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Abstract

We embark on an initial study of a new class of strategic
(normal-form) games, so-called ranking games, in which the
payoff to each agent solely depends on his position in a rank-
ing of the agents induced by their actions. This definition is
motivated by the observation that in many strategic situations
such as parlor games, competitive economic scenarios, and
some social choice settings, players are merely interested in
performing optimalelativeto their opponents rather than in
absolute measures. A simple but important subclass of rank-
ing games are single-winner games where in any outcome one
agent wins and all others lose. We investigate the computa-
tional complexity of a variety of common game-theoretic so-
lution concepts in ranking games and deliver hardness results
for iterated weak dominance and mixed Nash equilibria when
there are more than two players and pure Nash equilibria
when the number of players is unbounded. This dashes hope
that multi-player ranking games can be solved efficiently, de-
spite the structural restrictions of these games.

Introduction

A central aspect of Al is game playinge., finding the
optimal (or near-optimal) strategy in an adversarial situa
tion. Very similar problems—albeit with a less computa-
tional bias—are studied in Game Theory (GT), a field that
lies at the intersection of mathematics and economics. Gen-
erally speaking, “games” are not only restricted to boawd an
card games, but can stand for any formalized strategic-inter
action occurring in multiagent systems, economics, or so-
cial choice settings. A well-studied subclass of gamesin GT
consists of strictly competitive games for two players,,
games where the interests of both players are diametrically
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the sum of payoffs in all outcomes has to be constant, is
meaningless in multi-player games becaagsg game can

be transformed into a constant-sum game by adding an extra
player (with only one action at his disposal) who absorbs the
payoffs of the other players (von Neumann & Morgenstern,
1947).

In this paper, we put forward a new class of multi-player
games, callegdanking gamesin which the payoff to each
agent depends solely on his position in a ranking of the
agents induced by their actions. The formal definition al-
lows each agent to specify his individual preferences over
ranks so that

e higher ranks are weakly preferred,
e being first is strictly preferred over being last, and
e agents are indifferent over other players’ ranks.

This definition is motivated by the observation that in many
games of strategy or competitive economic scenarios, play-
ers are merely interested in performing optimalhative to
their competitors. Besides, one can also think of social
choice settings where agents strive to determine a com-
plete hierarchy among themselves based on individual pref-
erences that satisfy the conditions listed above.

When moving away from two-player constant-sum
games, there are numerous applicable solution concepts.
From a computational perspective, a very important prgpert
of any solution concept is the computational effort recquiire
to determine the solution, simply because the intractabil-
ity of a solution concept renders it useless for large prob-
lem instances that do not exhibit additional structure. We
study the computational complexity of a variety of com-

opposed (such as in Chess). These games admit a unique ramon game-theoretic solution concepts in ranking games and

tional solution (the minimax solution) that can be efficlgnt
computed (von Neumann, 1928)nfortunately, things get
much more complicated if there are more than two play-
ers. To begin with, the notion of strict competitiveness in
multi-player games is not unequivocal. The extension of the
common definition for two-player games, which says that

Copyright © 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

deliver hardness results for iterated weak dominance and
mixed Nash equilibria when there are more than two players
and pure Nash equilibria in games with many players. This
dashes hope that multi-player ranking games can be solved
efficiently, despite the structural restrictions of theaemgs.
Remarkably, all hardness results holddobitrary prefer-
ences over ranks as long as they meet the requirements listed
above. In particular, even simple subclasses like single-

IHowever, in the case of chess, the enormous size of the game winner games (where players only care about winning) or

in normal-form prohibits the efficient computation of an exact so-
lution.

single-loser games (where players only want to avoid los-
ing) are hard to solve.



Related Work Ranking Games

Most of the research on game playing has focused on two- The situations of social interaction this paper is concgrne
player games (see.g, Marsland & Schaeffer, 1990). As  with are such that outcomes are related to a ranking of the
a matter of fact, “in Al, ‘games’ are usually of a rather players,i.e., an ordering of the players according to how
specialized kind—what game theorists call deterministic, well they have done in the game relative to one another.
turn-taking, two-player, zero-sum games of perfect infarm  We assume that players generally prefer higher ranks over
tion” (Russell & Norvig, 2003, p. 161). A notable excep- lower ones and that they are indifferent to the ranks of other
tion are complete informatioextensive-forngames, a class players. Moreover, we hypothesize that the players elnerta
of multi-player games for which efficient Nash equilibrium  qualitative preferences ovlatteriesor probability distribu-
search algorithms have been investigated by the Al com- tions over ranksdf. von Neumann & Morgenstern, 1947).
munity (e.g, Luckhardt & Irani, 1986; Sturtevant, 2004). For example, one player may prefer to be ranked second
In extensive-form games, players move consecutively and a to having a fifty-fifty chance of being ranked first or being
pure Nash equilibrium is guaranteed to exist (seg}, My- ranked third, whereas another player may judge quite differ
erson, 1997). Therefore, the computational complexity of ently. Thus, we arrive at the following definition of thenk
finding equilibria strongly depends on the actual represen- payoffto a player.

