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Abstract

We embark on an initial study of a new class of strategic
(normal-form) games, so-called ranking games, in which the
payoff to each agent solely depends on his position in a rank-
ing of the agents induced by their actions. This definition is
motivated by the observation that in many strategic situations
such as parlor games, competitive economic scenarios, and
some social choice settings, players are merely interested in
performing optimalrelative to their opponents rather than in
absolute measures. A simple but important subclass of rank-
ing games are single-winner games where in any outcome one
agent wins and all others lose. We investigate the computa-
tional complexity of a variety of common game-theoretic so-
lution concepts in ranking games and deliver hardness results
for iterated weak dominance and mixed Nash equilibria when
there are more than two players and pure Nash equilibria
when the number of players is unbounded. This dashes hope
that multi-player ranking games can be solved efficiently, de-
spite the structural restrictions of these games.

Introduction
A central aspect of AI is game playing,i.e., finding the
optimal (or near-optimal) strategy in an adversarial situa-
tion. Very similar problems—albeit with a less computa-
tional bias—are studied in Game Theory (GT), a field that
lies at the intersection of mathematics and economics. Gen-
erally speaking, “games” are not only restricted to board and
card games, but can stand for any formalized strategic inter-
action occurring in multiagent systems, economics, or so-
cial choice settings. A well-studied subclass of games in GT
consists of strictly competitive games for two players,i.e.,
games where the interests of both players are diametrically
opposed (such as in Chess). These games admit a unique ra-
tional solution (the minimax solution) that can be efficiently
computed (von Neumann, 1928).1 Unfortunately, things get
much more complicated if there are more than two play-
ers. To begin with, the notion of strict competitiveness in
multi-player games is not unequivocal. The extension of the
common definition for two-player games, which says that
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1However, in the case of chess, the enormous size of the game
in normal-form prohibits the efficient computation of an exact so-
lution.

the sum of payoffs in all outcomes has to be constant, is
meaningless in multi-player games becauseany game can
be transformed into a constant-sum game by adding an extra
player (with only one action at his disposal) who absorbs the
payoffs of the other players (von Neumann & Morgenstern,
1947).

In this paper, we put forward a new class of multi-player
games, calledranking games, in which the payoff to each
agent depends solely on his position in a ranking of the
agents induced by their actions. The formal definition al-
lows each agent to specify his individual preferences over
ranks so that

• higher ranks are weakly preferred,

• being first is strictly preferred over being last, and

• agents are indifferent over other players’ ranks.

This definition is motivated by the observation that in many
games of strategy or competitive economic scenarios, play-
ers are merely interested in performing optimalrelative to
their competitors. Besides, one can also think of social
choice settings where agents strive to determine a com-
plete hierarchy among themselves based on individual pref-
erences that satisfy the conditions listed above.

When moving away from two-player constant-sum
games, there are numerous applicable solution concepts.
From a computational perspective, a very important property
of any solution concept is the computational effort required
to determine the solution, simply because the intractabil-
ity of a solution concept renders it useless for large prob-
lem instances that do not exhibit additional structure. We
study the computational complexity of a variety of com-
mon game-theoretic solution concepts in ranking games and
deliver hardness results for iterated weak dominance and
mixed Nash equilibria when there are more than two players
and pure Nash equilibria in games with many players. This
dashes hope that multi-player ranking games can be solved
efficiently, despite the structural restrictions of these games.

Remarkably, all hardness results hold forarbitrary prefer-
ences over ranks as long as they meet the requirements listed
above. In particular, even simple subclasses like single-
winner games (where players only care about winning) or
single-loser games (where players only want to avoid los-
ing) are hard to solve.



Related Work
Most of the research on game playing has focused on two-
player games (see,e.g., Marsland & Schaeffer, 1990). As
a matter of fact, “in AI, ‘games’ are usually of a rather
specialized kind—what game theorists call deterministic,
turn-taking, two-player, zero-sum games of perfect informa-
tion” (Russell & Norvig, 2003, p. 161). A notable excep-
tion are complete informationextensive-formgames, a class
of multi-player games for which efficient Nash equilibrium
search algorithms have been investigated by the AI com-
munity (e.g., Luckhardt & Irani, 1986; Sturtevant, 2004).
In extensive-form games, players move consecutively and a
pureNash equilibrium is guaranteed to exist (see,e.g., My-
erson, 1997). Therefore, the computational complexity of
finding equilibria strongly depends on the actual represen-
tation of the game (also see the Section “Pure Nash Equi-
libria in Games with Many Players”). Normal-form games
are more general than extensive-form games because ev-
ery extensive-form game can be mapped to a corresponding
normal-form game (with potentially exponential blowup),
while the opposite is not the case.

In GT, several classes of “strictly competitive” games that
maintain some of the nice properties of two-player constant-
sum games have been proposed. For example, Aumann
(1961) definesalmost strictly competitivegames as games
where a unique value can be obtained by playing strate-
gies from a certain set. Moulin & Vial (1978) introduce a
class of games that are strategically equivalent to constant-
sum games. The notion of strict competitiveness we con-
sider is remotely related tospitefulness(Brandt, Sandholm,
& Shoham, 2005; Morgan, Steiglitz, & Reis, 2003), where
agents aim at maximizing their payoff relative to the payoff
of all other agents.

