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Many digital markets, such as display advertising exchanges, are run as repeated
first- or second-price auctions and are increasingly automated by learning agents.
Recent empirical work shows that simple learning algorithms converge to an equi-
librium in such settings, yet the reasons for this convergence remain elusive. We
model the equilibrium problem as an infinite-dimensional variational inequality
and analyze the associated dynamical system induced by gradient-based learning.
We show that known sufficient conditions for convergence – such as strict mono-
tonicity or the Minty condition – do not hold. While the second-price auction
admits a Minty-type solution, the first-price auction does not. To prove conver-
gence in the latter, we construct a Lyapunov function in the space of piecewise
linear bid functions. Our approach provides the first ex-ante convergence proof for
learning in first- and second-price auctions and establishes a new framework for
analyzing the asymptotic stability of learning dynamics in these games.

Keywords: Bayes–Nash equilibrium, Variational inequality, Learning algo-
rithm.

1. INTRODUCTION

Auction theory analyzes how goods are allocated and prices are determined in markets
with self-interested participants acting in equilibrium. Auctions are typically modeled as
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Bayesian games with continuous types and action spaces, with the Bayes–Nash equilib-
rium (BNE) serving as the central solution concept. While the Vickrey auction admits
a dominant-strategy equilibrium, the first-price sealed-bid auction does not. In the sym-
metric independent private values model, the equilibrium in a first-price auction can be
characterized by an ordinary differential equation (ODE), which has a closed-form solution
(Vickrey 1961). However, once this canonical model is extended to allow for asymmetries
or multiple objects, the equilibrium problem typically results in systems of non-linear dif-
ferential equations, for which no general exact solution theory exists. More importantly, the
information required to derive a Bayes–Nash equilibrium is often unavailable in real-world
settings. Even in a Bayesian framework, players must know the common prior distribution,
an assumption that is rarely satisfied in practice. This limitation was famously highlighted
in the Wilson critique, which argued that game theory relies too heavily on assumptions of
common knowledge (Wilson 1987).

In today’s algorithmic markets, such as display advertising auctions or sponsored search,
bidders delegate strategic bidding decisions to software agents. These agents adapt their
strategies in response to observed prices using learning algorithms, without requiring knowl-
edge of a common prior distribution (Liang et al. 2024, Kumar et al. 2024, Wang et al.
2023, Zhang et al. 2022, Tilli and Espinosa-Leal 2021). Bidders in display ad exchanges
can easily face millions to billions of auctions per day, often competing against the same
competitors for specific types of impressions. These ad exchanges use mostly first-price
auctions (Despotakis et al. 2021). A repeated auction where bidders aim to maximize payoff
and employ simple learning algorithms constitutes a stylized model of such algorithmic
markets. However, why learning dynamics converge to the BNE of a first-price auction in
such a market model is mainly unknown.

1.1. Learning in games

The question of learning in games more generally has a rich history. The literature
examines what kind of outcome arises as a consequence of a relatively simple process of
learning and adaptation (Brown 1951, Foster and Vohra 1997, Fudenberg and Levine 1998,
Hart and Mas-Colell 2003, Young 2004, Sorin 2023, Foster and Hart 2023, Sorin 2024). The
central idea is that, in repeated interaction, agents who adapt their actions independently
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may converge to a Nash equilibrium – even without prior knowledge of others’ types.
These systems of learning agents naturally give rise to dynamical systems (Papadimitriou
and Piliouras 2019). Yet it is well established that uncoupled learning dynamics do not
necessarily converge to equilibrium (Hart and Mas-Colell 2003).

Numerical analyses of matrix games show that gradient-based algorithms can oscillate,
diverge, or even be chaotic (Sanders et al. 2018, Bielawski et al. 2021, Chotibut et al.
2020, Palaiopanos et al. 2017, Vlatakis-Gkaragkounis et al. 2023). Recently, Milionis et
al. (2023) proved that there exist games for which all game dynamics fail to converge to a
Nash equilibrium. On the other hand, there are also game classes, such as potential games
or games with strictly dominated strategies, where certain learning algorithms do converge.
Most of the literature is, however, confined to static and complete-information games, not
to Bayesian games with continuous types and actions.

1.2. Learning in Bayesian auction games

In recent years, a number of learning algorithms were introduced for Bayesian auction
games with a continuous type and action space, and they showed convergence on a wide
variety of auction models ranging from simple single-object auctions in the independent
private values model to interdependent valuations and models with multiple objects (Bichler
et al. 2021, 2023b). Equilibrium can be verified ex-post, but the reasons for the convergence
of such learning algorithms in auction games have not been well understood so far.

If Bayesian auctions are indeed learnable, this has important implications for both theory
and practice. First, it would enable the development of numerical solvers for models that
have so far resisted analytical solutions. Second, if learning agents would not even converge
to equilibrium in stylized repeated auctions, it would raise serious concerns about the
efficiency of display advertising auctions and related applications. In this paper, we study
convergence of learning algorithms in Bayesian auction games with continuous types and
actions to equilibrium and introduce respective mathematical tools.

1.3. Convergence analysis in Bayesian games

We draw on the field of operator theory and infinite-dimensional variational inequalities,
which provides us with a new lens to analyze auction-theoretical models. Every Nash
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equilibrium can be seen as a solution to a Stampacchia-type variational inequality (VI),
and in some cases, the reverse is also true, for example with quasi-concave utility functions
(Migot and Cojocaru 2020). This connection also holds for auction games and infinite-
dimensional VIs (Cavazzuti et al. 2002). Interestingly, the link between Nash equilibria and
VIs has been explored for traffic games (Patriksson and Rockafellar 2003) or Walrasian
equilibrium (Jofré et al. 2007), but not for Bayesian games with continuous type and
action space and non-smooth utility functions as is the case in auction theory (Ui 2016).
Thus, auctions need to be modeled as infinite-dimensional variational inequalities, which
is different to applications in finite games.

In the literature on variational inequalities, two sufficient conditions are known, for
which some types of algorithms always converge to an equilibrium. They can be seen as a
generalization of convexity in optimization. The strict monotonicity condition is the most
well-known condition to guarantee convergence for VIs (Bauschke and Combettes 2017).
Various first-order projection methods, as discussed by Tseng (1995), converge to a unique
solution of a monotone VI, and higher-order methods have also been developed (Adil et al.
2022, Lin and Jordan 2025). Monotonicity is also central for guaranteed convergence in the
literature on learning in games (Ratliff et al. 2013, Chasnov et al. 2019). Apart from this, a
global Minty condition is sufficient for extragradient algorithms to converge to equilibrium
(Strodiot et al. 2016, Song et al. 2020). This condition is also referred to as the Minty VI
or dual VI of the Stampaccia-type VI (Ye 2022). In constant-sum games it is related to the
well-known smoothness condition of games (Anagnostides and Sandholm 2023) introduced
by (Roughgarden 2015). Not much is known about the convergence of learning algorithms
in games beyond these two sufficient conditions.1 Given the experimental evidence showing
convergence of a variety of learning algorithms (Bichler et al. 2021, 2023b), it is thus
natural to ask if the monotonicity or the Minty condition hold in auction games, and
therefore guarantee convergence for a wide variety of learning algorithms.

Demonstrating the monotonicity of auction games is challenging. Whereas practical
equilibrium learning algorithms employ some form of discretization, previous research has
shown that in such discretized versions of auction games, the monotonicity condition is

1Several learning dynamics are known to converge to a Nash equilibrium in potential games (Monderer and
Shapley 1996). The existence of a concave potential implies monotonicity (Mertikopoulos and Zhou 2019).
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often violated (Bichler et al. 2023a). However, such non-monotonicities could arise due
to the game’s discretization. Violations in a discretized game might vanish in games with
continuous types and actions, and the only way to understand whether monotonicity holds is
to study these auctions in function space. Thus, we study whether monotonicity or the Minty
condition is satisfied in infinite dimensions in a function space. If any of the two conditions
were satisfied in a function space, this could explain the convergence of algorithms also in
discretized versions of the game, where the condition is violated (Glowinski et al. 1981).

We show that the second-price auction is not monotonous, but it satisfies the Minty-
condition globally. However, the simple first-price auction satisfies neither of these known
and sufficient conditions globally, and we need to introduce a new approach based on
Lyapunov functions to show convergence of gradient-based learning algorithms in the
space of piece-wise linear bid functions.

1.4. Contributions

Overall, our paper makes three contributions: First, introducing a novel proof based on
the Gateaux derivative of the ex-ante utility function, we recover the well-known symmetric
equilibrium strategies for the first-price and the second-price sealed-bid auction in the
symmetric independent private-values model (Krishna 2009).

Second, this proof technique for equilibrium problems in auctions and the resulting
operator for the Gateaux derivative allow us to analyze the monotonicity and the Minty
conditions. Our findings reveal that the first- and the second-price auctions are neither
monotone nor pseudo- or quasi-monotone. Thus, we consider the Minty condition for
variational inequalities. While the dominant-strategy incentive-compatible second-price
auction satisfies this condition, this is not the case for the first-price auction. A short version
of these results were presented in Bichler et al. (2025). We provide insights into the nature
of the Minty-violations and show that in spite of violations of this sufficient condition
algorithms converge to equilibrium in simple parametric cases.

