise,
x has at most 10 friends leading to vx(π) ≤ 10 − |Ki| < 0, contradicting (∗).
Consequently, the agents C \ (Ki ∪ {a0i }) form a set of 11 mutual friends which
all have a0i as a friend. Such a set of agents does not exist, and we derive a
contradiction. ◁

The next two claims make similar structural observations for the agent sets
Bj

i . First, we can apply Lemma 6 again for a statement analogous to Claim 11.

Claim 13. For all i, j ∈ [5], there exists C ∈ π with Bj
i ⊆ C.

We also refine this claim.

Claim 14. If i, j ∈ [5], then Bj
i ∈ π or Bj

i ∪ {aji} ∈ π.

Proof. Let i, j ∈ [5] and assume for contradiction that there exists C ∈ π
with Bj

i ⊆ C and C \ (Bj
i ∪ {aji}) ̸= ∅. If |C \ (Bj

i ∪ {aji})| < 3 = |Bj
i |, then

x ∈ C\(Bj
i ∪{a

j
i}) has a negative utility, contradicting (∗). If |C\(Bj

i ∪{a
j
i})| > 3,

then bj,1i has negative utility, contradicting (∗). Hence, |C \ (Bj
i ∪ {aji})| = 3.

Moreover, then aji ∈ C as an agent in C \ (Bj
i ∪{aji}) would have negative utility,

otherwise. For similar reasons, the agents in C \ (Bj
i ∪ {aji}) have to form a

clique of friends of aji .

We will exclude all possible agents in C \ (Bj
i ∪ {aji}). First note that the

structure we obtained so far holds for arbitrary i and j. Hence, if aj
′

i ∈ C for
j′ ∈ [5] \ {j}, then the assertion of Claim 14 is already true for i and j′ and

therefore Bj′

i ∈ π. But then, aj
′

i can perform an MIS deviation to join Bj′

i , a
contradiction. Thus, since the agents in Z are no mutual friends, there exist
l, l′ ∈ {6, 7, 8, 9} with ali ∈ C and al

′

i /∈ C. By (∗), val′
i
(π) ≥ 0. Moreover, since

ali and al
′

i have the identical friends in N \ {ali, al
′

i } and al
′

i is also a friend of ali,

it holds that val
i
(π(al

′

i ) ∪ {ali}) ≥ 1. Since val
i
(π) = 0, this is an NS deviation.

Also, since all friends of al
′

i and al
′

i herself favor ali to join their coalition, this is
even an MIS deviation. Hence, we obtain a contradiction. ◁

The next claim establishes a relationship between agents in Z and Ai.

Claim 15. For i ∈ [5], if Z ∩ π(aji ) = ∅ for all j ∈ [9], then Ai \ {a0i } ∈ π.
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Proof. Let i ∈ [5] such that Z ∩ π(aji ) = ∅ for all j ∈ [9]. First, we show that

then π(aji ) ⊆ Ai for j = 6, 7, 8, 9. Let therefore j ∈ {6, 7, 8, 9} and assume

for contradiction that π(aji ) \ Ai ̸= ∅. By Claim 12, Claim 14, and the initial

assumptions of this claim, π(aji ) ⊆
⋃

l∈[5] Al. Consider x ∈ π(aji ) \ Ai. If

|π(aji )\Ai| ≤ |π(aji )∩Ai|, then vx(π) < 0, contradicting (∗). On the other hand,

if |π(aji ) \Ai| ≥ |π(aji )∩Ai|, then vaj
i
(π) < 0, also contradicting (∗). We derived

a contradiction in both cases and can therefore conclude that π(aji ) ⊆ Ai.

As in previous steps, we can use the symmetry of the agents in {aji : j =

6, 7, 8, 9} to show that there exists a coalition C ∈ π with {aji : j = 6, 7, 8, 9} ⊆
C ⊆ Ai. Indeed, otherwise, one of these agents could join the coalition of another
such agent of at least as high utility by an MIS deviation. Hence, Bj

i ∪ {aji} /∈ π

for j ∈ [5] as aji would perform an MIS deviation to join C, otherwise. But then,

similarly as above, π(aji ) ⊆ Ai for j ∈ [5], and therefore even Ai \ {a0i } ⊆ C.
Finally, if ai0 ∈ C, then va0

i
= 9. However, by Claim 12, Ki ∈ π and therefore a0i

could perform an MIS deviation to join Ki. Hence, C = Ai \ {a0i }. ◁

We have now collected enough structural results to consider the agents in Z.
The next two claims will yield the final contradiction.

