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Abstract

We investigate how to obtain bid privacy in sealed-bid
auctions. In particular, this paper focuses onunconditional
full privacy, i.e., privacy that relies neither on trusted third
parties (like auctioneers) or trusted fractions of bidders, nor
on computational intractability assumptions (like the hard-
ness of factoring). These constraints imply a scenario in
which bidders exchange messages according to some prede-
fined protocol in order to jointly determine the auction out-
come without revealing any additional information. It turns
out that the first-price sealed-bid auction can be emulated
by an unconditionally fully private protocol. However, the
protocol’s round complexity is exponential in the number of
bits that represent a bid, and we show there is no more effi-
cient protocol. On the other hand, we prove the impossibil-
ity of fully privately emulating the second-price sealed-bid
(Vickrey) auction for more than two bidders. This impossi-
bility holds even when relaxing various privacy constraints
such as protecting just a single losing bid (while maintain-
ing anonymity) or tolerating the revelation of complete in-
formation to a coalition of at least half of the bidders.

1. Introduction

Auctions are key mechanisms for allocating goods, ser-
vices, tasks, and resources among multiple agents (e.g.,
[26, 24, 20, 8]). At the same time, privacy is a crucial issue
in multiagent systems. A major reason why people may be
hesitant to use software agents, or to participate in Internet
commerce themselves, is the worry that too much of their
private information is revealed. Furthermore, in the mod-
ern electronic society, the information might get propagated
to large numbers of parties, stored in permanent databases,
and automatically used in undesirable ways. In this paper,
we will study the possibility of executing the most common
sealed-bid auction protocols in a way that preserves the bid-
ders’ privacy to a maximal extent.

Sealed-bid auctions are not only widely used for the sell-
ing of goods, they also have been shown to be applicable to
task assignment, scheduling, and finding the shortest path
in a network with selfish nodes. Bid privacy is of increas-
ing importance in such auctions, and various schemes that
avoid blind trust in a single auctioneer have been proposed
recently. In contrast to existing work, this paper deals with
unconditional full privacy, i.e., privacy that relies neither on
trusted third parties (like auctioneers) or trusted fractions
of bidders, nor on computational intractability assumptions
(like the hardness of factoring). We derive several impossi-
bility and possibility results in this domain.

Our setting consists of one seller andn bidders that in-
tend to come to an agreement on the selling of a good.1

The two major (sealed-bid) mechanisms that yield such an
agreement are thefirst-price and second-price(Vickrey)
[25] auctions. In both mechanisms, each bidder submits a
sealed bid to a trusted-third party called the auctioneer2 ex-
pressing how much he is willing to pay. The auctioneer de-
clares the bidder who submitted the highest bid as the win-
ner of the auction. In the first-price auction, the winning bid-
der pays the amount that he bid, whereas in the second-price
auction, he has to pay the amount of the second-highest bid.
Both auction formats have their strengths and weaknesses.
For example, the first-price auction yields more revenue
when bidders are risk-averse. The second-price auction, on
the other hand, is strategy-proof, which means that bidders
are best off bidding their true valuation of the good to be
sold (when valuations are independent). This eliminates an
agent’s need to counterspeculate on the other agents’ valu-
ations. Interestingly, the side-effects of this striking advan-
tage are said to contribute to the sparseness of the second-
price auction in the real world for two reasons [22, 21, 23]:
Bidders are reluctant to reveal their true valuations to the
auctioneer, and bidders doubt the correctness of the resultas

1 All the presented results also hold for similar auctions forother areas
of application, in particular procurement auctions where there is one
buyer and multiple sellers.

2 Sometimes the auctioneer and the seller are the same person.



they do not pay what they bid (unlike in the first-price auc-
tion). For example, the auctioneer might create a second-
highest bid slightly below the highest bid in order to in-
crease his revenue. Both issues are based on a lack of trust
in the auctioneer. For this reason, it would be desirable to
somehow “force” the auctioneer to always select the right
outcome (correctness) and “prohibit” the propagation of
private bid information (privacy). Various schemes for sat-
isfying these desiderata (for first-price as well as second-
price auctions) have been proposed in recent years (e.g.,
[18, 15, 1, 7, 6]).3 Virtually all of them rely on at least some
of the following three assumptions.