Definitions
Game-Theoretic Foundations
An accepted way to model situations of conflict and social
interaction is by means of anormal-form game(see,e.g.,
Myerson, 1997).

Definition 1 (Normal-form game) A game in normal-form
is a tupleΓ = (N,(Ai)i∈N,(pi)i∈N) where N is a set ofplay-
ersand for each player i∈N, Ai is a nonempty set ofactions
available to player i, and pi : ("i∈NAi) → R is a function
mapping each action profile of the game (i.e., combination
of actions) to a real-valuedpayoff for player i.

A combination of actionss∈ "i∈NAi is also called a profile
of pure strategies. This concept can be generalized tomixed
strategy profiles s∈S= "i∈NSi , by letting players randomize
over their actions. Here,Si denotes the set of probability dis-
tributions over playeri’s actions, ormixed strategiesavail-
able to playeri. In the following, we further writen = |N|
for the number of players in a game,si for the ith strategy in
profile s, s−i for the vector of all strategies ins but si , and
si(a) for the probability assigned to actiona by playeri in
strategy profiles. Two-player games are also calledbimatrix
games, and games with rational payoffs are calledrational
games.

Ranking Games
The situations of social interaction this paper is concerned
with are such that outcomes are related to a ranking of the
players, i.e., an ordering of the players according to how
well they have done in the game relative to one another.
We assume that players generally prefer higher ranks over
lower ones and that they are indifferent to the ranks of other
players. Moreover, we hypothesize that the players entertain
qualitative preferences overlotteriesor probability distribu-
tions over ranks (cf. von Neumann & Morgenstern, 1947).
For example, one player may prefer to be ranked second
to having a fifty-fifty chance of being ranked first or being
ranked third, whereas another player may judge quite differ-
ently. Thus, we arrive at the following definition of therank
payoff to a player.

Definition 2 (Rank payoff) Therank payoffof a player i is
defined as vector ri = (r1

i , r
2
i , . . . , r

n
i ) ∈ R

n so that

rk
i ≥ rk+1

i for all k ∈ {1,2, . . . ,n−1}, and r1i > rn
i

(i.e., higher ranks are weakly preferred, and for at least one
rank the preference is strict). For convenience, we assume
rank payoffs to be normalized so that r1

i = 1 and rni = 0.

Intuitively, rk
i represents playeri’s payoff for being ranked

in kth. Building on Definition 2, defining ranking games is
straightforward.

Definition 3 (Ranking game) A ranking gameis a game
where for any strategy profile s∈ S there is a permutation
(π1,π2, . . . ,πn) of the players so that pi(s) = rπi

i for all i ∈N.

A binary ranking gameis one where each rank payoff vector
only consists of zeros and ones,i.e., each player is equally
satisfied up to a certain rank. An important subclass of bi-
nary ranking games are games where winning is the only
goal of all players.

Definition 4 (Single-winner game) A single-winner game
is a ranking game where ri = (1,0, . . . ,0) for all i ∈ N.

In other words, the outcome space in single-winner games
is partitioned inton blocks. When considering mixed strate-
gies, the expected payoff in a single-winner ranking game
equals the probability of winning the game. Similar to
single-winner games, we can definesingle-loser games(like
“musical chairs”) as games where allr i = (1, . . . ,1,0).

An example single-winner game with three players is
given in Table 1. A convenient way to represent these
games is to just denote the index of the winning player for
each outcome. Nash equilibria (see the subsequent Sec-
tion for a definition) are marked by dashed boxes where a
box that spans two outcomes denotes an equilibrium where
one player mixes uniformly between his actions.2 Curi-
ously, there is a fifth equilibrium in this game where all
players randomize their actions according to the golden ratio
φ = (1+

√
5)/2.

2It seems as if every single-winner game has a non-pure equilib-
rium, i.e., an equilibrium in which at least one player randomizes.
However, this claim has so far tenaciously resisted proof.



2 1

1 3

3 3

1 2

Table 1: Three-player single-winner game. Player 1 chooses
rows, player 2 chooses columns, and player 3 chooses ma-
trices. The four dashed boxes denote Nash equilibria.

Solving Ranking Games
Over the years, GT has produced a number of solution con-
cepts that identify reasonable or desirable strategy profiles in
a given game (see,e.g., Myerson, 1997). The key question of
this paper is whether the rather restricted structure of ranking
games allows us to compute instances of common solution
concepts more efficiently than in general games. For this
reason, we focus on solution concepts that are known to be
intractable for general games, namely (mixed)Nash equilib-
ria (Chen & Deng, 2005; Daskalakis, Goldberg, & Papadim-
itriou, 2006), iterated weak dominance(Conitzer & Sand-
holm, 2005), andpure Nash equilibriain graphical normal
form (Gottlob, Greco, & Scarcello, 2005; Fischer, Holzer, &
Katzenbeisser, 2006) or circuit form games (Schoenebeck
& Vadhan, 2006). We do not cover solution concepts for
which efficient algorithms are known to exist such as iter-
ated strong dominance (Conitzer & Sandholm, 2005) or cor-
related equilibria (Papadimitriou, 2005).

