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Abstract
We conduct a computational analysis of fair and
optimal partitions in additively separable hedonic
games. We show that, for strict preferences, a
Pareto optimal partition can be found in polynomial
time while verifying whether a given partition is
Pareto optimal is coNP-complete, even when pref-
erences are symmetric and strict. Moreover, com-
puting a partition with maximum egalitarian or util-
itarian social welfare or one which is both Pareto
optimal and individually rational is NP-hard. We
also prove that checking whether there exists a par-
tition which is both Pareto optimal and envy-free
is Σ

p
2 -complete. Even though an envy-free partition

and a Nash stable partition are both guaranteed to
exist for symmetric preferences, checking whether
there exists a partition which is both envy-free and
Nash stable is NP-complete.

1 Introduction
Ever since the publication of von Neumann and Morgen-
stern’s Theory of Games and Economic Behavior in 1944,
coalitions have played a central role within game theory. The
crucial questions in coalitional game theory are which coali-
tions can be expected to form and how the members of coali-
tions should divide the proceeds of their cooperation. Tra-
ditionally the focus has been on the latter issue, which led to
the formulation and analysis of concepts such as Gillie’s core,
the Shapley value, or the bargaining set. Which coalitions
are likely to form is commonly assumed to be settled exoge-
nously, either by explicitly specifying the coalition structure,
a partition of the players in disjoint coalitions, or, implicitly,
by assuming that larger coalitions can invariably guarantee
better outcomes to its members than smaller ones and that, as
a consequence, the grand coalition of all players will eventu-
ally form.
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The two questions, however, are clearly interdependent:
the individual players’ payoffs depend on the coalitions that
form just as much as the formation of coalitions depends on
how the payoffs are distributed.

Coalition formation games, as introduced by Drèze and
Greenberg [1980], provide a simple but versatile formal
model that allows one to focus on coalition formation as such.
In many situations it is natural to assume that a player’s appre-
ciation of a coalition structure only depends on the coalition
he is a member of and not on how the remaining players are
grouped. Initiated by Banerjee et al. [2001] and Bogomolnaia
and Jackson [2002], much of the work on coalition formation
now concentrates on these so-called hedonic games.

The main focus in hedonic games has been on notions of
stability for coalition structures such as Nash stability, indi-
vidual stability, contractual individual stability, or core stabil-
ity and characterizing conditions under which they are guar-
anteed to be non-empty [see, e.g., Bogomolnaia and Jackson,
2002]. The most prominent examples of hedonic games are
two-sided matching games in which only coalitions of size
two are admissible [Roth and Sotomayor, 1990].

General coalition formation games have also received at-
tention from the artificial intelligence community, where the
focus has generally been on computing partitions that give
rise to the greatest social welfare [see, e.g., Sandholm et
al., 1999]. The computational complexity of hedonic games
has been investigated with a focus on the complexity of
computing stable partitions for different models of hedonic
games [Ballester, 2004; Dimitrov et al., 2006; Cechlárová,
2008]. We refer to Hajduková [2006] for a critical overview.

Among hedonic games, additively separable hedonic
games (ASHGs) are a particularly natural and succinct rep-
resentation in which each player has a value for every other
player and the value of a coalition to a particular player is
computed by simply adding his values of the players in his
coalition.

Additive separability satisfies a number of desirable ax-
iomatic properties [Barberà et al., 2004]. ASHGs are the
non-transferable utility generalization of graph games stud-
ied by Deng and Papadimitriou [1994]. Sung and Dimitrov
[2010] showed that for ASHGs, checking whether a core sta-
ble, strict-core stable, Nash stable, or individually stable par-
tition exists is NP-hard. Dimitrov et al. [2006] obtained posi-
tive algorithmic results for subclasses of additively separable



hedonic games in which each player divides other players into
friends and enemies. Branzei and Larson [2009] examined
the tradeoff between stability and social welfare in ASHGs.