tation of the game (also see the Section “Pure Nash Equi-

libria in Games with Many Players”). Normal-form games Definition 2 (Rank payoff) Therank payoffof a player i is

are more general than extensive-form games because ev-defined as vector = (fil,fi27~.~,fi”) € R" so that

ery extensive-form game can be mapped to a corresponding k- k+1 for all k €{1,2 n—1} and i > n
normal-form game (with potentially exponential blowup), e o ' o
while the opposite is not the case.

In GT, several classes of “strictly competitive” games that
maintain some of the nice properties of two-player constant
sum games have been proposed. For example, Aumann
(1961) definesalmost strictly competitivggames as games
where a unique value can be obtained by playing strate-
gies from a certain set. Moulin & Vial (1978) introduce a

class of games that are strategically equivalent to cotistan pefinition 3 (Ranking game) A ranking gameis a game

sum games. The notion of strict competitiveness we con- yhere for any strategy profiles S there is a permutation
sider is remotely related tepitefulnesgBrandt, Sandholm, (T8, 7B, .., Th) of the players so that;fs) =" foralli € N.

& Shoham, 2005; Morgan, Steiglitz, & Reis, 2003), where e :

agents aim at maximizing their payoff relative to the payoff A binary ranking gamés one where each rank payoff vector

(i.e., higher ranks are weakly preferred, and for at least one
rank the preference is strict). For convenience, we assume
rank payoffs to be normalized so théti land ' =0.

Intuitively, rik represents playais payoff for being ranked
in kth. Building on Definition 2, defining ranking games is
straightforward.

of all other agents. only consists of zeros and ones., each player is equally
satisfied up to a certain rank. An important subclass of bi-
Definitions nary ranking games are games where winning is the only
Game-Theoretic Foundations goal of all players.
An accepte_d way to model situations of conflict and social pefinition 4 (Single-winner game) A single-winner game
interaction is by means of mormal-form gamgsee,e.g, is a ranking game where & (1,0, ...,0) for all i € N.

Myerson, 1997).
In other words, the outcome space in single-winner games

Definition 1 (Normal-form game) A game in normal-form is partitioned inta blocks. When considering mixed strate-
is atuplel’ = (N, (A)ien, (Pi)ien) Where N is a set oplay- gies, the expected payoff in a single-winner ranking game
ersand for each player& N, A is a nonempty set aictions equals the probability of winning the game. Similar to
available to player i, and ip: (XienAi) — R is a function single-winner games, we can defiiagle-loser gamefike
mapping each action profile of the games( combination “musical chairs”) as games where gl (1,...,1,0).

of actions) to a real-valuegayofffor player i. An example single-winner game with three players is

given in Table 1. A convenient way to represent these
games is to just denote the index of the winning player for
each outcome. Nash equilibria (see the subsequent Sec-
tion for a definition) are marked by dashed boxes where a
box that spans two outcomes denotes an equilibrium where
one player mixes uniformly between his actiénsCuri-
ously, there is a fifth equilibrium in this game where all
players randomize their actions according to the goldeao rat

A combination of actions € XjcnA; is also called a profile
of pure strategiesThis concept can be generalizechtixed
strategy profiles & S= XjenSG, by letting players randomize
over their actions. Her& denotes the set of probability dis-
tributions over playei's actions, omixed strategiesvail-
able to playei. In the following, we further writen = |N|
for the number of players in a gansfor theith strategy in
profile s, s_; for the vector of all strategies imbut s, and

s (a) for the probability assigned to actianby playeri in 9=(1+V5)/2
strategy profiles. Two-player games are also calleithatrix 2|t seems as if every single-winner game has a non-pure equilib-
games and games with rational payoffs are calkational rium, i.e., an equilibrium in which at least one player randomizes.

games However, this claim has so far tenaciously resisted proof.