1. A certain fraction of third parties (auctioneers) is trust-
worthy.

2. The adversary,i.e., parties that intend to violate cor-
rectness and privacy, is limited to polynomially-
bounded computational power.

3. One-way functions exist.

Regarding assumption (1): privacy is usually obtained by
distributing the trust onto several auctioneers and using var-
ious forms of secure multiparty computation (MPC). How-
ever, a coalition ofall auctioneers can always breach pri-
vacy. For this reason, we distribute the computation of the
auction outcome on bidders themselves. We say that an auc-
tion is fully private[7] if it is distributed on bidders and pri-
vacy can only be breached by a coalition ofall bidders.4

Assumptions (2) and (3) are based on computational
intractability. When relying on intractability assumptions
(e.g., the hardness of factoring), it has been shown that MPC
allows the computation of arbitrary functions so that no pri-
vate input can be uncovered by a polynomially-bounded
adversary [14]. Unfortunately, assumption (3) not only re-
lies on the unproven assumptionP 6= NP but also on the
widely unknown field of average-case complexity and fur-
ther, more specific assumptions. Moreover, even when these
conjectures are true, it may be possible to breach privacy
in the future when sufficient computational power becomes
available5, violating assumption (2). The results in this pa-
per donot rely on intractability. This is calledunconditional
privacy (aka. non-cryptographicor information-theoretic
privacy) as the adversary’s computational power is unlim-
ited. It is known that only a restricted class of functions
can be fully privately computed in this model.6 Section 2

3 [27] even deals with combinatorial auctions.
4 In cryptographic terms, this is(n − 1)-privacy.
5 This does not require super-polynomial computational power. The se-

curity parameter used for a protocol might be too low considering fu-
ture computational power.E.g., 512-bit RSA keys were considered se-
cure a while ago but are not secure anymore.

6 When assuming that a majority of the agents is trustworthy (recall that
this is notfull privacy),all functions can be jointly computed in the
unconditional model [4, 9].

presents some known results about this class of functions.
As is standard in unconditional MPC [4, 9], we assume a
complete network of private channels between agents. How-
ever, somtimes, a given protocol can also be implemented
by just providing a broadcast channel (see Theorem 3).

In order to simplify the presentation, we will focus on
what are known aspassive(aka.honest-but-curious) adver-
saries in the cryptographic literature,i.e., we assume that
participants follow the prescribed protocol. Active adver-
saries, on the other, hand may arbitrarily deviate from the
protocol by sending manipulated messages. This assump-
tion does not restrict the applicability of our results be-
cause there are standard cryptographic techniques (zero-
knowledge arguments in our case) that force active adver-
saries to act according to a protocol (seee.g., [13]). How-
ever, using these techniques will incur overhead. After all,
negativeresults in the passive adversary model also hold in
a model that allows active adversaries.

In a nutshell, this paper investigates the availability of
distributed protocols that allown bidders to jointly deter-
mine the outcome of first-price or second-price auctions by
exchanging messages according to some predefined rules
and without revealing unnecessary information. In the rest
of this paper, this is calledemulationof an auction.

The results on second-price auctions also hold for a gen-
eralization called uniform-price or(M +1)st-price auction.
In an (M + 1)st-price auction, the seller offersM identi-
cal items and each bidder desires to buyoneof them. It has
been proven that it is a strategy-proof mechanism to sell
those items to theM highest bidders for the uniform price
given by the(M + 1)st highest bid [25]. The Vickrey auc-
tion is just a special case of this mechanism for the selling
of single goods (M = 1).

In the case of ties, we deliberately leave the outcome un-
defined. As a consequence, the impossibility results of this
paper hold regardless of what is done in case of a tie: pick-
ing the auction winner at random, using bidder priorities, or
even revealing the identities of tied bidders.

The remainder of this paper is structured as follows. Sec-
tion 2 presents some known theoretic results that we will
leverage in our proofs. In Sections 3 and 4, we study the
existence of fully private protocols that emulate first-price
and second-price auctions, respectively. In both sections,
we consider public outcome functions in which all bidders
learn the auction outcome as well as private outcome func-
tions in which only the winning bidder learns the outcome.
In Section 5, we propose several relaxations of our strict pri-
vacy model and investigate the possibility of fully private
auction protocols under these loosened restrictions. The pa-
per concludes with an overview of obtained results and a
brief outlook in Section 6.



