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Abstract

In approval-based committee (ABC) voting, the goal is to
choose a subset of predefined size of the candidates based on
the voters’ approval preferences over the candidates. While
this problem has attracted significant attention in recent years,
the incentives for voters to participate in an election for a
given ABC voting rule have been neglected so far. This paper
is thus the first to explicitly study this property, typically called
participation, for ABC voting rules. In particular, we show
that all ABC scoring rules even satisfy group participation,
whereas most sequential rules severely fail participation. We
furthermore explore several escape routes to the impossibility
for sequential ABC voting rules: we prove for many sequential
rules that (i) they satisfy participation on laminar profiles, (ii)
voters who approve none of the elected candidates cannot
benefit by abstaining, and (iii) it is NP-hard for a voter to
decide whether she benefits from abstaining.

1 Introduction
Many questions in multi-agent systems reduce to the prob-
lem of selecting a subset of the available candidates based
on the preferences of a group of agents over these candidates.
Maybe the most apparent example for this are elections of
parliaments or city councils, but there are also numerous ap-
plications beyond classical voting. For instance, this model
can also be used to describe automated recommender systems
(Gawron and Faliszewski 2022) or the selection of validators
in a block chain (Cevallos and Stewart 2021). In the field
of computational social choice, such elections are known as
approval-based committee (ABC) elections and they have re-
cently attracted significant attention (Faliszewski et al. 2017;
Lackner and Skowron 2023). In more detail, this research
studies approval-based committee (ABC) voting rules, which
choose a fixed-size subset of the candidates, typically called
a committee, based on the voters’ approval ballots (i.e., vot-
ers express their preference about every candidate by either
approving or disapproving her).

One of the basic premises of ABC voting rules (and, more
generally, of all types of elections) is that voters will partic-
ipate in the election. However, this is not necessarily in the
interest of the voters: for example, for many single-winner
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voting rules, there are situations where voters prefer the out-
come chosen when abstaining to the outcome chosen when
voting (e.g., Moulin 1988; Pérez 2001; Brandl et al. 2019).
This undesirable phenomenon, which is known as the no-
show paradox, entails that voting can be disadvantageous
for a voter and hence disincentivizes participation. We are
thus interested in voting rules that avoid this paradox, which
are then said to satisfy participation. Note that while related
concepts have been analyzed (e.g., Sánchez-Fernández and
Fisteus 2019; Lackner and Skowron 2023, Prop. A.3), par-
ticipation has not been studied for ABC voting rules and we
thus initiate the study of this axiom for ABC elections.

Our contribution. In this paper, we study the participation
incentives of ABC voting rules. In more detail, we first inves-
tigate which ABC voting rules satisfy participation and prove
that all ABC scoring rules (including all Thiele rules) even
satisfy group participation. This generalizes the observation
that scoring rules satisfy participation for single-winner elec-
tions and gives a strong argument in favor of Thiele rules. By
contrast, we prove a general impossibility theorem, which
shows that most ABC voting rules that sequentially compute
the winning committees fail participation. In particular, our
result implies that all sequential Thiele rules except for mul-
tiwinner approval voting as well as the sequential variant of
Phragmén’s rule and the method of equal shares severely fail
participation: there are situations where a voter only approves
one of the elected candidates when she votes but all except
one of the elected candidates when she abstains. These theo-
rems also subsume results by Sánchez-Fernández and Fisteus
(2019) and Lackner and Skowron (2023) who study a mono-
tonicity axiom that constitutes a special case of participation.

We furthermore analyze several approaches to circumvent
this negative result for sequential rules. Firstly, motivated
by the notion of strategyproofness for unrepresented voters
by Delemazure et al. (2023), we show that many sequential
ABC voting rules ensure that voters who do not approve
any of the elected candidates cannot benefit by abstaining
(Proposition 1). This result complements our impossibility
theorem, which shows that voters can significantly benefit
from abstaining when they approve at least one candidate and,
moreover, demonstrates that many sequential rules satisfy at
least a minimal degree of participation. Next, we prove that
all sequential Thiele rules and the sequential Phragmén rule



satisfy participation when restricting the domain to laminar
profiles (Proposition 2). These profiles have been introduced
by Peters and Skowron (2020) and require that for all candi-
dates x, y, the sets of voters that approve x and y, respectively,
are either disjoint or related by subset inclusion. Hence, this
result shows that sequential ABC voting rules satisfy partici-
pation when focusing on an important special case.

Finally, we show that it is NP-hard for a voter to decide
whether she benefits from abstaining when using sequential
Thiele rules, sequential Phragmén, or the method of equal
shares (Section 3.3). Thus, even though a voter may benefit
by abstaining, she may not be able to recognize it. Moreover,
our technique for showing these hardness results is very uni-
versal and allows us to recover, strengthen, or complement
existing hardness results (Janeczko and Faliszewski 2023;
Faliszewski, Gawron, and Kusek 2022). In addition, our re-
sults indicate that many basic problems (e.g., whether there
is a winning committee for which a given voter approves ℓ
candidates) are NP-hard for sequential rules.

Related Work. The topic of ABC voting currently attracts
significant attention and we refer to Lackner and Skowron
(2023) for a recent survey. While there is, to the best of
our knowledge, no explicit work on participation in ABC
voting, there are a few closely related papers. In particular,
Sánchez-Fernández and Fisteus (2019) study an axiom called
support monotonicity with population increase (SMWPI),
which requires that the abstention of a voter cannot result in a
committee that contains all of her approved candidates if such
a committee is not chosen when voting. Clearly, SMWPI is a
mild variant of participation and Sánchez-Fernández and Fis-
teus (2019) show that all ABC scoring rules satisfy this con-
dition. Moreover, Lackner and Skowron (2023, Prop. A.3),
Mora and Oliver (2015), and Janson (2016) consider vari-
ous sequential rules and prove that they fail SMWPI, which
implies that they also fail participation. Notably, the proof
of Theorem 2 also works with SMWPI and our result thus
strengthens the existing results by showing that essentially
all sequential rules fail this property.

Our paper is also related to the study of strategyproofness
and robustness in ABC voting (e.g., Aziz et al. 2015; Peters
2018; Bredereck et al. 2021; Faliszewski, Gawron, and Kusek
2022). In particular, participation can be seen as a variant
of strategyproofness that prohibits that voters manipulate by
abstaining, or as a robustness axiom that measures how much
impact an abstaining voter can have on the outcome. Many
of these papers are conceptually similar to ours as they first
study whether ABC voting rules satisfy an axiom and then
explore escape routes.

Finally, in the broader realm of social choice, there are
numerous papers that study participation. In his seminal pa-
per, Moulin (1988) showed that a large class of single-winner
voting rules known as Condorcet extensions fail participation.
This result caused a large amount of follow-up work, which
either strengthens the negative result (e.g., Jimeno, Pérez, and
Garcı́a 2009; Duddy 2014; Brandt, Geist, and Peters 2017)
or explores escape routes (e.g., Brandl, Brandt, and Hofbauer
2019; Brandl et al. 2019). A particularly noteworthy paper in
our context is by Pérez, Jimeno, and Garcı́a (2010) who show

that a large class of committee voting rules fail participa-
tion when voters report ranked ballots. We refer to Hofbauer
(2019) for a survey on participation in social choice.

2 Preliminaries
In this paper, we will use the standard ABC voting setting
as defined by Lackner and Skowron (2023). To formalize
this model, let N denote an infinite set of voters and let C
denote a set of m > 1 candidates. An electorate N is a
non-empty and finite subset of N and we suppose that every
voter i ∈ N reports an approval ballot Ai to express her
preferences. Formally, an approval ballot is a non-empty
subset of C. An approval profile A is the collection of the
approval ballots of all voters i ∈ N , i.e., a function of the
type N → 2C \ {∅}. We denote by NA the set of voters that
report a ballot in profile A and by NA(c) the set of voters
who approve candidate c in A. Moreover, A−i (resp. A−I ) is
the profile derived from A when voter i ∈ NA (reps. a group
of voters I ⊆ NA) abstains. More formally, A′ = A−i is
defined by NA′ = NA \ {i} and A′

j = Aj for all j ∈ NA′ .
Given an approval profile, our goal is to elect a committee,

which is a subset of the candidates of predefined size. Follow-
ing the literature, we define k ∈ {1, . . . ,m− 1} as the target
committee size and Wk = {W ⊆ C : |W | = k} as the set of
size k committees. We collect all information associated with
an election in an election instance E = (N,C,A, k), where
we omit N and C whenever they are clear from the context.
Given an election instance E, our goal is to determine the
winning committee. To this end, we will use approval-based
committee (ABC) voting rules which map every election in-
stance E to a non-empty subset of Wk, i.e., ABC voting rules
may return multiple committees that are tied for the win.

2.1 Classes of Voting Rules
We now introduce several (classes of) ABC voting rules.
We assume that all rules return all committees that can be
obtained by some tie-breaking order.

ABC scoring rules. ABC scoring rules, which were in-
troduced by Lackner and Skowron (2021), generalize scor-
ing rules to ABC elections: each voter gives points to each
committee and the winning committees are those with the
maximal total score. Formally, these rules are defined by a
scoring function s which maps all x, y ∈ N0 with x ≤ y
to a rational number s(x, y) such that s(x, y) ≥ s(x′, y) for
all x′ ≤ x ≤ y. Without loss of generality, we suppose that
s(0, y) = 0 for all y. Intuitively, s(x, y) is the score a voter
gives to a committee W when she approves x members of
W and y in total. Thus, the total score of a committee W
in a profile A is ŝ(A,W ) :=

∑
i∈NA

s(|Ai ∩W |, |Ai|). The
ABC scoring rule defined by the scoring function s chooses
the committees W that maximize the total score ŝ(A,W ).

Thiele rules. Thiele rules, suggested by Thiele (1895), are
scoring rules that are independent of the ballot size, i.e.,
s(x, y) = s(x, y′) for all x ≤ y ≤ y′. Therefore, we drop
the second argument of the scoring function. We impose the
standard requirements that s(1) > 0 and s(x+ 1)− s(x) ≥
s(x + 2) − s(x + 1) for all x ∈ N0 (concavity). Important



examples of Thiele rules are multiwinner approval voting
(AV), defined by s(x) = x, proportional approval voting
(PAV), defined by s(x) =

∑
y≤x

1
y , and Chamberlin-Courant

approval voting (CCAV), defined by s(x) = 1 for all x > 0.

Sequential query rules. Generalizing concepts of Brill
et al. (2023) and Dong and Lederer (2023), we introduce
the class of sequential query rules. The idea of this class is
to encapsulate ABC voting rules that compute the winning
committees by sequentially adding candidates. To formal-
ize this, we let S(C) denote the set of all non-repeating
sequences of candidates with length ℓ ≤ m − 2. In partic-
ular, the empty set is the only sequence of length 0. The
central concept for sequential query rules are query functions
g which take a profile A, a target committee size k, and a
sequence S = (c1, . . . , cℓ) ∈ S(C) as input and return a
subset of C \ {c1, . . . , cℓ}. Intuitively, g(A, k, S) are the can-
didates that will be chosen next given that the candidates in
S have been selected in this order. Moreover, we demand
that g(A, k, S) is non-empty whenever S is generated by g.
Formally, we say a sequence S = (c1, . . . , cℓ) is valid for
g(A, k, ·) if S = ∅ or ci ∈ g(A, k, (c1, . . . , ci−1)) for all
1 ≤ i ≤ ℓ. We require that g(A, k, S) ̸= ∅ whenever S is
valid and ℓ < k. Finally, an ABC voting rule f is a sequential
query rule induced by the query function g if f(A, k) =
{{c1, . . . , ck} ∈ Wk : (c1, . . . , ck) is valid for g(A, k, ·)}
for all profiles A and committee sizes k. The class of se-
quential query rules as defined here is actually equivalent
to the set of ABC voting rules as there are no restrictions
on g. Hence, we will later introduce axioms for sequential
query rules to pinpoint when a sequential query rule fails
participation. In the following, we introduce several voting
rules that can be easily described as sequential query rules.