T R a special subclass of constant-sum gamdsash equilib-
103 1,2, ria of constant-sum games can be found by Linear Program-
”””””” L ming (seee.g, Vajda, 1956), for which there is a polynomial
2 1 3 113" time algorithm (Khachiyan, 1979).
Lt For more than two players, we argue by showing that

three-player ranking games are at least as hard to solve as
Table 1: Three-player single-winner game. Player 1 chooses general rational bimatrix games. This is sufficient for prov
rows, player 2 chooses columns, and player 3 chooses ma-ing hardness, becauseplayer ranking games are at least
trices. The four dashed boxes denote Nash equilibria. as hard agn — 1)-player ranking games (by adding an ex-
tra player who only has a single action and is ranked last
in all outcomes). A key concept in our proof is that of a
Solving Ranking Games Nash homomorphism, a notion introduced by Abbott, Kane,
& Valiant (2005). We generalize their definition to more

Over the years, GT has produced a number of solution con-
than two players.

cepts that identify reasonable or desirable strategy proifil

a given game (see,g, Myerson, 1997). The key question of
this paper is whether the rather restricted structure dfingn
games allows us to compute instances of common solution
concepts more efficiently than in general games. For this
reason, we focus on solution concepts that are known to be
intractable for general games, namely (mixBdgsh equilib-

ria (Chen & Deng, 2005; Daskalakis, Goldberg, & Papadim- A very simple Nash homomorphism, henceforth called
itriou, 2006), iterated weak dominanc@Conitzer & Sand- scale homomorphisyis one where the payoff of each player
holm, 2005), angure Nash equilibrian graphical normal is scaled using a positive linear transformation. It is well
form (Gottlob, Greco, & Scarcello, 2005; Fischer, Holzer, & known that Nash equilibria are invariant under this kind of
Katzenbeisser, 2006) or circuit form games (Schoenebeck operation. A slightly more sophisticated mapping, where
& Vadhan, 2006). We do not cover solution concepts for outcomes i(e, payoff profiles) of a bimatrix game are

which efficient algorithms are known to exist such as iter- mapped to corresponding three-player subgames, so-called
ated strong dominance (Conitzer & Sandholm, 2005) or cor- simple cubes, is defined next.
related equilibria (Papadimitriou, 2005).

Definition 6 (Nash homomorphism) A Nash homomor-
phismis a mapping h from a set of games into a set of games,
such that there exists a polynomial-time computable foncti

f that, when given a ganfeand an equilibrium of "), re-
turns an equilibrium of".

Given the current state of complexity theory (seeg, Definition 7 (Simple cube substitution (SCS))Let h be a
Papadimitriou, 1994), we cannot prove thetual hardness mapping from a set of two-player games to a set of
of most algorithmic problems, but merely giegidenceor three-player games that replaces every outcome= 0

their hardness. Showing the NP-completeness of a prob- (py, py,..., pn) of the original gamd™ with a correspond-
lem is commonly regarded as a very strong argument for ing three-player subgani€ (o) of the form

hardness because it relates the problem to a large class of
problems for which no efficient algorithm is known (de- 01(0) | 02(0) | | 02(0) | 01(0)
spite enormous efforts to find such algorithms). To some 02(0) | 01(0) | | 01(0) | 02(0)
extent, the same reasoning can also be applied to PPAD- | . . I
completeness. When in the following we refer to the hard- his caIIe.d asimple cube substltuuon (SC8Yor every o
ness of a game we mean the computational hardness of solv-® '(0) is a constant-sum gamei., 3;pi(01(0)) =

ing the game using a particular solution concept. i Pi(02(0))),
e the average of player i's payoff in () and @(0) equals
Mixed Nash Equilibria pi, and

One of the best-known solution concepts is Nash equilib- ® there is at least one player who preferg(o) over @(0)
rium (Nash, 1951). In a Nash equilibrium, no player is able ~ and one who prefersxo) over o(0).

to increase his payoff bynilaterally changing his strategy. Thus, SCS maps arlyx ¢ bimatrix game to a Rx 20 x 2

o o ] ] three-player game. For reasons of limited space, we omit
Definition 5 (Nash equilibrium) A strategy profile & S is the proof that SCS is indeed a Nash homomorphism.
called aNash equilibriunif for each player i€ N and each

strategy € S, Lemma 1 SCS is a Nash homomorphism. O

pi(s) > pi((s.i,9))- Based on the scale homomorphism and SCS, we now
show that there exist Nash homomorphisms mapping ratio-

A Nash equilibrium is called pure if it is a pure strategy pro- nal bimatrix games to three-player ranking games.

file.