2. Preliminaries

In this section we review some key results which we will
use as building blocks in our proofs. We say that function
f is privately computableif it can be jointly computed by
agents using a distributed, randomized protocol consisting
of several rounds. In each round, each agent may send a
message to any other agent. Each message an agent sends
is a function of his input (i.e., his bid), his independent ran-
dom input, the messages he received so far, and the recipi-
ent. When the protocol is finished, all agents know the value
of f . No subset of agents is capable of uncovering any in-
formation besides what can be inferred from the function
outcome and the coalition’s inputs.

A complete characterization of all privately computable
Booleanfunctions has been given:

Theorem 1 [11] A Boolean function is pri-
vately computable if and only if it is of the form
f(x1, x2, . . . , xn) = B1(x1) ⊕ B2(x2) ⊕ · · · ⊕ Bn(xn),
whereBi(xi) are Boolean predicates and⊕ is the Boolean
exclusive-or operator.

Such a complete characterization for general (non-Boolean)
functions is not yet known (except for only two agents
[16]). However, there are necessary conditions for the pri-
vate computability of a function.

Lemma 1 (Corners Lemma) [16]7 Letf : X×Y → Z be
a privately computable2-ary function. For everyx1, x2 ∈
X andy1, y2 ∈ Y , if f(x1, y1) = f(x1, y2) = f(x2, y1) =
a, thenf(x2, y2) = a.

Lemma 2 (Partition Lemma) [11] Let f : X1 × X2 ×
· · · × Xn → Z be a privately computablen-ary func-
tion. Then, for eachi ∈ {1, 2, . . . , n} the 2-ary func-

tion f2(xi, (x1, x2, . . . , xi−1, xi+1, xi+2, . . . , xn))
def
=

f(x1, x2, . . . , xn) is privately computable.8

By combining Lemma 1 and Lemma 2, we can obtain a nec-
essary condition for the possibility of privately computing
an n-ary function. This can be used to prove that the out-
come of an auction withn bidders isnot privately com-
putable (as in Theorems 2, 4, 5, and 6).

Lemma 3 Let ~x and~y be vectors ofn − 1 bids andx and
y single bids. It isimpossibleto fully privately emulate an
auction if(~x, x), (~x, y), and(~y, x) all yield outcomea and
(~y, y) yields nota. In this case,~x, ~y, x, y are called an “em-
beddedOR”.

7 The Corners Lemma was also implicitly used in [11]. It was referred
to as “Corners Lemma” for the first time in [10].

8 This is a special case of the Partition Lemma as defined in [10] for
t = n − 1.

Due to a lack of a more detailed characterization ofn-ary
privately computable functions, the only way to show that a
function is privately computable is to give a concrete proto-
col that fulfills this task (as in Theorems 3 and 6). As first
observed by Benaloh [5], there is a simple protocol to pri-
vately compute modular sums.

Lemma 4 [5] f(x1, x2, . . . , xn) =
∑n

i=1 xi mod p is
privately computable.

Proof: Each agenti choosesn random valuesxij ∈ Zp

so that the modular sum
∑n

j=1 xij mod p = xi. He then
sends each addendxij to agentj and keepsxii. After
all agents have done this, each agenti publishessi =
∑n

j=1 xji mod p, i.e., the modular sum of his remaining
xii and then−1 addends he received.f(x1, x2, . . . , xn) =
∑n

i=1 si mod p can be computed by each participant.¤

For example, this protocol could be used to allow a group of
participants to privately compute their average salary with-
out revealing any individual salary.

3. First-Price Auctions

Every social-welfare-maximizing auction assigns the
item for sale to the bidder who values it most (when bid-
ders’ valuations are positive and the seller’s valuation is
zero). In other words, thearg maxfunction yields the auc-
tion winner. For the case of first-price auctions, themax
function yields the selling price. In the following theo-
rem, we prove that neither function can be computed fully
privately.

Theorem 2 Themax andarg max functions cannot be em-
ulated by fully private protocols.

Proof: Let fmax(x1, x2, . . . , xn) = max{x1, x2, . . . , xn}
and~x = (2, 1, . . . , 1

︸ ︷︷ ︸

n−2

), ~y = (1, 1, . . . , 1
︸ ︷︷ ︸

n−2

), x = 2, andy = 1.

Thenfmax(~x, x) = fmax(~x, y) = fmax(~y, x) = 2. How-
ever,fmax(~y, y) = 1.

fmax 1 2 . . .