Contribution In this paper, we analyze concepts from fair
division in the context of coalition formation games. We
present the first systematic examination of the complexity of
computing and verifying optimal partitions of hedonic games,
specifically ASHGs. We examine various standard criteria
from the social sciences: Pareto optimality, utilitarian social
welfare, egalitarian social welfare, and envy-freeness [see,
e.g., Moulin, 1988].

In Section 3, we show that computing a partition with max-
imum egalitarian social welfare is NP-hard. Similarly, com-
puting a partition with maximum utilitarian social welfare is
NP-hard in the strong sense even when preferences are sym-
metric and strict.

In Section 4, the complexity of Pareto optimality is studied.
We prove that checking whether a given partition is Pareto op-
timal is coNP-complete in the strong sense, even when pref-
erences are strict and symmetric. By contrast, we present a
polynomial-time algorithm for computing a Pareto optimal
partition when preferences are strict.1 Interestingly, comput-
ing an individually rational and Pareto optimal partition is
NP-hard in general.

In Section 5, we consider complexity questions regarding
envy-free partitions. Checking whether there exists a parti-
tion which is both Pareto optimal and envy-free is shown to
be Σ

p
2 -complete. We present an example which exemplifies

the tradeoff between satisfying stability (such as Nash sta-
bility) and envy-freeness and use the example to prove that
checking whether there exists a partition which is both envy-
free and Nash stable is NP-complete even when preferences
are symmetric.

2 Preliminaries
In this section, we provide the terminology and notation re-
quired for our results.

2.1 Hedonic games
A hedonic coalition formation game is a pair (N,P) where N
is a set of players andP is a preference profile which specifies
for each player i ∈ N the preference relation %i, a reflexive,
complete and transitive binary relation on set Ni = {S ⊆ N |
i ∈ S }.

S �i T denotes that i strictly prefers S over T and S ∼i T
that i is indifferent between coalitions S and T . A partition π
is a partition of players N into disjoint coalitions. By π(i), we
denote the coalition in π which includes player i.

A game (N,P) is separable if for any player i ∈ N and any
coalition S ∈ Ni and for any player j not in S we have the
following: S ∪ { j} �i S if and only if {i, j} �i {i}; S ∪ { j} ≺i S
if and only if {i, j} ≺i {i}; and S ∪ { j} ∼i S if and only if
{i, j} ∼i {i}.

1Thus, we identify a natural problem in coalitional game theory
where verifying a possible solution is presumably harder than actu-
ally finding one.

In an additively separable hedonic game (N,P), each
player i ∈ N has value vi( j) for player j being in the same
coalition as i and if i is in coalition S ∈ Ni, then i gets utility∑

j∈S \{i} vi( j). For coalitions S ,T ∈ Ni, S %i T if and only if∑
j∈S \{i} vi( j) ≥

∑
j∈T\{i} vi( j).

A preference profile is symmetric if vi( j) = v j(i) for any
two players i, j ∈ N and is strict if vi( j) , 0 for all i, j ∈ N
such that i , j. We consider ASHGs (additively separable
hedonic games) in this paper. Unless mentioned otherwise,
all our results are for ASHGs.

2.2 Fair and optimal partitions
In this section, we formulate concepts from the social sci-
ences, especially the literature on fair division, for the context
of hedonic games. A partition π satisfies individual rational-
ity if each player does as well as by being alone, i.e., for all
i ∈ N, π(i) %i {i}. For a utility-based hedonic game (N,P) and
partition π, we will denote the utility of player i ∈ N by uπ(i).
The different notions of fair or optimal partitions are defined
as follows.2

1. The utilitarian social welfare of a partition is defined as
the sum of individual utilities of the players: uut(π) =∑

i∈N uπ(i). A maximum utilitarian partition maximizes
the utilitarian social welfare.

2. The elitist social welfare is given by the utility of the
player that is best off: uel(π) = max{uπ(i) | i ∈ N}. A
maximum elitist partition maximizes the utilitarian so-
cial welfare.

3. The egalitarian social welfare is given by the utility of
the agent that is worst off: ueg(π) = min{uπ(i) | i ∈ N}.
A maximum egalitarian partition maximizes the egali-
tarian social welfare.