Our third and main result is the construction of a Lyapunov function for a piece-wise
linear function space showing that the gradient flow leads to the BNE in the first-price
auction independent of the starting point and independent of Minty violations. This proves
the asymptotic stability of the BNE in the standard first-price auction and thus provides a
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convergence proof for this central auction format. Finding Lyapunov functions in games
is challenging, because constraints such as non-negativity constraints on the slopes of
individual pieces need to be considered.

Prior literature on learning in games is silent on Bayesian games with continuous type
and action spaces. Our work introduces techniques that can be applied to the analysis of
learning behavior in a wide range of game-theoretic models with incomplete information
such as they are used for modeling contests or oligopoly competition.

2. PROBLEM SETTING AND VARIATIONAL INEQUALITY FORMULATION

This section lays the foundation for studying the equilibrium problem and its associated
variational inequality (VI) in a function space. To begin our analysis, it is crucial to establish
a derivative in a function space. This requires us to work with a set of strategies that exhibit
sufficient well-behaved properties. Furthermore, we limit ourselves to the symmetric setting
with symmetric priors and strategies and the independent private values model. This choice
simplifies our analysis and is sufficient to give answers to whether forms of monotonicity
are the reason for the convergence of first-order methods in auction models.

2.1. Abstract setting

Let 𝑛 ∈ N be the number of bidders. For bidder 𝑖, the set of possible bids is called 𝐵𝑖 ⊂ R,
and the set of valuations of bidder 𝑖 is X𝑖 ⊂ R. We define 𝑩 :=

>𝑛
𝑖=1 𝐵𝑖 and X :=

>𝑛
𝑖=1 X𝑖 .

The goal of each bidder is to maximize their payoff, i.e., they consider their utility function

𝑢𝑖 : 𝑩 × X→ R : 𝑢𝑖 (𝒃, 𝒙).

For this, they search for a strategy 𝛽𝑖 : X→ 𝐵𝑖 . Let the vector space 𝑉𝑖 contain all possible
strategies 𝛽𝑖 , while the subset B𝑖 ⊂ 𝑉𝑖 contains all admissible strategies, and we define 𝑽 :=>𝑛

𝑖=1𝑉𝑖 and B :=
>𝑛

𝑖=1 B𝑖 . The random values 𝑋𝑖 of all bidders 𝑖 = 1, . . . , 𝑛 are distributed in
X𝑖 according to the atomless 𝐹𝑖 . We denote by 𝑈𝑖 :𝑽 → R :𝑈𝑖 (𝜷) := E𝑿 [𝑢𝑖 (𝜷(𝑿), 𝑿)] the
expected utility of bidder 𝑖 for given strategies 𝜷 ∈ B. Here and in the following, we denote
a vector of strategies by 𝜷 := (𝛽1, 𝛽2, . . . , 𝛽𝑛) while 𝛽𝑖, 𝜷∗

−𝑖 := (𝛽∗1, . . . , 𝛽
∗
𝑖−1, 𝛽𝑖, 𝛽

∗
𝑖+1, . . . , 𝛽

∗
𝑛)

denotes a vector of strategies where the 𝑖-th one is replaced. The BNE for this auction game
is then given by:
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Problem 1—BNE: Find 𝜷∗ = (𝛽∗1, . . . , 𝛽
∗
𝑛) ∈ B such that for all 𝑖 = 1, . . . , 𝑛 there holds

𝑈𝑖 (𝜷∗) ≥𝑈𝑖 (𝛽𝑖, 𝜷∗
−𝑖) ∀𝛽𝑖 ∈ B𝑖 . (1)

Under certain conditions (to be elaborated in the following), the equilibrium condition
can be reformulated as a variational inequality. For this, we need to consider the expected
utility function’s derivative in a function space. This demands some regularity of the
underlying function space. Let 𝑉𝑖 be a Banach space and denote by 𝑉∗

𝑖
:= L(𝑉𝑖,R) its

dual space consisting of all continuous linear functionals on 𝑉𝑖 . We emphasize that in the
infinite-dimensional case, a linear functional is not necessarily continuous. Furthermore,
assume that B𝑖 ⊂ 𝑉𝑖 is convex and closed. Following the standard procedure in the literature
(Lions and Stampacchia 1967, Kinderlehrer and Stampacchia 2000), we derive the so-called
Gateaux-derivative of 𝑈𝑖 , which can be understood as the generalization of the (linear)
directional derivative in normed spaces. Let 𝐷𝑈𝑖 (𝜷) [𝑑] denote the directional derivative
of 𝑈𝑖 at 𝜷 = (𝛽1, . . . , 𝛽𝑛) ∈ B with respect to 𝛽𝑖 along 𝑑 ∈ 𝑉𝑖 , i.e.,

𝐷𝑈𝑖 (𝜷) [𝑑] := lim
𝜀→0

𝜀−1 (𝑈𝑖 (𝛽𝑖 + 𝜀𝑑, 𝜷−𝑖) −𝑈𝑖 (𝜷)
)

∀𝑑 ∈ 𝑉𝑖 . (2)

The directional derivative is the Gateaux-derivative iff 𝐷𝑈𝑖 (𝜷) ∈ 𝑉∗
𝑖
, i.e., when the deriva-

tive is a continuous linear functional in the direction 𝑑 ∈ 𝑉𝑖 . If the Gateaux-derivative exists,
a necessary condition for a BNE is the following (Stampacchia-type) VI (Kinderlehrer and
Stampacchia 2000):

Problem 2—VI: Find 𝜷∗ ∈ B such that for all 𝑖 = 1, . . . , 𝑛 there holds

𝐷𝑈𝑖 (𝜷∗) [𝛽𝑖 − 𝛽∗𝑖 ] ≤ 0 ∀𝛽𝑖 ∈ B𝑖 . (3)

A sufficient condition, also referred to as the dual VI of the Stampacchia formulation, is
given by the (Minty-type) VI:

Problem 3—MVI: Find 𝜷∗ ∈ B which satisfies for all 𝑖 = 1, . . . , 𝑛

𝐷𝑈𝑖 (𝜷) [𝛽𝑖 − 𝛽∗𝑖 ] ≤ 0 ∀𝜷 ∈ B. (4)

In general, solutions of the Minty-type VI (4) are a subset of the BNEs given by (1), which
are, in turn, a subset of solutions of the Stampacchia-type VI (3). Vice versa, solutions of
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the Stampacchia-type VI (3) are also BNEs if 𝑈𝑖 is pseudoconvex in 𝛽𝑖 for all 𝜷−𝑖 , and
BNEs are, in turn, solutions of the Minty-type VI (4) if 𝑈𝑖 is quasiconvex in 𝛽𝑖 for all 𝜷−𝑖

(Cavazzuti et al. 2002).

2.2. Symmetric and independent private value auctions

In the following sections, we consider second- and first-price sealed-bid auctions under
the assumption of (complete) symmetry and identically independently distributed private
values. (Complete) symmetry implies

𝐵𝑖 = 𝐵, X𝑖 =X, 𝑋𝑖 ∼𝑖𝑖𝑑. 𝐹𝑖 ≡ 𝐹, 𝑢𝑖 ≡ 𝑢 ∀𝑖 = 1, . . . , 𝑛.

Furthermore, private values ensure 𝛽𝑖 (𝒙) = 𝛽𝑖 (𝑥𝑖) for 𝑖 = 1, . . . , 𝑛, i.e., the strategy of each
bidder 𝑖 depends only on the knowledge of their own valuation 𝑋𝑖 = 𝑥𝑖 . The ex-ante utility
is denoted 𝑈 (𝜷) := E𝑿 [𝑢(𝜷(𝑿), 𝑿)], and symmetric bids are denoted �̃� := (𝛽, . . . , 𝛽) ∈ B

for 𝛽 ∈ B.
In the following, we assume X = [0,1] (without loss of generality) and 𝐹 ∈ 𝐶0,1( [0,1]),

i.e., the cumulative probability function is strictly increasing and Lipschitz-continuous. To
analyze the VI we have to define an appropriate set of admissible strategies. This set should
be sufficiently general to allow for strategies that may be considered as sensible for the
underlying problem. Additionally, it needs to provide adequate structure, for example, an
inner product or a natural dual product. Therefore, consider the Banach space

𝑉𝑖 =𝑉 :=𝑊1,1(0,1;𝐹) = {𝛽 ∈ 𝐿1(0,1;𝐹) | 𝛽′ ∈ 𝐿1(0,1;𝐹)},

i.e., 𝑉 consists of 𝐹-integrable functions with 𝐹-integrable weak derivatives. Note that
𝑉 ⊆ 𝐴𝐶 ( [0,1]), where the latter space denotes all absolutely continuous functions on
[0,1]. For small 𝛿 > 0 we define

B𝛿 :=
{
𝛽 ∈ 𝑉 : 0 ≤ 𝛽 ≤ 1 𝐹-a.e., 0 < 𝛿 ≤ 𝛽′ 𝐹-a.e., and 𝛽(0) = 0

}
.