1, 1, . . . , 1 1 2
2, 1, . . . , 1 2 2

It follows from Lemma 3 thatfmax is not privately com-
putable.

Let farg max(x1, x2, . . . , xn) = arg maxn
i=1{xi} be a

function that yields the index of the greatest argument. Fur-
thermore, let~x = (2, 1, . . . , 1

︸ ︷︷ ︸

n−2

), ~y = (4, 1, . . . , 1
︸ ︷︷ ︸

n−2

), x =

5, and y = 3. Then farg max(~x, x) = farg max(~x, y) =
farg max(~y, x) = n. However,farg max(~y, y) = 1.



farg max 3 5 . . .

2, 1, . . . , 1 n n

4, 1, . . . , 1 1 n

It follows from Lemma 3 thatfarg max is not privately com-
putable. ¤

Even though the winner and selling price functions can-
not be computed separately, it turns out that it is possi-
ble to privately compute both at the same time. Let~b =
(b1, b2, . . . , bn) be the vector of submitted bids.

Definition 1 The first-price sealed-bid auction’s pub-
lic outcome is defined by the following function.

f1(~b) = (max(~b), arg max(~b))

Theorem 3 The first-price sealed-bid auction can be emu-
lated by a fully private protocol that requires2v − 1 rounds
of interaction in the worst-case wherev is the number of
bits used to represent a bid. There is no more efficient pri-
vate protocol for this task.

Proof: When examiningf1 for just two bidders, it turns out
that the Corners Lemma is not applicable (irrelevant of tie
resolution). Bold numbers denote the winner’s index.

f1 1 2 3 4 5 . . .

1 (2,2) (3,2) (4,2) (5,2)
2 (2,1) (3,2) (4,2) (5,2)
3 (3,1) (3,1) (4,2) (5,2)
4 (4,1) (4,1) (4,1) (5,2)
5 (5,1) (5,1) (5,1) (5,1)
...

It is important to note that the lack of an embeddedOR is
not sufficient to show that a function is privately computable
(not even for only two agents). The Corners Lemma can
only be used to prove that a function isnot privately com-
putable. However, Kushilevitz has given a complete charac-
terization of privately computable functions fortwo agents
[16] and it turns out thatf1(b1, b2) is indeed privately com-
putable. Even more interestingly, we can show thatf1 is
privately computable foranynumber of agents which is be-
yond the capabilities of existing theory. Nevertheless, such
a result can always be proven constructively by providing a
specific protocol that privately computes the desired func-
tion. Consider the following protocol.

1. j = 2v

2. Each agent broadcasts either1 or 0 depending on
whether he is willing to pay pricej or not.9

9 Different tie resolution policies can be implemented by prescribing
the order of each agent’s broadcast,e.g., random order or priority or-
der. In any case, a tie will result in some (tiny) amount of additional
information to be revealed (if there are more than two bidders).

3. If all agents broadcasted0, setj = j − 1 and proceed
to step 2. Otherwise,j is the selling price and the bid-
der(s) who submitted1 wins the auction.

This protocol builds on the same principle as the Dutch
(or descending) auction in which an auctioneer gradually
(or continuously) lowers the selling price until a bidder ex-
presses his willingness to buy (e.g., [19]).
Even though the theoretic results in [16] cannot decide the
private computability of generaln-ary functions, they give
a lower bound for the number of rounds needed to compute
a givenn-ary function (if it can be computed privately). In
the interest of space, we do not go into the details of [16],
but merely state thatf1’s so-called decomposition tree has
depth2v −1 when bids consist ofv bits. This implies expo-
nential round complexity (in fact,2v − 1 rounds) and thus
the optimality of the proposed protocol. ¤

As mentioned in Section 1, unconditionally private pro-
tocols require a complete network of private channels. An
outstanding property of the proposed protocol is that the
availability of abroadcast channelreplaces the need for pri-
vate channels as there is no interaction between bidders.
In practice, it is usually much easier to establish a broad-
cast channel than private channels between agents. This can
be seen by the popularity of real-world Dutch auctions in
flower of fish markets. Also, in reality, the physical pres-
ence of bidders allows for very efficient synchronization via
a common timer.

As a pleasant side effect, the availability of a secure
broadcast channel10 provides security against active adver-
saries,i.e., privacy is guaranteed even in the presence of
bidders that deviate from the protocol specification. Gener-
ally, security against active adversaries requires the exten-
sive use of costly zero-knowledge proofs/arguments.

