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ABSTRACT
Security and privacy have become crucial factors in auction
design. Various schemes to ensure the safe conduction of
sealed-bid auctions have been proposed recently. We intro-
duce a new standard of privacy for auctions (“full privacy”),
that prevents extraction of bid information despite any col-
lusion of participants. This requirement is stronger than
other common assumptions that prohibit the collusion of
certain third-parties (e.g., distinct auctioneers). Full pri-
vacy can be obtained by applying a secret sharing scheme
in which the bidders jointly compute the selling price on
their own without uncovering any additional information.
No auctioneers or other trusted third parties are used to re-
solve the auction.
The major contribution of this work is the fully private
(M + 1)st-price auction protocol in which only the winning
bidders and the seller learn the selling price. To the best of
our knowledge there is no other cryptographic auction pro-
tocol that achieves a similar level of privacy. The auction
outcome cannot be changed or nullified by dishonest bidders
because the protocol is publicly verifiable. As full privacy
is our main goal, the drawback of the presented protocol
is efficiency. Without relaxing any security demands, it is
only applicable for high-security auctions with relatively few
bidders in reasonable time.

1. INTRODUCTION
Auctions have become the major phenomenon of electronic
commerce during the last years. In recent times, the need
for privacy has been a factor of increasing importance in
auction design. Even the world’s largest internet auction
house ebay recently introduced a “private auction”, in which
bids are anonymous and only the seller and the winning
bidder learn the result of the auction. Obviously, privacy
in these auctions is very limited as it is up to the auction
house whether the bids remain confidential. Non-public,
high-revenue auctions like spectrum license auctions require
a much higher level of protection.

We consider a situation where one seller and n bidders or
buyers intend to come to an agreement on the selling of a
good1. Each bidder submits a sealed bid expressing how
much he is willing to pay. The bidders want the highest
bidder to win the auction for a price that has to be deter-
mined by a publicly known rule (e.g., the highest or second-
highest bid). In order to fulfill this task, they need a trusted
third-party, which is called the “auctioneer”. In a regular
first-price auction, there are few possibilities to cheat for the
auctioneer if he has to announce the selling price at the end
of the auction. He could declare a price greater than the
highest bid, in order to keep the good if he thinks the bids
are not high enough. No bidder would be able to discover
this form of deception. In a second-price or so-called Vick-
rey auction [32], where the highest bidder wins by paying
the amount of the second-highest bid, things are worse. The
winner of an auction has to doubt whether the price the auc-
tioneer tells him to pay is actually the second-highest bid.
The auctioneer could easily make up a “second-highest” bid
to increase his (or the seller’s) revenue. In addition to a pos-
sibly insincere auctioneer, bidders in all sealed-bid auctions
have to reveal their bids to the auctioneer. There are nu-
merous ways to misuse these values by giving them away to
other bidders or the seller [7, 6, 4]. It remains in the hands
of the auctioneer whether the auction really is a sealed-bid
auction.

Among the different auction protocols, the Vickrey auction
has received particular attention in recent times because it
is “incentive-compatible”, i.e., bidders are always best off
bidding their private valuation of a good. This is a huge
advantage over first-price auctions, where bidders have to
estimate the other bidders’ valuations when calculating their
bid. However, despite its impressive theoretical properties,
the Vickrey auction is rarely used in practice. This problem
has been addressed several times in the literature [24, 23, 27]
and it is now common knowledge that the Vickrey auction’s
sparseness is due to two major reasons:

• the fear of an untruthful auctioneer and

• the reluctance of bidders to reveal their true valuations

The proposed protocol removes both crucial weaknesses of
the Vickrey auction by omitting the auctioneer and dis-
tributing the calculation of the selling price on the bidders

1The assignment of tasks in reverse auctions works similarly.



themselves. No information concerning the bids is revealed
unless all bidders share their knowledge, which obviously
uncovers all bids in any auction protocol. Furthermore, our
protocol is applicable to uniform-price or so-called (M+1)st-
price auctions as well. In a (M+1)st-price auction, the seller
offers M identical items and each bidder intends to buy one
of them. It has been proven by Wurman et al [35] that it
is an incentive-compatible mechanism to sell those items to
the M highest bidders for the uniform price given by the
(M + 1)st highest bid. The Vickrey auction is just a spe-
cial case of this mechanism for the selling of single goods
(M = 1).