Note that the restriction 0 ≤ 𝛽 ≤ 1 is natural because only positive bids are feasible, and
bidding more than the maximal valuation 1 implies a non-positive payoff. Similarly, it is
natural to assume the bids 𝛽 to be increasing in valuation. Altogether, this ensures the set B𝛿
to be convex, closed, and bounded in 𝑉 for any 𝛿 ≥ 0. Requiring a small positive derivative
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(𝛽′ ≥ 𝛿 > 0) is slightly more restrictive, but necessary in the following analysis to obtain
upper bounds for the derivative of the inverse function (𝛽−1)′ = (𝛽′ ◦ 𝛽−1)−1 ≤ 𝛿−1.

In this setting, the BNE (1), VI (3) and MVI (4) simplify to deviations in a single strategy:

Problem 4—Symmetric BNE, VI and MVI: A symmetric BNE 𝛽∗ ∈ B𝛿 satisfies (with
𝜷∗ = (𝛽∗, . . . , 𝛽∗))

𝑈 (𝜷∗) ≥𝑈 (𝛽, 𝜷∗
−1), ∀𝛽 ∈ B𝛿 . (5)

A solution 𝛽∗ ∈ B𝛿 to the symmetric VI satisfies (with 𝜷∗ = (𝛽∗, . . . , 𝛽∗))

𝐷𝑈 (𝜷∗) [𝛽 − 𝛽∗] ≤ 0 ∀𝛽 ∈ B𝛿 . (6)

A solution 𝛽∗ ∈ B𝛿 to the symmetric MVI satisfies (with �̃� = (𝛽, . . . , 𝛽))

𝐷𝑈 (𝛽, �̃�−1) [𝛽 − 𝛽∗] ≤ 0 ∀𝛽, 𝛽 ∈ B𝛿 . (7)

Here 𝐷𝑈 (𝜷) [𝑑] is the Gateaux-derivative defined by (2) of 𝑈 at 𝜷 ∈ B𝛿 with respect to
𝛽1 along 𝑑 ∈ 𝑉 .

3. MONOTONICITY AND VARIATIONAL STABILITY

In this section, we analyze the symmetric second- and first-price sealed-bid auctions
in the continuous setting using the mathematical tools presented above. Starting with the
symmetric second-price sealed-bid auction, we first derive the Gateaux-derivative for the
bidder’s utility function and then use it to prove the existence of a unique BNE which
satisfies the VI and MVI. In a second step, we show that the Gateaux-derivative is not
(quasi-)monotone by a counterexample for the simple case of two bidders with independent
uniform priors. Hence, this property cannot be used to explain the convergence of (certain)
gradient-based learning algorithms, and only convergence of extragradient algorithms can
be guaranteed due to the existence of the solution to the MVI.

For the symmetric first-price sealed-bid auction, we follow the same steps. Here however,
we show the existence of a unique BNE which satisfies the VI, but not the MVI, i.e., there is
no MVI solution. Together with the subsequent counterexample for (quasi-)monotonicity,
this means that the classical variational stability criteria do not hold here and thus cannot
explain the numerically observed convergence.
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3.1. Second-price sealed-bid auction

For symmetric second-price sealed-bid auctions with risk-neutral bidders, the utility
function of a bidder is given by

𝑢(𝒃, 𝒙) = 𝜒{𝑏1> max
𝑗=2,...,𝑛

𝑏 𝑗 }
(
𝑥1 − max

𝑗=2,...,𝑛
𝑏 𝑗

)

Since every 𝛽 ∈ B𝛿 is an increasing function, it satisfies max
𝑗=2,...,𝑛

𝛽(𝑥 𝑗 ) = 𝛽
(

max
𝑗=2,...,𝑛

𝑥 𝑗
)
. Using

𝑌 := max
𝑗=2,...,𝑛

𝑋 𝑗 ∼ 𝐺 := 𝐹𝑛−1 ∈ 𝐶0,1( [0,1]) with derivative 𝑔 := 𝐺′, the ex-ante utility 𝑈

against symmetric bids �̃� = (𝛽, . . . , 𝛽) can then be reformulated as

𝑈 (𝛽, �̃�−1) =
∫
[0,1]𝑛

𝜒{𝛽(𝑥1)> max
𝑗=2,...,𝑛

𝛽(𝑥 𝑗 )}
(
𝑥1 − max

𝑗=2,...,𝑛
𝛽(𝑥 𝑗 )

)
d𝐹 (𝑥1) · · ·d𝐹 (𝑥𝑛)

=

∫
[0,1]𝑛

𝜒{𝛽(𝑥1)>𝛽( max
𝑗=2,...,𝑛

𝑥 𝑗 )}
(
𝑥1 − 𝛽( max

𝑗=2,...,𝑛
𝑥 𝑗 )

)
d𝐹 (𝑥1) · · ·d𝐹 (𝑥𝑛)

=

∫ 1

0

∫ 1

0
𝜒{𝛽(𝑥)>𝛽(𝑦)}

(
𝑥 − 𝛽(𝑦)

)
d𝐺 (𝑦)d𝐹 (𝑥).

This leads to the following expression for the derivative:

Lemma 1: The Gateaux-derivative at (𝛽, �̃�−1) ∈ B𝛿 along 𝑑 ∈ 𝑉 is given by

𝐷𝑈 (𝛽, �̃�−1) [𝑑] =
∫ 1

0
𝑑 (𝑥)𝜒{𝛽(𝑥)∈Im(𝛽)}

(
𝑥 − 𝛽(𝑥)

) 𝑔(𝛽−1(𝛽(𝑥)))
𝛽′(𝛽−1(𝛽(𝑥)))

d𝐹 (𝑥). (8)

Proof: Proof.By definition, we have

𝐷𝑈 (𝛽, �̃�−1) [𝑑] = lim
𝜀→0

𝜀−1
(
𝑈 (𝛽 + 𝜀𝑑, �̃�−1) −𝑈 (𝛽, �̃�−1)

)
= lim
𝜀→0

∫ 1

0

∫ 1

0
𝜀−1 (𝜒{𝛽(𝑥)+𝜀𝑑 (𝑥)>𝛽(𝑦)} − 𝜒{𝛽(𝑥)>𝛽(𝑦)}) (𝑥 − 𝛽(𝑦))d𝐺 (𝑦)︸                                                                        ︷︷                                                                        ︸

𝐼 (𝑥) :=

d𝐹 (𝑥).

The direction 𝑑 ∈ 𝑉 ⊂ 𝐴𝐶 ( [0,1]) is uniformly bounded by ∥𝑑∥𝐿∞ (0,1) < ∞, so that the
integrand 𝐼 (𝑥) is bounded 𝐹-a.e. as seen by the following calculation:

|𝐼 (𝑥) | ≤ |𝜀−1 |
∫ 1

0
𝜒{𝛽(𝑥)+|𝜀 |∥𝑑∥𝐿∞≥𝛽(𝑦)≥𝛽(𝑥)−|𝜀 |∥𝑑∥𝐿∞ }d𝐺 (𝑦)
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= |𝜀−1 |
∫ 𝛽(1)

𝛽(0)
𝜒{𝛽(𝑥)+|𝜀 |∥𝑑∥𝐿∞≥𝑏≥𝛽(𝑥)−|𝜀 |∥𝑑∥𝐿∞ }d(𝐺 ◦ 𝛽−1) (𝑏)

≤ |𝜀−1 |𝐿𝐺◦𝛽−1
��(𝛽(𝑥) + |𝜀 |∥𝑑∥𝐿∞) − (𝛽(𝑥) − |𝜀 |∥𝑑∥𝐿∞)

��
= 2∥𝑑∥𝐿∞𝐿𝐺◦𝛽−1 ≤ 2𝛿−1∥𝑑∥𝐿∞ ∥𝑔∥𝐿∞ (0,1) .

The third step follows since 𝐺 ◦ 𝛽−1 is Lipschitz-continuous due to 0 ≤ (𝛽−1)′ =
(𝛽′(𝛽−1(𝑧)))−1 ≤ 𝛿−1 (𝐹-a.e.). Using the Lipschitz-continuity, we also obtain the 𝐹-a.e.
point-wise convergence:

𝐼 (𝑥) =
∫ 1

0
𝜀−1 (𝜒{𝛽(𝑥)+𝜀𝑑 (𝑥)>𝛽(𝑦)} − 𝜒{𝛽(𝑥)>𝛽(𝑦)}) (𝑥 − 𝛽(𝑦))d𝐺 (𝑦)

= 𝜒{𝛽(𝑥)<𝛽(1)}𝜀
−1

∫ 𝛽(𝑥)+𝜀𝑑 (𝑥)

𝛽(𝑥)

(
𝑥 − 𝑏

)
d(𝐺 ◦ 𝛽−1) (𝑏) 𝐹-a.e.

→ 𝜒{𝛽(𝑥)<𝛽(1)}𝑑 (𝑥)
(
𝑥 − 𝛽(𝑥)

) 𝑔(𝛽−1(𝛽(𝑥)))
𝛽′(𝛽−1(𝛽(𝑥)))

𝐹-a.e. .