4. A partition π of N is Pareto optimal if there exists no
partition π′ of N which Pareto dominates π, that is for
all i ∈ N, π′(i) %i π(i) and there exists at least one player
j ∈ N such that j ∈ N, π′( j) � j π( j).

5. Envy-freeness is a notion of fairness. In an envy-free
partition, no player has an incentive to replace another
player.

For the sake of brevity, we will call all the notions de-
scribed above “optimality criteria” although envy-freeness is
rather concerned with fairness than optimality. We consider
the following computational problems with respect to the
optimality criteria defined above.

Optimality: Given (N,P) and a partition π of N, is π optimal?
Existence: Does an optimal partition for a given (N,P) exist?
Search: If an optimal partition for a given (N,P) exists, find
one.

Existence is trivially true for all criteria of optimality con-
cepts. By the definitions, it follows that there exist partitions
which satisfy maximum utilitarian social welfare, elitist so-
cial welfare, and egalitarian social welfare respectively.

2All welfare notions considered in this paper (utilitarian, elitist,
and egalitarian) are based on the interpersonal comparison of utili-
ties. Whether this assumption can reasonably be made is debatable.



3 Complexity of maximizing social welfare
In this section, we examine the complexity of maximizing
social welfare in ASHGs. We first observe that computing a
maximum utilitarian partition for strict and symmetric pref-
erences is NP-hard because it is equivalent to the NP-hard
problem of maximizing agreements in the context of correla-
tion clustering [Bansal et al., 2004].

Theorem 1 Computing a maximum utilitarian partition is
NP-hard in the strong sense even with symmetric and strict
preferences.

Computing a maximum elitist partition is much easier. For
any player i, let F(i) = { j | vi( j) > 0} be the set of play-
ers which i strictly likes and f (i) =

∑
j∈F(i) vi( j). Both

F(i) and f (i) can be computed in linear time. Let k ∈ N
be the player such that f (k) ≥ f (i) for all i ∈ N. Then
π = {{{k} ∪ F(k)},N \ {{k} ∪ F(k)}} is a partition which maxi-
mizes the elitist social welfare. As a corollary, we can verify
whether a partition π has maximum elitist social welfare by
computing a partition π∗ with maximum elitist social welfare
and comparing uel(π) with uel(π∗). Just like maximizing the
utilitarian social welfare, maximizing the egalitarian social
welfare is hard.

Theorem 2 Computing a maximum egalitarian partition is
NP-hard in the strong sense.

Proof: We provide a polynomial-time reduction from the
NP-hard problem MaxMinMachineCompletionTime [Woeg-
inger, 1997] in which an instance consists of a set of m iden-
tical machines M = {M1, . . . ,Mm}, a set of n independent
jobs J = {J1, . . . , Jn} where job Ji has processing time pi.
The problem is to allot jobs to the machines such that the
minimum processing time (without machine idle times) of all
machines is maximized. Let I be an instance of MaxMin-
MachineCompletionTime and let P =

∑n
i=1 pi. From I we

construct an instance I′ of EgalSearch. The ASHG for in-
stance I′ consists of N = {i | Mi ∈ M} ∪ {si | Ji ∈ J} and the
preferences of the players are as follows: for all i = 1, . . .m
and all j = 1, . . . , n let vi(s j) = p j and vs j (i) = P. Also,
for 1 ≤ i, i′ ≤ m, i , i′ let vi(i′) = −(P + 1) and for
1 ≤ j, j′ ≤ n, j , j′ let vs j (vs j′ ) = 0. Each player i corre-
sponds to machine Mi and each player s j corresponds to job
J j.

Let π be the partition which maximizes ueg(π). We show
that players 1, . . . ,m are in separate coalitions and each player
s j is in π(i) for some 1 ≤ i ≤ m. We can do so by proving
two claims. The first claim is that for i, j ∈ {1, . . .m} such that
i , j, we have that i < π( j). The second claim is that each
player s j is in a coalition with a player i. The proofs of the
claims are omitted due to space limitations.