Given the current state of complexity theory (see,e.g.,
Papadimitriou, 1994), we cannot prove theactual hardness
of most algorithmic problems, but merely giveevidencefor
their hardness. Showing the NP-completeness of a prob-
lem is commonly regarded as a very strong argument for
hardness because it relates the problem to a large class of
problems for which no efficient algorithm is known (de-
spite enormous efforts to find such algorithms). To some
extent, the same reasoning can also be applied to PPAD-
completeness. When in the following we refer to the hard-
ness of a game we mean the computational hardness of solv-
ing the game using a particular solution concept.

Mixed Nash Equilibria
One of the best-known solution concepts is Nash equilib-
rium (Nash, 1951). In a Nash equilibrium, no player is able
to increase his payoff byunilaterallychanging his strategy.

Definition 5 (Nash equilibrium) A strategy profile s∈ S is
called aNash equilibriumif for each player i∈ N and each
strategy s′i ∈ Si ,

pi(s) ≥ pi((s−i ,s
′
i)).

A Nash equilibrium is called pure if it is a pure strategy pro-
file.

Let us first consider ranking games with only two players.
According to Definition 3, two-player ranking games are
games with outcomes(1,0) and (0,1) and thus represent

a special subclass of constant-sum games.3 Nash equilib-
ria of constant-sum games can be found by Linear Program-
ming (see,e.g., Vajda, 1956), for which there is a polynomial
time algorithm (Khachiyan, 1979).

For more than two players, we argue by showing that
three-player ranking games are at least as hard to solve as
general rational bimatrix games. This is sufficient for prov-
ing hardness, becausen-player ranking games are at least
as hard as(n−1)-player ranking games (by adding an ex-
tra player who only has a single action and is ranked last
in all outcomes). A key concept in our proof is that of a
Nash homomorphism, a notion introduced by Abbott, Kane,
& Valiant (2005). We generalize their definition to more
than two players.

Definition 6 (Nash homomorphism) A Nash homomor-
phismis a mapping h from a set of games into a set of games,
such that there exists a polynomial-time computable function
f that, when given a gameΓ and an equilibrium of h(Γ), re-
turns an equilibrium ofΓ.

A very simple Nash homomorphism, henceforth called
scale homomorphism, is one where the payoff of each player
is scaled using a positive linear transformation. It is well-
known that Nash equilibria are invariant under this kind of
operation. A slightly more sophisticated mapping, where
outcomes (i.e., payoff profiles) of a bimatrix game are
mapped to corresponding three-player subgames, so-called
simple cubes, is defined next.

Definition 7 (Simple cube substitution (SCS))Let h be a
mapping from a set of two-player games to a set of
three-player games that replaces every outcome o=
(p1, p2, . . . , pn) of the original gameΓ with a correspond-
ing three-player subgameΓ′(o) of the form

o1(o) o2(o)

o2(o) o1(o)

o2(o) o1(o)

o1(o) o2(o) .

h is called asimple cube substitution (SCS)if for every o

• Γ′(o) is a constant-sum game (i.e., ∑i pi(o1(o)) =
∑i pi(o2(o))),

• the average of player i’s payoff in o1(o) and o2(o) equals
pi , and

• there is at least one player who prefers o1(o) over o2(o)
and one who prefers o2(o) over o1(o).

Thus, SCS maps anyk× ℓ bimatrix game to a 2k× 2ℓ× 2
three-player game. For reasons of limited space, we omit
the proof that SCS is indeed a Nash homomorphism.

Lemma 1 SCS is a Nash homomorphism. �

Based on the scale homomorphism and SCS, we now
show that there exist Nash homomorphisms mapping ratio-
nal bimatrix games to three-player ranking games.

3For three or more players, there is no meaningful relation be-
tween ranking games and constant-sum games. In fact, ranking
games are not contained in the set of constant-sum games and nei-
ther are constant-sum games a subset of ranking games.



Outcome Scaled outcome Ranking subgame

(0,0) 7−→
(

1
2
,

1
2

)

7−→ [1,3,2] [2,3,1]

[2,3,1] [1,3,2]

[2,3,1] [1,3,2]

[1,3,2] [2,3,1]

(1,0) 7−→
(

1,
1
2

)

7−→ [1,3,2] [1,2,3]

[1,2,3] [1,3,2]

[1,2,3] [1,3,2]

[1,3,2] [1,2,3]

(0,1) 7−→
(

1
2
, 1

)

7−→ [2,3,1] [1,2,3]

[1,2,3] [2,3,1]

[1,2,3] [2,3,1]

[2,3,1] [1,2,3]

Table 2: Simple cube substitution mapping from binary bimatrix games to three-player single-loser games

Lemma 2 For any given rank payoff profile, there exists a
Nash homomorphism from the set of rational bimatrix games
to the set of three-player ranking games.

Proof: It has been shown by Abbott, Kane, & Valiant (2005)
that there is a Nash homomorphism from rational bimatrix
games to bimatrix games with payoffs 0 and 1 (calledbinary
gamesin the following). Since a composition of Nash homo-
morphisms is again a Nash homomorphism, we only need
to provide a homomorphism from binary bimatrix games to
three-player ranking games. Furthermore, there is no need to
map instances of binary games that contain outcome(1,1),
which is Pareto-dominant and therefore constitutes a pure
Nash equilibrium wherever it occurs in a binary game (no
player can benefit from deviating). Consequently, such in-
stances are easy to solve and need not be considered in our
mapping.