Sequential Thiele rules. Sequential Thiele rules are greedy
versions of Thiele rules and have also been suggested by
Thiele (1895). Given some scoring function s, these rules
extend in every step each committee W of the previous
step with the candidates c that increase the score the most.
More formally, sequential Thiele rules are sequential query
rules defined by the query function g(A, k, (c1, . . . , cℓ)) =
argmaxx∈C\{c1,...,cℓ}ŝ(A, {x, c1, . . . , cℓ}). Prominent exam-
ples of sequential Thiele rules are seqCCAV and seqPAV
which are the sequential versions of CCAV and PAV. Note
that the sequential version of AV is identical to AV.

Sequential Phragmén. This rule (seqPhragmén), which
was suggested by Phragmén (1895) and rediscovered by Brill
et al. (2017), relies on a cost-sharing mechanism. In more
detail, seqPhragmén assumes that each candidate has a
cost of 1 and each voter starts with a budget of 0. Over time,
the budget of each voter increases uniformly and as soon as
the voters that approve some candidate c have a total budget
of 1, they buy c and add it to the winning committee. The
budget of these (and only these) voters is then reset to 0.
The process continues until k candidates have been bought.
Clearly, seqPhragmén is a sequential query rule.

Method of equal shares. The method of equal shares
(MES), which is due to Peters and Skowron (2020), works sim-
ilar to seqPhragmén. In particular, every candidate again

costs 1, but every voter i starts with a budget of x0(i) =
k
n

instead of earning budget over time. MES then tries to buy can-
didates in sequential steps. In more detail, let xr(i) denote the
budget of each voter i after r steps and let X = {c1, . . . , cr}
denote the set of candidates that have already been bought.
We define by Cr := {c ∈ C \ X :

∑
i∈NA(c) xr(i) ≥ 1}

the set of candidates that can still be afforded. If Cr ̸= ∅,
we add the candidate c ∈ Cr to the winning committee
that incurs the minimal cost to the voter paying the most
when splitting the cost as equally as possible, i.e., c mini-
mizes ρ(c) with

∑
i∈NA(c) min(ρ(c), xr(i)) = 1. Next, we

set xr+1(i) = xr(i) −min(ρ(c), xr(i)) for i ∈ NA(c) and
xr+1(i) = xr(i), otherwise. We then continue with the next
round. This process, typically called Phase 1 of MES, iterates
until Cr = ∅. If at this point less than k candidates have been
bought, Phase 2 of MES starts where we have to complete
the committee. For this, a variant of seqPhragmén is used
where voters keep their remaining budget from Phase 1.

2.2 Participation
We next turn to the central axiom of this paper, participation.
The idea of this condition is that voters should not be worse
off when voting instead of abstaining. To formalize this, we
say that a voter i (weakly) prefers a committee W to com-
mittee W ′ (denoted by W ≿i W

′) if |W ∩Ai| ≥ |W ′ ∩Ai|,
and strictly prefers W to W ′ (denoted by W ≻i W ′) if
|W ∩ Ai| > |W ′ ∩ Ai|. This approach is the standard to
extend voters’ preferences to preferences over committees
(see, e.g., Aziz et al. 2015; Botan 2021; Delemazure et al.
2023). Since our ABC voting rules return sets of commit-
tees, we furthermore need to lift the voters’ preferences to
sets of committees. Following the literature (Kluiving et al.
2020; Botan 2021), we use Kelly’s extension to this end. This
extension states that a voter i prefers a set of committees
X to another set of committees Y (denoted by X ≿i Y ) if
W ≿i W

′ for all W ∈ X and W ′ ∈ Y (Kelly 1977). More-
over, this preference is strict (denoted by X ≻i Y ) if there
are W ∈ X , W ′ ∈ Y with W ≻i W ′. Kelly’s extension
guarantees that X ≿i Y if and only if voter i weakly prefers
the outcome chosen from X to the outcome chosen from Y
regardless of the tie-breaking. We note, however, that all of
our results except the complexity results in Section 3.3 are
rather independent of the extension to sets of committees and,
for instance, also hold under lexicographic tie-breaking.

Now, an ABC voting rule f satisfies participation if
f(A−i, k) ̸≻i f(A, k) for all profiles A, voters i ∈ NA,
and committee sizes k ∈ {1, . . . ,m − 1}. Put differently,
participation ensures that voters can never benefit by abstain-
ing. To further strengthen the axiom, we say that a group of
voters I ⊊ NA benefits from abstaining for a profile A and
committee size k if f(A−I , k) ≿i f(A, k) for all i ∈ I and
f(A−I , k) ≻i f(A, k) for some i ∈ I . Then, an ABC voting
rule f satisfies group participation if it is never possible for
a group of voters to benefit by abstaining.

3 Results
We are now ready to formulate our results. In Section 3.1, we
will show that ABC scoring rules satisfy group participation



and that most sequential ABC voting rules fail participation.
In Section 3.2, we thus explore two axiomatic escape routes to
the impossibility for sequential rules. Finally, in Section 3.3,
we show for our considered sequential ABC voting rules that
it is NP-hard to decide for a voter whether she benefits by
abstaining. Due to space restrictions, we defer all proofs not
discussed in this section to the supplementary material.

3.1 Participation for ABC Voting Rules
The goal of this section is to understand which ABC voting
rules satisfy participation. To this end, we first show that all
ABC scoring rules even satisfy group participation.

Theorem 1. Every ABC scoring rule satisfies group partici-
pation.

Proof. Let f be an ABC scoring rule and let s denote its scor-
ing function. We assume for contradiction that there is a pro-
file A, a committee size k, and a group of voters I ⊊ NA that
benefits from abstaining, i.e., f(A−I , k) ≿i f(A, k) for all
i ∈ I and f(A−I , k) ≻i∗ f(A, k) for some i∗ ∈ I . Next, we
proceed with a case distinction with respect to f(A−I , k) and
first consider the case that there is W ∈ f(A−I , k) \ f(A, k).
By definition of Kelly’s extension, this means that |W∩Ai| ≥
|W ′ ∩Ai| for all W ′ ∈ f(A, k) and i ∈ I . Using the defini-
tion of ABC scoring rules, it hence follows that

∑
i∈I s(|Ai∩

W |, |Ai|) ≥
∑

i∈I s(|Ai ∩ W ′|, |Ai|). On the other hand,
it holds that ŝ(A,W ′) > ŝ(A,W ) since W ′ ∈ f(A, k)
and W ̸∈ f(A, k). Combining these facts then implies
that ŝ(A−I ,W ) = ŝ(A,W ) −

∑
i∈I s(|Ai ∩ W |, |Ai|) <

ŝ(A,W ′)−
∑

i∈I s(|Ai ∩W ′|, |Ai|) = ŝ(A−I ,W
′), which

contradicts that W ∈ f(A−I , k). As the second case, we
suppose that f(A−I , k) ⊊ f(A, k) and let W ∈ f(A−I , k),
W ′ ∈ f(A, k) \ f(A−I , k). Using Kelly’s extension, we
infer again that |W ∩ Ai| ≥ |W ′ ∩ Ai| for all i ∈ I , so∑

i∈I s(|Ai ∩W |, |Ai|) ≥
∑

i∈I s(|Ai ∩W ′|, |Ai|). More-
over, ŝ(A,W ) = ŝ(A,W ′) because W,W ′ ∈ f(A, k). We
conclude that ŝ(A−I ,W ) ≤ ŝ(A−I ,W

′), which contradicts
our assumption because W ∈ f(A−I , k) is then only pos-
sible if W ′ ∈ f(A−I , k). Since we have a contradiction in
both cases, f satisfies group participation.

Next, we turn to sequential ABC voting rules. As dis-
cussed before, for some of these rules (e.g., seqPAV,
seqPhragmén, and MES), earlier results in the literature
imply that they fail participation (Janson 2016; Lackner and
Skowron 2023, Prop. A.3). We will next show that the in-
compatibility is much more far-reaching as essentially all
sequential rules other than AV fail participation. In more de-
tail, we will introduce three mild axioms for query functions
and then prove that every sequential query rule whose query
function satisfies these conditions fails participation.

Continuity. Continuity has been introduced by Young
(1975) for single-winner voting rules and requires that large
groups of voters can enforce that some their desired outcomes
are chosen. Formally, we say that a query function g satisfies
continuity if for all A,A′, k and S ∈ S(C), it holds that
g(λA + A′, k, S) ⊆ g(A, k, S) for every sufficiently large
λ ∈ N. The sum of approval profiles means that a copy for

each voter in each profile is present, and the multiplication
by a non-negative integer λ that λ copies of each voter are
present.

Standardness. A condition that almost all commonly con-
sidered sequential ABC voting rules satisfy is that they typi-
cally choose the approval winner as first candidate. We for-
malize this as standardness: a query function g is standard if
g(A, k, ∅) = AV(A, 1).

Concurrence. While the last two axioms are necessary
for Theorem 2, they do not capture its essence as AV and
other sequential rules satisfy continuity, standardness, and
participation. The crucial observation is that sequential query
rules only optimize the voter satisfaction myopically, which
causes a dependence on the history of previous choices. For
instance, consider the following profile with 4 ballots, let
k = 2, and suppose that candidate c is chosen first.

1× {a, b} 1× {b, c} 1× {a} 1× {c}

Essentially all commonly considered sequential ABC voting
rules but AVwill choose a and not b as next candidate because
the voter who approves b and c is already partially satisfied.
More generally, let S ∈ S(C) be a sequence of already
chosen candidates and consider a, b ∈ C with |NA(a)| ≥
|NA(b)| such that in each step of S the voters approving b are
at least as satisfied as the voters approving a. Concurrence
captures the idea that sequential rules prefer to choose a
over b in such a situation. To formalize this in a fashion that
encompasses all commonly considered sequential rules, we
add technical restrictions which weaken the axiom. In more
detail, we call a query function g concurring if the following
holds: Consider a profile A such that |Ai| ≤ 2 for all i ∈
NA and |NA(c)| = |NA(d)| ≤ n

k for all c, d ∈ C, and a
sequence of already chosen candidates (c1, . . . , cℓ) ∈ S(C).
Then, for all candidates c, d ∈ C \ {c1, . . . , cℓ} such that
|{i ∈ NA : Ai = {cj , d}}| ≥ |{i ∈ NA : Ai = {cj , c}}| for
all j ∈ {1, . . . , ℓ}, where one of these inequalities is strict,
it holds that d ̸∈ g(A, k, (c1, . . . , cℓ)). As we show next,
myopic efficiency (in the form of concurrence) is the main
culprit for the no-show paradox of sequential query rules.

Theorem 2. Every sequential query rule fails participation
if k ≥ 3 and its query function is standard, concurring, and
continuous. Even more, a voter can obtain only 1 approved
candidate when participating while obtaining k−1 approved
candidates when abstaining.

Proof. Let f denote a sequential query rule and suppose its
query function g is standard, concurring, and continuous.
Moreover, we let k ≥ 3 denote the target committee size
and set C = {a1, . . . , ar, b1, . . . , br} for r = k − 1. Next,
consider the following profile A: first, we add for every two el-
ement subset B ⊆ C except for {a1, b1} and {ar, br} a voter
who approves B; second, we add for each i ∈ {2, . . . , r} two
voters who approve {ai, b1} and for each j ∈ {2, . . . , r− 1}
two voters who approve {bj , ar}; third, we add a voter who
approves {b1, br} and a voter who approves {a1, ar}; finally,
we add voters who approve only a single candidate such
that all candidates have the same approval score. Moreover,



a1

a2

· · ·
ar−1

ar

b1

b2
· · ·

br−1

br

Figure 1: Visualization of the profile A for the proof of Theo-
rem 2. A black, orange, or blue edge between two alternatives
means that there is (are) exactly one, two, or three voter(s)
who approve(s) the connected candidates, respectively.

if k = 3, we add another candidate d before the last step
that shares three ballots {b, x} with each x ∈ C to ensure
that |NA(x)| ≤ n

k for all x ∈ C. This candidate will be ig-
nored from now on as it does not affect our analysis. Figure 1
visualizes this profile by depicting ballots of size 2 as edges.