A job allocation Alloc(π) corresponds to a partition π
where s j is in π(i) if job J j is assigned to Mi for all j and
i. Note that the utility uπ(i) =

∑
s j∈π(i) vi(s j) =

∑
s j∈π(i) p j of

a player corresponds to the total completion time of all jobs
assigned to Mi according to Alloc(π). Let π∗ be a maximum
egalitarian partition. Assume that there is another partition π′
and Alloc(π′) induces a strictly greater minimum completion

z1 z2 z3 z4 z5 z6 · · · z|R|−2 z|R|−1 z|R|

y1 y2 y3 y|S |

x1 x2 x3 x|S |

w1 w2 w3 w|S |

· · ·

1

3 3 3 3

3 3 3 3

−1 −1 −1 −1

Figure 1: A graph representation of an ASHG derived from an
instance of E3C. The (symmetric) utilities are given as edge
weights. Some edges and labels are omitted: All edges be-
tween any ys and zr have weight 1 if r ∈ s. All zr′ , zr′′ with
r′ , r′′ are connected with weight 1

|R|−1 . All other edges miss-
ing in the complete undirected graph have weight −7.

time. We know that uπ∗ (s j) = uπ′′ (s j) = P for all 1 ≤ j ≤ n
and uπ∗ (i) ≤ P for all 1 ≤ i ≤ m. But then from the assump-
tion we have ueg(π′) > ueg(π∗) which is a contradiction. �

4 Complexity of Pareto optimality
We now consider the complexity of computing a Pareto op-
timal partition. The complexity of Pareto optimality has al-
ready been considered in several settings such as house al-
location [Abraham et al., 2005]. Bouveret and Lang [2008]
examined the complexity of Pareto optimal allocations in re-
source allocation problems. We show that checking whether
a partition is Pareto optimal is hard even under severely re-
stricted settings.

Theorem 3 The problem of checking whether a partition is
Pareto optimal is coNP-complete in the strong sense, even
when preferences are symmetric and strict.

Proof: The problem is clearly in coNP as another partition
which Pareto dominates the given partition π is a witness
that π is not Pareto optimal. The reduction is from the
NP-complete problem E3C (EXACT-3-COVER) to deciding
whether a given partition is Pareto dominated by another par-
tition or not. Recall that in E3C, an instance is a pair (R, S ),
where R = {1, . . . , r} is a set and S is a collection of sub-
sets of R such that |R| = 3m for some positive integer m and
|s| = 3 for each s ∈ S . The question is whether there is a
sub-collection S ′ ⊆ S which is a partition of R.

It is known that E3C remains NP-complete even if each
r ∈ R occurs in at most three members of S [?]. Let (R, S )
be an instance of E3C. (R, S ) can be reduced to an instance
((N,P), π), where (N,P) is an ASHG defined in the following
way. Let N = {ws, xs, ys | s ∈ S } ∪ {zr | r ∈ R}. The players
preferences are symmetric and strict and are defined as fol-
lows (as also depicted in Figure 1): vws (xs) = vxs (ys) = 3 for
all s ∈ S ; vys (ws) = vys (ws′ ) = −1 for all s, s′ ∈ S ; vys (zr) = 1
if r ∈ s and vys (zr) = −7 if r < s; vzr (zr′ ) = 1/(|R| − 1) for any
r, r′ ∈ R; and va(b) = −7 for any a, b ∈ N and a , b for which
va(b) is not already defined.



The partition π in the instance ((N,P), π) is {{xs, ys}, {ws} |

s ∈ S }} ∪ {{zr | r ∈ R}}. We see that the utilities of the players
are as follows: uπ(ws) = 0 for all s ∈ S ; uπ(xs) = uπ(ys) = 3
for all s ∈ S ; and uπ(zr) = 1 for all r ∈ R.