It might seem that the outcome function defined in Defi-
nition 1 reveals the minimal amount of information needed
to perform the required transaction (e.g., selling of a good).
However, the notion of minimal revelation can be refined
even further by moving toasymmetricinformation revela-
tion. It is not necessary that losing bidders learn who won
the auction and which price this agent has to pay. Since a
protocol that is secure against active adversaries isprovably
correct, there is no need to publicly announce the outcome
for reasons of transparency. On account of this, we will now
consider the joint computation ofn functionsf1

i (~b) so that
bidderi only learns the result of his private outcome func-
tion.

10 Byzantine agreement [17] is not feasible in this context asit either re-
quires intractability assumptions or the trustworthiness of two thirds
of the agents.



Definition 2 The first-price sealed-bid auction’spri-
vateoutcome function is

f1
i (~b) =

{

bi if i = arg max(~b)

0 otherwise
.

In practice, it might be desirable to include the seller in the
protocol and compute allf1

i functions for him as well. This
prevents a bidder from aborting the protocol if he is unsatis-
fied with the auction outcome, leaving the seller uninformed
about that outcome.

Theorem 4 There is no fully private protocol that computes
theprivateoutcomef1

i (~b) of a first-price sealed bid auction.

Proof: With the notable exception of [3] which only ad-
dresses the two-party case, the theory on privately com-
putable functions only deals with the case whereall agents
get to know the function value. The results in this set-
ting cannot be directly transferred to a setting where only
oneagent learns the function value. However, the follow-
ing lemma is sufficient to show the impossibility of private
computation in the latter case.

Lemma 5 If a function f(x1, x2, . . . , xn) cannot be pri-
vately computed so that all agents learn the function value,
it cannot be computed for a single agent (or any subset of
agents).

Proof of Lemma 5: Indirect proof. If functionf can be
computed so that a single agent learns the output, then it
can also be computed so that all agents receive the function
value by simple adding a protocol step in which the desig-
nated agent sends the output to all remaining agents.¤

Now, we continue the proof of Theorem 4. With the help
of Lemma 5, we can prove the impossibility of computing
f1

i by using a chain of necessary conditions. It suffices to
use Lemma 3 to show the impossibility of a private proto-
col for anyn.
Let ~x = (4, 1, . . . , 1

︸ ︷︷ ︸

n−2

), ~y = (2, 1, . . . , 1
︸ ︷︷ ︸

n−2

), x = 1, andy = 3,

and consider the outcome function of bidderi: f1
n(~x, x) =

f1
n(~x, y) = f1

n(~y, x) = 0. However,f1
n(~y, y) = 3.

f1
n 1 3 . . .

2, 1, . . . , 1 0 3
4, 1, . . . , 1 0 0

It follows from Lemma 3 thatf1
i is notprivately computable

for anyi. Lemma 5 implies that there is no protocol to com-
putef1

i privately so that only bidderi learns the outcome.
¤

4. Second-Price Auctions

In this section, we investigate the existence of fully pri-
vate protocols that emulate second-price sealed-bid (Vick-
rey) auctions.

Definition 3 The second-price sealed-bid (Vickrey) auc-
tion’s public outcome is defined by the following function.11

f2(~b) = (max(~b
− arg max(~b)), arg max(~b))

Proposition 1 There is a fully private protocol that emu-
lates the second-price sealed-bid auctionfor two bidders.

Proof: When there are just two bidders, the Dutch auction
style protocol proposed in the proof of Theorem 3 can be ap-
plied in reverse to find thelowestinstead of the highest bid.
This is equivalent to a two-bidder English (ascending) auc-
tion. Beginning at the lowest possible price, the price rises
incrementally until one of the bidders isnot willing to pay
the given price. This does reveal the identity of the second-
highest bidder, but this information can always be inferred
from the outcome if there are only two bidders. ¤

Unlike the first-price auction, the second-price auction’s
outcome cannot be computed fully privately if there are
more than two bidders.

Theorem 5 There is no fully private protocol that emulates
the second-price sealed-bid auction for more than two bid-
ders.