We next determine the winning committees for A and first
note that g(A, k, ∅) = C by standardness. Hence, (a1) is
a valid sequence. Our first goal is to show that all ways of
extending (a1) lead to the committee {a1, b1, . . . , br}. First,
concurrence implies that g(A, (a1)) = {b1}, as all other
candidates share some ballot with a1. Hence, the only valid
continuation is (a1, b1). We next suppose inductively that
(a1, b1, . . . , bℓ−1) is a valid sequence with ℓ < r. We now
check the requirements for concurrence and consider to this
end the candidate bℓ. First, we note that there is one voter who
reports {bℓ, x} for each alternative x ∈ {a1, b1, . . . , bℓ−1}.
By contrast, for each candidate ai with i ≥ 2, there
is at least one voter who reports {ai, x} for each x ∈
{a1, b2, . . . , bℓ−1} and three voters who report {b1, ai}. So,
concurrence implies that ai ̸∈ g(A, k, (a1, b1, . . . , bℓ−1)).
Similarly, we can check that br is not in this set because two
voters report {b1, br} but only a single voter reports {b1, bℓ}.
Hence, g(A, k, (a1, b1, . . . , bℓ−1)) ⊆ {bℓ, . . . , br−1} and
due to the symmetry of these candidates in A, we can sup-
pose that bℓ ∈ g(A, k, (a1, b1, . . . , bℓ−1)). For the final step,
we need to compare br with ai with i > 1. Since b1 only
shares two ballots with br and three with each candidates ai
for i ≥ 2, and each other candidate x ∈ {a1, b2, . . . , br−1}
shares one ballot with br and at least one ballot with ai,
concurrence necessitates g(A, (a1, b1, . . . , br−1)) = {br}.
Finally, we conclude that {a1, b1, . . . , bk} is the only chosen
committee of size k when electing a1 in the first round. More-
over, an analogous argument shows that g can only extend
the sequence (br) to the committee {br, a1, . . . , ar}.

As the next step, we let A′ denote a profile which consists
of four voters who report {a1, . . . , ar}, {b1, . . . , br}, {a1},
and {br} respectively. Furthermore, let A∗ = λA + A′ for
some λ ∈ N. By standardness, we obtain that g(A∗, ∅) =

{a1, br} regardless of the choice of λ. Furthermore, by con-
tinuity, we can choose λ large enough such that g(A∗, s) ⊆
g(A, s) for all sequences s ∈ S(C). By combining this
with our previous analysis, it is now easy to infer that
f(A∗, k) = {{a1, b1, . . . , br}, {br, a1, . . . , ar}}.

Finally, to show that f fails participation, we consider
the profile A∗

−i where the voter i with ballot {a1, . . . , ar}
abstains. By standardness, it follows that g(A∗

−i, ∅) = {br}.
Furthermore, for large enough λ, we get again that g(λA+
A′

−i, k, s) ⊆ g(A, k, s) for all s ∈ S(C). This means that
f(A∗

−i, k) = {{br, ar, . . . , a1}}, so voter i can benefit by
abstaining and f fails participation.

As a corollary of Theorem 2, it follows immediately that
seqPhragmén, MES, and all sequential Thiele rules but AV
fail participation because the query functions of these rules
satisfy all conditions of Theorem 2.

Corollary 1. Every sequential Thiele rule except AV, as well
as seqPhragmén and MES fail participation.

Remark 1. The axioms of Theorem 2 are independent. All
Thiele rules but AV satisfy all properties but standardness and
AV only violates concurrence. Moreover, if we adapt AV to
break ties whenever concurrence requires it, the resulting rule
only fails continuity. By contrast, Theorem 2 turns into a pos-
sibility if k ≤ 2 or if requiring that a voter needs to approve
all of the elected candidates after abstaining as sequential
Thiele rules then satisfy participation.

Remark 2. We note that the proof of Theorem 2 can be
adapted to show that also reverse sequential ABC voting
rules, which start with a full committee and then iteratively
delete candidates, and sequential Thiele rules with increasing
marginal contribution fail participation. While such rules
are only rarely considered in the literature, this shows that
Theorem 2 is rather robust. Moreover, Example 7 by Sánchez-
Fernández and Fisteus (2019) entails that also the optimizing
variants of seqPhragmén fail participation.

By contrast, there are sequential rules other than AV that
satisfy participation. In particular, Dong and Lederer (2023)
introduce the class of ballot size weighted approval voting
(BSWAV) rules. Since these rules are ABC scoring rules, they
satisfy group participation by Theorem 1. However, all these
rules coincide with their sequential version, thus giving a
class of sequential ABC voting rules that satisfy participation.
Notably, the proof of Theorem 2 can be modified to show that
every sequential ABC scoring rule that satisfies participation
and s(x, y) > 0 for all x, y > 0 belongs to this class.

3.2 Axiomatic Escape Routes to Theorem 2
We next consider two escape routes to Theorem 2: we first
show that at least voters who do not approve any of the
elected candidates cannot benefit by abstaining for most se-
quential ABC voting rules, and then that these rules satisfy
participation on the important special case of laminar profiles.

Unrepresented Voters. The proof of Theorem 2 shows
that voters who only approve a single elected candidate can
significantly gain by abstaining and it is easy to extend this
result to voters who approve more than one elected candidate.



Hence, the only open case is whether voters who approve
none of the elected candidates can benefit by abstaining. In
analogy to the notion of strategyproofness for unrepresented
voters by Delemazure et al. (2023), we thus require that a
voter who approves none of the elected candidates cannot
benefit by abstaining. More formally, we say an ABC vot-
ing rule f satisfies participation for unrepresented voters if
f(A−i, k) ̸≻i f(A, k) for all approval profiles A, committee
sizes k, and voters i ∈ NA for which there is a committee
W ∈ f(A, k) with W ∩Ai = ∅. As we show next, all sequen-
tial Thiele rules and seqPhragmén satisfy this condition,
whereas MES even fails this minimal notion of participation.
We note that these results complement Theorem 2 by show-
ing that the violation of participation observed in this result is
maximal and, moreover, strengthen insights by Lackner and
Skowron (2023, Prop. A.3) on a mild monotonicity axiom.

Proposition 1. Sequential Thiele rules and seqPhragmén
satisfy participation for unrepresented voters. MES violates
participation for unrepresented voters.

Proof Sketch. The key insight why seqPhragmén and se-
quential Thiele rules satisfy participation for unrepresented
voters is that an abstaining voter who does not approve any of
the elected candidates cannot affect the picking sequence of
the candidates. Indeed, the scores of her approved candidates
are always too low to be picked and the voter only further
reduces these scores by abstaining. By contrast, for MES, we
construct a counterexample by using that an abstaining voter
influences the budgets of other voters.

Laminar Profiles. As our second escape route to Theo-
rem 2, we consider the effect of restricting the domain of
feasible profiles. In particular, we will show that sequen-
tial Thiele rules, seqPhragmén, and MES satisfy participa-
tion on laminar profiles. To this end, we say that a profile
A is laminar if for all candidates c, d ∈ C, it holds that
NA(c) ⊆ NA(d), NA(d) ⊆ NA(c), or NA(c) ∩NA(d) = ∅.
These profiles have been introduced by Peters and Skowron
(2020) who additionally require size constraints on the sets
NA(c) which make no sense in our context. Laminar pro-
files generalize the concept of party-list profiles (e.g., Brill,
Laslier, and Skowron 2018; Botan 2021) and thus constitute
an important special case of approval profiles.

Proposition 2. Sequential Thiele rules, seqPhragmén,
and MES satisfy participation on laminar profiles.

Proof Sketch. The central idea for this proposition is that
for laminar profiles A, the sets NA(c) can be represented
by a forest F on the candidates where c is a child of d if
NA(c) ⊆ NA(d). For all considered rules, it then follows
that it is always valid to add a candidate to the winning
committee before any of her children. This structure on the
picking order can be used to show that a voter cannot increase
the number of her approved candidates by abstaining as the
picking order imposed by the profile does not change.

3.3 Hardness of Abstention
In this section, we investigate how difficult it is for a voter to
decide whether she can benefit from abstaining. This offers

yet another perspective on Theorem 2: while many sequential
rules fail participation, it can still be the case that the voters—
even when knowing the preferences of all other participants—
are unlikely to be able to efficiently decide whether they can
benefit from abstention.

The general proof idea for our reductions is as follows:
the reduced instances consist of a part of the election mim-
icking an NP-hard problem together with a gadget that is
a small election where it is beneficial to abstain for a voter.
The elections then consist of essentially two stages. First, we
select candidates associated with a proposed solution to the
NP-hard source problem, e.g., a set of vertices of a given
target size. Then, certain gadget candidates are selected. If
the proposed solution to the NP-hard problem is not of the
desired form, e.g., if the vertex set is not an independent
set, then the selection of gadget candidates cannot be influ-
enced by abstention. However, if the source instance is a
Yes-instance, then some voter approving gadget candidates
can benefit from abstention.

As a first result in this section, we find that participa-
tion leads to a computational intractability for sequential
Thiele rules. The proof is inspired by Janeczko and Fal-
iszewski (2023). We showcase the proof and the general
proof technique of this section by considering the special
case of seqPAV.

Theorem 3. For every sequential Thiele rule except AV,
it is NP-hard to decide whether a voter can benefit from
abstention.

Proof sketch for seqPAV. We perform a reduction from IN-
DEPENDENTSET for cubic graphs (Garey and Johnson 1979).
Given an instance (G, t) of INDEPENDENTSET, where G =
(V,E) is a cubic graph and t ∈ N is the target size of the
independent set, we construct the following reduced instance.
Without loss of generality, we assume that we only consider
instances where |V | ≥ 3, |E| > 0, |V |3 is divisible by 8, and
t is divisible by 2. Since the independent set needs to be of
size t and the graph is cubic, we assume |E| ≥ 3t.

The set of candidates is C = {gi : i ∈ {1, . . . , 4}} ∪
CV , where CV = {cv : v ∈ V }. The candidates gi, called
gadget candidates, form a gadget in which abstention might
be performed and candidates cv, called vertex candidates,
represent vertices v of the source instance.

Let x = |V | and y = 1
2

(
x4 − tx

3

2 + x3

4

)
. This is an inte-

ger by assumption. The approval profile is given as follows:

• For each vertex v ∈ V , there exist x3 voters approving
{cv}. For each pair of vertices {v, w} ⊆ V , there exist x3

voters with approval set {cv, cw}. For each edge {v, w} ∈
E, there exists one voter with approval set {cv, cw, g1}.

• Moreover, there are voters approving only the gadget can-
didates. These are y voters for each of the approval sets
{g1, g2}, {g1, g3}, {g2, g4}, {g3, g4}, |E| − 3

2 t ∈ N>0

voters approving {g2} (recall that t is divisible by 2,
|E| > 0, and |E| ≥ 3t), and one voter approving {g1}.

As usual, A denotes the approval profile. The target com-
mittee size is k = x+ 3. Eventually, we will select all candi-
dates in CV as well as 3 gadget candidates. We claim that a



voter with approval set {g1, g3} can benefit from abstention
if and only if the source instance is a Yes-instance.

We qualitatively describe the election by seqPAV in the
reduced instance. Initially, the score of vertex candidates is
larger than the score of gadget candidates. By design of the
scores, the first t candidates to be selected are vertex candi-
dates. Now, the marginal gain to the score by gadget candi-
dates overtakes the gain by vertex candidates, and we select
two gadget candidates. The reduced instance is designed in a
way such that without abstention, g1 always has the highest
score among gadget candidates and is selected first. Then, the
candidate g4 is selected. Afterwards, the committee is filled
with the remaining vertex candidates and then a third gadget
candidate. Since g2 contributes more than g3, we select g2 as
the final candidate in the committee. Together, the choice set
contains exactly the committee CV ∪ {g1, g2, g4}.

Now, consider the situation where some voter with ap-
proval set {g1, g3} abstains from the election. Until a subset
of t vertex candidates is selected, seqPAV proceeds identi-
cally. Then, by design of the election, g1 is always at least as
valuable to add as g2. However, g1 and g2 contribute identi-
cally if and only if the first t vertex candidates correspond to
an independent set in the source instance. If in this case g2
is selected, then g3 is selected next, and then the committee
is filled with the remaining vertex candidates and g1. This
yields the committee CV ∪ {g1, g2, g3}.

In summary, if the source instance is a No-instance, then
the choice set is identical after abstention, and there is no
incentive to abstain. Otherwise, the choice set additionally
contains CV ∪ {g1, g2, g3} and is preferred by a voter with
approval set {g1, g3} (due to Kelly’s extension).