Assume that there exists S ′ ⊆ S such that S ′ is a partition
of R. Then we prove that π is not Pareto optimal and there
exists another partition π′ of N which Pareto dominates π. We
form another partition π′ = {{xs,ws} | s ∈ S ′}∪{{ys, zi, z j, zk} |

s ∈ S ′ ∧ i, j, k ∈ s} ∪ {{xs, ys}, {ws} | s ∈ (S \ S ′)}}. In that
case, uπ′ (ws) = 3 for all s ∈ S ′; uπ′ (ws) = 0 for all s ∈
S \ S ′; uπ(xs) = uπ(ys) = 3 for all s ∈ S ; and uπ(zr) =
1 + 2/(|R| − 1) for all r ∈ R. Whereas the utilities of no player
in π′ decreases, the utility of some players in π′ is more than
in π. Since π′ Pareto dominates π, π is not Pareto optimal.

We now show that if there exists no S ′ ⊆ S such that S ′ is
a partition of R, then π is Pareto optimal. We note that −7 is
a sufficiently large negative valuation to ensure that if va(b) =
vb(a) = −7, then a, b ∈ N cannot be in the same coalition
in a Pareto optimal partition. For the sake of contradiction,
assume that π is not Pareto optimal and there exists a partition
π′ which Pareto dominates π. We will see that if there exists
a player i ∈ N such that uπ′ > uπ, then there exists at least
one j ∈ N such that uπ′ < uπ. The only players whose utility
can increase (without causing some other player to be less
happy) are {xs | s ∈ S }, {ws | s ∈ S } or {zr | r ∈ R}. We
consider these player classes separately. If the utility of player
xs increases, it can only increase from 3 to 6 so that xs is in
the same coalition as ys and ws. However, this means that ys

gets a decreased utility. The utility of ys can increase or stay
the same only if it forms a coalition with some zrs. However
in that case, to satisfy all zrs, there needs to exist an S ′ ⊆ S
such that S ′ is a partition of R.

Assume the utility of a player ws for s ∈ S increases. This
is only possible if ws is in the same coalition as xs. Clearly,
the coalition formed is {ws, xs} because coalition {ws, xs, ys}

brings a utility of 2 to ys. In that case ys needs to form a coali-
tion {ys, zi, z j, zk} where s = {i, j, k}. If ys forms a coalition
{ys, zi, z j, zk}, then all players ys′ for s′ ∈ (S \{s}) need to form
coalitions of the form {ys′ , zi′ , z j′ , zk′ } such that s′ = {i′, j′, k′}.
Otherwise, their utility of 3 decreases. This is only possible if
there exists a set S ′ ⊆ S of R such that S ′ is a partition of R.

Assume that there exists a partition π′ that Pareto domi-
nates π and the utility of a player uπ′ (zr) > uπ(zr) for some
r ∈ R. This is only possible if each zr forms the coalition of
the form {zr, zr′ , zr′′ , ys} where s = {r, r′, r′′}. This can only
happen if there exists a set S ′ ⊆ S of R such that S ′ is a par-
tition of R. Thus we have proved that π is not Pareto optimal
if and only if (R, S ) is a ‘yes’ instance. �

The fact that checking whether a partition is Pareto optimal
is coNP-complete has no obvious implications on the com-
plexity of computing a Pareto optimal partition. In fact there
is a simple polynomial-time algorithm to compute a partition
which is Pareto optimal for strict preferences.

Theorem 4 For strict preferences, a Pareto optimal partition
can be computed in polynomial time.

Proof: The statement follows from an application of se-
rial dictatorship. Serial dictatorship [Abdulkadiroğlu and

Sönmez, 1998] is a well-known mechanism in resource allo-
cation in which an arbitrary player is chosen as the ‘dictator’
who is then given his most favored allocation and the pro-
cess is repeated until all players or resources have been dealt
with. In the context of coalition formation, serial dictator-
ship is well-defined if preferences of players over coalitions
are strict. Serial dictatorship is also well-defined for ASHGs
with strict preferences as the dictator forms a coalition with
all the players he strictly likes who have been not considered
as dictators or are not already in some dictator’s coalition.
The resulting partition π is such that for any other partition
π′, at least one dictator will strictly prefer π to π′. Therefore
π is Pareto optimal. �

A standard criticism of Pareto optimality is that it can lead
to inherently unfair allocations. To address this criticism, the
algorithm can be modified to obtain less lopsided partitions.
Whenever an arbitrary player is selected to become the dic-
tator among the remaining players, choose a player that does
not get extremely high elitist social welfare among the re-
maining players. Nevertheless, even this modified algorithm
may output an partition that fails to be individually rational.