By the dominated convergence theorem, we can interchange integration and limit to rewrite
the original integral as

𝐷𝑈 (𝛽, �̃�−1) [𝑑] =
∫ 1

0
lim
𝜀→0

𝐼 (𝑥)d𝐹 (𝑥)

=

∫ 1

0
𝜒{𝛽(𝑥)<𝛽(1)}𝑑 (𝑥)

(
𝑥 − 𝛽(𝑥)

) 𝑔(𝛽−1(𝛽(𝑥)))
𝛽′(𝛽−1(𝛽(𝑥)))

d𝐹 (𝑥).

This expression is bounded by |𝐷𝑈 (𝛽, �̃�−1) [𝑑] | ≤ 2𝛿−1∥𝑔∥𝐿∞ (0,1) ∥𝑑∥𝐿∞ (X,𝐹) and obviously
linear in 𝑑, so that 𝐷𝑈 (𝛽, �̃�−1) ∈ 𝑉∗ for all 𝛽, 𝛽 ∈ B𝛿. ■ Q.E.D.

3.1.1. Existence and uniqueness

For symmetric second-price sealed-bid auctions with independent private values, we can
show that a unique BNE exists and coincides with the (unique) solution of the VI and of
the MVI. Therefore, these notions are equivalent in this particular case, even though we
show in the following section that the Gateaux-derivative is not monotone, nor pseudo- nor
quasi-monotone.
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Lemma 2: The symmetric BNE, VI and MVI problems have the unique solution 𝛽∗ = Id
in the compact and convex set B𝛿 ⊂ 𝑉 for 0 < 𝛿 ≤ 1.

Proof: Proof.Using the expression (8) for 𝐷𝑈, the symmetric VI (6) reads

0 ≥ 𝐷𝑈 (𝜷∗) [𝛽 − 𝛽∗] =
∫ 1

0

(
𝛽(𝑥) − 𝛽∗(𝑥)

) (
𝑥 − 𝛽∗(𝑥)

) 𝑔(𝑥)
𝛽∗′(𝑥)

d𝐹 (𝑥) (9)

for all 𝛽 ∈ B𝛿. Obviously, 𝛽∗ = Id satisfies the VI, and Id ∈ B𝛿 for 𝛿 ≤ 1. We further show
that this is the only solution of the VI. Let 𝛽∗ ∈ B𝛿 be any solution of the VI and consider
𝛽 = Id. Then, (9) becomes ∫

X

��𝑥 − 𝛽∗(𝑥)��2 𝑔(𝑥)
𝛽∗′(𝑥)

d𝐹 (𝑥) ≤ 0.

Since 𝑁 = {𝑥 ∈ X | 𝑔(𝑥) = d
d𝑥 ((𝐹 (𝑥))

𝑛−1) = 0} is a set of measure zero with respect to 𝐹,
and 𝛽∗′ ≥ 𝛿 > 0, this yields 𝛽∗(𝑥) = 𝑥 for 𝐹-a.e. 𝑥 ∈ X.
On the other hand, the MVI (7) for arbitrary 𝛽, 𝛽 ∈ B𝛿 reads

0 ≥ 𝐷𝑈 (𝛽, �̃�−1) [𝛽 − 𝛽∗] =
∫ 1

0
𝜒{𝛽(𝑥)<𝛽(1)}

(
𝛽(𝑥) − 𝛽∗(𝑥)

) (
𝑥 − 𝛽(𝑥)

) 𝑔(𝛽−1(𝛽(𝑥)))
𝛽′(𝛽−1(𝛽(𝑥)))

d𝐹 (𝑥).

Obviously, 𝛽∗ = Id satisfies the MVI. Therefore, 𝛽∗ = Id is the only strategy satisfying the
necessary and sufficient condition for a BNE. ■ Q.E.D.

3.1.2. Monotonicity

Gradient-based learning for symmetric strategies uses the gradient operator 𝐷𝑈 (𝛽, �̃�−1)
with 𝛽 = 𝛽. Therefore, we are particularly interested whether the operator 𝐷𝑈 (𝜷) is (quasi-
)monotone in 𝛽 ∈ B𝛿. This condition would ensure convergence for extra-gradient methods
(Khanh 2016). However, we show that even in the most simple setting with two bidders
(𝑛 = 2) and uniform priors (𝐹 = Id), the operator 𝐷𝑈 turns out to be neither monotone nor
pseudo- nor quasi-monotone.

The operator 𝐷𝑈 is monotone if it satisfies(
𝐷𝑈 ( �̃�) − 𝐷𝑈 (𝜷)

)
[𝛽 − 𝛽] ≤ 0 ∀𝛽, 𝛽 ∈ B𝛿 . (10)

For pseudo-monotonicity we require (Khanh 2016)

𝐷𝑈 (𝜷) [𝛽 − 𝛽] ≤ 0 ⇒ 𝐷𝑈 ( �̃�) [𝛽 − 𝛽] ≤ 0, ∀𝛽, 𝛽 ∈ B𝛿, (11)
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while quasi-monotonicity requires (11) with a strict inequality sign in 𝐷𝑈 (𝜷) [𝛽 − 𝛽] <
0. Note that monotonicity implies pseudo-monotonicity, which, in turn, implies quasi-
monotonicity.

Proposition 1: The operator 𝐷𝑈 is neither monotone, nor pseudo- nor quasi-monotone
for 𝛿 < 9

100 , 𝐹 = Id and 𝑛 = 2.

Proof: Proof.Plugging (8) into the quasi-monotonicity condition (11) yields∫ 1

0

(
𝛽(𝑥) − 𝛽(𝑥)

) (
𝑥 − 𝛽(𝑥)

)
𝛽′(𝑥) d𝑥 < 0 ⇒

∫ 1

0

(
𝛽(𝑥) − 𝛽(𝑥)

) (
𝑥 − 𝛽(𝑥)

)
𝛽′(𝑥)

d𝑥 ≤ 0.

A counterexample is given by the piece-wise linear and continuous functions

𝛽(𝑥) = 61𝑥
100

, 𝛽(𝑥) =


𝑥 if 0 ≤ 𝑥 ≤ 1

3 ,
9𝑥
100 +

91
300 if 1

3 < 𝑥 ≤
2
3 ,

63𝑥
100 −

17
300 if 2

3 < 𝑥 ≤ 1,

which are in B𝛿 for 𝛿 ≤ 9
100 (due to 𝛽′ ≥ 9

100 ) and yield a negative integral on the left-hand
side, but a positive one on the right-hand side. Therefore, 𝐷𝑈 is not quasi-monotone and
consequently neither pseudo-monotone nor monotone. ■ Q.E.D.

Note that even though this second-price auction leads to a non-monotone VI, a Minty-
type solution exists which was recently shown to be sufficient to ensure convergence for
a number of projection-type gradient-based algorithms (Strodiot et al. 2016, Song et al.
2020, Huang and Zhang 2023). In particular, Song et al. (2020) show that when a Minty-
type solution exists, optimistic dual extrapolation converges to a solution of the MVI. This
implies that at least the rather expensive optimistic dual extrapolation provably finds the
BNE of symmetric second-price auctions with independent private values, see the Appendix
for details. Moreover, the equivalence of BNE and VI solution implies that a gradient-based
learning algorithm must reach the BNE whenever it does converge (within 𝐵𝛿).

3.2. First-price sealed-bid auction

For symmetric first-price sealed-bid auctions with risk-neutral bidders, we have

𝑢(𝒃, 𝒙) = 𝜒{𝑏1> max
𝑗=2,...,𝑛

𝑏 𝑗 } (𝑥1 − 𝑏1) .
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As for the second-price auction, using 𝑌 := max 𝑗=2,...,𝑛 𝑋 𝑗 ∼ 𝐺 := 𝐹𝑛−1, the ex-ante utility
𝑈 against symmetric bids �̃� = (𝛽, . . . , 𝛽) can be reformulated as

𝑈 (𝛽, �̃�−1) =
∫
[0,1]𝑛

𝜒{𝛽(𝑥1)> max
𝑗=2,...,𝑛

𝛽(𝑥 𝑗 )}
(
𝑥1 − 𝛽(𝑥1)

)
d𝐹 (𝑥1) · · ·d𝐹 (𝑥𝑛)

=

∫ 1

0

∫ 1

0
𝜒{𝛽(𝑥)>𝛽(𝑦)}

(
𝑥 − 𝛽(𝑥)

)
d𝐺 (𝑦)d𝐹 (𝑥)

=

∫ 1

0

(
𝑥 − 𝛽(𝑥)

) ∫ 1

0
𝜒{𝛽(𝑥)>𝛽(𝑦)}d𝐺 (𝑦)d𝐹 (𝑥).

The Gateaux-derivative at (𝛽, �̃�−1) ∈ B𝛿 along 𝑑 ∈ 𝑉 , can be computed as:

𝐷𝑈 (𝛽, �̃�−1) [𝑑] = lim
𝜀→0

𝜀−1 (𝑈 (𝛽 + 𝜀𝑑, �̃�−1) −𝑈 (𝛽, �̃�−1)
)

= lim
𝜀→0

1
𝜀

∫ 1

0

(
𝑥 − 𝛽(𝑥) − 𝜀𝑑 (𝑥)

) ∫
{𝛽(𝑥)+𝜀𝑑 (𝑥)>𝛽(𝑦)}

d𝐺 (𝑦) −
(
𝑥 − 𝛽(𝑥)

) ∫
{𝛽(𝑥)>𝛽(𝑦)}

d𝐺 (𝑦)d𝐹 (𝑥)

= lim
𝜀→0

∫ 1

0

[ (
𝑥 − 𝛽(𝑥)

) 1
𝜀

∫ 1

0
𝜒{𝛽(𝑥)+𝜀𝑑 (𝑥)>𝛽(𝑦)} − 𝜒{𝛽(𝑥)>𝛽(𝑦)}d𝐺 (𝑦)

− 𝑑 (𝑥)
∫ 1

0
𝜒{𝛽(𝑥)+𝜀𝑑 (𝑥)>𝛽(𝑦)}d𝐺 (𝑦)

]
d𝐹 (𝑥).