Claim 16. There exists no C ∈ π with Z ⊆ C.

Proof. Assume for contradiction that there exists C ∈ π with Z ⊆ C. By
Claim 12 and Claim 14, C ⊆ Z ∪

⋃
i∈[5] Ai. Define I = {i ∈ [5] : Ai ∩ C ̸= ∅}

and let

i∗ ∈ argmin
i∈I

{|Ai ∩ C|}. (∗∗)

Let x ∈ Ai∗ ∩ C.

Case 1: |I| = 5.. In this case, we obtain a contradiction to (∗) because

vx(π) = 3 + (|Ai∗ ∩ C| − 1)−
∑

i∈I\{i∗}

|Ai ∩ C|

(∗∗)
≤ 2− (|I| − 2)|Ai∗ ∩ C| ≤ −1 < 0.

Case 2: |I| = 4.. As in the previous case, 0
(∗)
≤ vx(π) ≤ 2 + |Ai∗ ∩ C| −∑

i∈I\{i∗} |Ai ∩ C|. Therefore,

3|Ai∗ ∩ C| ≤
∑

i∈I\{i∗}

|Ai ∩ C| ≤ 2 + |Ai∗ ∩ C|.

Consequently, |Ai∗ ∩ C| = 1 and |Ai ∩ C| = 1 for i ∈ I \ {i∗}. Let l ∈ [3].
Then, vzl(π) ≤ 4. By Claim 15, it holds that Ai′ \ {a0i′} ∈ π, where i′ ∈ [5] \ I.
Hence, zl has an MIS deviation, a contradiction.

55



Draft – March 10, 2023

Case 3: |I| = 3.. As in Case 2,

2|Ai∗ ∩ C| ≤
∑

i∈I\{i∗}

|Ai ∩ C| ≤ 2 + |Ai∗ ∩ C|.

Hence, |Ai∗ ∩ C| ≤ 2 and thus
∑

i∈I\{i∗} |Ai ∩ C| ≤ 4. Therefore, vzl(π) ≤ 6 if

l ∈ [3], and an analogous MIS deviation is possible as in the previous case.

Case 4: |I| = 2.. Let i′ ∈ I \ {i∗} be the unique second index in I. We claim
that aji /∈ C for i ∈ I and j ∈ [5]. Let j ∈ [5]. First, if aji∗ ∈ C, then

vaj
i∗
(π) ≤ 3 + (|Ai∗ ∩ C| − 1)− |Ai′ ∩ C| ≤ 2. Moreover, by Claim 14, Bj

i∗ ∈ π

and aji∗ could perform an MIS deviation to join Bj
i∗ .

Second, assume that aji′ ∈ C. Then, again by Claim 14, Bj
i′ ∈ π and since

π is MIS, uaj

i′
(π) ≥ 3. Let j′ ∈ [9] \ {j} and assume for contradiction that

aj
′

i′ /∈ C. Since aj
′

i′ has at least as many friends in C as aji′ (recall that B
j
i′ ∈ π),

v
aj′
i′
(π) ≥ vaj

i′
(π) + 1 ≥ 4. Using Claim 14, this means in particular that

Bj′

i′ ∩ π(aj
′

i′ ) = ∅ if j′ ∈ [5]. Therefore, v
aj′
i′
(π(aji′) ∪ {aj

′

i′ }) ≥ vaj

i′
(π) + 1 and

vaj

i′
(π(aj

′

i′ )∪ {aji′}) ≥ v
aj′
i′
(π) + 1. Hence, either aj

′

i′ has an MIS deviation to join

π(aji′) or a
j
i′ has an MIS deviation to join π(aj

′

i′ ), a contradiction. Consequently,
ai′(j

′) ∈ C and therefore Ai′ \ {a0i′} ⊆ C.
Recall that we already know that |Ai∗ ∩ C| ≤ 5 because ali∗ /∈ C for l ∈ [5].

We obtain a contradiction to (∗) because

vx(π) ≤ 3 + (|Ai∗ ∩ C|︸ ︷︷ ︸
≤5

−1)− |Ai′ ∩ C|︸ ︷︷ ︸
≥9

≤ −2 < 0.