Let (1, r2
i ,0) be the rank payoff of playeri, and let[i, j,k]

denote the outcome where playeri is ranked first,j is ranked
second, andk is ranked last. First of all, consider ranking
games wherer2

i < 1 for some playeri ∈ N (this is the set
of all ranking gamesexceptsingle-loser games). Without
loss of generality, leti = 1. Then, a Nash homomorphism
from binary bimatrix games to the aforementioned class of
games can be obtained by first scaling the payoffs accord-
ing to (p1, p2) 7−→

(

(1− r2
1)p1 + r2

1, p2
)

, and then adding a
third player who only has a single action and whose payoff
depends onp1 and p2 (but is otherwise irrelevant). Obvi-
ously, the latter is also a Nash homomorphism. Outcomes
(0,0), (1,0), and(0,1) are hence mapped according to

(0,0) 7−→ (r2
1,0) 7−→ [3,1,2]

(1,0) 7−→ (1,0) 7−→ [1,3,2]
(0,1) 7−→ (r2

1,1) 7−→ [2,1,3].

Interestingly, three-playersingle-losergames with only
one action for some playeri ∈ N are easy to solve because

• there either is a Pareto-dominant outcome (i.e., one where
i is ranked last, such that the other players both receive
payoff 1), or

• the game is a constant-sum game (i.e., i is not ranked last
in any outcome, such that the payoffs of the other players
always sum up to 1).

Nevertheless, binary games can be mapped to single-loser
games if the additional player is able to choose betweentwo

different actions. We claim that the mapping given in Ta-
ble 2 represents a SCS from the set of binary bimatrix games
to three-player single-loser games. First of all, each payoff
pi of player i in the original binary bimatrix game is trans-
formed according to the scale homomorphism(p1, p2) 7−→
(

(1+ p1)/2,(1+ p2)/2
)

. Next, we replace outcomes of the
resulting game by three-player single-loser subgames ac-
cording to the mapping shown in Table 2. It can easily be
verified that this mapping satisfies the conditions of Defini-
tion 7 and thus constitutes a Nash homomorphism. �

We are now ready to present the main result of this sec-
tion concerning the hardness of computing Nash equilib-
ria of ranking games. Since every normal-form game is
guaranteed to possess a Nash equilibrium in mixed strate-
gies (Nash, 1951), the decision problem is trivial. How-
ever, the associatedsearch problemturned out to be not
at all trivial. In fact, it has recently been shown to be
PPAD-complete (Chen & Deng, 2005; Daskalakis, Gold-
berg, & Papadimitriou, 2006). TFNP (total functions in NP)
is the class of search problems guaranteed to have a solu-
tion. As Daskalakis, Goldberg, & Papadimitriou (2006) put
it, “this is precisely NP with an added emphasis on find-
ing a witness.” PPAD is a certain subclass of TFNP that is
believed not to be contained in P. For this reason, the PPAD-
completeness of a particular problem can be seen as evi-
dence that there is no efficient algorithm for solving it (cf.
Daskalakis, Goldberg, & Papadimitriou, 2006).

Theorem 1 Computing aNash equilibriumof a ranking
game with more than two players is PPAD-complete. If there
are only two players, equilibria can be found in polynomial
time.

Proof: According to Lemma 2, ranking games are at least
as hard to solve as general two player games. We al-
ready know that solving general two-player games is PPAD-
complete (Chen & Deng, 2005), and ranking games cannot
be harder than general games. �

Iterated Weak Dominance

We will now move to another solution concept, namely the
elimination of weakly dominated actions.



Definition 8 (Weak Dominance) An action di ∈ Ai is said
to beweakly dominatedby strategy si ∈ Si if

pi(b−i ,di) ≤ ∑
ai∈Ai

si(ai)pi(b−i ,ai), for all b−i ∈ A−i

and for at least onêb−i ∈ A−i ,

pi(b̂−i ,di) < ∑
ai∈Ai

si(ai)pi(b̂−i ,ai).

After one or more dominated actions have been removed
from the game, other actions may become dominated that
were not dominated in the original game, and may them-
selves be removed. In general, the result of such an itera-
tive process depends on the order in which actions are elim-
inated, since the elimination of an action may render an ac-
tion of another player undominated. If only one action re-
mains for each player, we say that the game can be solved
by means of iterated weak dominance.

Definition 9 We say that a game issolvableby iterated
weak dominance if there is some path of eliminations that
leaves exactly one action per player. The corresponding
computational problem of deciding whether a given game
is solvable will be calledIWD-SOLVABLE.

If there are only two players, we can decideIWD-SOLVABLE
in polynomial time, which is seen as follows. First of all, we
observe that in binary games dominance by a mixed strategy
always implies dominance by a pure strategy, so we only
have to consider dominance by pure strategies. Consider a
path of iterated weak dominance that ends in a single action
profile (a1,a2), and without loss of generality assume that
player 1 (i.e., the row player) wins in this profile. This im-
plies that player 1 must win in any action profile(a1,a′2) for
a′2 ∈ A2, i.e., in the entire row. For a contradiction, consider
the particular actiona1

2 such that player 2 wins in(a1,a1
2)

anda1
2 is eliminated last on the path that solves the game.