Analogously to the derivation in the previous section, we obtain for 𝛽 ∈ B𝛿 that the first
term converges to 𝜒{𝛽(𝑥)<𝛽(1)} (𝑥 − 𝛽(𝑥))𝑑 (𝑥) (𝐺 ◦ 𝛽−1)′(𝛽(𝑥)), while the second one yields
𝜒{𝛽(𝑥)<𝛽(1)}𝑑 (𝑥)𝐺 (𝛽−1(𝛽(𝑥))), such that we obtain

𝐷𝑈 (𝛽, �̃�−1) [𝑑] =
∫ 1

0
𝑑 (𝑥)𝜒{𝛽(𝑥)<𝛽(1)}

[ (
𝑥−𝛽(𝑥)

) 𝑔(𝛽−1(𝛽(𝑥)))
𝛽′(𝛽−1(𝛽(𝑥)))

−𝐺 (𝛽−1(𝛽(𝑥)))
]
d𝐹 (𝑥).

(12)

Hence, the operator 𝐷𝑈 (𝛽, �̃�) is linear and in 𝑉∗.

3.2.1. Uniqueness of BNE and non-existence of MVI

For symmetric first-price sealed-bid auctions with independent private values, we can
show that the unique BNE coincides with a solution of the VI (which is unique in the interior
of B𝛿). Even in the simple case of two bidders (𝑛 = 2) with uniform priors (𝐹 = Id), no
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solution to the MVI exists. So, in contrast to second-price auctions, these solution notions
are different for first-price auctions.

Lemma 3: Assume that 𝑓 = 𝐹′ satisfies

𝛿0 :=
inf

𝑥∈[0,1]
𝑓 (𝑥)

2 sup
𝑥∈[0,1]

𝑓 (𝑥) > 0.

For 0 < 𝛿 ≤ 𝛿0, 𝛽∗(𝑥) = 1
𝐺 (𝑥)

∫ 𝑥

0 𝑦d𝐺 (𝑦) is the unique solution to the symmetric VI (6) in
the interior of B𝛿. This solution is the unique symmetric BNE of (5).

Proof: Proof.The unique symmetric BNE is given by 𝛽∗(𝑥) = 1
𝐺 (𝑥)

∫ 𝑥

0 𝑦d𝐺 (𝑦) (Krishna
2009, Chawla and Hartline 2013). Next, we show that this is the unique solution of the
symmetric VI (6) in the interior of B𝛿. Using (12), the symmetric VI (6) reads∫

X

[ (
𝑥 − 𝛽∗(𝑥)

) 𝑔(𝑥)
𝛽∗′(𝑥)

−𝐺 (𝑥)
] (
𝛽(𝑥) − 𝛽∗(𝑥)

)
d𝐹 (𝑥) ≤ 0 ∀𝛽 ∈ B𝛿 . (13)

A solution in the interior of B𝛿 must satisfy(
𝑥 − 𝛽∗(𝑥)

) 𝑔(𝑥)
𝛽∗′(𝑥)

−𝐺 (𝑥) = 0 𝐹-a.e..

This ODE can be rearranged to d
d𝑥 (𝐺 (𝑥)𝛽∗(𝑥)) = 𝑥𝑔(𝑥). Since 𝐹 is Lipschitz-continuous,

the right-hand side 𝑥𝑔(𝑥) = (𝑛 − 1)𝑥 𝑓 (𝑥) (𝐹 (𝑥))𝑛−2 is integrable and depends only on 𝑥.
Then, the unique solution in the interior of B𝛿 is given by 𝛽∗(𝑥) = 1

𝐺 (𝑥)
∫ 𝑥

0 𝑦d𝐺 (𝑦) due to
𝛽(0) = 0 for any 𝛽 ∈ B𝛿. Note that 𝛽∗ ∈ B𝛿 since

𝛽∗′(𝑥) = 𝑔(𝑥)
(𝐺 (𝑥))2

∫ 𝑥

0
𝐺 (𝑦)d𝑦 =

(𝑛 − 1) 𝑓 (𝑥)
∫ 𝑥

0
(𝐹 (𝑦))𝑛−1d𝑦

𝑛

∫ 𝑥

0
𝑓 (𝑦) (𝐹 (𝑦))𝑛−1d𝑦

≥
inf

𝑧∈[0,1]
𝑓 (𝑧)

∫ 𝑥

0
(𝐹 (𝑦))𝑛−1d𝑦

2
∫ 𝑥

0
sup
𝑧∈[0,1]

𝑓 (𝑧) (𝐹 (𝑦))𝑛−1d𝑦
=

inf
𝑧∈[0,1]

𝑓 (𝑧)

2 sup
𝑧∈[0,1]

𝑓 (𝑧) = 𝛿0 ≥ 𝛿 > 0.

Then, 𝛽∗ ∈ B𝛿 satisfies (13). ■ Q.E.D.
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Remark 1: Note that Lemma 3 holds for all 0 < 𝛿 ≤ 𝛿0. Hence, a limit argument shows
that the BNE is the unique solution to the symmetric VI (13) in the interior of the class of
uniformly increasing functions 𝐵0+ :=

⋃
𝛿>0 𝐵𝛿. If a solution 𝛽 to the VI at the boundary

𝜕𝐵0+ exists, its derivative 𝛽′ must approach zero at some point 𝑥 ∈ [0,1], such that the
expression 𝐷𝑈 (𝜷) might be ill-defined. In particular, this implies that a gradient-based
learning algorithm must reach the BNE if it does converge (within 𝐵0+).

Lemma 4: In the case of two bidders with uniform priors, i.e., for 𝑛 = 2 and 𝐹 = Id, the
unique BNE 𝛽∗(𝑥) = 𝑥

2 according to Lemma 3 does not satisfy the symmetric MVI (7). In
particular, the condition is also not satisfied locally for any open neighborhood of the BNE
for 𝛿 ≤ 1

5 .

Proof: Proof.Using (12), the symmetric MVI (7) reads∫ 1

0

[𝑥 − 𝛽(𝑥)
𝛽′(𝑥) − 𝑥

] (
𝛽(𝑥) − 𝛽∗(𝑥)

)
d𝐹 (𝑥) ≤ 0 ∀𝛽 ∈ B𝛿 . (14)

Inserting 𝛽∗(𝑥) = 𝑥
2 and the continuous, piece-wise linear and strictly increasing bid function

𝛽(𝑥) =


𝑥
2 for 𝑥 ≤ 𝑛

𝑛+2 ,
𝑛

2(𝑛+2) +
4
5
(
𝑥 − 𝑛

𝑛+2
)

for 𝑛
𝑛+2 < 𝑥 ≤

𝑛+1
𝑛+2 ,

𝑛
2(𝑛+2) +

4
5(𝑛+2) +

1
5

(
𝑥 − 𝑛+1

𝑛+2

)
for 𝑛+1

𝑛+2 < 𝑥,

for arbitrary 𝑛 ∈ N0 (with 𝛽′ ≥ 1
5 = 𝛿), we obtain on the left-hand side of (14) a positive

value which then contradicts (14). In particular, this variational stability condition is even
violated locally, since 𝛽→ 𝛽∗ in 𝑉 as 𝑛→∞. ■ Q.E.D.

3.2.2. Monotonicity

As before, we are interested in the situation 𝛽 = 𝛽 along which gradient-based learning
takes place, and study whether the operator 𝐷𝑈 is (quasi-)monotone in B𝛿. Again, we show
that even in the most simple setting of two bidders (𝑛 = 2) with uniform priors (𝐹 = Id), the
operator 𝐷𝑈 turns out to be neither monotone, nor pseudo- nor quasi-monotone.

Proposition 2: The operator 𝐷𝑈 is neither monotone, nor pseudo- nor quasi-monotone
for 0 < 𝛿 ≤ 1

10 .
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Proof: Proof.For 𝐹 (𝑥) = 𝑥 and 𝑛 = 2, and using (12), the quasi-monotonicity condition
(11) reads∫ 1

0

(
𝛽(𝑥) − 𝛽(𝑥)

) ( 𝑥−𝛽(𝑥)
𝛽′ (𝑥) − 𝑥

)
d𝑥 < 0 ⇒

∫ 1

0

(
𝛽(𝑥) − 𝛽(𝑥)

) ( 𝑥−𝛽(𝑥)
𝛽′ (𝑥) − 𝑥

)
d𝑥 ≤ 0. (15)

A counterexample is given by the piece-wise linear and continuous functions

𝛽(𝑥) = 61𝑥
100

, 𝛽(𝑥) =


𝑥 for 𝑥 ≤ 1

3 ,
𝑥
10 +

3
10 for 1

3 < 𝑥 ≤
2
3 ,

63𝑥
100 −

4
75 for 2

3 < 𝑥,

which are in B𝛿 for 𝛿 ≤ 1
10 (due to 𝛽′ ≥ 1

10 ) and yield a negative value for the left-hand
side of (15), but a positive value for the right-hand side of (15). Therefore, 𝐷𝑈 is not
quasi-monotone and consequently neither pseudo-monotone nor monotone. ■ Q.E.D.