Hence, we can conclude that aji′ /∈ C for j ∈ [5]. But then, for l ∈ [3],
vzl ≤ |(Ai∗ \ {a0i∗})∩C|+ |(Ai′ \ {a0i′})∩C| ≤ 8. Hence, zl can perform an MIS
deviation to join Ai \ {a0i } for i ∈ [5] \ I, as in the previous two cases.

Case 5: |I| = 1.. If C ̸= Z ∪ (Ai∗ \ {a0i∗}), then, for l ∈ [3], vzl(π) ≤ 8,
and an analogous MIS deviation as in the previous cases is possible. Hence,
C = Z ∪ (Ai∗ \ {a0i∗}). But then va0

i∗
(π) ≤ 11, whereas va0

i∗
(C ∪ {a0i∗}) ≥ 12.

Hence, a0i∗ has an MIS deviation to join C (which is favored by all agents in
Ai∗ \ {a0i∗}). This is a contradiction, and concludes the proof of the claim. ◁

For a final contradiction, it remains to lead the case to a contradiction that
the agents in Z are part of different coalitions.

Claim 17. There exists C ∈ π with Z ⊆ C.

Proof. Assume for contradiction that there exists C ∈ π with Z ∩ C ̸= ∅ and
Z ̸⊆ C.

Assume first that |Z ∩ C| = 2 and suppose without loss of generality that
z1, z2 ∈ C. Note that vz3(C ∪ {z3}) = vz2(π) + 1. Hence, if vz3(π) ≤ vz2(π),
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then z3 can perform an NS deviation to join C. This is even an MIS deviation
as vz2(π) ≥ 0 and z2 favors her to join. On the other hand, vz2(π(z3) ∪ {z2}) =
vz3(π) + 1. Hence, if vz2(π) < vz3(π), then z2 has an NS deviation to join π(z3).
Note that z3 is opposed to that. However, as vz3(π) > vz2(π) ≥ 0, and every
friend of z3 in π(z3) favors to let z2 join, it holds that

|Fin(π(z3), z2)| = |{y ∈ π(z3) : uz3(y) = 1}|
≥ |{y ∈ π(z3) : uz3(y) = −1}|+ 1

≥ |Fout(π(z3), z2)|.

Hence, this is even an MIS deviation.
Finally, assume that π(zl) ∩ Z = {zl} for all l ∈ [3]. Let l ∈ [3] and i ∈ [5].

Then, a0i /∈ π(zl). Indeed, if a
0
i ∈ π(zl), then u0

i can have at most 10 friends in
her coalition. By Claim 12, Ki ∈ π and a0i would perform an MIS deviation
to join this coalition. By this observation and using Claim 12 and Claim 14,
zl forms a coalition with friends only (and these do additionally also have all
agents in Z as a friend).

Let l∗ ∈ argminl∈[3]{vzl(π)}. Without loss of generality, we may assume that
l∗ = 1. Then, z1 has an NS deviation to join π(z2). This is also an MIS deviation
unless π(z2) = {z2}. Then, z2 has an NS deviation to join π(z3), which in turn
is an MIS deviation unless π(z3) = {z3}. By the minimality assumption on l∗, it
must then also hold that π(z1) = {z1}. But then, using Claim 15, A1 \ {a01} ∈ π
and z1 could perform an MIS deviation to join this coalition. This contradiction
concludes the proof of the claim. ◁

As the combination of Claim 16 and Claim 17 directly leads to a contradiction,
we have shown that the constructed FEG has no MIS partition.

Towards turning this counterexample into an intractability result for FEGs,
we prove another useful lemma, which excludes that enemies can be in a joint
coalition of an MIS partition if they do not have a common friend in their
coalition.

Lemma 7. Consider an FEG (N, v) with an MIS partition π. Let i, j ∈ N be
two agents with vi(j) = vj(i) = −1 such that, for every agent k ∈ π(i) \ {i, j}, it
holds that vi(k) = −1 or vj(k) = −1. Then, i /∈ π(j).

Proof. Let an FEG (N, v) be given together with an MIS partition π, let i, j ∈ N
be two agents satisfying the assumptions of the lemma. Assume for contradiction
that i ∈ π(j). Our assumptions imply in particular that, for every agent
k ∈ N \ {i, j}, it holds that vi(k) + vj(k) ≤ 0. Hence,

vi(π) + vj(π) = −2 +
∑

k∈π(j)\{i,j}

vi(k) + vj(k) ≤ −2.