) . . . SFor three or more players, there is no meaningful relation be-
Let us first consider ranking games with only two players. tween ranking games and constant-sum games. In fact, ranking
According to Definition 3, two-player ranking games are games are not contained in the set of constant-sum games and nei-
games with outcome&l,0) and (0,1) and thus represent  ther are constant-sum games a subset of ranking games.



Outcome Scaled outcome Ranking subgame

o0 — (33) — EBEE RS
e —  (13) — SRR RS
o — (31 — HEHEH RS

Table 2: Simple cube substitution mapping from binary bimagames to three-player single-loser games

Lemma 2 For any given rank payoff profile, there exists a
Nash homomorphism from the set of rational bimatrix games
to the set of three-player ranking games.

Proof: It has been shown by Abbott, Kane, & Valiant (2005)
that there is a Nash homomorphism from rational bimatrix
games to bimatrix games with payoffs 0 and 1 (cabethry
gamesn the following). Since a composition of Nash homo-
morphisms is again a Nash homomorphism, we only need
to provide a homomorphism from binary bimatrix games to
three-player ranking games. Furthermore, there is no eed t
map instances of binary games that contain outcoing),
which is Pareto-dominant and therefore constitutes a pure
Nash equilibrium wherever it occurs in a binary game (no
player can benefit from deviating). Consequently, such in-

different actions. We claim that the mapping given in Ta-
ble 2 represents a SCS from the set of binary bimatrix games
to three-player single-loser games. First of all, each fiayo
p; of playeri in the original binary bimatrix game is trans-
formed according to the scale homomorphigo, p2) —

((1+ p1)/2.(1+ p2)/2). Next, we replace outcomes of the
resulting game by three-player single-loser subgames ac-
cording to the mapping shown in Table 2. It can easily be
verified that this mapping satisfies the conditions of Defini-
tion 7 and thus constitutes a Nash homomorphism. [

We are now ready to present the main result of this sec-
tion concerning the hardness of computing Nash equilib-
ria of ranking games. Since every normal-form game is
guaranteed to possess a Nash equilibrium in mixed strate-

stances are easy to solve and need not be considered in ougies (Nash, 1951), the decision problem is trivial. How-

mapping.

Let (1,r?,0) be the rank payoff of playdy and let[i, j,k]
denote the outcome where playés ranked first is ranked
second, andk is ranked last. First of all, consider ranking
games where? < 1 for some player € N (this is the set
of all ranking gamesxceptsingle-loser games). Without
loss of generality, let = 1. Then, a Nash homomorphism
from binary bimatrix games to the aforementioned class of
games can be obtained by first scaling the payoffs accord-
ing to (p1, P2) — ((1—r)p1+12,p2), and then adding a
third player who only has a single action and whose payoff
depends orp; and p, (but is otherwise irrelevant). Obvi-
ously, the latter is also a Nash homomorphism. Outcomes
(0,0), (1,0), and(0,1) are hence mapped according to

(0,00 +— (12,00 +— [3,1,2]
(1,00 — (1,00 — [1,3,2
(0,1) (r3,1) 2,1,3].

Interestingly, three-playesingle-losergames with only
one action for some playée N are easy to solve because

o there either is a Pareto-dominant outcotire,(0one where
i is ranked last, such that the other players both receive
payoff 1), or

e the game is a constant-sum garhe.(i is notranked last
in any outcome, such that the payoffs of the other players
always sum up to 1).

> [

ever, the associateskearch problemurned out to be not

at all trivial. In fact, it has recently been shown to be
PPAD-complete (Chen & Deng, 2005; Daskalakis, Gold-
berg, & Papadimitriou, 2006). TENP (total functions in NP)
is the class of search problems guaranteed to have a solu-
tion. As Daskalakis, Goldberg, & Papadimitriou (2006) put
it, “this is precisely NP with an added emphasis on find-
ing a witness.” PPAD is a certain subclass of TFNP that is
believed not to be contained in P. For this reason, the PPAD-
completeness of a particular problem can be seen as evi-
dence that there is no efficient algorithm for solvingat. (
Daskalakis, Goldberg, & Papadimitriou, 2006).

Theorem 1 Computing aNash equilibriumof a ranking
game with more than two players is PPAD-complete. If there
are only two players, equilibria can be found in polynomial
time.