The remainder of this paper is structured as follows. Sec-
tion 2 summarizes existing efforts in the field of crypto-
graphic auction protocols. Section 3 defines essential at-
tributes that ensure a secure and private auction conduction
and introduces “bidder-resolved auctions”. In Section 4, we
propose and analyze the bidder-resolved auction protocol
vMB-share. The paper concludes with a brief overview of
advantages and disadvantages of vMB-share and an out-
look in Section 5.

2. RELATED WORK
There has been a very fast-growing interest in cryptographic
protocols for auctions during the last years. In particular,
Vickrey auctions, which are strategically equivalent to En-
glish auctions for bidders that privately evaluate a good, and
recently (M + 1)st-price auctions attracted much attention.
Starting with the work by Franklin and Reiter [13], which
introduced the basic problems of sealed-bid auctions, but
disregarded the privacy of bids after the auction is finished,
many secure auction mechanisms have been proposed, e.g.,
[1, 2, 4, 8, 14, 15, 16, 17, 18, 19, 20, 21, 25, 26, 30, 33, 34,
37].

When taking away all the protocols that (in their current
form) are not suitable for the secure execution of second-
price auctions or reveal (partial) information after the auc-
tion is finished [13, 34, 26, 25, 15, 19, 33, 4], the remaining
work can be divided into two categories.

Most of the publications rely on computation that is dis-
tributed among auctioneers [16, 18, 17, 14, 30]. This tech-
nique requires m auctioneers, out of which a fraction (e.g.,
bm−1

3
c) must be trustworthy (threshold cryptography). Bid-

ders send shares of their bids to each auctioneer. The auc-
tioneers jointly compute the selling price without ever know-
ing a single bid. This is achieved by using sophisticated
techniques of secure multiparty function evaluation, mostly
via distributed polynomials (see Section 4.1.1). However, a
collusion of, e.g., three out of five auctioneer servers can al-
ready exploit the bidders’ trust. We argue that distributing
the trust onto several distinct auctioneers does not solve the
privacy problem, because you can never rule out that some
of them, or even all of them, collude. This point of view is
supported in a growing number of publications [20, 21, 31].

The remaining auction protocols prune the auctioneer’s abil-
ity to falsify the auction outcome and reveal confidential in-
formation by introducing a new third-party that is not fully
trusted. However, all of these approaches make weak as-
sumptions about the trustworthiness of this third-party. In

[2, 8] the third-party may not collude with any participating
bidder; in [20, 21] it is prohibited that the third-party and
the auctioneer collude. A recent scheme [1, 37] uses a ho-
momorphic, indistinguishable public-key encryption scheme
like ElGamal to compute on encrypted bids. However, the
private key is either held by a trusted third-party or is shared
among a set of confidants.

Concluding, all present work on secure auctions more or less
relies on the exclusion of third-party collusion, may it be
auctioneers or other semi-trusted institutions. Additionally,
to our knowledge, all existing schemes publicly announce the
winner’s identity and the selling price rather than making
this information only visible to the seller and the winning
bidder.

3. GENERAL ASSUMPTIONS
This section contains demands that our protocols will meet.
Furthermore, we make several basic assumptions about bid-
ders and collusions between them.

3.1 Privacy and Correctness
The required properties for safe conductions of sealed-bid
auctions can be divided into two categories.

Privacy No information concerning bids and the correspond-
ing bidders’ identities is revealed during and after the
auction.

The only information that naturally has to be deliv-
ered is the information that is needed to carry out the
transaction, i.e., the winning bidders and the seller
learn the selling price and the seller gets to know the
winners’ identities. As [26] pointed out, anonymity of
the winners is crucial. Otherwise, a bidder that breaks
a collusive agreement could be identified by his part-
ners.
In several schemes, it is necessary that the auction-
eer announces the selling price, in order to prevent the
auctioneer from awarding a contract to a bogus bidder
(which would violate correctness).

Privacy, as we understand it, implies that no informa-
tion on any bid is revealed to the public, in particular
no bid statistics (e.g., the amount of the lowest bid or
an upper bound for the highest bid) can be extracted,
unlike some other protocols.

Correctness The winner and the selling price are deter-
mined correctly.