Therefore vi(π) < 0 or vj(π) < 0, a contradiction.

Theorem 11. Deciding whether an FEG contains an MIS partition is NP-
complete.
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Proof. We provide a reduction from E3C. Let (R,S) be an instance of E3C.
We define an FEG (N, v) as follows. Let N = NR ∪NS where NR = ∪r∈RN

r

and NS = ∪s∈SNs with Ns = Vs ∪
⋃

r∈s V
r
s for s ∈ S. There, we define, for

s ∈ S, Vs = {cs,i : i ∈ [10]}, and for s ∈ S and r ∈ s, V r
s = {crs,i : i ∈ [10]}. To

define the sets Nr, assume that (N ′, v′) is the FEG constructed in the proof of
Proposition 8. Then, for r ∈ R, we define Nr = {xr : x ∈ N ′}. Specifically, we
denote the agent corresponding to z1 by zr1 . Agents of this type will be linked to
agents in V r

s by means of a positive utility correspondence. We define utilities v
as follows:

• For all s ∈ S, x, y ∈ Ns: vx(y) = 1.

• For all s ∈ S, r ∈ s, and x ∈ V r
s : vx(z

r
1) = vzr

1
(x) = 1.

• For all r ∈ R and x, y ∈ N ′: vxr(yr) = v′x(y) i.e., the internal valuations
for agents in Nr are identical to the valuations in the counterexample
defined in the proof of Proposition 8.

• All other valuations are −1.

We claim that (R,S) is a Yes-instance if and only if the reduced FEG contains
an MIS partition.

=⇒ . Suppose first that S′ ⊆ S partitions R. We define a partition π based on
a partition π′ of the agent set N ′ \ {z1} in the game (N ′, v′) from the proof of
Proposition 8. The partition π′ is given as follows.

• We have {z2, z3} ∪A1 ∈ π′ and K1 ∈ π′.

• For i, j ∈ [5], Bj
i ∈ π′.

• For i ∈ {2, 3, 4, 5}, Ai \ {a0i } ∈ π′ and Ki ∪ {a0i } ∈ π′.

Based on this partition, we can define the partition π as follows.

• For s ∈ S \ S′: Ns ∈ π and for s ∈ S′: Vs ∈ π.

• For s ∈ S′, r ∈ s: V r
s ∪ {zr1} ∈ π.

• For r ∈ R and x ∈ N ′ \ {z1}: π(xr) = {yr : y ∈ π′(x)}.

Showing that π is MIS follows from a lengthy, but straightforward case
analysis.

• For every r ∈ R and x ∈ N ′ \ {z1}, agent xr has utility vxr(π) > 0, and
therefore xr cannot join a coalition containing an agent outside Nr as
this would give her negative utility. Moreover, also deviations within Nr

cannot improve her utility:

– For i, j ∈ [5], and l ∈ [3], if x = bj,li , then vxr (π) = 2, but xr can have
at most one friend in any other coalition.
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– For i ∈ [5] and j ∈ [11], if x = kji , then vxr (π) ≥ 10, but xr can have
at most one friend in any other coalition.

– If x = a01, then vxr (π) = 11, and the only possible deviation that gives
xr positive utility, i.e., joining K1, would not increase her utility.

– For i ∈ {2, 3, 4, 5}, if x = a0i , then vxr (π) = 11, and the only possible
deviation that gives xr positive utility, i.e., joining Ai \ {a0i } would
decrease her utility.

– If x = z2 or x = z3, then vxr (π) ≥ 9, and the only possible deviations,
i.e., joining a coalition Ai \ {a0i } for i ∈ {2, 3, 4, 5} would not increase
her utility.

• For r ∈ R, vzr
1
(π) = 10, and joining any other coalition does not increase

her utility.

• For s ∈ S \ S′ and x ∈ Ns, vx(π) = 39, and joining any other coalition
does not give agent x positive utility.

• For s ∈ S′ and x ∈ Vs, vx(π) = 9, and joining any other coalition does not
give her a better utility. In particular, joining V r

s ∪ {zr1} for r ∈ s would
also give her a utility of 9.

• For s ∈ S′, r ∈ s, and x ∈ V r
s , vx(π) = 10, and no other coalition gives her

a better utility. In particular, joining Vs would also give her a utility of 10.