Proof: We construct a general counter-example for any
n > 2. Let ~x = (3, 2, 1, . . . , 1

︸ ︷︷ ︸

n−3

), ~y = (3, 1, . . . , 1
︸ ︷︷ ︸

n−2

), x = 2,

andy = 1. Thenf2(~x, x) = f2(~x, y) = f2(~y, x) = (2,1)
(Bidder1 wins the auction at price2). However,f2(~y, y) =
(1,1) (Bidder1 wins at price1).

f2 1 2 . . .

3, 1, 1, . . . , 1 (1,1) (2,1)
3, 2, 1, . . . , 1 (2,1) (2,1)

It follows from Lemma 3 thatf2 is not privately com-
putable. ¤

The positive impact of such an impossibility result is
that, in the future, no efforts need to be wasted in trying to
find a protocol with the claimed properties. This effect is en-
hanced in Section 5.1 where it is shown that even the search
for a Vickrey auction protocol that only hidessomespecific
information is futile.

11 ~b
−i denotes vector~b with componenti removed.



Unfortunately, there is also no fully private second-price
auction protocol in which only the winner learns the out-
come,i.e., the second-highest bid.

Definition 4 The second-price sealed-bid auction’sprivate
outcome function is

f2
i (~b) =

{

max(~b
−i) if i = arg max(~b)

0 otherwise
.

Corollary 1 There is no protocol that computes theprivate
outcome of a second-price sealed bid auction.

Proof: The counter-example given in the proof of Theo-
rem 5 (~x, ~y, x, andy) also yields an embeddedOR when
consideringf2

1 , the outcome function for bidder1. ¤

5. Security Model Relaxations

The unconditional full privacy model considered in this
paper is very strict. It is natural to ask for relaxations that
may invalidate the impossibility of private second-price
auctions. The following options come to mind.

• Allow partial revelation of bids,e.g., the highest bid,
by modifying the outcome function

• Allow coalitions of bidders to uncover information by
relaxing full privacy

• Guarantee high probability of correctness instead of
correctness for sure

In the following, we will investigate the private emulationof
second-price auctions under these weakened assumptions.

5.1. Partial Revelation

The more information an outcome function reveals about
the bids, the more likely it can be privately computed. In
this section, we study whether the revelation of a limited
amount of information enables the private computation of
second-price auctions. One of the weakest privacy require-
ments is anonymity.

Definition 5 (Anonymity) An auction protocol isanony-
mousif the outcome does not change when the bids of two
losing bidders are exchanged.

Even under this weak requirement, there is no second-price
auction protocol that protects just a single losing bid.12 On

12 Interestingly, revealing the identity of the second-highest bidder (in
addition to the Vickrey auction outcome) does not help either. Since
proving this fact requires a stronger tool (the undecomposability of
matrices [16]) than the Corners Lemma, we omit the proof due to lim-
ited space.

the positive side, there is an anonymous protocol in which
the highest bid remains private but all other bid amounts are
revealed (but not who submitted which bid).

Theorem 6 A fully private protocol that anonymously em-
ulates the second-price sealed-bid auction reveals informa-
tion aboutall losing bids (in the worst case).

Proof: By contradiction. In an anonymous auction, the
bids can only be distinguished by their numerical or-
der. Assume that thekth highest bid is not revealed
(k > 2 because the second-highest bid has to be re-
vealed in a Vickrey auction). Letb(i) be the ith or-
der statistic of~b, i.e., the ith highest bid. Thengk(~b) =

(b(1), b(2), . . . , b(k−1), b(k+1), b(k+2), . . . , b(n), arg max(~b))
defines the modified second-price outcome function that
only hides bidb(k). We will now apply Lemma 3 to this gen-
eral case.
Let ~x = (n, n− 1, . . . , n− k + 2, n− k, n− k− 1, . . . , 1),
~y = (n, n − 1, . . . , n − k + 3, n − k + 1, n − k, . . . , 1),
x = n − k + 2, y = n − k + 1. Then
gk(~x, x) = gk(~x, y) = gk(~y, x) = (~x,1). How-
ever, gk(~y, y) = (~y,1) which proves the impossibil-
ity of fully privately computinggk according to Lemma 3.
The following table shows an example for four bid-
ders when only the third highest bid should be kept private
(n = 4, k = 3).

gk 2 3 . . .