We know that the set of partitions which are both Pareto op-
timal and individually rational is non-empty. Repeated Pareto
improvements on individually rational partition consisting of
singletons leads to a Pareto optimal and individually rational
partition. We show that computing a Pareto optimal and indi-
vidually rational partition for ASHGs is weakly NP-hard.

Theorem 5 Computing a Pareto optimal and individually ra-
tional partition is weakly NP-hard.

Proof: Consider the decision problem SubsetSumZero in
which an instance consists of a set of k integer weights
A = {a1, . . . , ak} and the question is whether there exists a
non-empty S ⊆ A such that

∑
s∈S s = 0? Since SubsetSum

for positive integers is NP-complete, it follows that Subset-
SumZero is also NP-complete.3 Therefore, MaximalSubset-
SumZero, the problem of finding a maximal cardinality sub-
set S ⊆ A such that

∑
s∈S s = 0 is NP-hard.

We prove the theorem by a reduction from MaximalSub-
setSumZero. Reduce an instance of I of MaximalSubset-
SumZero to an instance I′ = (N,P) where (N,P) is an ASHG
defined in the following way: N = {x, y1, y2} ∪ Z where
Z = {zi | i ∈ {1, . . . , k}; vx(y1) = vx(y2) = k + 1; vx(zi) = 1 for
all i ∈ {1, . . . , k}; vy1 (zi) = −vzi (y1) = −vy2 (zi) = vzi (y2) = ai
for all i ∈ {1, . . . , k}; and va(b) = 0 for any a, b ∈ N for which
va(b) is not already defined.

First, we show that in an individually rational partition π,
no player except x gets positive utility, i.e., uπ(b) = 0 for
all b ∈ N \ {x}. Assume that w.l.o.g y1 gets positive util-
ity in π. This implies there exist a subset Z′ = Z ∩ π(y1)
such that

∑
z∈Z′ vy1 (z) > 0. Then there exists z ∈ Z′ such

that vy1 (z) > 0 which means that vz(y1) < 0. Due to indi-
vidual rationality, y2 ∈ π(z) = π(y1). But if y1 ∈ π(y2), then
uπ(y2) =

∑
z∈Z′ −vy1 (z) < 0 and π is not individually rational.

3We note that in any instance of SubsetSum all zeros in the set A
can be omitted to obtain an equivalent problem. Reduce SubsetSum
to SubsetSumZero by adding ak+1 = −W to A.



Assume that there exists a zi ∈ Z such that uπ(zi) > 0. Then
without loss of generality vzi (y1) > 0 and due to individual
rationality y1 ∈ π(zi). Again due to individual rationality,
y1 needs to be with another z j such that vy1 (z j) > 0. And
again due to individual rationality, z j needs to be with y2. This
means, that for each zl ∈ π(zi) ∩ Z, uπ(zl) = al − al = 0.

We show that in every Pareto optimal and individually ra-
tional partition π, we have y1, y2 ∈ π(x). For any other parti-
tion π′, in which this does not hold, uπ′ (x) ≤ 2k+1 < 2k+2 =
uπ(x).

Consider an S ⊆ A and let πS
z be any partition of {zi |

ai ∈ A \ S }. The claim is that π is a Pareto optimal and
individually rational partition if and only if π is of the form
{{x, y1, y2} ∪ {zi | ai ∈ S }} ∪ πS

z where S ⊆ A is the maximal
subset such that

∑
s∈S s = 0. Assume that S ⊆ A is not a

maximal subset such that
∑

s∈S s = 0. If
∑

s∈S s , 0, there
exists a y ∈ {y1, y2} such that uπ(y) < 0. If S is not maximal
then there is a larger set S ′ and a corresponding partition π′ =
{{x, y1, y2}∪{zi | ai ∈ S ′}}∪πS ′

z with uπ(x) = |S | < |S ′| = uπ′ (x)
and uπ(b) = uπ′ (b) for all b ∈ N \ {x}. For any other S ′ ⊆ A
such that |S ′| > |S |, we know that