Proof: According to Lemma 2, ranking games are at least
as hard to solve as general two player games. We al-
ready know that solving general two-player games is PPAD-
complete (Chen & Deng, 2005), and ranking games cannot
be harder than general games. |

Iterated Weak Dominance

Nevertheless, binary games can be mapped to single-loserWe will now move to another solution concept, namely the

games if the additional player is able to choose betvieen

elimination of weakly dominated actions.



Definition 8 (Weak Dominance) An action ¢ € A is said

to beweakly dominatedby strategy sc § if 32,1 ] [31,2] [1,23] | [31,2]
y y strategy s< § 0O =rz1a(E2y] Y9312 123
pi(b-i,di) < Z\s(aa)pi(bfi,aa% forallb_j € A
B A [3,2,1] | [2,1,3 1,2,3] | [2,1,3
: OV=213may] MY 213123
and for at least oné_; € A_j,
pi(B—i,di) < S(ai)pi(ﬁ_i@)_ Table 3: Dominance-preserving mapping from binary bima-
aan\ trix games to three-player ranking games

After one or more dominated actions have been removed
from the game, other actions may become dominated that |n order to tacklelWD-SOLVABLE for more than two

were not dominated in the original game, and may them- pjayers, we introduce two additional computational prob-
selves be removed. In general, the result of such an itera- |ems related to iterated weak dominance.
tive process depends on the order in which actions are elim-

inated, since the elimination of an action may render an ac- pafinition 10 Given an action eJWD-ELIMINABLE asks

tion of fanotherr] pllayer undomln?;e?.thlf only one a%tlon rle- 4 Whether there is some path of iterated weak dominance elim-
bmalns or e?f[ pta)(/jer, Wi Say that the game can be SOIVedjyation that eliminates e. Given a pair of actionsand &,
y means ot iterated weak dominance. IWD-PAIR-ELIMINABLE asks whether there is some path of

_ ) _ iterated weak dominance that eliminates bottaad €.
Definition 9 We say that a game isolvableby iterated

weak dominance if there is some path of eliminations that We proceed to show hardnessIwfD-SOLVABLE for rank-
leaves exactly one action per player. The corresponding ing games with more than two players by first showing
computational problem of deciding whether a given game hardness ofwD-PAIR-ELIMINABLE, and then reducing it
is solvable will be calledWD-SOLVABLE. to IWD-SOLVABLE.

If there are only two players, we can decliéD-SOLVABLE

in polynomial time, which is seen as follows. First of all, we
observe that in binary games dominance by a mixed strategy
always implies dominance by a pure strategy, so we only
have to consider dominance by pure strategies. Consider a
path of iterated weak dominance that ends in a single action
profile (a1,a2), and without loss of generality assume that
player 1 {.e, the row player) wins in this profile. This im-
plies that player 1 must win in any action profile,, a,) for

a, €Ay, .|.e., in thg en}we row. For a contradl_cnop, conlslder To show hardness we reducelWD-ELIMINABLE for

the particular actiora; such that player 2 wins ifay,a;) games with two players and payoffs 0 and 1, which has re-
and a% is eliminated last on the path that solves the game. cently been shown to be NP-hard (Conitzer & Sandholm,
Clearly, a% could not be eliminated in this case. An elimi- 2005), toIWD-PAIR-ELIMINABLE for ranking games. A

Lemma 3 IWD-PAIR-ELIMINABLE is NP-complete for any
ranking game with at least three players, even if one player
only has a single action, and the two actions to be eliminated
belong to the same player.

Proof: Membershipn NP is immediate. We can simply
guess a sequence of eliminations and then verify in poly-
nomial time that this sequence is valid and eliminatesnd

nation by player 1 would also eliminasa, while an elim- gamel of the former class is mapped to a ranking game
ination by player 2 would require another actia@ such I’ as follows:

that player 2 also wins imal,ag), which contradicts the o I features the two players of denoted 1 and 2, and an
assumption thaa% is eliminated last. We thus claim that additional player 3.

IWD-SOLVABLE for ranking games with two players can be o . A
decided by finding a unique acti@ of player 1 by which * Each aCt.'?mi] of .pzlayerl €{1,2}inT is mapped tawo
he always wins, and a unique actianof player 2 by which actionsa/™ anda)* in I"". Player 3 only has a single ac-
he wins for a maximum number of actions of player 1. If tion.

such actions do not exist or are not unique, the game can- e Payoffs ofl” are mapped to rankings Bf according to the
not be solved by means of iterated weak dominance. If they  mapping in Table 3. Againj, j,k| denotes the outcome
do exist, we can usa to eliminate all actions] such that where player is ranked first is ranked second, aridis
player 2 does not win itia}, ay), whereaftera, can elimi- ranked last.

nate all other actions of player 2, until finally eliminates
player 1's remaining strategies and solves the game. Obvi-
ously, this can be done in polynomial tirfie.