Clearly, a1
2 could not be eliminated in this case. An elimi-

nation by player 1 would also eliminatea1, while an elim-
ination by player 2 would require another actiona2

2 such
that player 2 also wins in(a1,a2

2), which contradicts the
assumption thata1

2 is eliminated last. We thus claim that
IWD-SOLVABLE for ranking games with two players can be
decided by finding a unique actiona1 of player 1 by which
he always wins, and a unique actiona2 of player 2 by which
he wins for a maximum number of actions of player 1. If
such actions do not exist or are not unique, the game can-
not be solved by means of iterated weak dominance. If they
do exist, we can usea1 to eliminate all actionsa′1 such that
player 2 does not win in(a′1,a2), whereaftera2 can elimi-
nate all other actions of player 2, until finallya1 eliminates
player 1’s remaining strategies and solves the game. Obvi-
ously, this can be done in polynomial time.4

4Since two-player ranking games are a subclass of constant-
sum games, weak dominance andnice weak dominance(Marx &
Swinkels, 1997) coincide, making iterated weak dominance order
independentup to payoff-equivalent action profiles.

(0,0) 7→ [3,2,1] [3,1,2]

[3,1,2] [3,2,1]
(1,0) 7→ [1,2,3] [3,1,2]

[3,1,2] [1,2,3]

(0,1) 7→ [3,2,1] [2,1,3]

[2,1,3] [3,2,1]
(1,1) 7→ [1,2,3] [2,1,3]

[2,1,3] [1,2,3]

Table 3: Dominance-preserving mapping from binary bima-
trix games to three-player ranking games

In order to tackleIWD-SOLVABLE for more than two
players, we introduce two additional computational prob-
lems related to iterated weak dominance.

Definition 10 Given an action e,IWD-ELIMINABLE asks
whether there is some path of iterated weak dominance elim-
ination that eliminates e. Given a pair of actions e1 and e2,
IWD-PAIR-ELIMINABLE asks whether there is some path of
iterated weak dominance that eliminates both e1 and e2.

We proceed to show hardness ofIWD-SOLVABLE for rank-
ing games with more than two players by first showing
hardness ofIWD-PAIR-ELIMINABLE, and then reducing it
to IWD-SOLVABLE.

Lemma 3 IWD-PAIR-ELIMINABLE is NP-complete for any
ranking game with at least three players, even if one player
only has a single action, and the two actions to be eliminated
belong to the same player.

Proof: Membershipin NP is immediate. We can simply
guess a sequence of eliminations and then verify in poly-
nomial time that this sequence is valid and eliminatese1 and
e2.

To show hardness, we reduceIWD-ELIMINABLE for
games with two players and payoffs 0 and 1, which has re-
cently been shown to be NP-hard (Conitzer & Sandholm,
2005), to IWD-PAIR-ELIMINABLE for ranking games. A
gameΓ of the former class is mapped to a ranking game
Γ′ as follows:

• Γ′ features the two players ofΓ, denoted 1 and 2, and an
additional player 3.

• Each actiona j
i of playeri ∈ {1,2} in Γ is mapped totwo

actionsa j,1
i anda j,2

i in Γ′. Player 3 only has a single ac-
tion.

• Payoffs ofΓ are mapped to rankings ofΓ′ according to the
mapping in Table 3. Again,[i, j,k] denotes the outcome
where playeri is ranked first,j is ranked second, andk is
ranked last.

We claim that for any class of ranking game,i.e., irrespec-
tive of the rank payoffsr i = (1, r2

i ,0), a particular actiona j

in Γ can be eliminated by means of iterated weak dominance
if and only if it is possible to eliminate botha j,1 anda j,2 in
Γ′ on a single path. Without loss of generality, we assume
thate belongs to player 1. In the following, we exploit two
properties of the outcome mapping in Table 3:



a1
3

a1
2 a2

2 a3
2

e1 [3,1,2] [2,1,3] [2,1,3]
e2 [3,1,2] [2,1,3] [2,1,3]

Γ
...

...
...

[2,1,3] [2,1,3] [2,1,3]
...

...
...

a1
1 · · · [1,3,2] · · · [2,1,3] [2,3,1] [3,1,2]

a2
1 · · · [1,3,2] · · · [2,1,3] [3,1,2] [2,1,3]

a3
1 · · · [2,3,1] · · · [3,1,2] [1,3,2] [3,1,2]

a2
3

a1
2 a2

2 a3
2

...
...

...
...

[1,2,3] [3,2,1] [1,2,3] [1,2,3]

...
...

...
...

a1
1 · · · [1,2,3] · · · [1,2,3] [3,2,1] [1,2,3]

a2
1 · · · [3,2,1] · · · [1,2,3] [1,2,3] [3,2,1]

a3
1 · · · [1,2,3] · · · [1,2,3] [3,2,1] [3,2,1]

Table 4: Three-player ranking gameΓ′ used in the proof of Theorem 2

1. If an actiona j,1 can be eliminated by some other action
ak,1, thena j,2 could at the same time be eliminated byak,2,
if ak,2 has not been eliminated before. This particularly
means that undernon-iteratedweak dominance,a j,1 can
be eliminated if and only ifa j,2 can be eliminated.