As a next result, we want to consider the method of equal
shares. Importantly, an execution of MES may heavily rely on
the completion method applied in Phase 2. We thus provide
a reduction where a voter benefits from abstention both after
Phase 1 and Phase 2 of MES. The same reduction also yields
a result for seqPhragmén.

Theorem 4. Consider voting by MES. Then,

1. It is NP-hard to decide whether a voter can benefit from
abstention after Phase 1.

2. It is NP-hard to decide whether a voter can benefit from
abstention after Phase 2, even if none of her approved
candidates are elected in Phase 2.

Moreover, for seqPhragmén, it is NP-hard to decide
whether a voter can benefit from abstention.

The proofs of our hardness results are quite universal and
allow for a number of interesting consequences. First, if we
omit the abstaining voter from the reduced instance, then
there is exactly one possibly selected committee if the source
instance is a No-instance, and two possible committees if
the source instance is a Yes-instance. Hence, we recover the
hardness of deciding whether the election contains more than
one possible committee (Janeczko and Faliszewski 2023).

Second, it is interesting to see why we formulate our theo-
rems as NP-hardness, but not NP-completeness, i.e., we do
not know whether membership in NP holds. In fact, it is un-
clear whether this actually is true. In particular, we cannot use

the outcomes of elections as polynomial-size certificates for
verifying whether a voter benefits from abstention because
we cannot check this in polynomial time.

Corollary 2. For every sequential Thiele rule except AV, as
well as for Phase 1 or complete MES, and seqPhragmén,
the following statements are true.

1. Given a set of committees C, it is coNP-complete to decide
whether C is the outcome of the election.

2. Given a positive integer s, it is NP-complete to decide
whether a given voter approves at least s candidates in
some winning committee.

Finally, our reductions give novel insights into the robust-
ness of sequential ABC voting rules. Faliszewski, Gawron,
and Kusek (2022) consider the question whether the out-
come of an election can change if a given number of ap-
provals of candidates can be added or removed. They find
that this problem is NP-hard for seqCCAV, seqPAV, and
seqPhragmén. However, they operate in a setting, where
the election of a single committee is enforced by lexico-
graphic tie-breaking and they need an unbounded budget of
approvals to be added or deleted (but a linear number with
respect to the source instance). As a third corollary from our
reductions, we complement their results in the set-valued
setting and obtain hardness even if we only add or delete a
single approval. The result holds because for a tied second
committee, only the approval of g1 by the abstaining voter
is relevant. So, if the source instance is a Yes-instance, then
this approval can be added or deleted to create or prevent a
second outcome of the election. The reductions can be modi-
fied so that the addition or deletion of other candidates does
not matter for its outcome.

Corollary 3. For every sequential Thiele rule except AV, as
well as for Phase 1 or complete MES, and seqPhragmén,
it is NP-complete to decide if the outcome of the election can
change if a single approval is added or deleted.

4 Conclusion
In this paper, we initiate the study of participation for ABC
voting rules. This axiom describes that it can never be benefi-
cial for voters to abstain and thus describes an incentive for
active participation in elections. In more detail, we prove that
all ABC scoring rules even satisfy group participation, thus
generalizing a prominent phenomenon from single-winner
voting to ABC elections. Moreover, we give a strong impossi-
bility theorem demonstrating that most sequential rules (e.g.,
all sequential Thiele rules but AV, sequential Phragmén, and
the method of equal shares) severely fail participation. In
light of this strong negative result for sequential rules, we
then explore various escape routes. In particular, we show
that sequential Thiele rules and sequential Phragmén satisfy
participation for voters who do not approve any candidate in
the winning committee as well as participation on laminar
profiles. These results demonstrate that sequential rules sat-
isfy participation at least in important special cases. Finally,
we also show that for all commonly studied sequential ABC
voting rules, it is NP-hard to decide for a voter whether she
can benefit by abstaining. This indicates that, while voters



can in general benefit by abstaining, they may not be able to
recognize this. Our approach for deriving these results is very
universal and allows us to recover, strengthen, and extend
existing hardness results.
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Svenska spörsmål 25. Lars Hökersbergs förlag, Stockholm.
Sánchez-Fernández, L.; and Fisteus, J. A. 2019. Monotonic-
ity axioms in approval-based multi-winner voting rules. In
Proceedings of the 18th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 485–
493.
Thiele, T. N. 1895. Om Flerfoldsvalg. Oversigt over det
Kongelige Danske Videnskabernes Selskabs Forhandlinger,
415–441.
Young, H. P. 1975. Social Choice Scoring Functions. SIAM
Journal on Applied Mathematics, 28(4): 824–838.



A Notation and Definitions
To facilitate the proofs for sequential Thiele rules, we in-
troduce the following notation for the marginal scores of
the candidates. Let s be the scoring function of a sequential
Thiele rule. Given a candidate c, an approval profile A, and a
partial committee P , we define the marginal score of c with
respect to A and P as

scorec(A,P ) =
∑

i′∈NA

s(|Ai′ ∩ (P ∪ {c})|)− s(|Ai′ ∩ P |).

Note that maximizing the Thiele score of the committee
P ∪ {c} for c ∈ C \ P is equivalent to maximizing the
marginal score, i.e., scorec(A,P ).

For seqPhragmén, we use an alternative definition
based on the idea of load balancing that can be found in
the book by Lackner and Skowron (2023): This is based
on variables yr(i) for a given round r, denoting how many
candidates have been elected so far, and voter i. Intuitively,
yr(i) denotes the cost that voter i contributed to the com-
mittee after the first r members have been elected. We start
with y0(i) = 0 for all i ∈ NA. When fixing any not yet
elected c ∈ C and having already elected r − 1 members
(c1, . . . , cr−1), we now look at the maximum cost that some
voter will have to contribute to elect c. We have to take into
consideration everything the voters approving c, i.e., NA(c),
have paid before and that the cost of candidate c is one. The
best way to split the costs such that the maximal total contri-
bution will be minimized leads to each voter paying exactly

ℓr(c) =
1+

∑
i∈NA(c) yr−1(i)

|NA(c)| . Here, we omit for readability
the sequence (c1, . . . , cr−1) in the argument of ℓr. Hence,
already having elected (c1, . . . , cr−1), seqPhragmén adds
one of the candidates c /∈ {c1 . . . cr} minimizing ℓr(c). Hav-
ing added this candidate, say cr, the loads that the voters have
contributed so far are updated. We have yr(i) = yr−1(i) for
all i /∈ NA(cr), and yr(i) = ℓr(cr) for all i ∈ NA(cr).

B Proof of Corollary 1
We prove the corollary by showing that the considered rules
satisfy continuity, standardness, and concurrence. Then, the
assertion follows from Theorem 2. For continuity, we will
use the following observation:

Let A∗ = λA + A′. We need to show for the rules that
g(A∗, S) ⊆ g(A,S) for large enough λ. Hence, if g(A,S)
chooses the maximizers or minimizers of some function v,
and g(A∗, S) does the same with respect to vλ, it suffices
to show that vλ converges to v pointwise (for λ tending to
infinity). For a sequence of functions hλ and an additional
function h, we write hλ → h to denote that hλ converges to
h pointwise.

B.1 Sequential Thiele rules.
Consider a sequential Thiele rule given by a scoring func-
tion s. We first assume that s(2)− s(1) < s(1).

Standardness For all c ∈ C, scorec(A, ∅) =∑
i′∈NA

s(|Ai′ ∩ ({c})|) − s(0) = |NA(c)|s(1), proving
the claim.

Continuity It suffices to show scorec(A
∗,P )

λ →
scorec(A,P ). Let P ⊂ C be a partial committee. Then,
scorec(λA + A′, P ) = λscorec(A,P ) + scorec(A

′, P ).
Clearly scorec(A,P ) + scorec(A

′,P )
λ → scorec(A,P ).

Concurrence Let A and c, d, (c1, . . . cℓ) be given as re-
quired. Then, the marginal score of c decreases equally for
each ballot of the form {cj , c}, analogously for d with {cj , d}.
Since d shares more such ballots, it has a smaller marginal
score and can thus not be chosen.

If we don’t have s(2) − s(1) < s(1), then, as s does not
represent AV, we have that s(2 + x) − s(1 + x) < s(1 +
x) − s(x) for some minimal x > 0. Hence, we can simply
modify the profile A from the proof of Theorem 2. By adding
d1 . . . , dx to each ballot in A, we know that the sequential
Thiele rule must first choose all dj and then proceeds as in
the previous case.

B.2 Sequential Phragmén.
Next, we consider seqPhragmén.

Standardness. It holds that ℓ1(c) =
1+

∑
i∈N(c) 0

|NA(c)| , which is
minimized by the approval winners.

Continuity. For a profile A, let yr and ℓr be defined as
above, where yr(i′) = 0 if i′ /∈ NA. For the profile λA+A′,
we use y∗r , ℓ∗r . Note that y∗r (i) = y∗r (i

′) for all i ∈ NA and i′

that are clones of i. For readability, we will now write N,N ′

instead of NA, NA′ .
Since we choose candidates with minimal load, it suffices

to show λℓ∗r → ℓr for establishing continuity. For this, we
show that λy∗r (i) converges to yr(i) for all i ∈ N ∪N ′. We
prove this by induction over r ≥ 0.

For r = 0, observe that it does not matter how we define
ℓ0 and we can simply set ℓ0(c) = 0 = ℓ∗0(c) for all c. Further,
y0(i) = 0 = y∗0(i) for all i ∈ A∗.

Assume the claim holds for r − 1. Let us consider
λℓ∗r . By splitting the sum in the numerator and divid-
ing through λ in the denominator, we obtain λℓ∗r(c) =
1+

∑
i∈λN(c) y

∗
r−1(i)+

∑
i∈N′(c) y

∗
r−1(i)

|NA(c)|+
|N

A′ (c)|
λ

. For the numerator we

have
∑

i∈λN(c) y
∗
r−1(i) =

∑
i∈N(c) λy

∗
r−1(i) which con-

verges to yr−1(i) by induction. Similarly,
∑

i∈λN ′(c) y
∗
r−1(i)

converges to 0 by induction. The denominator converges
to |N(c)|. Hence λℓ∗r(c) converges to ℓr(c). From this, it
directly follows that in both cases λy∗r (i) converges to yr(i).

Concurrence. Let an approval profile A and candidates
c, d, and (c1, . . . cℓ) be given as required. Further, let
t1, . . . , tℓ denote the times at which c1, . . . , cℓ were bought
for the committee. Then, the total budget of c increases be-
tween all tj at least as fast as the total budget of d. Addi-
tionally, since c and d are both unchosen so far, each voter
approving {cj , c} has the same budget as each voter approv-
ing {cj , d} at any time t ≤ tℓ. Thus, at each time tj for j ≤ ℓ,
the budget of d is decreased at least as much as the budget of
c, and at some time it is decreased strictly more. In total, the
budget of c will always be strictly larger than that of d from



time tℓ onward, until the next candidate is chosen. Hence,
d /∈ g(A, k, (c1, . . . , cℓ)).

B.3 MES.
For MES, we can show an even stronger statement: For pro-
files A where |Ai| ≤ 2 for all i ∈ NA and |NA(c)| =
|NA(d)| ≤ n

k for all c, d ∈ C, the rule is equal to
seqPhragmén. For this, it suffices to show that after
Phase 1, the budgets are the same. For the direction from
left to right, let (c1, . . . , cℓ) ∈ S be a sequence that can be
bought in Phase 1. This implies that there are no ballots of the
form {cj , cj′} with j ̸= j′ ≤ ℓ, as else the budget would not
suffice. Further, it must be that |NA(cj)| = n

k for all j. The
sequence is hence also valid under seqPhragmén, since at
time t = k

n , the voters approving cj have enough money to
buy this candidate into the committee for all j ≤ ℓ. For both
rules, the voters approving the candidates are afterwards left
with a budget of zero.

For the direction from right to left, let (c1, . . . , cℓ) ∈ S
be a sequence that can be bought by seqPhragmén up to
time t = k

n . Then, it must be the case that all of them have
NA(cj) =

n
k and they share no ballots. Hence, they can also

be bought in Phase 1 of MES. Again in both cases, all voters
approving some cℓ are left with a budget of zero, concluding
the proof.