We claim that for any class of ranking game,, irrespec-
tive of the rank payoffs; = (1,r?,0), a particular actioral
in " can be eliminated by means of iterated weak dominance
4Since two-player ranking games are a subclass of constant- if and only if it is possible to eliminate bot)* andal? in
sum games, weak dominance aride weak dominancgMarx & I’ on a single path Without loss of generality, we assume
Swinkels, 1997) coincide, making iterated weak dominance order thate belongs to player 1. In the following, we exploit two
independentip to payoff-equivalent action profiles properties of the outcome mapping in Table 3:



aj as a3
el 31,2 |[2,1,3 | 2,13
& 312 [[2,13 | 2,13
r : : ;
2,1,3] | [2,1,3] | [2,1,3]
a% 1,32 ---1[21,3 | [2,3,1 | [3,1,2
@ [ (1,32 (213312 ][213
a? 12,31 ---1[3,1,2] | [1,3,2] | [3,1,2

a3
a3 a5 a3
1,23 ||[321 |[1,23|[123
at |- [1,23 - [[1,2,3 [ [3,2,1] | [1,2,3
a |- [321---[[1,23 [[1273][321
a% 1,23 - [ [1,2,31 [ 3,21 | [3,2,1

Table 4: Three-player ranking garhéused in the proof of Theorem 2

. If an actional! can be eliminated by some other action
a1 thenal2 could at the same time be eliminateddy,

if a"2 has not been eliminated before. This partrcularly
means that underon-iteratedweak dominanceg!* can

be eliminated if and only i&)2 can be eliminated.

Every pair of a non-eliminable actia and another ac-
tion a* satisfies one of two conditions. Eithed is as
least as good a&¢ at any index i(e., action of the other
player). Ora! is strictly worse tharenk at some index, and
strictly better tharak at another index.

Assume there exists a sequence of eliminations that fi-
nally eliminatesinI". Then, by Property 1, an arbitrary ele-
ment of the sequence wheaxkeliminatesa¥, can be mapped
to a pair of successive eliminations li wherebi1 elimi-
natesa®! andal-2 eliminatesa2. This results in a sequence
of eliminations in™ ending in the elimination of boté! and
€?, €'s corresponding actions if.

Conversely, assume thatannot be eliminated ih, and
consider a sequence of elimination$ ideading to the elim-
ination ofe! and there?. We will argue that such a sequence
cannot exist. Sinceis non-eliminable, Property 2 holds for

eand any actiora{, restricted to the actions of player 2 that
have not been eliminated befogé If eis as least as good

as a’1 at any remaining actioa'g, then, by construction of
the payoff mapping and restricted to the remaining actions
of I/, one ofe! or € is at least as good as any other action
of player 1. That means they cannot both be eliminated, a
contradiction.

Hence, there must be a parr of actia§sanda$ such that

eis strictly better tharaa,l atak and strictly worse tharat1 at

az. Without loss of generality, we assume théts the only
index wheree is strictly worse. Then, for bote! and €?

to be eliminable, one osig’l andaé’2 must have been elimi-
nated before. (Observe that this elimination further resgui
rf=r2) On the other hand, it must not be possible to elim-
inate both anda2 , since otherwise, by Property a’
could be eIrmrnated i, whereafteraJ could eliminatee.

We thus get dominance according to Property 2, similar to
the one fore described above. Hence, there again has to be
an actiona]" # e such that exactly one af}* ! anday® ™2 has

been eliminated (and the other one could not have been elim-
inated). This condition can be traced backwards through the
sequence of eliminations that lead to the eliminatiomof
The first elimination in this sequence, however, is in terms
of non-iterated dominance, and by Property 1 there can be
no pair of actions such that exactly one of them can be elim-
inated. This is a contradiction. O

We are now ready to state the main result of this section.

Theorem 2 Deciding whether a ranking game with more
than two players is solvable hiterated weak dominands
NP-complete. When there are only two players, this can be
decided in polynomial time.

Proof: Membershipn NP is immediate. We can simply
guess a sequence of eliminations and then verify that this
sequence is valid and leaves only one action per player.