2. Every pair of a non-eliminable actiona j and another ac-
tion ak satisfies one of two conditions. Either,a j is as
least as good asak at any index (i.e., action of the other
player). Or,a j is strictly worse thanak at some index, and
strictly better thanak at another index.

Assume there exists a sequence of eliminations that fi-
nally eliminatese in Γ. Then, by Property 1, an arbitrary ele-
ment of the sequence wherea j eliminatesak, can be mapped
to a pair of successive eliminations inΓ′ whereb j,1 elimi-
natesak,1 anda j,2 eliminatesak,2. This results in a sequence
of eliminations inΓ′ ending in the elimination of bothe1 and
e2, e’s corresponding actions inΓ′.

Conversely, assume thate cannot be eliminated inΓ, and
consider a sequence of eliminations inΓ′ leading to the elim-
ination ofe1 and thene2. We will argue that such a sequence
cannot exist. Sincee is non-eliminable, Property 2 holds for
e and any actiona j

1, restricted to the actions of player 2 that
have not been eliminated beforee2. If e is as least as good
asa j

1 at any remaining actionak
2, then, by construction of

the payoff mapping and restricted to the remaining actions
of Γ′, one ofe1 or e2 is at least as good as any other action
of player 1. That means they cannot both be eliminated, a
contradiction.

Hence, there must be a pair of actionsak
2 andaℓ

2 such that
e is strictly better thana j

1 at ak
2 and strictly worse thana j

1 at
aℓ

2. Without loss of generality, we assume thataℓ
2 is the only

index wheree is strictly worse. Then, for bothe1 and e2

to be eliminable, one ofaℓ,1
2 andaℓ,2

2 must have been elimi-
nated before. (Observe that this elimination further requires
r1
1 = r2

1.) On the other hand, it must not be possible to elim-
inate bothaℓ,1

2 andaℓ,2
2 , since otherwise, by Property 1,aℓ

2

could be eliminated inΓ, whereaftera j
1 could eliminatee.

We thus get dominance according to Property 2, similar to
the one fore described above. Hence, there again has to be
an actionam

1 6= e such that exactly one ofam,1
1 andam,2

1 has

been eliminated (and the other one could not have been elim-
inated). This condition can be traced backwards through the
sequence of eliminations that lead to the elimination ofe2.
The first elimination in this sequence, however, is in terms
of non-iterated dominance, and by Property 1 there can be
no pair of actions such that exactly one of them can be elim-
inated. This is a contradiction. �

We are now ready to state the main result of this section.

Theorem 2 Deciding whether a ranking game with more
than two players is solvable byiterated weak dominanceis
NP-complete. When there are only two players, this can be
decided in polynomial time.

Proof: Membershipin NP is immediate. We can simply
guess a sequence of eliminations and then verify that this
sequence is valid and leaves only one action per player.

For hardness, we reduceIWD-PAIR-ELIMINABLE for
ranking games with three players, where one of the players
has only one action, toIWD-SOLVABLE for ranking games
with three players. Therefore, an instanceΓ of the former
class is mapped to an instanceΓ′ of the latter as follows:

• All players’ actions fromΓ are also part of the new in-
stanceΓ′, including the two actionse1 ande2 to be elim-
inated. The payoffs (i.e., rankings) for the corresponding
outcomes remain the same.

• We further add two additional actionsa1
1 anda2

1 for player
1, two actionsa1

2 anda2
2 for player 2 and one action for

player 3, who now has actionsa1
3 anda2

3. The rankings
for the outcomes induced by these new actions are given
in Table 4.

We claim that, for arbitrary values ofr2
i , e1 ande2 can be

eliminated inΓ if and only if Γ′ can be solved by means of
iterated weak dominance.

Assume IWD-PAIR-ELIMINABLE for Γ has a solution.
Then, the same sequence of eliminations that eliminates
bothe1 ande2 can also be executed inΓ′, because player 1 is
ranked equally in all rows ofΓ at ai

2, and player 2 is ranked
equally in all columns ofΓ at ai

1 for i = 1,2,3. As soon
ase1 ande2 have been eliminated, leta2

2 be eliminated by
a1

2, which is strictly preferred at(a2
1,a

1
3) and ranks player 2



equally at any other index. Next, usea1
1 to eliminate all other

rows, which are strictly worse at either(a1
2,a

2
3) or (a3

2,a
2
3)

and strictly better at no index. Finally, leta2
3 be eliminated

by a1
3, being strictly better ata3

2, and solve the game by elim-
inating the remaining actions of player 2 bya1

2.
Conversely, assume that there exists no path of iterated

weak dominance elimination that eliminates bothe1 ande2.
We will argue that, as long as eithere1 or e2 is still there, (i)
the newly added actions cannot eliminate any of the origi-
nal actions and (ii) cannot themselves be eliminated (either
by original or new actions). As we have seen above, this
also means that the newly added actions have no influence
on eliminations between actions ofΓ. As for player 1, the
newly added actions are strictly worse than any of the orig-
inal ones at(a1

2,a
2
3), and strictly better at either(a2

2,a
2
3) or

(a3
2,a

2
3). a1

1 is strictly better thana2
1 anda3

1 at (a3
2,a

2
3), and

strictly worse at either(a2
2,a

2
3) or (a2

2,a
1
3). a2

1 is strictly bet-
ter or worse thana3

1 at the original actions of player 2 and at
a1

3 anda2
3, respectively. Analogously, for player 2, the newly

added actions are strictly worse than any of the original ones
at (a3

1,a
1
3), and strictly better at either(a1

1,a
1
3) or (a2

1,a
1
3). a1

2
is strictly better thana2

2 anda3
2 at either(a1

1,a
1
3) or (a2

1,a
1
3),

and strictly worse at both(e1,a1
3) and(e2,a1

3). a2
2 is strictly

better or worse thana3
2 at (a1

1,a
1
3) and(a2

1,a
1
3), respectively.