Together, we have shown that π is an MIS partition (we have even shown that it
is an NS partition).

⇐= . Conversely, assume that the reduced FEG contains an MIS partition π.
Note that the assumptions of Lemma 7 are in particular satisfied for two

agents i, j ∈ N with vi(j) = vj(i) = −1 such that, for every agent k ∈ N \ {i, j},
it holds that vi(k) = −1 or vj(k) = −1. Therefore, we can apply Lemma 7
multiple times to obtain the following facts:

1. For r, r′ ∈ R with r ̸= r′, x ∈ Nr, and y ∈ Nr′ , it holds that y /∈ π(x).

2. For every s, s′ ∈ S, s ̸= s′, x ∈ Vs, and y ∈ Ns′ , it holds that y /∈ π(x).

3. For every s ∈ S, r ∈ R \ s, x ∈ Ns, and y ∈ Nr, it holds that y /∈ π(x).

4. For every s ∈ S, r ∈ s, and x ∈ Vs, it holds that π(x) ∩Nr ⊆ {zr1}.

Next, we can apply Lemma 6 to obtain the next two facts.

5. For every s ∈ S, there exists a coalition C ∈ π with Vs ⊆ C.

6. For every s ∈ S, r ∈ S, there exists a coalition C ∈ π with V r
s ⊆ C.

Moreover, combining Lemma 7 with Fact 6 allows us to further refine Fact 4
yielding the fact
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7. For every s ∈ S, r ∈ s, and x ∈ Vs, it holds that V r
s ⊆ π(x) whenever

zr1 ∈ π(x).

We are ready to restrict the coalitions of agents in sets Vs to two possibilities.

Claim 18. For all s ∈ S, it holds that Vs ∈ π or Ns ∈ π.

Proof. Let s ∈ S and x ∈ Vs, and define C := π(x). By Fact 5, Vs ⊆ C.
Furthermore, by Fact 2, Fact 3, and Fact 4, it holds that C ⊆ Ns ∪ {zr1 : r ∈ s}.

Suppose that Vs ⊊ C. We have to show that C = Ns. By Fact 7, there
exists r ∈ s with V r

s ⊆ C. Assume for contradiction that zr1 ∈ C. Since all
agents in C except the agents in Nr

s are enemies of zr1 , it holds that vzr
1
(π) < 0 if

C ⊋ Vs∪V r
s ∪{zr1}. This would contradict that π is an MIS partition and therefore

C = Vs∪V r
s ∪{zr1}. In particular, every agent y ∈ Ns\C has to satisfy vy(π) ≥ 19.

Otherwise, this agent could perform an MIS deviation to join C. Hence, there
exists a coalition D ∈ π with Ns \ C ⊆ D. Assume that s = {r, r′, r′′}. Let
y′ ∈ V r′

s and y′′ ∈ V r′′

s . If there exists an agent q ∈ N \ (V r′

s ∪ V r′′

s ), then either
vy′(q) = −1 or vy′′(q) = −1. Assume without loss of generality that the former

case holds. Then, zr
′

1 ∈ D. Otherwise, vy′(π) ≤ 18 and y′ would deviate to

join C. But then also zr
′′

1 ∈ D (due to the utility of y′′), and it must hold that
D = V r′

s ∪ V r′′

s ∪ {zr′1 , zr
′′

1 }. But then, vzr′
1
(π) = −1, a contradiction. Hence,

D = V r′

s ∪ V r′′

s . but then, any agent in Vs has an MIS deviation to join D, a
contradiction. We can conclude that zr1 /∈ C.

Since the previous argument is valid for every r ∈ s with V r
s ⊆ C, we can

conclude that C ⊆ Ns. Assume for contradiction that there exists an agent y ∈
Ns \C, say without loss of generality that y ∈ V r′

s . Note that vy(C ∪ {y}) ≥ 20,

and therefore, it must hold that vy(π) ≥ 20. Hence, V r′

s ∪ V r′′

s ∪ {zr′1 } ⊆ π(y).

Therefore, even zr
′′

1 ∈ π(y) because otherwise, an agent in V r′′

s would perform
an MIS deviation to join C. But then, as in the previous argument, zr

′

1 has a
negative utility, a contradiction. Hence, C = Ns. This concludes the proof of
the claim. ◁

Our next goal is to pinpoint the coalitions of agents in sets of the type V r
s .