For hardness we reducelWD-PAIR-ELIMINABLE for
ranking games with three players, where one of the players
has only one action, ttWD-SOLVABLE for ranking games
with three players. Therefore, an instaricef the former
class is mapped to an instariceof the latter as follows:

e All players’ actions froml" are also part of the new in-
stancd™’, including the two actions! ande? to be elim-
inated. The payoffsi., rankings) for the corresponding
outcomes remain the same.

e We further add two additional actroa% anda for player
1, two actionsa} anda3 for player 2 and one action for
player 3, who now has actiorsg anda3. The rankings
for the outcomes induced by these new actions are given
in Table 4.

We claim that, for arbitrary values of, e' ande? can be
eliminated inl" if and only if I’ can be solved by means of
iterated weak dominance.

AssumeIWD-PAIR-ELIMINABLE for I has a solution.
Then, the same sequence of eliminations that eliminates
bothe' ande? can also be executed i, because player 1 is
ranked equally in all rows df ata,, and player 2 is ranked
equally in all columns of” ataj for i =1,2,3. As soon
asel ande? have been eliminated, leg be eliminated by
a3, which is strictly preferred a(ta%,a%) and ranks player 2



equally at any other index. Next, uaiato eliminate all other
rows, which are strictly worse at eithéa}, a3) or (a3,a3)
and strictly better at no index. Finally, Ia§ be eliminated
by a2, being strictly better a3, and solve the game by elim-
inating the remaining actions of player 2 b%/

Conversely, assume that there exists no path of iterated
weak dominance elimination that eliminates betrande?.
We will argue that, as long as either or € is still there, (i)
the newly added actions cannot eliminate any of the origi-

We proceed by showing NP-completeness of deciding
whether there is a pure Nash equilibrium in ranking games
with efficiently computable outcome functiombich is one
of the most general representations of multi-player games
one might think of. Please note that in contrast to Theo-
rems 1 and 2, we now fix the number of actions and let the
number of players increase.

Theorem 3 Deciding the existence of a pure Nash equi-
librium in a ranking game with many players and a

nal actions and (ii) cannot themselves be eliminated (eithe polynomial-time computable outcome function is NP-

by original or new actions). As we have seen above, this compiete, even if the players only have two actions at their
also means that the newly added actions have no influence disposal.

on eliminations between actions bf As for player 1, the
newly added actions are strictly worse than any of the orig- Proof: Since we can check in polynomial time whether a

inal ones ata},a), and strictly better at eithef@3,a3) or
(a3,a3). al is strictly better thara? anda$ at (a3,a3), and
strictly worse at eithe(a3, a3) or (a3,a3). a2 is strictly bet-
ter or worse thalaf at the original actions of player 2 and at
aj anda, respectively. Analogously, for player 2, the newly
added actions are strictly worse than any of the originatone
at(a,a}), and strictly better at eithéel, al) or (a%,a3). a}
is strictly better thara anda at either(a,al) or (a2,a}),
and strictly worse at botte!,a}) and(€?,a3). a3 is strictly
better or worse thaa; at (a},al) and(a2,al), respectively.
Finally, a3 is strictly better thare3 at (a},a3), and strictly
worse at(a?,ad).

This completes the reduction. O

Pure Nash Equilibria in Games with Many Players

An important subset of Nash equilibria are those where play-
ers do not have to randomizeg., every player determinis-
tically chooses one particular action. These so-calect
Nash equilibria ¢f. Definition 5) can be found efficiently by
simply checking every action profile. As the number of play-
ers increases, however, the number of profiles to check (as
well as the normal-form representation of the game) grows
exponentially. An interesting question is whether pureiequ
libria can be computed efficiently givencanciserepresen-
tation of a game (using space polynomialnin For some
concise representations like graphical games with bounded
neighborhood, where the payoff of any player only depends
on a constant number of neighbors (Gottlob, Greco, & Scar-
cello, 2005; Fischer, Holzer, & Katzenbeisser, 2006), or Ci
cuit games, where the outcome function is computed by a
Boolean circuit of polynomial size (Schoenebeck & Vadhan,
2006), deciding the existence of a pure equilibrium has been
shown to be NP-complete.