∑
s′∈S ′ ≤ 0 which implies

that there is a y ∈ {y1, y2} which gets negative utility. �

5 Complexity of envy-freeness

Envy-freeness is a desirable property in resource alloca-
tion, especially in cake cutting settings. Lipton et al. [2004]
proposed envy-minimization in different ways and examined
the complexity of minimizing envy in resource allocation set-
tings. Bogomolnaia and Jackson [2002] mentioned envy-
freeness in hedonic games but focused on stability. We al-
ready know that envy-freeness can be easily achieved by the
partition of singletons.4 Therefore, in conjunction with envy-
freeness, we seek to satisfy other properties such as stabil-
ity or Pareto optimality. A partition is Nash stable if there
is no incentive for a player to be deviate to another (pos-
sibly empty) coalition. For symmetric ASHGs, it is known
that Nash stable partitions always exist and they correspond
to partitions for which the utilitarian social welfare is a lo-
cal optimum [see, e.g., Bogomolnaia and Jackson, 2002]. We
now show that for symmetric ASHGs, there may not exist any
partition which is both envy-free and Nash stable.

Example 6 Consider an ASHG (N,P) where N = {1, 2, 3}
and P is defined as follows: v1(2) = v2(1) = 3, v1(3) =
v3(1) = 3 and v2(3) = v3(2) = −7. Then there exists no
partition which is both envy-free and Nash stable.

We use the game in Example 6 as a gadget to prove the
following.5

Theorem 7 For symmetric preferences, checking whether
there exists a partition which is both envy-free and Nash sta-
ble is NP-complete in the strong sense.

4The partition of singletons also satisfies individual rationality.
5Example 6 and the proof of Theorem 7 also apply to the com-

bination of envy-freeness and individual stability where individual
stability is a variant of Nash stability [Bogomolnaia and Jackson,
2002].

Proof: The problem is clearly in NP since envy-freeness and
Nash stability can be verified in polynomial time. We re-
duce the problem from E3C. Let (R, S ) be an instance of E3C
where R is a set and S is a collection of subsets of R such
that |R| = 3m for some positive integer m and |s| = 3 for each
s ∈ S . We will use the fact that E3C remains NP-complete
even if each r ∈ R occurs in at most three members of S .
(R, S ) can be reduced to an instance (N,P) where (N,P) is
an ASHG defined in the following way. Let N = {ys | s ∈
S } ∪ {zr

1, z
r
2, z

r
3 | r ∈ R}. We set all preferences as symmet-

ric. The players preferences are as follows: for all r ∈ R,
vzr

1
(zr

2) = vzr
2
(zr

1) = 3, vzr
1
(zr

3) = 3 and vzr
2
(zr

3) = vzr
3
(zr

2) = −7;
for all s = {i, j, k} ∈ S , vzi

1
(z j

1) = vzi
1
(zk

1) = vz j
1
(zk

1) = 1/10 and

vys (zi
1) = vys (z j

1) = vys (zk
1) = 28/10; and for all a, b ∈ N for

which valuations have not been defined, va(b) = vb(a) = −7
We note that −7 is a sufficiently large negative valuation

to ensure that if va(b) = vb(a) = −7, then a and b will get
negative utility if they are in the same coalition. We show
that there exists an envy-free and Nash stable partition for
(N,P) if and only if (R, S ) is a ‘yes’ instance of E3C.

Assume that there exists S ′ ⊆ S such that S ′ is a partition
of R. Then there exists a partition π = {{ys, zi

1, z
j
1, z

k
1} | s =

{i, j, k} ∈ S ′} ∪ {{zr
2}, {z

r
3} | r ∈ R} ∪ {{s} | s ∈ S \ S ′}. It is easy

to see that partition π is Nash stable and envy-free. Players zr
1

and zr
3 both had an incentive to be with each other when they

are singletons. However, each zr
1 now gets utility 3 by being in

a coalition with zr′
1 , zr′′

1 and ys where s = {r, r′, r′′} ∈ S . There-
fore zr

1 has no incentive to be with zr
3 and zr

3 has no incentive to
join {zr′

1 , z
r′
1 , z

r′′
1 , y

s} because vzr
3
(zr′

1 ) = vzr
3
(zr′′

1 ) = vzr
3
(ys) = −7.