Claim 19. For all s ∈ S and r ∈ s, it holds that V r
s ∪ {zr1} ∈ π or Ns ∈ π.

Proof. For s ∈ S and r ∈ s consider an agent x ∈ V r
s and define C := π(x).

Assume that C ≠ Ns. We have to show that C = V r
s ∪ {zr1}. By Claim 18, we

know then that Vs ∈ π. By Fact 3, we know that C ⊆ NS ∪
⋃

t∈s N
t. Assume

that s = {r, r′, r′′}.
Assume for contradiction that there exists an agent y ∈ (V r′

s ∪V r′′

s )∩C. Then,
C∩N t ⊆ {zt1} for t ∈ s. Indeed, if there is t ∈ s and an agent q ∈ (N t \{zt1})∩C,
then we derive a contradiction by applying Lemma 7 for q and one of x and y.
A similar argument shows that NS ∩ C ⊆ Ns. Hence, C ⊆ Ns ∪

⋃
t∈s{zt1}.

By Fact 6 and our assumptions, we know that in addition V r
s ∪ V t

s ⊆ C
for t ∈ s with y ∈ V t

s . Hence, vp(C ∪ {p}) ≥ 17 > 9 = vp(π) for every p ∈ Vs.
Hence, such an agent p could perform an MIS deviation, a contradiction. We can
therefore conclude that C∩Ns = V s

r . Since Vs ∈ π, it must hold that vx(π) ≥ 10.
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Since we already know that C ⊆ Ns ∪ (NS \Ns) ∪
⋃

t∈s N
t, this is only possible

if C = V r
s ∪ {zr1}. ◁

We are ready to prove that (R,S) is a Yes-instance. Define S′ = {s ∈
S : Ns /∈ π}. First, note that the sets in S′ are disjoint. Indeed, let s ∈ S′ and
consider r ∈ s. By Claim 19, V r

s ∪ {zr1} ∈ π. Hence, for every s′ ∈ S \ {s} with
r ∈ s′, it cannot be the case that V r

s′ ∪ {zr1} ∈ π. Hence, another application of
Claim 19 yields Ns′ ∈ π, and therefore s′ /∈ S′.

It remains to show that S′ covers all elements in R. Therefore, let r ∈ R. By
Fact 1, Claim 18, and Claim 19, it holds that π(x) ⊆ Nr for all x ∈ Nr \{zr1} and
π(zr1) ⊆ Nr or π(zr1) = V r

s ∪{zr1} for some s ∈ S. In the former case, π(x) ⊆ Nr

for all x ∈ Nr, which contradicts the fact that π is an MIS partition because,
according to the proof of Proposition 8, the game restricted to Nr contains no
MIS partition. Hence, the latter case must be true, i.e., π(zr1) = V r

s ∪ {zr1} for
some s ∈ S. Then, s ∈ S′, and therefore r is covered by an element in S′.

Appendix E. Missing Proof in Section 5.4

Theorem 12. Deciding whether an ASHG contains an SMS (or JMS) partition
is NP-complete.

Proof. We provide a polynomial-time reduction from E3C that simultaneously
works for JMS and SMS. Let (R,S) be an instance of E3C. We produce an
ASHG (N, v) such that for all α ∈ {JMS, SMS}, (R,S) has an exact cover if
and only if (N, v) has a partition that is α. Define the agent set N =

⋃
s∈S As ∪⋃

r∈R

⋃nr

i=1 B
r
i , where As = {asr : r ∈ s} for s ∈ S and Br

i =
{
bri,j : j ∈ [5]

}
for

r ∈ R, i ∈ [nr − 1].
Also, define utilities v as follows:

• For each s ∈ S, a ̸= a′ ∈ As : va(a
′) = 2.

• For each r ∈ R, s ∈ Sr, i ∈ [nr − 1] : vas
r
(bri,1) = 1, vbri,1(a

s
r) = 0.

• Each Br
i has internal utilities as in the example constructed in Proposition 9,

i.e., if v′ are the utilities in the example, then vbri,j (b
r
i,k) = v′j(k).

• All other valuations are −M , where M = |S| + 5 (can be thought of as
−∞).