4. ASYMPTOTIC STABILITY

We know that the first- and second-price sealed-bid auctions have a unique BNE and
observe empirically that first-order learning algorithms converge consistently to this equi-
librium. In the previous section, we demonstrated that neither the Minty condition nor
various forms of monotonicity suffice to explain the convergence of learning algorithms in
first-price sealed-bid auctions. The abstract framework of dynamical systems provides an
alternative pathway by specifying a suitable Lyapunov function, and showing asymptotic sta-
bility. Unfortunately, identifying a Lyapunov function for gradient dynamics is challenging
because we need to consider the projection onto the constrained set of bidding strategies 𝐵𝛿.
Projected dynamical systems of this sort have received relatively little attention (Nagurney
and Zhang 1996, Souaiby et al. 2020).

In this section, we establish that a Lyapunov function satisfying additional boundary
constraints guarantees convergence of long-term gradient dynamics globally, that is, for
every starting position. To this end, we introduce an algorithm to compute candidate Lya-
punov functions, demonstrating this approach for piecewise linear strategies with up to four
pieces and proving convergence in the case of two pieces. Notably, the counterexamples
constructed for Lemma 4 and Proposition 2 are confined to the space of piecewise linear
functions. This indicates that the problem’s complexity persists even when the strategy
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space is restricted to such functions. Therefore, we focus our analysis on piecewise linear
strategies characterized by 𝑚 pieces and provide a parameterization for these cases. Our
numerical experiments, detailed in Section 4.3, confirm convergence in all configurations
tested, including strategies with up to sixteen pieces. Such piecewise linear functions can
approximate arbitrary non-linear bid functions arbitrarily well over compact domains.

4.1. Analytically verifying a Lyapunov function for piece-wise linear strategies

We can write continuous piecewise linear functions with 𝑚 pieces in the following way:

𝛽(𝑥) =
𝑚∑︁
𝑘=1

𝑏𝑘𝑑𝑘 (𝑥) with 𝑑𝑘 (𝑥) =


0 for 0 ≤ 𝑥 ≤ 𝑘−1

𝑚

𝑥 − 𝑘−1
𝑚

for 𝑘−1
𝑚
< 𝑥 ≤ 𝑘

𝑚
1
𝑚

for 𝑘
𝑚
< 𝑥 ≤ 1.

(16)

The parameter 𝑏𝑘 corresponds to the slope of the k-th piece. To ensure that the strategies
satisfy our assumptions, i.e., are elements of B𝛿, we have to assume that 𝑏𝑘 ≥ 𝛿 for all
𝑘 = 1, . . . , 𝑚 and

∑𝑚
𝑘=1 𝑏𝑘 ≤ 𝑚. The set of all such strategies is given by the corresponding

parameter set

B𝑚
𝛿 :=

{
𝒃 ∈ R𝑚 : 𝑔𝑖 (𝒃) ≥ 0 for 𝑖 ∈ {1, . . . , 𝑚 + 1}

}
⊂ R𝑚, (17)

with 𝑔𝑖 (𝒃) = 𝑏𝑖 − 𝛿 ≥ 0 for 𝑖 ∈ {1, . . . , 𝑚} and 𝑔𝑚+1(𝒃) = 𝑚 −∑𝑚
𝑘=1 𝑏𝑘 . The gradient of the

expected utility with respect to the parameters 𝒃 ∈ B𝑚
𝛿

is the Gateaux derivative of𝑈 at the
corresponding piecewise linear strategy along 𝑑𝑘 (cf. Equation (16)).

Proposition 3: In a first-price sealed bid auction with two players and uniformly dis-
tributed (i.i.d.) values, the partial derivative of the expected utility given symmetric piece-
wise linear strategies 𝒃 ∈ B𝑚

𝛿
with respect to the parameter 𝑏𝑖 is given by

𝜕𝑈 (𝒃, �̃�)
𝜕𝑏𝑖

����
�̃�=𝒃

=
1

6𝑚3𝑏𝑖

(
−3

∑︁𝑖−1

𝑘=1
𝑏𝑘 − (3𝑖 + 1)𝑏𝑖 + 3𝑖 − 1

)
+

𝑚∑︁
𝑗=𝑖+1

1
2𝑚3𝑏 𝑗

(
−2

∑︁ 𝑗−1

𝑘=1
𝑏𝑘 − 2 𝑗 𝑏 𝑗 + 2 𝑗 − 1

)
.

(18)
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Proof: Proof. The Gateaux derivative for the first-price sealed-bid auction is given by
(cf. Equation (12))

𝐷𝑈 (𝛽, �̃�−1) [𝑑] =
∫ 1

0
𝑑 (𝑥)𝜒{𝛽(𝑥)<𝛽(1)}

[ (
𝑥 − 𝛽(𝑥)

) 𝑔(𝛽−1(𝛽(𝑥)))
𝛽′(𝛽−1(𝛽(𝑥)))

−𝐺 (𝛽−1(𝛽(𝑥)))
]
d𝐹 (𝑥).

Assuming that we have two players with symmetric strategies (𝛽 = 𝛽) and a uniform prior
(𝐹 (𝑥) = 𝑥), we get 𝐺 (𝑥) = 𝑥 and 𝑔(𝑥) = 1. This simplifies the derivative to

𝐷𝑈 (𝛽, 𝛽−1) [𝑑] =
∫ 1

0
𝑑 (𝑥)

[ (
𝑥 − 𝛽(𝑥)

) 1
𝛽′(𝑥) − 𝑥)

]
d𝑥.

The partial derivative of a given piecewise linear strategy 𝛽 with respect to a parameter 𝑏𝑖
is given by 𝐷𝑈 (𝛽, 𝛽−1) [𝑑𝑖]. Using the definitions of 𝛽 and 𝑑𝑖 (cf. Equation (16)), we get

𝐷𝑈 (𝛽, 𝛽−1) [𝑑𝑖] =
𝑚∑︁
𝑗=𝑖

∫ 𝑗

𝑚

𝑗−1
𝑚

𝑑𝑖 (𝑥)
(
𝑥 − 𝛽(𝑥)
𝛽′(𝑥) − 𝑥

)
d𝑥.

By definition of 𝑑𝑖 , the first 𝑖 − 1 terms are zero, and we find

=

∫ 𝑖
𝑚

𝑖−1
𝑚

(𝑥 − 𝑖−1
𝑚
)
(
𝑥 − 𝛽(𝑥)
𝛽′(𝑥) − 𝑥

)
d𝑥 +

𝑚∑︁
𝑗=𝑖+1

∫ 𝑗

𝑚

𝑗−1
𝑚

1
𝑚

(
𝑥 − 𝛽(𝑥)
𝛽′(𝑥) − 𝑥

)
𝑑𝑥.

By definition of 𝛽, we have 𝛽(𝑥) = 𝑏 𝑗 (𝑥 − 𝑗−1
𝑚
) + 1

𝑚
𝑏< 𝑗 with 𝑏< 𝑗 :=

∑ 𝑗−1
𝑘=1 𝑏𝑘 and 𝛽′(𝑥) = 𝑏 𝑗

for values in the interval [ 𝑗−1
𝑚
,
𝑗

𝑚
] with 𝑗 = 1, . . . , 𝑚. This gives us

=
1
𝑏𝑖

∫ 𝑖
𝑚

𝑖−1
𝑚

(𝑥 − 𝑖−1
𝑚
) (𝑥 − 𝑏𝑖 (𝑥 − 𝑖−1

𝑚
) − 1

𝑚
𝑏<𝑖 − 𝑏𝑖𝑥)d𝑥

+
𝑚∑︁

𝑗=𝑖+1

1
𝑚𝑏 𝑗

∫ 𝑗

𝑚

𝑗−1
𝑚

𝑥 − 𝑏𝑖 (𝑥 − 𝑖−1
𝑚
) − 1

𝑚
𝑏<𝑖 − 𝑏𝑖𝑥d𝑥

=
1
𝑏𝑖

∫ 𝑖
𝑚

𝑖−1
𝑚

(1 − 2𝑏𝑖) (𝑥 − 𝑖−1
𝑚
)2 + (𝑥 − 𝑖−1

𝑚
) ( 𝑖−1

𝑚
(1 − 𝑏𝑖) − 𝑏<𝑖)d𝑥

+
𝑚∑︁

𝑗=𝑖+1

1
𝑚𝑏 𝑗

∫ 𝑗

𝑚

𝑗−1
𝑚

(1 − 2𝑏 𝑗 ) (𝑥 − 𝑗−1
𝑚
) + 𝑗−1

𝑚
(1 + 𝑏 𝑗 ) − 𝑏< 𝑗d𝑥

=
1

6𝑚3𝑏𝑖

(
−3

∑︁𝑖−1

𝑘=1
𝑏𝑘 − (3𝑖 + 1)𝑏𝑖 + 3𝑖 − 1

)
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+
𝑚∑︁

𝑗=𝑖+1

1
2𝑚3𝑏 𝑗

(
−3

∑︁ 𝑗−1

𝑘=1
𝑏𝑘 − 2 𝑗 𝑏 𝑗 + 2 𝑗 − 1

)
.