For a violation of participation by MES that is severe and
does not rely on Phase 2, note that the gadget from the proof
of Theorem 4 (see Figure 2) can be generalized such that,
already after Phase 1, the abstaining agent only has one can-
didate in the committee when participating and all of her
approved candidates if abstaining. This works for an arbitrary
number of approved candidates.

C Proofs of Propositions 1 and 2
Next, we consider participation for unrepresented voters.

Proposition 1. Sequential Thiele rules and seqPhragmén
satisfy participation for unrepresented voters. MES violates
participation for unrepresented voters.

Proof. We prove the claim here for sequential Thiele rules;
the claim for seqPhragmén follows analogously. Thus, let
f denote a sequential Thiele rule and let s denote its scoring
function. Moreover, we let A denote a profile, k the target
committee size, i ∈ NA a voter, and W ∈ f(A, k) a winning
committee with W ∩Ai = ∅.

Our goal is to show that f(A−i, k) ̸≻i f(A, k). For this,
we show two claims, namely first that W ∈ f(A−i, k) and
second if there is W ′ ∈ f(A−i, k) with W ′ ∩ Ai ̸= ∅, then
there is also W ′′ ∈ f(A, k) with W ′′ ∩Ai ̸= ∅.

First, we show that W ∈ f(A−i, k). To this end, let
S = (c1, . . . , ck) denote the sequence in which the can-
didates in W get picked. The central observation is now
that ŝ(A−i, {c1, . . . , cℓ}) = ŝ(A, {c1, . . . , cℓ}) for all ℓ ∈
{1, . . . , k} since voter i does not approve any of the can-
didates in W . Moreover, it holds that ŝ(A, {c1, . . . , cℓ}) ≥
ŝ(A, {c1, . . . , cℓ−1, x}) ≥ ŝ(A−i, {c1, . . . , cℓ−1, x}) for all
x ∈ C \ {c1, . . . , cℓ}, where the first inequality follows from
definition of sequential Thiele rules, and the second one that

voter i may approve x and thus reduce the points of commit-
tee by abstaining. Chaining our inequalities, we thus infer
that ŝ(A−i, {c1, . . . , cℓ}) ≥ ŝ(A−i, {c1, . . . , cℓ−1, x}) for
all ℓ ∈ {1, . . . , k} and x ∈ C \ {c1, . . . , cℓ}, so S is also a
chosen sequence for A−i and W ∈ f(A−i, k).

For the second point, we assume that there is W ′ ∈
f(A−i, k) such that W ′ ∩ Ai ̸= ∅ and let S′ = (c′1, . . . , c

′
k)

denote the corresponding picking process. Now, suppose
that (c′1, . . . , c

′
ℓ) is the longest prefix of S′ that is also valid

for A (if ℓ = 0, this is the empty sequence). If voter i ap-
proves any candidate in this prefix, then there is a commit-
tee W ′′ ∈ f(A, k) with W ′′ ∩ Ai ̸= ∅ and we are done.
Hence, suppose that {c′1, . . . , c′ℓ} ∩ Ai = ∅, which implies
that ℓ < k as W ′ ∩ Ai ̸= ∅. In this case, it is easy to see
that ŝ(A, {c1, . . . , cℓ+1}) ≥ ŝ(A−i, {c1, . . . , cℓ, x}) for ev-
ery x ∈ C \ ({c1, . . . , cℓ} ∪ Ai) as voter i does not change
the score of x but may increase the score of c′ℓ+1. Hence,
since the candidate c′ℓ+1 is not valid anymore as (c′1, . . . , c

′
ℓ)

is the longest valid prefix of S, this means that we add next a
candidate that is approved by voter i, so there is a committee
W ′′ ∈ f(A, k) with W ∩Ai ̸= ∅.

We next turn to the counter example demonstrating that
MES fails participation for unrepresented voters. To this end,
we consider the following profile A consisting of 51 voters
and set our target committee size to 5.

20× {x1, x2, x3} 10× {y1, y2} 10× {y1, y2, z}
9× {z, c} 2× {c}

We claim that c ̸∈ W for every committee W ∈ f(A, 5),
but c will be chosen if one of the voters uniquely approving it
abstains. We start by analyzing the profile A−i where one of
these voters abstains. In this case, there are exactly 50 voters,
so every voter has a budget of 1

10 . It is now easy to check that
two of the candidates {x1, x2, x3} and both y1 and y2 will
be bought for a price of 1

20 . Finally, as fifth candidate c will
be bought for a price of 1

10 .
By contrast, in the profile A, every voter has a budget of 5

51 ,
so we can only buy one candidate from {x1, x2, x3} and one
from {y1, y2} (again for a price of 1

20 ). In the next step, we
then buy candidate z for a price of 53

918 . Afterwards, Phase 1
of MES is complete as no candidate can be afforded. It can be
checked that the voters approving {x1, x2, x3} have in total a
budget of 20( 5

51 − 1
20 ) left, the voters who approve {y1, y2}

have a budget of 10( 5
51 − 1

20 ) left, and the voters approving
c and {c, z} have a budget of 11 · 5

51 − 9 · 53
918 = 19

34 . Since
the candidates in {x1, x2, x3} and in {y1, y2} are approved
by 20 voters whereas c is only approved by 10 voters, it can
now be easily verified that we will buy one candidate of both
of these two sets in Phase 2 of MES instead of c.

Hence, for A, no committee containing c is chosen whereas
every committee contains c in A−i. We note that this exam-
ple also generalizes an observation by Lackner and Skowron
(2023) which implies that MES fails participation for unrep-
resented voters when using a suitable tie-breaking mecha-
nism.

Now, we consider participation on laminar profiles.
Proposition 2. Sequential Thiele rules, seqPhragmén,
and MES satisfy participation on laminar profiles.



Proof. The proof follows three key steps. First, we show
that laminar profiles can be represented as directed forests.
Second, we show how to locate valid sequences at the tops
of trees. Third, we analyze changes in the score when adding
candidates to the committee or a voter joins the election.

We first consider sequential Thiele rules given by a scoring
function s. We assume first that the scoring function is strictly
increasing, i.e., that s(x) < s(x+ 1) for all x ≥ 0.

Step 1: Laminar profiles are directed forests. First of
all, we show that laminar profiles resemble a collection of
directed trees. Even stronger, each node, up to clones, rep-
resents a ballot and has an in-degree of at most one. For-
mally, define the relation → as follows: Let A be a laminar
profile. x ⇒ y iff there is i ∈ NA with x, y ∈ Ai and
there is j with x ∈ Aj , y /∈ Aj . In other words, x ⇒ y iff
∅ ≠ NA(y) ⊂ NA(x) This relation is asymmetric, but tran-
sitive, and we hence thin it out by defining x → y iff x ⇒ y
and there is no z ̸= x such that x ⇒ z and z ⇒ y. We claim
that every node can have at most one predecessor with respect
to →, up to clones. To show this, let x → z and y → z. Then,
this means that there is some i with z, x ∈ Ai, which implies
x, y, z ∈ Ai. Thus, the support of x, y is not disjoint and one
of the subset-relations must hold. Without loss of generality,
let NA(x) ⊆ NA(y). If it were that ∅ ̸= NA(x) ⊂ NA(y),
we could infer y ⇒ x, which contradicts y → z. Hence,
NA(x) = NA(y), implying that x = y or y is a clone of
x. Hence, we can identify each c that appears in the forest
(including all its clones x, y, . . . ) with the ballot including
all clones and predecessors that have to appear as soon as
c is contained, i.e., B(c) = {d|NA(d) = NA(c) ∨ d →
· · · → c} = {d|NA(c) ⊆ NA(d)}. Further, we can assign to
each node (=candidate) c as weight the number of ballots Ai

that are equal to {d ∈ C|NA(d) ⊆ NA(c)}. This then fully
identifies the laminar profile.

Step 2: Valid sequences are located at the tops of the
trees. We now claim the following, which will help us for the
proof of participation: Let (c1, . . . , cℓ) be a valid sequence
w.r.t. A. If c ∈ g(A, k, (c1, . . . cℓ)), c must be maximal w.r.t.
→ (and ⇒) except for cj with j ≤ ℓ. Let c → d and both
unchosen. Since NA(d) ⊂ NA(c), every voter approving d
must also approve c. Hence, for the committee W = {cj |j ≤
ℓ}, we have |Ai ∩W ∪ {c}| = |Ai ∩W ∪ {d}| and hence
s(|Ai ∩W ∪ {c}|) = s(|Ai ∩W ∪ {d}|) for all i ∈ NA(d).
(For ℓ = 0, W = ∅.) Further, there must be some voter
i ∈ NA(c) \ NA(d). For this voter, |Ai ∩ (W ∪ {c})| >
|Ai ∩ (W ∪{d})| and hence s(|Ai ∩ (W ∪{c})|) > s(|Ai ∩
(W ∪ {c})|). For all other voters i′, |Ai′ ∩ (W ∪ {c})| ≥
|Ai′∩(W∪{d})| = |Ai′∩W | We conclude ŝ(A,W∪{c}) >
ŝ(A,W ∪ {d}) and d /∈ g(A, k, (c1, . . . , cℓ)), as desired.

Step 3: Changes in score when Ai joins or a ∈ Ai is
added to the sequence. Let now P ⊂ C, A be any laminar
profile, and a, b, c ∈ C \ P . We further require that P is
located at the top of the trees, i.e., there is no candidate in
C \ P that dominates any candidate in P w.r.t. ⇒. Further,
we require that a is located directly beneath P , i.e., if a has a
predecessor w.r.t. →, it is contained in P . We now investigate
how the scores are affected by adding a to P .

Let c be from a different sub-tree than a, i.e., NA(c) ∩
NA(a) = ∅. Then, the marginal contribution of c remains

the same when adding a to P : scorec(A,P ∪ {a}) =∑
i′∈N s(|Ai′ ∩ (P ∪ {a, c})|) − s(|Ai′ ∩ (P ∪ {a})|) =

0+
∑

i′∈NA(c) s(|Ai′∩(P ∪{a, c})|)−s(|Ai′∩P ∪{a}|) =
0 +

∑
i′∈NA(c) s(|Ai′ ∩ (P ∪ {c})|) − s(|Ai′ ∩ P |) =∑

i′∈N s(|Ai′ ∩ (P ∪{c})|)− s(|Ai′ ∩P |) = scorec(A,P ).
Now, let b, c be successors or clones of a, i.e., NA(b) ⊆

NA(a), NA(c) ⊆ NA(a) We claim that if b has a weakly
larger marginal contribution than c before adding a, the same
holds true after adding a.

After adding a, we have

scorec(A,P ∪ {a})− scoreb(A,P ∪ {a})

=
∑

i′∈NA

s(|Ai′ ∩ (P ∪ {a, c})|)− s(|Ai′ ∩ (P ∪ {a, b})|)

+ s(|Ai′ ∩ (P ∪ {a})|)− s(|Ai′ ∩ (P ∪ {a})|)

=
∑

i′∈NA(b)∪NA(c)

s(|Ai′ ∩ (P ∪ {a, c})|)−

s(|Ai′ ∩ (P ∪ {a, b})|)

=
∑

i′∈NA(b)∪NA(c)

s(|Ai′ ∩ {c}|+ x)− s(|Ai′ ∩ {b}|+ x)

=|NA(c) \NA(b)|(s(x+ 1)− s(x))

−|NA(b) \NA(c)|(s(x+ 1)− s(x)).

Here, the second to last line holds for some x we now specify.
This is because all ballots containing b or c must contain
all their respective predecessors, including a, all clones of a
and its predecessors. Further, since the sequence constructing
P and adding a is located at the top of the trees, P ∪ {a}
must consist of all predecessors of a and some clones of a
(including a itself). We thus denote them by Pa ⊆ P . Let
x = |Pa|. Then, for all i′ ∈ NA(b) ∪ NA(c), we have that
Ai′ ∩ (P ∪ {a}) = Pa.

Before adding, we obtain with the same reasoning

scorec(A,P )− scoreb(A,P )

=|NA(c) \NA(b)|(s(x)− s(x− 1))

−|NA(b) \NA(c)|(s(x)− s(x− 1)).