The reduction is visualized in Figure E.12. Note that the it can be performed
in polynomial time, as there are at most 3|S|+ 5|R||S| agents. We proceed with
the proof of the correctness of the reduction and show that if (R,S) has an exact
cover, then (N, v) also has a JMS and SMS partition, and conversely if (N, v)
has a partition π that is either JMS or SMS, then there is an exact cover in the
instance (R,S).
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Figure E.12: Schematic of the reduction from the proof of Theorem 12 for the Yes-instance of
E3C ({1, . . . , 6}, {s, t, u}) with s = {1, 2, 3}, t = {2, 3, 4} and u = {4, 5, 6}. Some edges have
been omitted for clarity. The indicated partition is both SMS and JMS.

=⇒ :. Suppose (R,S) has an exact cover S′ ⊆ S. We construct a stable
partition π.

• We have coalitions corresponding to the cover, i.e., for each s ∈ S : As ∈
π ⇐⇒ s ∈ S′.

• This leaves for each r ∈ R exactly nr − 1 sets s ∈ Sr such that As ̸∈ π.
Arbitrarily number these sets s1, . . . , snr−1 and define for each i ∈ [nr − 1]
the coalitions

{
asir , bri,1

}
,
{
bri,2, b

r
i,3

}
,
{
bri,4, b

r
i,5

}
.

We claim that this partition is JMS and SMS. To see this, note that the only
agents that have incentive to deviate are agents of type bri,1 who would prefer to

join
{
bri,2, b

r
i,3

}
. Fix any such agent bri,1. The agent asr she is paired with would

vote against her leaving, so the partition is MOS and thus SMS. To see that it is
also JMS, note that even though bri,2 would vote in favor of the deviation, bri,3
is against it, which together with the against-vote of asr ensures that there is a
strict joint majority against the deviation.

⇐= :. Suppose there is a partition π that is JMS or SMS. We show that then
there must be an exact cover S′ ⊆ S of R. We begin with some observations:

1. Agents bri,j with j ∈ {2, . . . , 5} must have π(bri,j) ⊆ Br
i . For contradiction,

suppose this is not so. Consider first the case that there is exactly one
outside agent a ∈ π(bri,j) \Br

i . Then, as va(b
r
i,j) = −M , a has incentive to

form a singleton coalition, and this is a valid SMS deviation (and therefore
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JMS deviation). The other case is that there are at least two agents
a ̸= a′ ∈ π(bri,j) \ Br

i . Then, as vbri,j (a) = −M and
∣∣Fout(π(b

r
i,j), b

r
i,j)

∣∣ ≥
|{a, a′}| = 2 =

∣∣∣{bri,j+[5]1
, bri,j+[5]4

}∣∣∣ ≥ ∣∣Fin(π(b
r
i,j), b

r
i,j)

∣∣, bri,j can form a

singleton coalition.

2. Agents asr and as
′

r′ with s ̸= s′ have π(asr) ̸= π(as
′

r′). For contradiction,

suppose the contrary, i.e., suppose that there are asr and as
′

r′ with s ̸= s′, but

π(asr) = π(as
′

r′) =: C. As vas
r
(as

′

r′) = vas′
r′
(asr) = −M , both would rather be

in a singleton coalition. Further, we can assume without loss of generality

that |As ∩ C| ≤
∣∣∣As′ ∩ C

∣∣∣ (otherwise, we can just swap them). Then, as

|Fout(C, a
s
r)| ≥

∣∣∣As′ ∩ C
∣∣∣ ≥ |As ∩ C| > |Fin(C, a

s
r)|, asr can deviate to form

a singleton coalition.

3. Agents bri,1 must be in a pair with exactly one agent asr. Fix such an agent
bri,1. First, due to observation 1, she cannot be alone, and no other agents
from Br

i can be in her coalition, as the example constructed in Proposition 9
has no SMS partition. Consequently, she must form a coalition with at least
one agent outside of Br

i , and no agents from Br
i . Next, due to observation

2, she can be together with at most one agent of type asr. If there was
another member from As (other than asr), b

r
i,1 could deviate to a singleton

coalition.

We now know that for each r ∈ R, exactly nr − 1 of the agents asr must be in
pairs with agents bri,1. This leaves exactly one agent asr not in a pair. We claim
that for these agents we have π(asr) = As, yielding a cover S′ = {s ∈ S : As ∈ π}.
Suppose that asr is such an agent not in a pair. Then, π(asr) ⊆ As. If the other
two agents from As form a pair, then asr has an incentive to join them. Otherwise,
the other two agents would have an incentive to join asr. In any case, the only
stable situation is π(asr) = As.
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