■ Q.E.D.

To simplify notation, we write ∇𝑈 (𝒃) for the gradient consisting of the partial derivatives
defined in Equation (18).

Example: In the two-dimensional case, i.e., piecewise linear strategies with two pieces,
the projected gradient dynamics for 𝒃 ∈ B2

𝛿
and some 𝛿 > 0 are given by

∇𝑈 (𝒃) =
(
−2𝑏1+3

16𝑏2
+ 1

24𝑏1
− 1

3
−3𝑏1−7𝑏2+5

48𝑏2

)
. (19)

We study the following dynamical system

¤𝒃 = ΠTCB𝑚
𝛿
(𝒃) (∇𝑈 (𝒃)) , (20)

where ¤𝒃 denotes the time derivative and ΠTCB𝑚
𝛿
(𝒃) the projection onto the tangent cone of

B𝑚
𝛿

at 𝒃. We denote the trajectory at time 𝑡 for an initial starting point 𝒃𝑜 ∈ B𝑚
𝛿

by 𝒃(𝑡, 𝒃𝑜)
and have 𝒃(0, 𝒃𝑜) = 𝒃𝑜.

To show global asymptotic stability of the system described by Equation (20) in the
equilibrium point 𝒃∗ =

( 1
2 , . . . ,

1
2
)𝑇 , we leverage the formalism introduced by Souaiby et al.

(2020) for projected dynamical systems. Recall that the system is stable in 𝒃∗ if for every 𝜀 >
0 there exists 𝜅 > 0 such that for 𝒃𝑜 ∈ B𝑚

𝛿
with ∥𝒃∗ − 𝒃𝑜∥ ≤ 𝜅, we have ∥𝒃(𝑡, 𝒃𝑜) − 𝒃∗∥ ≤ 𝜀

for all 𝑡 ≥ 0. The point 𝒃∗ is further globally asymptotically stable if it is stable and for all
𝒃𝑜 ∈ B𝑚

𝛿
, we have lim𝑡→∞ ∥𝒃(𝑡, 𝒃𝑜) − 𝒃∗∥ = 0.

A function ℎ qualifies as a Lyapunov function for the constrained system if it satisfies the
following condition:

Definition 1—Constrained Lyapunov function (Souaiby et al. 2020): The system given
by Equation (20) has a continuously differentiable global Lyapunov function ℎ : R𝑚 → R

with respect to B𝑚
𝛿

and 𝒃∗ if there exist class K functions2 𝛼, 𝛼, which are additionally
unbounded, such that

2We say that a function 𝛼 : R+
0 → R+

0 is of class K if it is continuous, strictly increasing, and 𝛼(0) = 0.
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• 𝛼 (∥𝒃 − 𝒃∗∥) ≤ ℎ(𝒃) ≤ 𝛼 (∥𝒃 − 𝒃∗∥) , for all 𝒃 ∈ B𝑚
𝛿

;
• ⟨∇ℎ(𝒃),ΠTCB𝑚

𝛿
(𝒃)∇𝑈 (𝒃)⟩ ≤ −𝑤 ∥𝒃 − 𝒃∗∥2 with 𝑤 > 0, for all 𝒃 ∈ B𝑚

𝛿
.

Note that in the original definition of Souaiby et al. (2020), the inner product in the second
inequality is bounded by some general class K function 𝛼. For simplicity, we focus on the
specific function of the form 𝛼(∥𝒃 − 𝒃∗∥) = 𝑤 ∥𝒃 − 𝒃∗∥2 with 𝑤 > 0. The projection onto
the tagent cone complicates the application of the results of standard dynamical systems
to demonstrate convergence, necessitating specific additional assumptions. If the Lyapunov
function’s gradient also points inward from the boundary, we have the following statement,
which is a special case of Proposition 1 by Souaiby et al. (2020).

Proposition 4—(Souaiby et al. 2020): Consider the system defined by Equation (20).
Assume that there exists a continuously differentiable function ℎ that satisfies the following
conditions:

(i) ℎ(𝒃∗) = 0, and 𝛼 (∥𝒃 − 𝒃∗∥) ≤ ℎ(𝒃) ≤ 𝛼 (∥𝒃 − 𝒃∗∥) for every 𝒃 ∈ B𝑚
𝛿

, and some
𝛼, 𝛼 ∈ K .

(ii) ⟨∇ℎ(𝒃),∇𝑈 (𝒃)⟩ ≤ −𝑤 ∥𝒃 − 𝒃∗∥2 for some 𝑤 > 0.
(iii) If 𝒃 is such that 𝑔𝑖 (𝒃) = 0, for some 𝑖 ∈ {1, . . . , 𝑀}, then ⟨ℎ(𝒃),∇𝑔𝑖 (𝒃)⟩ ≤ 0.

Then ℎ is a Lyapunov function for system (20) and 𝒃∗ is globally asymptotically stable.

For 𝑚 = 2 pieces, we construct a Lyapunov function that satisfies the required conditions,
thereby proving stability in this setting.

Theorem 5: The system ¤𝒃 = ΠTCB𝑚
𝛿
(𝒃) (∇𝑈 (𝒃)) with 𝑚 = 2 and 0 < 𝛿 ≤ 1

2 has a globally
asymptotically stable equilibrium 𝒃∗ = ( 1

2 ,
1
2 ). The Lyapunov function for the system is given

by

ℎ(𝑏1, 𝑏2) := 1
2

(
𝑏1 − 1

2

𝑏2 − 1
2

)𝑇 (
20 0
0 52

) (
𝑏1 − 1

2

𝑏2 − 1
2

)
. (21)

Figure 1 illustrates the gradient field for two pieces alongside the candidate’s level sets.
The red regions highlight where the Minty condition fails. While the gradient flows take
a detour, all trajectories converge to the Bayes–Nash equilibrium. This demonstrates the
advantage of Lyapunov functions over the Minty condition in capturing these dynamics,
providing a robust proof of convergence.
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Figure 1.—Gradient field of the first-price sealed-bid auction with 𝑛 = 2 bidders, 𝑚 = 2 pieces and 𝛿 = 1
20 .

Before we show that the function ℎ from Theorem 5 is indeed a Lyapunov function for
the system, we want to briefly describe how one can find a suitable candidate.

Assume that there exists a Lyapunov function of the form ℎ(𝒃) = 1
2 (𝒃 − 𝒃∗)𝑇𝐻 (𝒃 − 𝒃∗)

with a matrix 𝐻 ∈ R𝑚×𝑚 . To find a suitable candidate, we solve an LP with the parameters
of 𝐻 as variables and the conditions (ii) and (iii) of Proposition 4 at finitely many points
as constraints. To that end, we discretize the feasible set B𝑚

𝛿
by laying a uniform grid over

the space and selecting all points that satisfy the constraints. In addition to these interior
points, we also explicitly include additional points located on the boundary of the feasible
set to ensure that stability conditions are appropriately captured near the edges. The set of
these discrete points is denoted by 𝐵. This discretization allows us to impose the conditions
as linear constraints in a finite-dimensional linear program for finding a suitable matrix 𝐻:

max𝛾

s.t. ⟨𝐻 (𝒃 − 𝒃∗),∇𝑈 (𝒃)⟩ ≤ −𝑤∥𝒃 − 𝒃∗∥2
2 − 𝛾 ∀𝑏 ∈ 𝐵

∀𝑖 ∈ {1, . . . , 𝑚 + 1} ⟨𝐻 (𝒃 − 𝒃∗),∇𝑔𝑖 (𝑏) ≤ 0 ∀𝑏 ∈ 𝐵 : 𝑔𝑖 (𝑏) = 0

𝛾 ∈ R, 𝐻 ∈ R𝑚×𝑚 .
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The parameter 𝑤 > 0 is some strictly positive constant, for example, 𝑤 = 1
10 . If we find a

solution such that 𝛾 = 0, we have a candidate that satisfies the conditions at the discrete
points. We added the additional constraint 𝐻 ∈ Z𝑚×𝑚 which allows us to prove the properties
analytically as we will do in the following for two pieces. This avoids numerical issues due
to the fact that fractional values need to be rounded.

Proof: Proof of Theorem 5. To show that 𝒃∗ is globally asymptotically stable and that
ℎ is a Lyapunov function for system (20) with 𝑚 = 2 and 𝛿 = 1

20 , we have to check the
conditions of Proposition 4:

(i) For the first condition, we need to find functions 𝛼, and 𝛼 such that

ℎ(𝒃∗) = 0, and 𝛼 (∥𝒃 − 𝒃∗∥) ≤ ℎ(𝒃) ≤ 𝛼 (∥𝒃 − 𝒃∗∥) for every 𝒃 ∈ B𝑚
𝛿 (22)

Since ℎ is given by ℎ = 10(𝑏1 − 𝑏∗1)
2 + 26(𝑏2 − 𝑏∗2)

2 we can define the functions 𝛼 and
𝛼 with 𝛼(∥𝒃 − 𝒃∗∥) := 10∥𝒃 − 𝒃∗∥2 and 𝛼(∥𝒃 − 𝒃∗∥) := 26∥𝒃 − 𝒃∗∥2. The inequality
obviously holds and the squared distance is of class K .