This requirement includes non-repudiation (the win-
ning bidders cannot deny having made winning bids).
Bids are binding. Otherwise, bidders could control the
selling price in first-price and second-price auctions by
using sub-agents that default on their bids. Correct-
ness also includes robustness (no subset of malicious
bidders can render the auction outcome invalid). If
the auction protocol is interactive, this implies that
missing bidder messages will not halt the auction pro-
cess.

Of course, efficiency is also an important factor, but as we
mainly intend to obtain full privacy, we regard efficiency as



secondary. Privacy and correctness have to be ensured in
a hostile environment, which is described by the following
assumptions.

• Each agent (bidder or seller) can have arbitrarily many
bidder sub-agents, controlled by him, in any auction.

• Up to n − 1 bidders might share their knowledge and
act as a team

• Any number of auctioneers or other third-parties might
share their knowledge and give it away to bidders.

3.2 Bidder-resolved Auctions
According to the assumptions of the previous section, bid-
ders cannot trust any third-party. We therefore distribute
the trust onto the bidders themselves using a secret sharing
scheme. Bidders divide their bids into n shares, keep one
and send one share to each other bidder.
The information sharing among bidders allows us to set a
new standard for privacy. In a scenario with m auctioneers it
cannot be ruled out that all of them collude. However, when
distributing the computation on n bidders, we can assume
that all bidders will never share their knowledge due to the
competition between them. If they did, each of them would
abandon his own privacy, resulting in an open auction.

Definition: A secure, bidder-resolved auction protocol com-
plies with full privacy when no information on any bid
can be retrieved unless all involved agents collude.

When using terms of secure multiparty computation [12],
full privacy can be interpreted as (n− 1)-privacy. A passive
adversary that controls up to n − 1 bidders is incapable of
uncovering any information. Active adversaries, that mu-
tilate the distributed computation will be detected if the
computation is publicly verifiable.
A threshold-scheme, that provides t-resilience is not appro-
priate when information is shared among bidders, as any
group of bidders might collude due to the assumptions of
the previous section. As a consequence, we cannot adapt
existing, successful auction protocols that were designed for
m auctioneers like [14], or [16], because they rely on secure
multiparty computation according to Ben-Or, Goldwasser
and Widgerson [3], which in turn provides at most insuffi-
cient bn

2
c-privacy due to the multiplication of degree n poly-

nomials.
When computation is shared among bidders, it is obviously
required that bidders “know” each other. This can be a-
chieved by carrying out a registration phase, in which bid-
ders publish their addresses on a blackboard before the ac-
tual auction begins.

In [5], we proposed the first bidder-resolved auction protocol
YMB-share

2. Malicious bidders cannot reveal information
in this protocol, but they can disrupt the auction. The
protocol lacks verifiability, reveals information when win-
ning bids are equal, and is only applicable to second-price
sealed-bid auctions. All of these issues will be removed in
vMB-share.
2Unfortunately, there is an error in [5]. A revised protocol
specification is available from the author’s homepage.

4. PROTOCOL vMB-share

In order to gain public verifiability, we need cryptographic
primitives like verifiable secret sharing and various interac-
tive and non-interactive proofs of correctness. As is custom-
ary in cryptology, we denote two different communicating
parties by “Alice” and “Bob”. Please note that interactive
proofs can be made non-interactive by deriving the chal-
lenge c from the first message of the proof, e.g., by applying
a suitable hash function on the message and the sender’s id
(to avoid proof duplication).

4.1 Building Blocks
p and q are large primes, so that q divides p − 1. Gq is
the the unique multiplicative subgroup of Zp with order q.
g, g1, g2 ∈ Gq.

4.1.1 Verifiable secret sharing
In Shamir’s secret sharing scheme [29], a secret is shared
among n participants as n points f(i) (1 ≤ i ≤ n) of an
arbitrary degree n − 1 polynomial3 f(x) with f(0) = s. A
shared secret (SS) can be retrieved by computing f(0) with
Lagrange interpolation.

f(0) =

n∑

i=1

γif(i) with γi =

n∏

j=1 j 6=i

j

j − i
(Lagrange)

n − 1 points of the polynomial yield absolutely no informa-
tion about the secret value.