This proves the claim.
Now, consider the addition of some voter i to A−i. For

c with c /∈ Ai, the marginal score cannot change as we
have Ai ∩ (P ∪ {c}) = Ai ∩ P and hence scorec(A,P ) −
scorec(A−i, P ) = s(|Ai∩(P ∪{c})|)−s(|Ai∩P |) = 0. On
the other hand, if c ∈ Ai, it must be that the marginal score
increases, as scorec(A,P )−scorec(A−i, P ) = s(|Ai∩(P ∪
{c})|)− s(|Ai ∩ P |) = s(|Ai ∩ P |+ 1)− s(|Ai ∩ P |) ≥ 0.

Sequence comparisons. We now use Step 3 to show that
the valid sequences in essence do not change when i joins the
election, except for the fact that there can be more candidates
c ∈ Ai appearing, and the appearance can be earlier.

This is due to the following: For the first candidate of the
sequence, this is clear since we use AV and the only change
so far is that Ai is added to A−i. For the induction step, let
the sequence c⃗ = (c1, . . . , cℓ) be given that is valid for A−i,
and let d⃗ = (d1, . . . , dℓ) be valid for A and obtained from c⃗
such that:



• All cj ∈ Ai appear and are in the same order in d⃗ as in c⃗.

• Further c ∈ Ai with c ̸= cj for all j ≤ ℓ can occur in d⃗,
but only after the ones that already were in c⃗.

• All other dj occurring in d⃗ must satisfy d /∈ Ai. They must
appear in the same order as in c⃗, and with no cj /∈ Ai left
out.

To give an example, let c⃗ = (c1, c2, c3, a1, a2) and Ai =
{a1, a2, a3}.

Then, d⃗ = (a1, c1, c2, a2, c3), as well as d⃗ =
(a1, a2, c1, c2, a3) would satisfy all conditions imposed.
On the other hand, d⃗ = (a1, c2, c1, a2, c3), d⃗ =

(a1, c1, c2, a3, a2), and d⃗ = (a1, c1, a2, a3, c3) would violate
some condition.

For the induction start, note that ℓ = 0 is trivial, as for c⃗
of length 0 there is some d⃗ of the same length satisfying all
conditions, namely the empty sequence d⃗ = ∅.

For ℓ → ℓ + 1, let c⃗∗ of length ℓ + 1 be given. Without
loss of generality, we can assume that our sequence chooses
candidates of Ai whenever it can. This is because we first
choose all clones before we choose their successors. Hence,
in each valid sequence we can permute the clones and the
sequence still remains valid. If Ai is the only ballot of its type
in A, it can be that it distinguishes some candidates contained
in Ai from others not contained in Ai. Choosing the “clones”
with respect to A−i that are contained in Ai hence always
leads to an outcome that voter i weakly prefers. We can use
the induction hypothesis on the first ℓ entries of c⃗∗ to obtain d⃗

of length ℓ. If we can extend d⃗ with some candidate from Ai,
we are done as we can choose some c ∈ Ai that satisfies all
conditions. If d⃗ and c⃗ contain exactly the same elements, we
are also done as we can simply extend d⃗ with cℓ+1 or some
candidate in Ai. Else, let d⃗ contain some candidate dx be the
first candidate not occurring in c⃗ (then, dx ∈ Ai) and consider
the first cj that is not present in d⃗ (then, cj /∈ Ai). We claim
that we can extend d⃗ with cj . To see this, note that it is valid to
extend (c1, . . . , cj−1) with cj with respect to A−i. To obtain
d⃗ from (c1, . . . , cj−1), we only add candidates approved in
Ai, call them a1, . . . . Assume for contradiction that cj is
a successor of one of the ay with respect to A. Then, we
could not have chosen cj before ai in A−i, a contradiction.
(This holds clearly in the case that cj is a successor in A−i

too. Else, it must be a clone of some a ∈ Ai with respect
to A−i. But then, we would prefer to choose a over cj , so
this cannot be the case either.) Since cj is not a successor to
any of the ay , its marginal score remains unchanged by their
addition, while all other marginal scores can only decrease.
Finally, when adding i, only the scores of candidates that i
approves of increase whil all others remain the same. Since
the former are not chosen by assumption, cj still has maximal
score and is chosen. This proves that for every committee in
f(A−i, k), there is a committee in f(A, k) that voter i prefers
at least as much. Analogously, we can show that for every
committee in f(A, k) there is some committee in f(A−i, k)
that i prefers less, concluding the proof that Thiele rules with
s(1) < s(2) < . . . satisfy participation on laminar profiles.

Now consider a general Thiele rule where the scoring
function is only weakly increasing. Then, if there exists x ≥
1 with s(x) = s(x + 1), by definition of Thiele scoring
functions, s(x′) = s(x′ + 1) for all x′ ≥ x. We can now
proceed with the same proof by induction, where the start
remains trivial. To show that for each W ∈ f(A−i, k) there
is some W ′ ∈ f(A, k) such that |W ′ ∩Ai| ≥ |W ∩Ai|, we
can simply take a valid partial sequence of length ℓ− 1 and
substitute it with a sequence that is located at the top of the
trees. More precisely, as soon as we can choose a candidate
that is not located as high as possible on the tree, the marginal
contribution of this candidate (and hence all others) is zero,
and we can hence choose everything and extend the sequence
as we wish. To show that for each W ′ ∈ f(A, k) there is
some W ∈ f(A−i, k) such that |W ′ ∩ Ai| ≥ |W ∩ Ai|,
the induction start is again trivial. In the induction step we
can again make a case distinction: If so far the sequence is
located at the top of the tree, we can continue as before. Else,
we chose a candidate with marginal contribution 0 w.r.t. A.
Hence, all remaining candidates from now on have marginal
contribution 0, which does not change if Ai abstains. This
concludes the proof for sequential Thiele rules.

For seqPhragmén, the proof is analogous to the tie-less
case of sequential Thiele rules. Step 2 works, since Nd ⊂ Nc

implies that the total budget for c will be strictly larger than
the total budget of d at any time t > 0 where both are not
bought yet.

Step 3 is substituted by the following: Let A be laminar.
Instead of ℓr(c), given a valid sequence (c1, . . . , cℓ) for a
profile A we now more precisely write ℓ(A, (c1, . . . , cℓ), c)
for the time at which c would be bought if it was joining the
committee next. Since the query function of seqPhragmén
does not depend on k, we can omit it. Then, let d⃗ =
(d1, . . . , dℓ′) and c⃗ = (c1, . . . , cℓ) be given with the same
requirements as for sequential Thiele rules.

To prove this claim, we use induction: ℓ = 0 is triv-
ial. ℓ → ℓ + 1, we obtain that ℓ(A, (d1, . . . , dℓ′), d) =
ℓ(A−i, (c1, . . . , cℓ), d). The last dℓ′+1 must also be equal
to some cjℓ′+1

. Let d /∈ Ai. The cj in-between do not change
the y(i) of any i ∈ NA(d) by definition. Hence, also ℓr(c)
remains the same, proving the claim.

From this, we can directly infer the following: For c ∈ Ai,
ℓ(A, (c1, . . . , cℓ), c) will only decrease. Hence, we obtain se-
quences of the form (c1, . . . ) when i abstains and sequences
of the form (d1, . . . ) when i participates with the same con-
ditions imposed as for the proof of sequnetial Thiele rules.

Thus, for every committee W that can be chosen when
i abstains, there is another committee W ′ that is chosen
when i participates and is weakly preferred by i. Vice versa,
removing the ballot Ai only increases the ℓr(c) of c ∈ Ai

while leaving all others intact. Hence, for every committee
W ′ ∈ f(A, k) there is another committee W ∈ f(A−i, k)
such that i weakly prefers W ′ to W . This concludes the proof
for seqPhragmén.

For MES, we again show that the valid sequences stay
the same except for candidates c ∈ Ai which can now ap-
pear earlier and more frequent in the sequences. To formal-
ize this, we need to take into account both phases. Note



that due to Step 2, the order of the sequence in Phase 1
is fixed up to permutation of the clones. For (c1, . . . , cℓ)
that is valid and concludes Phase 1 , let b(c, (c1, . . . , cℓ)) =
b(c, (c1, . . . , cℓ, . . . )) denote the sum of the starting bud-
gets of the voters i ∈ NA(c) for Phase 2. Analogously to
seqPhragmén, for Phase 2, we do not denote the times
as ℓr(c). Instead, given a valid sequence (c1, . . . , cℓ) for a
profile A we now write ℓ(A, k, (c1, . . . , cℓ), c) for the time at
which c would be bought if it was joining the committee next.
Also, the numerator replaces the 1 with 1− b(c, (c1, . . . , cℓ))
since the voters already have the starting budget.

The following statement will be helpful: Let (c1, . . . , cℓ)
be valid and conclude Phase 1 (for A or A′). For c /∈
{c1, . . . , cℓ}, all voters i ∈ NA(c) (i ∈ NA′(c)) have the
same remaining budget. Note that the ballots of these voters
i are represented precisely by the clones and successors of
c in the forest. The proof by induction proceeds over valid
sequences that are queried in Phase 1 of length ℓ. For the
empty sequence, it holds true. Now, for ℓ → ℓ + 1, adding
a candidate c in Phase 1 that apart from {c1, . . . , cℓ} is at
the top of some tree, the budgets of any d from another tree
does not change. The same holds for d that are in the same
tree as c, but not clones or successors of c. In the tree of c,
note that by induction all voters i that are represented by c,
its clones, or its successors have the same budget left. Hence,
the optimal way to balance the load always leads to them
paying the same amount, concluding the induction step.

From this, we can in fact deduce that once we bought a
node and all it’s clones of some tree into the committee, the
next chosen successor from this node (if there will be any at
all) will be exactly the one with the highest approval score.
As soon as we cannot afford a root or one of its clones, we
cannot afford any other candidate from this tree in Phase 1.

Again, impose restrictions on (d1, . . . , dℓ′) and
(c1, . . . , cℓ) which are valid for A,A−i respectively.
Then ℓ(A, (d1, . . . , dℓ′), d) = ℓ(A−i, (c1, . . . , cℓ), d) for
all d /∈ Ai. The challenge is to manage the transition
between the two phases. ℓ = 0 is trivial. Let now ℓ > 0
and (c1, . . . , cℓ) be given. For Phase 1, observe that voters
with disjoint ballots from Ai (i.e., belonging to other trees)
cannot change the budget of voters with ballots not disjoint
from Ai by spending money. Hence, every tree buys the
candidates on its own. Further, once the root and all its
clones of a tree are bought and the budgets are updated,
for the rest of the process we can remove the former and
consider its successors to be roots. Also, observe that k
candidates can only be bought if the voters spend all their
money perfectly. Hence, in this phase the different sub-trees
do not compete for who gets chosen. We thus do not need
to analyze thresholds between different (sub-)trees and
look at each (sub-)tree individually. Phase 1 in A−i was
executed with a budget per voter of k

n−1 . Hence, the voters
with ballots not disjoint from Ai, denote their number by
nT , had a joint budget of (nT − 1) k

n−1 to buy candidates.
When i joins, the budget changes to (nT )

k
n ≥ (nT − 1) k

n−1 .
Hence, the voters can only buy more candidates from Ai in
total. This remains true after the root a ∈ Ai is bought and
we analyze the sub-tree where the root is again contained

in Ai. Hence, Phase 1 yields weakly more elements from
Ai if i participates. Further, observe that the total budget
of all voters strictly decreases. Hence, for all other trees, it
holds that they cannot buy more candidates in the Phase 1
when i participates. In Phase 2, these trees lose time as they
first have to gather money for the candidates that they could
not buy in Phase 1. Even if no such candidates exist, they
still lose time as their starting budget decreased and they
have to first gather money to get back to the budget that they
had when i abstained. Hence, also combined from Phase 1
and 2, other trees do not pose a problem for voter i as they
cannot elect more candidates than when i abstained. In the
tree of voter i itself, note that all candidates benefit from
voter i joining, as this gives a head start with respect to the
starting budget in Phase 2: Either the candidates can now
already be bought in Phase 1, or we are closer to buying
them in Phase 2. Also, in Phase 2 all successors of each
candidate in Ai benefit from the lesser load the have to pay
when one of the Ai is elected: if some c ∈ Ai needs to be
bought before a successor c → d, and i joins, then c will be
bought earlier and the voters approving d have more time to
start from scratch and generate money for d. Further, only
the candidates in Ai benefit from a faster money generation
rate when i participates.