Similarly, no player is envious of another player.
Assume that there exists no partition S ′ ⊆ S of R such that

S ′ is a partition of R. Then, there exists at least one r ∈ R
such that zi

1 is not in the coalition of the form {zr
1, z

r′
1 , z

r′′
1 , y

s}

where s = {r, r′, r′′} ∈ S . Then the only individually rational
coalitions which zr

1 can form and get utility at least 3 are the
following {zr

1, z
r
3}, {z

r
1, z

r
2}. In the first case, zr

1 wants to deviate
to {zr

3}. In the second case, zr
2 is envious and wants to replace

zr
3. Therefore, there exists no partition which is both Nash

stable and envy-free. �

While the existence of a Pareto optimal partition and an
envy-free partition is guaranteed, we show that checking
whether there exists a partition which is both envy-free and
Pareto optimal is hard.

Theorem 8 Checking whether there exists a partition which
is both Pareto optimal and envy-free is Σ

p
2 -complete.

Proof: The problem has a ‘yes’ instance if there exists an
envy-free partition that Pareto dominates every other par-
tition. Therefore the problem is in the complexity class
NPcoNP = Σ

p
2 .

We prove hardness by a reduction from a problem concern-
ing resource allocation (with additive utilities) [de Keijzer et
al., 2009]. A resource allocation problem is a tuple (I, X,w)
where I is a set of agents, X is a set of indivisible objects
and w : I × X → R is a weight function. An a : I → 2X

is an allocation if for all i, j ∈ I such that i , j, we have



a(i) ∩ a( j) = ∅. The resultant utility of each agent i ∈ I is
then

∑
x∈a(i) w(i, x). It was shown by de Keijzer et al. [2009]

that the problem ∃-EEF-ADD of checking the existence of an
envy-free and Pareto optimal allocation is Σ

p
2 -complete.

Now, consider an instance (I, X,w) of ∃-EEF-ADD and re-
duce it to an instance (N,P) of an ASHG where N = I ∪ X
and P is specified by the following values: vi(x j) = w(i, x j)
and vx j (i) = 0 for all i ∈ I, x j ∈ X; vxk (x j) = vx j (xk) = 0 for
all x j, xk; and vi( j) = v j(i) = −W · |I ∪ X| for all i, j ∈ I where
W =

∑
i∈I,x j∈X |w(i, x j)|. It can then be shown that there exists

a Pareto optimal and envy-free partition in (N,P) if and only
if (I, X,w) is a ‘yes’ instance of ∃-EEF-ADD. The proof is
omitted due to space limitations. �

The results of this section show that, even though envy-
freeness can be trivially satisfied on its own, it becomes much
more delicate when considered in conjunction with other de-
sirable properties.

6 Conclusions
We studied the complexity of partitions that satisfy standard
criteria of fairness and optimality in additively separable he-
donic games. We showed that computing a partition with
maximum egalitarian or utilitarian social welfare is NP-hard
in the strong sense and computing an individually rational
and Pareto optimal partition is weakly NP-hard. A Pareto
optimal partition can be computed in polynomial time when
preferences are strict. Interestingly, checking whether a given
partition is Pareto optimal is coNP-complete even in the re-
stricted setting of strict and symmetric preferences.

We also showed that checking the existence of partition
which satisfies not only envy-freeness but an additional prop-
erty like Nash stability or Pareto optimality is computation-
ally hard. The complexity of computing a Pareto optimal
partition for ASHGs with general preferences is still open.
Other directions for future research include approximation
algorithms to compute maximum utilitarian or egalitarian so-
cial welfare for different representations of hedonic games.
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