Lagrange interpolation can also be applied when shares are
only available as exponentiated values f̂(i) = gf(i) to com-

pute the exponentiated shared secret (eSS) f̂(0) = gs.

f̂(0) =
n∏

i=1

(f̂(i))γi (1)

The correctness of shares can be proven by using Pedersen’s
commitment scheme [22]. It provides non-interactive verifi-
cation of shares and their linear combinations. The dealer
who distributes s chooses two polynomials f(x) = s+F1x+
F2x

2+· · ·+Fn−1x
n−1 and h(x) = H0+H1x+· · ·+Hn−1x

n−1

and publishes E0 = gs
1g

H0

2 and ∀l ∈ {1, 2, . . . , n − 1} : El =

g
Fl
1 g

Hl
2 . He sends the shares f(i) and h(i) to participant

i. Participant i can verify the correctness of the share by
testing

g
f(i)
1 g

h(i)
2 =

n∏

l=0

(El)
il

. (2)

4.1.2 Proof of equality of two SSs
Alice is capable of proving the equality of two SSs with

the commitment values E′
0 = g

G′

0

1 g
H′

0

2 and E′′
0 = g

G′′

0

1 g
H′′

0

2 by

3For reasons of simplicity we use 1, 2, . . . , n as n distinct
values. As we share information among bidders, we will not
make use of the threshold capabilities of this scheme and
always use degree n − 1 polynomials.



sending t = H ′
0−H ′′

0 to Bob who then verifies that
E′

0

E′′
0

= g
t
2.

No information on any of the secrets is revealed [22].

4.1.3 Verifiable linear combination computation
There are non-interactive proofs for the correctness of any
linear combination of SSs [22].

Two secrets s′ and s′′ are verifiably distributed. E′
l and E′′

l

are the corresponding commitment values. The participants
want to compute s’s shares with s = s′ + s′′.
Any observer can verify that (f(i), h(i)) is a correct share

of s′ + s′′ by testing whether g
f(i)
1 g

h(i)
2 =

n∏

l=0

(E′
lE

′′
l )il

.

When computing s = as′ for any a ∈ Z
∗
q , a share (f(i), h(i))

is correct when g
f(i)
1 g

h(i)
2 =

n∏

l=0

((E′
l)

a)il

.

A publicly known summand a can simply be added to each
f -share (f(i) = f ′(i) + a). The share is correct when

g
f(i)
1 g

h(i)
2 =

n∏

l=0

(ga
1E

′
l)

il

.

4.1.4 Proof of knowledge of a discrete logarithm
This is a classic, interactive, three-step, zero-knowledge proof
by Schnorr [28]. Alice and Bob know v and g, but only Alice
knows x, so that v = gx.

1. Alice chooses z at random and sends a = gz to Bob.

2. Bob chooses a challenge c at random and sends it to
Alice.

3. Alice sends r = (z + cx) mod q to Bob

4. Bob checks that gr = avc.

4.1.5 Proof of equality of two discrete logarithms
When executing the previous protocol in parallel, the equal-
ity of two discrete logarithms can be proven [9]. Alice and
Bob know v, w, g1 and g2, but only Alice knows x, so that
v = gx

1 and w = gx
2 .

1. Alice chooses z at random and sends a = gz
1 and b = gz

2

to Bob.

2. Bob chooses a challenge c at random and sends it to
Alice.

3. Alice sends r = (z + cx) mod q to Bob

4. Bob checks that gr
1 = avc and that gr

2 = bwc.

4.1.6 Proof that a SS is one out of two values
We designed the following protocol according to the results
of Cramer et al [10, 11]. Alice proves that a SS x is either
z or 0. x ∈ {gz

1gt
2, g

t
2}.

1. If x = gz
1gt

2, Alice chooses r1, d1, and w at random and
sends x, a1 = g

r1

2 xd1 , and a2 = gw
2 to Bob.

If x = gt
2, Alice chooses r2, d2, and w at random and

sends x, a1 = gw
2 , and a2 = g

r2

2 (xg−z
1 )d2 to Bob.

2. Bob chooses a challenge c at random and sends it to
Alice.

3. If x = gz
1gt

2, Alice sends d1, d2 = c − d1 mod q, r1,
and r2 = w − d2t mod q to Bob.
If x = gt

2, Alice sends d1 = c − d2 mod q, d2, r1 =
w − d1t mod q, and r2 to Bob.

4. Bob checks that c = d1 + d2 mod q, a1 = g
r1

2 xd1 , and
a2 = g

r2

2 (xg−z
1 )d2 .