4, 2, 1 (4, 2, 1,1) (4, 3, 1,1)
4, 3, 1 (4, 3, 1,1) (4, 3, 1,1)

It remains to be shown that it is possible to privately com-
pute function g(~b) = (b(2), b(3), . . . , b(n), arg max(~b))
which reveals the winner and all losing bid amounts (in-
dependently of bidders’ identities). Interestingly, thistask
can be fulfilled by a protocol similar to an anonymized En-
glish (ascending) auction.

1. j = 1

2. Each agenti setsxi =

{

1 if bi ≤ j

0 otherwise
.

3. Agents jointly computes =
∑n

i=1 xi mod (n + 1)
according to the protocol defined in Lemma 4.

4. If s > 1, setj = j + 1, and proceed to step 2.

5. If bi ≥ j, agenti broadcasts his identity and wins the
auction.

As mentioned in Section 1, there are standard cryptographic
means to ensure that agents follow the protocol truthfully
and do not manipulate, for example by wrongfully broad-
casting their identity in step 5. ¤



5.2. Uncovering by Coalitions

So far, we required that no coalition consisting of less
thann agents may be able to uncover private information
(full privacy). In this section, we examine whether loosen-
ing this restriction will enable the private emulation of Vick-
rey auctions. It turns out that the argument used in the proof
of Theorem 5 also works with a version of the Partition
Lemma (Lemma 2) for a model in which complete informa-
tion can be uncovered by coalitions including at least half of
the bidders (in contrast to coalitions ofn bidders as in full
privacy). As mentioned in Section 1, assuming that a ma-
jority of participants is trustworthy allows the private com-
putation ofany function (includingf2). As a consequence,
the private computation of the Vickrey auction’s outcome
is only possible when assuming that coalitions consist of
strictly less thann

2 bidders. A higher threshold cannot be
obtained.

5.3. Correctness with High Probability

In this section, we review whether allowing an error
probability enables the private computation of the second-
price auction. It has been shown that allowing error prob-
ability ε (whereε < 1

2 ) does not enable the private com-
putation of functions that cannot be computed with perfect
correctness in (i) the Booleann-party case [11] and (ii) the
general2-party case [16]. The auction setting we consider
belongs to the generaln-party case for which such a re-
sult is not known. However, it seems likely that the equiv-
alence of error-free and mostly-correct private computation
also holds for this setting.

6. Conclusions and Future Work

Sealed-bid auctions are not only widely used for the sell-
ing of goods, they also have been shown to be applicable to
task assignment, scheduling, and finding the shortest path
in a network with selfish nodes. Bid privacy is of increas-
ing importance in such auctions, and various schemes that
avoid blind trust in a single auctioneer have been proposed
recently. In contrast to existing work, this paper deals with
unconditional full privacy, i.e., privacy that relies neither on
trusted third parties (like auctioneers) or trusted fractions
of bidders, nor on computational intractability assumptions
(like the hardness of factoring). We investigated the avail-
ability of distributed protocols that allow a group of bidders
to jointly determine the outcome of first-price and second-
price auctions by exchanging messages according to some
predefined rules and without revealing unnecessary infor-
mation. We derived several impossibility and possibility re-
sults in this domain:

The first-price auction can be emulated by fully private
protocols. However, such a protocol will always have ex-
ponential round complexity. When modifying the specifica-
tion so that only the winning bidder learns the outcome, the
first-price auction cannot be emulated fully privately.

There is a fully private protocol that emulates the second-
price auction fortwo bidders. However, the second-price
auction cannot be emulated by a private protocol for more
than two bidders even when

• just the auction winner learns the outcome,

• just protecting a single losing bid (but maintaining
anonymity), or

• tolerating the revelation of complete information to a
coalition of at least half of the bidders.

On the positive side, we proposed a fully private second-
price auction protocol that is anonymous and only hides the
highest bid.13

Future work includes the investigation of uncondition-
ally fully private auction protocols that only reveal par-
tial information on each bid,e.g.“the lowest bid is greater
than 10”. Theorem 6 states that some information onall los-
ing bids has to be revealed in the worst case. It seems worth-
while to minimize this amount of information for practical
instances. So far, theoretic results on minimum revelation
protocols are only known for two agents [2]. A related field
of study is that of using an elicitor that incrementally asks
questions from the bidders about their bids on an as-needed
basis until the elicitor has enough information to determine
the auction winner [6, 12]. This approach also provides par-
tial unconditional privacy and it might be possible to trans-
fer results from one setting to the other.
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