We can hence proceed as for sequential Thiele rules and
seqPhragmén to obtain the result for MES.

D Proofs Concerning Hardness of Abstention
In this appendix, we provide the missing proofs from Sec-
tion 3.3.

We start with the complete proof of the hardness result for
all Thiele rules.
Theorem 3. For every sequential Thiele rule except AV,
it is NP-hard to decide whether a voter can benefit from
abstention.

Proof. Let s : N0 → Q be any scoring function inducing a
Thiele rule. Since we assume concavity, for x ≥ 1, it holds
that s(x + 1) − s(x) ≤ s(x) − s(x − 1). Assume that s is
not the function defined by s(x) = αx for all x and some
α > 0, i.e., represents a Thiele rule distinct from AV.

For x ≥ 1, let δ(x) = s(x)− s(x− 1). Hence, concavity
implies that δ(x+ 1) ≤ δ(x) for all x ≥ 1. Since s does not
represent AV, we know that δ(y+1) < δ(y) for some y ≥ 1.
By concavity, this implies δ(y′) < δ(y) for all y′ ≥ y + 1.

Also, there exists a Y ≥ y+1 such that δ(Y −1)−δ(Y ) >
δ(Y )− δ(Y + 1). Indeed, if this was not the case, then, for
every ℓ ≥ y + 1, it would hold that δ(ℓ) − δ(ℓ + 1) ≥
δ(ℓ− 1)− δ(ℓ) ≥ · · · ≥ δ(y)− δ(y+1). Hence, δ(ℓ+1) ≤
δ(ℓ)− (δ(y)− δ(y+1)), and inductively δ(ℓ+1) ≤ δ(y)−
ℓ(δ(y)− δ(y + 1)). Since the right-hand side is negative for
large ℓ, we obtain a contradiction to the monotonicity of s.

Hence, there exists Y ≥ 2 with δ(Y − 1) − δ(Y ) >
δ(Y )−δ(Y +1). Without loss of generality,1 we may assume
that this already happens for Y = 2, i.e., we assume that

1Otherwise, one can enhance the reduction by the standard
trick of adding Y − 2 candidates approved by all voters (see, e.g.,
Janeczko and Faliszewski 2023). Then, the sequential Thiele rule
has to select these candidates first, and the election behaves as if



δ(1)− δ(2) > δ(2)− δ(3). (1)

Note that Equation (1) together with concavity directly
implies that δ(2) < δ(1).

We are ready to perform our reduction from INDEPEN-
DENTSET for cubic2 graphs (Garey and Johnson 1979).

Assume that we are given an instance (G, t) of INDEPEN-
DENTSET where G = (V,E) is a cubic graph and t is an
integer (target size of the independent set). Without loss of
generality, we assume that we only consider instances where
|V | ≥ 2 and |E| ≥ 3t. (If |E| < 3t, then there cannot exist
an independent set of size t in a cubic graph.)

We construct the reduced instance.
The set of candidates is C = {gi : i ∈ [4]} ∪ {b} ∪ CV ,

where CV = {cv : v ∈ V }. The role of the candidates is as
follows:

• Candidates gi form a gadget in which abstention might be
performed.

• Candidates cv represent vertices v.
• Candidate b is very strong, and will always be selected

first. This helps to balance scores in the gadget.

Let n = |V | and α a positive integer such that α
4
δ(1)−δ(2)

δ(1)

is an integer and α(δ(1) − δ(2)) ≥ δ(1). Let m =
α
2

(
n4 −

(
t− 1

2

)
n3 δ(1)−δ(2)

δ(1)

)
. By the choice of α, this is

an integer. The voters with their approval sets are as follows:

• For each vertex v ∈ V , there exist αn3 voters approving
{cv}.

• For each pair of vertices {v, w} ⊆ V , there exist αn3

voters with approval set {cv, cw}.
• For each edge {v, w} ∈ E, there exists one voter with

approval set {cv, cw, g1}.
• There exist αn5 with approval set {b}.
• There exist 3t voters with approval set {b, g2}.
• Moreover, there are voters approving only the gadget

candidates. These are
– m voters for each of the approval sets

{g1, g2}, {g1, g3}, {g2, g4}, {g3, g4},
– |E| − 3t voters approving {g2} (this is well-defined

because |E| ≥ 3t), and
– one voter approving {g1}.

As usual, A denotes the approval profile. The target com-
mittee size is 1 + n + 3. We write the target size as this
sum to hint at the fact that we are selecting all candidates in
{b} ∪ CV as well as 3 gadget candidates. We claim that

a voter with approval set {g1, g3} can benefit from
abstention if and only if the source instance is a Yes-
instance.

starting with the Y −1st candidate with the capped weight function.
2Cubic graphs are defined as the graphs where every vertex has

degree exactly 3.

As in the proof for seqPAV in the main paper, we use the
notation for the marginal scores of the candidates and recall
the definition here. Given a candidate c, an approval profile
A, and a partial committee P , we define the marginal score
of c with respect to A and P as

scorec(A,P ) =
∑
i∈N

s(|Ai ∩ (P ∪ {c})|)− s(|Ai ∩ P |).

We are ready to perform the election in the reduced in-
stance. The initial scores of the candidates are

• scoreb(A, ∅) = (αn5 + 3t)δ(1),
• scorecv (A, ∅) = (αn4+3)δ(1) for all v ∈ V , because cv

occurs in n− 1 pairs approved by αn3 voters each, αn3

times in a singleton approval set, and v is incident to 3
edges of G,

• scoreg1(A, ∅) = (2m+ |E|+ 1)δ(1),
• scoreg2(A, ∅) = (2m+ |E|)δ(1), and
• scoreg3(A, ∅) = scoreg3(A, ∅) = 2mδ(1).

Note that (2m + |E| + 1)δ(1) < αn4δ(1) + n2δ(1) <
αn5δ(1) for n ≥ 2. Hence, we have to select b as the first
candidate.

Next, the best candidates to select are candidates of the
type cv. Assume that {b} ∪ W ′ is the tentative committee
consisting of ℓ + 1 candidates, where W ′ ⊆ CV with 0 ≤
|W ′| = ℓ ≤ t− 1. Then, for cv ∈ CV \W ′, it holds that

scorecv (A, {b} ∪W ) ≥ αn4δ(1)− ℓαn3(δ(1)− δ(2))

≥ αn4δ(1)− (t− 1)αn3(δ(1)− δ(2)).

There, we only count the contribution to the score by voters
with an approval set {cv, cw} for any pair {v, w} ⊆ V or an
approval set {cv}.

However, for i ∈ [4], it holds that

scoregi(A, {b} ∪W ′) ≤ (2m+ |E|+ 1)δ(1)

< αn4δ(1)− (t− 1

2
)αn3(δ(1)− δ(2)) + n2δ(1)

= αn4δ(1)− (t− 1)αn3(δ(1)− δ(2))

− 1

2
αn3(δ(1)− δ(2)) + n2δ(1)

≤ αn4δ(1)− (t− 1)αn3(δ(1)− δ(2))

− 1

2
n3δ(1) + n2δ(1)

< αn4δ(1)− (t− 1)αn3(δ(1)− δ(2)).

In the last weak inequality, we use that α(δ(1)−δ(2)) ≥ δ(1),
and in the final, strict inequality that n ≥ 2.

Together, this shows that the k candidates that are selected
after b have to be of type cv . Let W ⊆ CV be the set of these
k candidates.

At this point, for all cv ∈ CV \W , scoresv (A,S ∪W ) ≤
αn4δ(1) − tαn3(δ(1) − δ(2)) + 3δ(1) (bounding with the
case where none of the three candidates corresponding to
neighbors of v in G are in W ), whereas the gadget candidates
have scores



• scoreg3(A,S ∪W ) = scoreg4(A,S ∪W ) = 2mδ(1),
• scoreg2(A,S ∪W ) = (2m+ |E| − 3t)δ(1) + 3tδ(2),
• scoreg1(A,S ∪W ) = (2m+ |E| − 3t)δ(1)+3tδ(2)+1

if S is an independent set, and
• scoreg1(A,S ∪W ) ≥ (2m + |E| − 3t)δ(1) + 3tδ(2) +
1 + [(δ(1)− δ(2))− (δ(2)− δ(3))] if S is not an inde-
pendent set.

For the score of g2, note that the voters with approval set
{b, g1} only contribute δ(2). For the score of g1 when S is
an independent set, then, since G is cubic, the score is δ(2)
instead of δ(1) for exactly 3t candidates with approval set
{cv, cw, g1}. If S is not an independent set, then the score
is lowered from δ(1) to δ(2) for at most 3t− 1 such voters,
whereas it is lowered to δ(3) for all voters with approval set
{cv, cw, g1} where both cv ∈ W and cw ∈ W .

Now, it holds that

2mδ(1)

= αn4δ(1)− tαn3(δ(1)− δ(2)) +
1

2
αn3(δ(1)− δ(2))

≥ αn4δ(1)− tαn3(δ(1)− δ(2)) +
1

2
n3δ(1)

> αn4δ(1)− tαn3(δ(1)− δ(2)) + 3δ(1).

Once again, we use that α(δ(1)− δ(2)) ≥ δ(1) and n ≥ 2.
Therefore, the next candidate to be selected is g1. Then, the
score of g4 is largest, and g4 is elected.

We arrive at a point where scoreg2(A,W ∪ {b, g1, g4})
and scoreg3(A,W ∪ {b, g1, g4}) are bounded by

2mδ(2) + (|E|+ 2)δ(1)

< 2mδ(2) + n2δ(1)

= αn4δ(2)−
(
t− 1

2

)
n3 δ(1)− δ(2)

δ(1)
δ(2) + n2δ(1)

< αn4δ(2) + n2δ(1)

= αn3(n− 1)δ(2) + αn3δ(1)

+ αn3(δ(2)− δ(1)) + n2δ(1)

≤ αn3(n− 1)δ(2) + αn3δ(1)− n3δ(1) + n2δ(1)

< αn3(n− 1)δ(2) + αn3δ(1).

However, while not all candidates of type cv are elected,
the score of such a candidate is at least αn3(n − 1)δ(2) +
αn3δ(1), where we just count the contribution of voters with
approval sets {cv, cw} and {cv}. Hence, next, we have to
select all candidates of type cv .

It remains to select the final candidate. Clearly,
scoreg3(A,C \ {g2, g3}) = 2mδ(2) < scoreg2(A,C \
{g2, g3}), and g2 is selected.

Hence, the choice set contains exactly the committee {b}∪
CV ∪ {g1, g2, g4}.

Now, consider the situation where some voter with ap-
proval set {g1, g3} abstains from the election.

Until {b} and a set W ⊆ CV of k candidates are se-
lected, seqPAV proceeds identically. We arrive at a point

where the scores of g2 and g4 are the same as without ab-
stention, whereas scoreg3(A, {b}∪W ) = (2m−1)δ(1) and
scoreg1(A, {b} ∪W ) = (2m+ |E| − 3t)δ(1) + 3tδ(2) if S
is an independent set and scoreg1(A,S∪W ) = (2m+ |E|−
3t)δ(1)+3tδ(2)+[(δ(1)− δ(2))− (δ(2)− δ(3))] if S is not
an independent set. Hence, if S is not an independent set, then
g1 is still selected next, and the procedure continues as with-
out abstention, yielding the committee S ∪CV ∪{g1, g2, g4}.

However, if S is an independent set, then g2 has an equal
score as g1 and may be selected first. Similar arguments as
before show that the subsequent selection order is g3 next,
then the remaining candidates from CV , and finally g1.

Consequently, if the source instance is a No-instance, then
the choice set is identical after abstention, and there is no
incentive to abstain. Otherwise, the choice set additionally
contains {b} ∪ CV ∪ {g1, g2, g3} and is preferred by a voter
with approval set {g1, g3} (according to Kelly’s extension).

Next, we prove our theorem concerning MES and
seqPhragmén.

Theorem 4. Consider voting by MES. Then,

1. It is NP-hard to decide whether a voter can benefit from
abstention after Phase 1.

2. It is NP-hard to decide whether a voter can benefit from
abstention after Phase 2, even if none of her approved
candidates are elected in Phase 2.