4.1.7 Generation of a random eSS that equals 0
It is possible to jointly create an eSS that equals 0 (gs =
1). The participants choose n random values ô(i), so that
n∏

i=1

ô(i)γi = 1 (see equation 1). Participant i must not know

r, so that gr = ôi.

1. Each participant i chooses n − 1 random values aij ∈
Gq (j ∈ {1, 2, . . . , n−1}) and publishes them (simulta-
neously with all other participants by using preceding
commitments).

2. ai =

n∏

j=1

aji (i ∈ {1, 2, . . . , n−1}) and an =

(n−1∏

j=1

aj

)−1

can be publicly computed.

3. ∀i : ô(i) = (ai)
γ
−1

i

4.1.8 Verifiable random multiplication of an eSS

In contrast to addition, multiplication of shared secrets is
hard and all existing techniques require a threshold secret
sharing scheme because the point-wise multiplication of poly-
nomials generally results in a higher degree polynomial. How-
ever, for the auction protocol, we only need to multiply a
SS with a jointly created random number (s = s′M) that
is unknown to all participants (M =

∏n

i=1 mi). This is ob-

tained by raising each exponentiated share f̂(i) = gf(i) to
the power of each participant’s multiplier factor mi until
gf(i)M is computed. It must be impossible to reveal s′ or

gs′ .

In order to enable “ring exponentiation”, we need an or-
dering on bidders. S(i) and P (i) return the successor and
predecessor to bidder i, respectively.

S(i) = ((i + 1) mod n) + 1, P (i) = ((i− 1) mod n) + 1

Intermediate values have to be masked. Otherwise, a par-
ticipant could determine gM . For this reason, we need the
random oi generation of the previous section. We assume
that s′ is verifiably shared and that commitment values E ′

l

have been published.

1. n random values ôi ∈ Gq with
n∏

i=1

ô(i)γ
−1

i = 1 are

computed using 4.1.7



2. Each participant secretly chooses a random value mi

3. Participant i publishes E′′
l = (E′

l)
mi and proves its

correctness by providing a proof for the knowledge of
mi.

4. Participant i publishes f ′′(i) = f ′(i)mi, h′′(i) = h′(i)mi

and ô′(i) = ô(i)mi and proves ô′(i)’s correctness using
4.1.5.

5. All participants can verify that g
f ′′(i)
1 g

h′′(i)
2 =

n∏

l=0

(E′′
l )il

(4.1.1).

6. Each participant i computes

a(P (i), i) =

(

gf ′′(P (i))ô′(P (i))

)mi

, publishes it and

proves its correctness using 4.1.5.

7. For each h ∈ 1, 2, . . . , n each bidder i computes and
publishes a(h, i) = a(h, P (i))mi until all a(i, P (i)) are
computed.

8. f̂(i) = a(i, P (i)).

4.2 Informal Description
Like in most other protocols, we define an ordered set of k

possible prices (or valuations) {p1, p2, . . . , pk}. Each bidder
sets the differential bid vector

∆~bi = (∆bi1, ∆bi2, . . . , ∆bik) = (0, . . . , 0
︸ ︷︷ ︸

bi−1

, y, 0, . . . , 0
︸ ︷︷ ︸

k−bi

) (3)

according to his bid bi ∈ {1, 2, . . . , k}, (verifiably) distributes
it on all bidders, and shows its correctness by proving ∀j :
∆bij ∈ {0, y} and

∑k

j=1 ∆bij = y in zero-knowledge man-

ner. y is a commonly known number in Z
∗
p, e.g., y = 1.

Each bidder’s bid vector ~bi can be derived by “integrating”

∆~bi. This method was first used by Abe and Suzuki in [1].

~bi = (y, . . . , y
︸ ︷︷ ︸

bi

, 0, . . . , 0
︸ ︷︷ ︸

k−bi

) = (∆bi1 + bi2, ∆bi2 + bi3, . . . , ∆bik)

(4)

In our protocol, we also need to “integrate” the differential
bid vector “in the other direction” (upwards that is).

~b
′
i = (0, . . . , 0

︸ ︷︷ ︸

bi−1

, y, . . . , y
︸ ︷︷ ︸

k−bi+1

) = (∆bi1, ∆bi2+b
′
i1, . . . , ∆bik+b

′
i,k−1)

(5)

And finally, in order to be able to locate the highest price
at which M + 1 bidders are willing to pay, we have to shift
down the components of the bid vectors.