It turns out that graphical games are of very limited use
for representing ranking games. If two players are not con-
nected by the neighborhood relation, either directly or via
a common player in their neighborhood, then their pay-
offs are completely independent from each other. For a
single-winner game with the reasonable restriction that ev
ery player wins in at least one outcome, this implies that
there must be one designated player who decides which
player wins the game. Similar properties hold for arbitrary
ranking games.

particular player strictly prefers one rank over anotherm-
bershipin NP is immediate. We can guess an action profile
sand verify in polynomial time whetheis a Nash equilib-
rium. For the latter, we check for each player N and for
each actiora € A whetherpi(s_i,a) < pi(9).

For hardnessrecall that circuit satisfiability (CSAT),e.,
deciding whether for a given Boolean circéit with n in-
puts and 1 output there exists an input such that the output
is true, is NP-complete (see.g, Papadimitriou, 1994). We
define a gamé in circuit form for a Boolean circui#’, pro-
viding a polynomial-time reduction of satisfiability &f to
the problem of finding a pure Nash equilibriumlin

Let m be the number of inputs &f’. We define gamé&
with m+ 2 players as follows:

o LetN={1,.... mfU{x,y}, andA = {0,1} foralli € N.

e The outcome function df is computed by a Boolean cir-

cuit that takesn+ 2 bits of inputi = (ay, . ..,am, ax, ay),

corresponding to the actions of the playersNn and

computes 2 bits of outpub = (01,02), given byo; =

%(ay,...,am) andop = (01 OR(ax XOR §)).

The possible outputs of the circuit are identified with per-

mutations i.e., rankings) of the players iN such that

— the permutationpg corresponding to = (0,0) and the
permutatiornrg 1 corresponding to = (1, 1) rankx first
andy last,

— the permutation; corresponding te = (0, 1) ranksy

first, andx last, and
— all other players are ranked in the same order in all three

permutations.

It should be noted that no matter how permutations are
actually encoded as strings of binary values, the encoding
of the above permutations can always be computed using
a polynomial number of gates.

We claim that, for arbitrary rank payoffs I' has a pure
Nash equilibrium if and only if6” is satisfiable. This is seen
as follows:

o If (a1,...,am) is a satisfying assignment &, only a
player in{1,...,m} could possibly change the outcome
of the game by changing his action. However, these play-
ers are ranked in the same order in all the possible out-
comes, so none of them can get a higher payoff by do-
ing so. Thus, every action profile= (ay, . ..,am, ax, ay)
where(ay, ..., am) satisfiess is a Nash equilibrium.



e Ifin turn (a1,...,am) is not a satisfying assignment of  Fischer, F.; Holzer, M.; and Katzenbeisser, S. 2006. The
¢, bothx andy are able to switch between outcontgg influence of neighbourhood and choice on the complexity
and 1 by changing their individual action. Since every of finding pure Nash equilibrialnformation Processing
player strictly prefers being ranked first over being ranked Letters To Appear.

last, x strictly prefers outcomemo over 71, while y Gottlob, G.; Greco, G.; and Scarcello, F. 2005. Pure Nash
strictly prefersrpy overro. Thus,a= (ay, ..., am, a; ay equilibria: Hard and easy gameslournal of Atrtificial
cannot be a Nash equilibrium in this case, since either Intelligence Research4:195—220.

ory could play a different action to get a higher payoff.

Khachiyan, L. 1979. A polynomial algorithm in linear pro-
gramming.Soviet Mathemathics Dokladp:191-194.

Conclusion Luckhardt, C., and Irani, K. 1986. An algorithmic solu-

We proposed a new class of games, so-called ranking games, 10N Of n-person games. IRroceedings of the 5th Na-
that model settings in which players are merely interested ~ tional Conference on Artificial Intelligence (AAADS8—
in performing at least as good as their opponents. Despite  162. AAAI Press.

the structural simplicity of these games, various solution Marsland, A. T., and Schaeffer, J., eds. 19@bhmputers,
concepts turned out to be hard to compute, namely mixed Chess, and CognitiorSpringer-Verlag.

equilibria and iterated weak dominance in games with more 14« L. M.. and Swinkels. J. M. 1997. Order independence

than two players and pure equilibria in games with an un- ¢, jierated weak dominancesames and Economic Be-
bounded number of players. As a consequence, the men- |5yior18:219-245.

tioned solution concepts appear to be of limited use in large _ . _ . .
instances of ranking games that do not possess additional Morgan, J.; Steiglitz, K.; and Reis, G. 2003. The spite mo-

This completes the reduction. O

structure. This underlines the importance of alternatve, tive and equilibrium behavior in auction€ontributions
ficiently computable, solution concepts for ranking games. to Economic Analysis & Policg(1):1102-1127.
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