Moreover, for seqPhragmén, it is NP-hard to decide
whether a voter can benefit from abstention.

We split the proof into a technical lemma where we carry
out the reduction for MES. The lemma also gives more insight
about how the election with MES actually selects candidates:
We provide a unified approach from which we obtain hard-
ness of abstention for both Phase 1 and after the complete
execution of MES with a non-trivial Phase 1. The assertion
for MES is a direct consquence. In the sequel, we extract a
proof for seqPhragmén from the same reduction.

Lemma 1. Consider voting by MES with completion by
seqPhragmén. Then, there exists a polynomial-time re-
duction from an NP-complete problem such that there exists
a voter in the reduced instance with the following properties.

1. If the source instance is a No-instance, then the outcome
of the election is identical with and without this voter’s
abstention both after Phase 1 and after Phase 2.

2. If the source instance is a No-instance, then the outcome
of the election under MES is preferred by this voter under
abstention both after Phase 1 and after Phase 2.

Proof. We reduce from the NP-complete problem RE-
STRICTED EXACT COVER BY 3-SETS (RX3C) (Gonza-
lez 1985). An instance (U,S) consists of a finite universe
U = {x1, . . . , x3t} and a family S = {S1, . . . , S3t} of 3-
subsets of U where each element from U appears in exactly
three sets from S. The question is whether there is a family
S ′ ⊆ S which is an exact cover of U . For each i ∈ [3t], let
Si = {S ∈ S : xi ∈ S}. Moreover, we say that S ′ ⊆ S is
a maximal cover if (i) for all S, T ∈ S ′, S ∩ T = ∅ and



(ii) for all S ∈ S \ S ′, there exists T ∈ S ′ with S ∩ T ̸= ∅.
In other words, (U,S) is a Yes-instance if and only if there
exists a maximal cover of size t. Without loss of generality,
we assume that

t3 ≥ 90t2 + 120t+ 60. (2)

Assume that we are given an instance (U,S). We construct
a reduced instance.

First, the set of candidates is C = {gi : i ∈ [6]}∪{cS : S ∈
S} ∪ {ai : i ∈ [t]} ∪ {b1, b2}.

The role of the candidates is as follows:

• Candidates gi form a gadget in which abstention might be
possible.

• Candidates cS represent the sets in the source instance.
• Candidates ai are auxiliary candidates who can help to

create a certain symmetry between the gadget candidates
g1 and g4.

• Candidates b1 and b2 are used to fill the committee in
Phase 2.

Moreover, we have voters with the following approval sets:

• For each i ∈ [t], there are 10t3+45t voters with approval
set {ai} and 15 voters with approval set {g4, ai}.

• There are 7t3 voters approving {b1} and 7t3 − (90t2 +
120t + 60) voters approving {b2}. This is well defined
because of Equation (2).

• For each s ∈ S, there are 10t3 voters with approval set
{cS}.

• For each i ∈ [3t], there are 5 voters with approval set
{cS : S ∈ Si} ∪ {g1} and 15t voters with approval set
{cS : S ∈ Si}.

• One voter approving {g1, g2, g3}. This voter will be used
for the potential abstention.

• The following voters that approve only gadget candidates:
– 4t3 + 30t+ 13 voters approving {g1, g4},
– 6t3 voters approving {g1},
– 3t3 + 11 voters for each of the approval sets {g2} and

{g3},
– 12 voters for each of the approval sets {g5} and {g6},
– 7t3 + 30t voters for each of the approval sets {g2, g5}

and {g3, g6}, and
– 3t3 voters for each of the approval sets {g4, g5} and

{g4, g6}.

The target committee size is 4t+ 5.
Note that there is a total of 10t3(4t + 5) voters. Hence,

every voter has an initial budget of 1/(10t3), and it is essen-
tially sufficient for a candidate to be added to the committee
that 10t3 voters which have not spent budget thus far approve
her. The approval scores of the candidates are:

• 10t3 + 45t+ 15 for candidates ai and cS
• 10t3 + 45t+ 14 for g1,
• 10t3 + 45t+ 13 for g4,
• 10t3 + 30t+ 12 for g2, g3, g5 and g6,
• 7t3 for b1, and
• 7t3 − (90t2 + 120t+ 60) for b2.

4t3 + 30t
+13

6t3

3t3 + 11 3t3 + 11

12 12

7t3 + 30t 7t3 + 30t

3t3 3t3

g1

g2 g3

g4

g5 g6

Figure 2: Approval ballots of the gadget candidates. The
candidates gi are the white circles. Each ellipse displays a
set of voters with the indicated multiplicity. The green shape
indicates the potential abstaining agent with approval set
{g1, g2, g3}.

The instance is designed in such a way that the execution
of MES is identical to an execution of seqCCAV: Whenever a
candidate is bought, then the voters approving this candidate
have to spend almost their entire budget, and hence the next
candidate is a candidate which maximizes the approval score
of the voters without an approved candidate in the committee.

The most relevant overlapping of approval sets concerns
gadget agents. The approval scores of the gadget candidates
are designed in a way such that either the agents {g1, g5, g6}
or (and this will only happy under abstention if the source
instance is a Yes-instance) the agents {g4, g2, g3} are selected.
The approval sets for the voters that only approve gadget
agents are displayed in Figure 2 and illustrate this interplay.
For instance, if g1 is selected first, then there is not enough
budget left to buy g4 in Phase 1.

Let us consider MES on the reduced instance. The first
candidates to be selected are of type ai or cS . If a candidate
ai is selected, then the approval scores of candidates ai or
cS are not affected. If cS is selected, then the budget of a
voter who approves cS is reduced to 1

10t3 − 1
10t3+45t+15 =

45t+15
10t3(10t3+45t+15) , which is negligible for buying further can-
didates. In particular, for T ∈ S with T ∪ S ̸= ∅, there are at
most 10t2 + 30t+ 10 supporters of cT with full budget left.
Hence, MES has to select g1 or g4 before candidates cT .

However, as long as a set S ∈ S has an empty intersection
with all sets T of candidates cT selected thus far, S still is
approved by 10t3 + 45t+ 15 voters with full budget.

As a consequence, we select first all candidates of type ai
as well as candidates {cS : S ∈ S ′} for some maximal cover
S ′ ⊆ S.

We reach a point, where the candidate cS for S ∈ S \ S ′

is only approved by at most 10t3 + 30t+ 10 voters with full
budget, whereas all other voters approving cS have negligible
budget.



At this point, the only voters approving a gadget candidate
that already have spent budget approve g1 or g4. For g4,
there are still 10t3 + 30t + 13 voters with full budget, but
the voters with approval sets {ai, g4} have spent most of
their budget. Hence, there are 15t voters that have only left a
budget of 45t+15

10t3(10t3+45t+15) . Next, we consider g1. Therefore,
let ℓ := |S ′|. Note that ℓ ≤ t. Then, there are 10t3 + 30t +
14 + 15(t− ℓ) voters with full budget and 15ℓ voters with a
remaining budget of 45t+15

10t3(10t3+45t+15) .
Hence, g1 will be bought next. This will in particular cause

that g4 cannot be bought in Phase 1 anymore. Now, the one
voter with approval set {g1, g2, g3} lowers the number of full
budget voters of g2 and g3, and we have to buy g5 and g6
next.

Now, all the voters supporting gadget candidates have neg-
ligible budget. Hence, we complete Phase 1 of MES by buying
all remaining candidates of type cS . This is possible because
each of them has 10t3 supporters only approving them. At
this point, the remaining total budget for candidates of type
ai, cS , or gi is at most (10t3+45t+15) 45t+15

10t3(10t3+45t+15) =
45t+15
10t3 . However, b1 and b2 still accumulate a total budget of

7t3 and 7t3 − (90t2 + 120t+ 60) ≥ 6t3 (see Equation (2)),
respectively. Hence, in the completion phase starting with
these budgets, seqPhragmén selects b1 and b2.

Together, the unique selected committee is

{cS : S ∈ S} ∪ {ai : i ∈ [t]} ∪ {b1, b2, g1, g5, g6},

where b1 and b2 are not present, yet, at the end of Phase 1.
Now, consider the situation where the voter with ap-

proval set {g1, g2, g3} abstains from the election. Now, voters
only have a slightly larger budget of 4t+5

10t3(4t−5)−1 , but the
influence of this slight decrease is negligible for the out-
come of the election. We still select first candidates ai and
{cS : S ∈ S ′} for some maximal cover S ′ ⊆ S. However,
we now reach a stage where it may be possible to select g4
instead.

Let again ℓ := |S ′|. At this point, for g4, there are still
10t3 + 30t+ 13 voters with full budget and 15t voters with
negligible budget, whereas g1 is approved by 10t3 + 30t +
13 + 6(t− ℓ) voters with full budget and 15ℓ voters with a
negligible budget. Note that the negligible budget is of exactly
the same size for voters approving g1 and g4. Hence, it is
possible to select g4 next if and only if S ′ is a maximal cover
of size t which happens if and only if the source instance is
a Yes-instance. If g4 is selected, then g2 and g3 are selected
next. Then, Phase 1 is completed by selecting the remaining
candidates of type cS , and in Phase 2, b1 and b2 are selected.
If g1 is selected instead of g4, then the election proceeds as
without abstention.

Hence, if the source instance is a Yes-instance, then the
committee

{cS : S ∈ S} ∪ {ai : i ∈ [t]} ∪ {b1, b2, g4, g2, g3}

is also selected under abstention.
Hence, the abstaining agent benefits from abstention (ac-

cording to Kelly’s extension) if and only if the source instance
is a Yes-instance.

Interestingly, the same reduction as in the previous proof
also works for seqPhragmén.
Theorem 5. For seqPhragmén, it is NP-hard to decide
whether a voter can benefit from abstention.

Proof. We can use exactly the same reduction as in the
proof of Lemma 1. We briefly outline, how the election with
seqPhragmén proceeds on the reduced instance.

The first time where voters have accumulated enough
money to buy an alternative is at time 1

10t3+45t+15 . At this
time, seqPhragmén simultaneously buys all candidates
of type ai as well as candidates {cS : S ∈ S ′} for some
maximal cover S ′ ⊆ S.

After these candidates are bought, at most 10t3+30t+10
voters approving cT for T /∈ S ′ have their money left, but
there are still at least 10t3 + 30t+ 11 voters approving each
of the gadget candidates. Hence, at least at time 1

10t3+30t+11 ,
we have enough budget to buy gadget candidates. Note that at
this point, assuming that t is large enough, the slightly more
voters approving candidates of type cT have not accumulated
enough money to buy further such candidates.

Hence, until time 1
10t3+30t+11 , we buy {g1, g5, g6} if no

voter abstains or S ′ is of size less than t. If the voter approving
{g1, g2, g3} abstains, then both g1 and g4 may be bought at
the same time, namely at time 1

10t3+30t+13 , but only if S ′ is
of size exactly t. This offers the possibility to buy g5 and g6
afterwards if the source instance is a Yes-instance.

After the gadget candidates have been bought, we buy
the remaining candidates of type cS latest at time 1

10t3+15t .
In principal, we could omit the auxiliary candidates b1 and
b2 from the reduction and have a committee of size 2 less
compared to the election with MES. If we want to maintain
them in the reduction, then they are the last candidates to be
bought latest at time 1

7t3−(90t2+120t+60) .
Hence, the election with seqPhragmén leads to the exact

same outcome as with MES and we conclude that the voter
with approval set {g1, g2, g3} can improve her outcome by
abstention (according to Kelly’s extension) if and only if the
source instance was a Yes-instance.

Finally, we consider the corollary for the verification and
approval guarantee on selected committees.
Corollary 2. For every sequential Thiele rule except AV, as
well as for Phase 1 or complete MES, and seqPhragmén,
the following statements are true.
1. Given a set of committees C, it is coNP-complete to decide

whether C is the outcome of the election.
2. Given a positive integer s, it is NP-complete to decide

whether a given voter approves at least s candidates in
some winning committee.

Proof. The result directly follows from the reduction in the
proof of Theorem 4. For the first result, we omit the abstain-
ing agent and question whether the committee that is always
selected is the unique winner. For the second result, we want
the abstaining agent to be present, so we omit the critical
gadget alternative from some other voter approving gadget
candidates.