~b
O

i = (bi2, bi3, . . . , bik, 0) (6)

If we sum up all bid vectors ~B =
∑n

i=1
~bi and shifted bid

vectors ~BO =
∑n

i=1
~bO

i , and subtract (2M + 1)y~e with ~e =

(1, . . . , 1), we obtain a vector in which the component, that
refers to the amount of the (M + 1)st highest bid, is 0. All
other components are not 0 (with high probability).

By adding the upwards integrated bid vector ~b′i, we mask
the resulting vector so that bidder i can only read the selling
price if bid he bid more and thus qualifies as a winner of the
auction.

~vi = ~B + ~B
O − (2M + 1)y~e + (2M + 2)~b′i (7)

The components of ~vi are then multiplied with random mul-
tipliers Mij that are jointly created and unknown to any
subset of bidders. The invariant of this transformation is
the single component that equals 0. As described in 4.1.8,
the multiplication works on exponentiated shares and the 0
becomes a 1.

The computation is conducted so that only bidder i and the
seller know vij for each j, because bidder i privately adds
the final computational share. If any of these “indicators”
is 1, the corresponding bidder is a winner of the auction and
he and the seller can read the selling price.

vij = 1 ⇐⇒ Bidder i won and has to pay pj (8)

4.3 Detailed Protocol
This is the step-by-step protocol specification for bidder a

and his bid ba. i, h ∈ {1, 2, . . . , n}, j, ba ∈ {1, 2, . . . , k}, and
l ∈ {0, 1, . . . , n} unless otherwise noted. All calculations are
done in the finite field Zp. g1 and g2 are generators in the
multiplicative subgroup Gq, so that no participant knows
logg1

g2.

1. Choose random multipliers ∀i, j : maij ∈ Z
∗
q and 2j

random polynomials with ∆Faj0 =

{

y if j = ba

0 else
.

∆faj(x) = ∆Faj0 + ∆Faj1x + · · · + ∆Faj,n−1x
n−1

∆haj(x) = ∆Haj0 + ∆Haj1x + · · · + ∆Haj,n−1x
n−1

2. Publish ∀j, l : ∆Eajl = g
∆Fajl

1 g
∆Hajl

2 .

3. Prove that ∀j : ∆Eaj0 ∈ {gy
1gt

2, g
t
2} (4.1.6).

4. Compute ∀i, l : Eikl = ∆Eikl, E′
i1l = ∆Ei1l and

∀i, j < k, l : Eijl = ∆EijlEi,j+1,l, and ∀i, j > 1, l :
Eijl = ∆EijlE

′
i,j−1,l.

5. Publish ∀i, j, l :

E
∗
ijl =

(∏n

h=1(EhjlEh,j+1,l)(E
′
ijl)

2M+2

g
(2M+1)y
1

)maij

and prove the discrete logarithm knowledge.

6. Send ∆faj(i), and ∆haj(i) to bidder i for each i 6= a.

7. Verify ∀i 6= a : g
∆fij(a)

1 g
∆hij(a)

2 =

n−1∏

l=0

(Eijl)
al

.



8. Compute ∀i : fik(a) = ∆fik(a), hik(a) = ∆hik(a),
f ′

i1(a) = ∆f ′
i1(a), h′

i1(a) = ∆h′
i1(a), and ∀i, j < k :

fij(a) = ∆fij(a)+fi,j+1(a), hij(a) = ∆hij(a)+hi,j+1(a),
and ∀i, j > 1 : f ′

ij(a) = ∆fij(a) + f ′
i,j−1(a), h′

ij(a) =
∆hij(a) + h′

i,j−1(a).

9. Jointly create a function ô, so that

n∏

i=1

ô(i)γ
−1

i = 1

according to 4.1.7.

10. Publish ∀i, j :

vij(a) =

( n∑

h=1

(fhj(a) + fh,j+1(a))+

+ (2M + 2)f ′
ij(a) − (2M + 1)y

)

maij ,

wij(a) =

( n∑

h=1

(hhj(a) + hh,j+1(a))+

+ (2M + 2)h′
ij(a)

)

maij ,

and ô′
ij(a) = ô(a)maij and prove the correctness of

ô′ij(a).

11. Verify ∀i, j, h 6= a : g
vij(h)

1 g
wij(h)

2 =

n−1∏

l=0

(E∗
ijl)

hl

.