Finally, a1
3 is strictly better thana2

3 at (a1
1,a

3
2), and strictly

worse at(a2
1,a

3
2).

This completes the reduction. �

Pure Nash Equilibria in Games with Many Players
An important subset of Nash equilibria are those where play-
ers do not have to randomize,i.e., every player determinis-
tically chooses one particular action. These so-calledpure
Nash equilibria (cf. Definition 5) can be found efficiently by
simply checking every action profile. As the number of play-
ers increases, however, the number of profiles to check (as
well as the normal-form representation of the game) grows
exponentially. An interesting question is whether pure equi-
libria can be computed efficiently given aconciserepresen-
tation of a game (using space polynomial inn). For some
concise representations like graphical games with bounded
neighborhood, where the payoff of any player only depends
on a constant number of neighbors (Gottlob, Greco, & Scar-
cello, 2005; Fischer, Holzer, & Katzenbeisser, 2006), or cir-
cuit games, where the outcome function is computed by a
Boolean circuit of polynomial size (Schoenebeck & Vadhan,
2006), deciding the existence of a pure equilibrium has been
shown to be NP-complete.

It turns out that graphical games are of very limited use
for representing ranking games. If two players are not con-
nected by the neighborhood relation, either directly or via
a common player in their neighborhood, then their pay-
offs are completely independent from each other. For a
single-winner game with the reasonable restriction that ev-
ery player wins in at least one outcome, this implies that
there must be one designated player who decides which
player wins the game. Similar properties hold for arbitrary
ranking games.

We proceed by showing NP-completeness of deciding
whether there is a pure Nash equilibrium in ranking games
with efficiently computable outcome functionswhich is one
of the most general representations of multi-player games
one might think of. Please note that in contrast to Theo-
rems 1 and 2, we now fix the number of actions and let the
number of players increase.

Theorem 3 Deciding the existence of a pure Nash equi-
librium in a ranking game with many players and a
polynomial-time computable outcome function is NP-
complete, even if the players only have two actions at their
disposal.

Proof: Since we can check in polynomial time whether a
particular player strictly prefers one rank over another,mem-
bershipin NP is immediate. We can guess an action profile
sand verify in polynomial time whethers is a Nash equilib-
rium. For the latter, we check for each playeri ∈ N and for
each actiona∈ Ai whetherpi(s−i ,a) ≤ pi(s).

For hardness, recall that circuit satisfiability (CSAT),i.e.,
deciding whether for a given Boolean circuitC with n in-
puts and 1 output there exists an input such that the output
is true, is NP-complete (see,e.g., Papadimitriou, 1994). We
define a gameΓ in circuit form for a Boolean circuitC , pro-
viding a polynomial-time reduction of satisfiability ofC to
the problem of finding a pure Nash equilibrium inΓ.

Let m be the number of inputs ofC . We define gameΓ
with m+2 players as follows:
• Let N = {1, . . . ,m}∪{x,y}, andAi = {0,1} for all i ∈ N.
• The outcome function ofΓ is computed by a Boolean cir-

cuit that takesm+ 2 bits of inputi = (a1, . . . ,am,ax,ay),
corresponding to the actions of the players inN, and
computes 2 bits of outputo = (o1,o2), given by o1 =
C (a1, . . . ,am) ando2 = (o1 OR(ax XOR ay)).

• The possible outputs of the circuit are identified with per-
mutations (i.e., rankings) of the players inN such that
– the permutationπ00 corresponding too= (0,0) and the

permutationπ11 corresponding too= (1,1) rankx first
andy last,

– the permutationπ01 corresponding too= (0,1) ranksy
first, andx last, and

– all other players are ranked in the same order in all three
permutations.

It should be noted that no matter how permutations are
actually encoded as strings of binary values, the encoding
of the above permutations can always be computed using
a polynomial number of gates.
We claim that, for arbitrary rank payoffsr, Γ has a pure

Nash equilibrium if and only ifC is satisfiable. This is seen
as follows:
• If (a1, . . . ,am) is a satisfying assignment ofC , only a

player in{1, . . . ,m} could possibly change the outcome
of the game by changing his action. However, these play-
ers are ranked in the same order in all the possible out-
comes, so none of them can get a higher payoff by do-
ing so. Thus, every action profilea = (a1, . . . ,am,ax,ay)
where(a1, . . . ,am) satisfiesC is a Nash equilibrium.



• If in turn (a1, . . . ,am) is not a satisfying assignment of
C , bothx andy are able to switch between outcomesπ00
andπ01 by changing their individual action. Since every
player strictly prefers being ranked first over being ranked
last, x strictly prefers outcomeπ00 over π01, while y
strictly prefersπ01 overπ00. Thus,a = (a1, . . . ,am,ax,ay)
cannot be a Nash equilibrium in this case, since eitherx
or y could play a different action to get a higher payoff.