12. Compute ∀i, j : v̂ij(P (a), a) =

(

g
vij(P (a))

1 ô′ij(a)

)maij

,

publish it and prove its correctness by showing the
equality of the discrete logarithms and the ones used
in step 5.

13. Compute and publish ∀i, j, h : v̂ij(h, a) =
(

v̂ij(h, P (a))

)maij

and prove its correctness by show-

ing the equality of logarithms. Repeat this step until
all v̂ij(h, P (P (h))) are computed.

14. Compute ∀i, j : v̂ij(S(a), a) =

(

v̂ij(S(a), P (a))

)maij

and privately send it and a proof of its correctness to
the seller who publishes all v̂ij(S(h), h) and the corre-
sponding proofs of correctness for each i, j, h 6= i after
having received all of them.

15. Compute ∀j : vaj =
n∏

i=1

(

v̂aj(i, P (i))

)γi

.

16. If vaw = 1 for any w, then bidder a is a winner of the
auction. pw−1 is the selling price.

4.4 Analysis
The final ring exponentiation steps are conducted in a way
that allows the seller to see all indicators before the bidders
can compute them. This prevents a winning bidder from
aborting the protocol after having learned the auction result.
If it seems more desirable to prevent the seller from doing
so, the final steps can be easily adapted.

When two or more bidders have the (M +1)st highest bid in
common, the protocol yields no winners. It is impossible for

Rounds Messages Bandwidth/Computation

O(n) O(n) O(n2k)

Table 1: Protocol complexity (messages and band-
width per bidder)

the protocol to decide who of the tieing bidders belongs to
the set of winners and who does not. There is no information
revelation in this case, except that there has been a tie. The
items can be re-auctioned in a subsequent auction. All other
ties will be handled smoothly by the protocol.

Table 1 shows the number of rounds and messages, and the
amount of data that has to be sent by a single bidder. The
computation of personalized indicators for each bidder re-
sults in a high demand for bandwidth (O(n2k)).
To give an example, in an auction with hundred bidders
(n = 100) and 200 possible prices (k = 200)4, each bidder
has to compute and publish hundreds of megabytes of data
when p and q are 1024-bit primes.
The computational demands can be reduced by sharing the
bids and the computation among few, distinct bidders which
are believed not to collude with each other. Obviously, the
resulting protocol does not comply with full privacy any-
more. Another possibility is to share the information on m

auctioneers like in numerous other protocols. This can dras-
tically reduce the computational amount needed in auctions
with many bidders, but the obtained level of privacy is ques-
tionable as mentioned in Section 2.
When the selling price does not need to be protected, the
computational complexity can be reduced to O(nk) by just
computing one value for all bidder that indicates the selling
price w. Winning bidders can prove their claims to the seller
by providing t, so that Ei,w+1,0 = g

y
1gt

2. However, winning
bidders are able to remain silent if they dislike the selling
price. Furthermore, the complexity could be decreased to
O(n log k) by using binary search to find the selling price
rather than computing values for each price pj . Apparently,
this would increase the number of rounds and require some
changes to the protocol.

5. CONCLUSION
We presented a novel kind of secure and private auction
protocols, where information is shared among bidders. The
protocols comply with the highest standard of privacy pos-
sible: they are safe for a single bidder no matter how many
of the participants collude.
The main contribution of this paper is the secure and verifi-
able (M +1)st-price auction protocol vMB-share, in which
bidders jointly compute personal indicators for each bid-
der and the seller. Thus, the only agent being able to dis-
cover who won the auction besides the concerned bidders is
the seller. We are not aware of any auction protocol, that
achieves a similar level of privacy.
As the protocol is publicly verifiable, malicious bidders that
do not follow the protocol will be detected immediately and
can be excluded from the set of bidders.

4Usually the number of different prices or valuations is much
lower than one would expect, e.g., Lipmaa et al argue that
k ≤ 500 is sufficient for most auctions [20].



The drawback of vMB-share is efficiency. It can take hours,
if not days, to decide auctions with very high numbers of
bidders. On the other hand, auctions that require such a
high standard of privacy typically include few bidders. We
are currently implementing the proposed protocol in order
to be able to evaluate its feasibility in real-world scenarios.
In the future, we intend to apply the presented techniques
to solve tractable instances of combinatorial auctions like
general multi-unit or linear-good auctions while maintaining
full privacy.
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