This completes the reduction. �

Conclusion
We proposed a new class of games, so-called ranking games,
that model settings in which players are merely interested
in performing at least as good as their opponents. Despite
the structural simplicity of these games, various solution
concepts turned out to be hard to compute, namely mixed
equilibria and iterated weak dominance in games with more
than two players and pure equilibria in games with an un-
bounded number of players. As a consequence, the men-
tioned solution concepts appear to be of limited use in large
instances of ranking games that do not possess additional
structure. This underlines the importance of alternative,ef-
ficiently computable, solution concepts for ranking games.

Acknowledgements
The authors thank Paul Harrenstein, Markus Holzer, Samuel
Ieong, Eugene Nudelman, and Rob Powers for valuable
comments. This material is based upon work supported
by the Deutsche Forschungsgemeinschaft under grants
BR 2312/1-1 and BR 2312/3-1, and by the National Science
Foundation under ITR grant IIS-0205633.

References
Abbott, T.; Kane, D.; and Valiant, P. 2005. On the com-

plexity of two-player win-lose games. InProceedings of
the 46th Symposium on Foundations of Computer Science
(FOCS), 113–122. IEEE Computer Society Press.

Aumann, R. 1961. Almost strictly competitive games.Jour-
nal of the Society of Industrial and Applied Mathematics
9(4):544–550.

Brandt, F.; Sandholm, T.; and Shoham, Y. 2005. Spite-
ful bidding in sealed-bid auctions. In Gmytrasiewicz, P.,
and Parsons, S., eds.,Proceedings of the 7th IJCAI Work-
shop on Game Theoretic and Decision Theoretic Agents
(GTDT).

Chen, X., and Deng, X. 2005. Settling the complexity
of 2-player Nash-equilibrium. Technical Report TR05-
140, Electronic Colloquium on Computational Complex-
ity (ECCC).

Conitzer, V., and Sandholm, T. 2005. Complexiy of (iter-
ated) dominance. InProceedings of the 6th ACM Confer-
ence on Electronic Commerce (ACM-EC), 88–97. ACM
Press.

Daskalakis, C.; Goldberg, P.; and Papadimitriou, C. 2006.
The complexity of computing a Nash equilibrium. InPro-
ceedings of the 38th Annual ACM Symposium on the The-
ory of Computing (STOC). ACM Press.

Fischer, F.; Holzer, M.; and Katzenbeisser, S. 2006. The
influence of neighbourhood and choice on the complexity
of finding pure Nash equilibria.Information Processing
Letters. To Appear.

Gottlob, G.; Greco, G.; and Scarcello, F. 2005. Pure Nash
equilibria: Hard and easy games.Journal of Artificial
Intelligence Research24:195–220.

Khachiyan, L. 1979. A polynomial algorithm in linear pro-
gramming.Soviet Mathemathics Doklady20:191–194.

Luckhardt, C., and Irani, K. 1986. An algorithmic solu-
tion of n-person games. InProceedings of the 5th Na-
tional Conference on Artificial Intelligence (AAAI), 158–
162. AAAI Press.

Marsland, A. T., and Schaeffer, J., eds. 1990.Computers,
Chess, and Cognition. Springer-Verlag.

Marx, L. M., and Swinkels, J. M. 1997. Order independence
for iterated weak dominance.Games and Economic Be-
havior18:219–245.

Morgan, J.; Steiglitz, K.; and Reis, G. 2003. The spite mo-
tive and equilibrium behavior in auctions.Contributions
to Economic Analysis & Policy2(1):1102–1127.

Moulin, H., and Vial, J.-P. 1978. Strategically zero-sum
games: The class of games whose completely mixed equi-
libria cannot be improved upon.International Journal of
Game Theory7(3–4):201–221.

Myerson, R. B. 1997.Game Theory: Analysis of Conflict.
Harvard University Press.

Nash, J. F. 1951. Non-cooperative games.Annals of Math-
ematics54(2):286–295.

von Neumann, J., and Morgenstern, O. 1947.The Theory
of Games and Economic Behavior. Princeton University
Press, 2nd edition.

von Neumann, J. 1928. Zur Theorie der Gesellschaftspiele.
Mathematische Annalen100:295–320.

Papadimitriou, C. H. 1994.Computational Complexity.
Addison-Wesley.

Papadimitriou, C. H. 2005. Computing correlated equilibria
in multi-player games. InProceedings of the 37th Annual
ACM Symposium on the Theory of Computing (STOC),
49–56. ACM Press.

Russell, S. J., and Norvig, P. 2003.Artificial Intelligence. A
Modern Approach. Prentice Hall, 2nd edition.

Schoenebeck, G., and Vadhan, S. 2006. The computational
complexity of Nash equilibria in concisely represented
games. InProceedings of the 7th ACM Conference on
Electronic Commerce (ACM-EC). ACM Press.

Sturtevant, N. 2004. Current challenges in multi-player
game search. InProceedings of the 4th International Con-
ference on Computers and Games (CG), volume 3846 of
Lecture Notes in Computer Science (LNCS). Springer-
Verlag.

Vajda, S. 1956.Theory of Games and Linear Programming.
Wiley.