(ii) ⟨∇ℎ(𝒃),∇𝑈 (𝒃)⟩ ≤ −𝑤 ∥𝒃 − 𝒃∗∥2 for some 𝑤 > 0.
To show this inequality, we first rewrite the inner product in the following way.

⟨∇ℎ(𝒃),∇𝑈 (𝒃)⟩

= (20𝑏1 − 10) ·
(
− 𝑏1

8𝑏2
+ 3

16𝑏2
+ 1

24𝑏1
− 1

3

)
+ (52𝑏2 − 26) ·

(
−3𝑏1 − 7𝑏2 + 5

48𝑏2

)
=

1
𝑏1𝑏2

(
−

5𝑏3
1

2
−

119𝑏2
1𝑏2

12
+

53𝑏2
1

8
−

91𝑏1𝑏
2
2

12
+ 107𝑏1𝑏2

8
− 55𝑏1

12
− 5𝑏2

12

)
=

1
𝑏1𝑏2

(𝑔1(𝒃) · 𝜎1(𝒃) + 𝑔2(𝒃) · 𝜎2(𝒃) + 𝑔3(𝒃) · 𝜎3(𝒃))

where 𝑔 𝑗 are the constraints of the feasible set as defined in Equation (17), and the
𝜎𝑗 are polynomials.3 The polynomials are given by 𝜎𝑗 (𝒃) = 1

2 (𝒃 − 𝒃∗)𝑇Σ 𝑗 (𝒃 − 𝒃∗) for

3Such a decomposition is known to exist when the polynomial is positive (or negative in our case) (Putinar
1993), but the degree of the polynomials 𝜎𝑖 remains unknown a priori. While semidefinite programming can
numerically verify whether such a decomposition exists for a given degree, we found the exact parameters through
systematic trial-and-error.
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𝑗 = 1,2,3 with

Σ1 =

(
−11

2 −955
108

−955
108 −

15463
1026

)
, Σ2 =

(
−143

54 − 35
108

− 35
108 −21

38

)
, Σ3 =

(
−1

2 0
0 −21

38

)
.

It is easy to verify that these quadratic polynomials are strictly concave with unique
maximizers at 𝒃 = 𝒃∗ with 𝜎𝑗 (𝑏∗) = 0 for 𝑗 = 1,2,3.

Let 𝜆∗ < 0 be the largest eigenvalue of Σ 𝑗 with 𝑗 ∈ {1,2,3} (note that all eigenvalues
are negative). Then we have 𝜎𝑗 (𝒃) ≤ 𝜆∗∥𝑏− 𝑏∗∥2

2 ≤ 0 for all 𝑗 = 1,2,3 and we can write

⟨∇ℎ(𝒃),∇𝑈 (𝒃)⟩ ≤ 𝜆∗

𝑏1𝑏2
· ∥𝒃 − 𝒃∗∥2

2 · (𝑔1(𝒃) + 𝑔2(𝒃) + 𝑔3(𝒃))

≤ 𝜆∗

4
· ∥𝒃 − 𝒃∗∥2

2 · (2 − 2𝛿) = −𝑤∥𝒃 − 𝒃∗∥2
2.,

where we set 𝑤 := −𝜆∗4 (2 − 2𝛿). Note that 𝜆∗ = −10553
1026 + 5

√
17026937

2052 ≤ −0.231, which
guarantees 𝑤 > 0 for all 0 < 𝛿 ≤ 1

2 .
(iii) If 𝑔𝑖 (𝒃) = 0, for some 𝑖 ∈ {1, . . . , 𝑀}, then ⟨∇ℎ(𝒃),∇𝑔𝑖 (𝒃)⟩ ≤ 0. We show this case

by case:
– If 𝑔1(𝒃) = 0, then 𝑏1 = 𝛿 and ⟨∇ℎ(𝛿, 𝑏2),∇𝑔1(𝛿, 𝑏2)⟩ = 20(𝛿 − 1

2 ) ≤ 0.
– If 𝑔2(𝒃) = 0, then 𝑏2 = 𝛿 and ⟨∇ℎ(𝑏1, 𝛿),∇𝑔2(𝑏1, 𝛿)⟩ = 52(𝛿 − 1

2 ) ≤ 0.
– If 𝑔3(𝒃) = 0, then 𝑏2 = 2− 𝑏1 and ⟨∇ℎ(𝑏1,2− 𝑏1),∇𝑔3(𝑏1,2− 𝑏1)⟩ = 32𝑏1 − 68 ≤ 0

for all 𝑏1 ≤ 2.
Therefore, the conditions of Proposition 4 are satisfied. The function ℎ is a Lyapunov
function for (20) with 𝑚 = 2 and 0 < 𝛿 ≤ 1

2 , and 𝑏∗ is globally asymptotically stable.
■ Q.E.D.

4.2. Numerical Lyapunov function construction via sum-of-squares decomposition

The approach described in Section 4.1 to prove convergence for two pieces, also works for
more pieces. However, proving the required conditions analytically becomes very laborious.
Instead, we use the method recently proposed by Souaiby et al. (2020, Algorithm 2) to
numerically compute Lyapunov functions. This method relies on sum-of-squares (SOS)
decompositions of polynomials to verify positivity. It can be used to find a polynomial
Lyapunov function such that conditions (ii) and (iii) of Proposition 4 are SOS, i.e., they can
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be expressed as sums of squared polynomials. The resulting problem can be formulated and
solved using semidefinite programming (SDP). The existence of such SOS decompositions
of positive polynomials over the feasible set is ensured by Putinar’s Positivstellensatz
(Putinar 1993). However, the required polynomial degree of the functions used in the
SOS decomposition is not known a priori. Therefore, we iteratively increase the degree and
solve the corresponding SDP to check whether such a decomposition exists, assuming a
suitable Lyapunov function exists.

We slightly adapt the original algorithm to fit the structure of our problem. To avoid
complications from rational expressions in the vector field, we multiply it by the product
of all variables, ensuring that the resulting conditions involve only polynomials. This does
not change the condition (ii), as the variables are bounded and strictly positive in the
original problem. Additionally, to avoid numerical issues, we do not only compute a SOS
decomposition of the inner product in (ii) (cf. Souaiby et al. (2020)), but of the inner
product minus a scaled (𝑤 = 1

10 ) squared distance to the equilibrium instead. This way, we
prevent that almost constant Lyapunov functions are approximate solutions of the SDP. The
problem, adapted from Souaiby et al. (2020), with an SOS lower bound, i.e., we minimize
𝛾 such that some objective 𝑓 (𝑥) − 𝛾 is still positive, i.e., admits a SOS decomposition over
the feasible set, is given by

min
𝛾∈R

𝛾 s.t.

ℎ(𝒃) − 𝛾 −
𝑚+1∑︁
𝑖=1

𝜎𝑖 (𝒃)𝑔𝑖 (𝒃) ∈ SOS

−⟨∇ℎ(𝒃),Π𝑚
𝑖=1𝑏𝑖 · ∇𝑈 (𝒃)⟩ − 𝑤∥𝒃 − 𝒃∗∥2

2 − 𝛾 −
𝑚+1∑︁
𝑖=1

𝜎0,𝑖 (𝒃)𝑔𝑖 (𝒃) ∈ SOS

∀ 𝑗 = 1, . . . , 𝑚 + 1 : ⟨∇ℎ(𝒃),∇𝑔 𝑗 (𝒃)⟩ − 𝛾 −
𝑚+1∑︁
𝑖=1,𝑖≠ 𝑗

𝜎𝑗 ,𝑖 (𝒃)𝑔𝑖 (𝒃) − 𝛾 𝑗𝑔 𝑗 (𝒃) ∈ SOS

∀ 𝑗 = 0, . . . , 𝑚 + 1, 𝑖 = 1, . . . , 𝑚 + 1 : 𝜎𝑖, 𝜎𝑗 ,𝑖 ∈ SOS

where all 𝜎𝑖, 𝜎𝑖, 𝑗 , and 𝛾 𝑗 are polynomials of degree 𝑑 and ℎ is a polynomial of degree 𝑑𝐿 .
We implement the method in MATLAB using YALMIP with its SOS module (Löfberg

2009), together with the conic solver MOSEK. The code is available upon request. The
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results reported in Table 4.2 show that we can find quadratic Lyapunov functions for
𝑚 = 2,3 pieces and a polynomial Lyapunov function of degree 4 for 𝑚 = 4. The degrees
of the polynomial used to find the SOS decompositions grow with the dimension of the
underlying problem.

Numerical results for computing lyapunov functions.

# Pieces m Deg. Lyap. Deg. Poly. Status Objective Iterations Runtime

2 2 2 OPTIMAL 6.8e-09 10 0.01s
3 2 4 OPTIMAL -1.4e-10 21 0.11s
4 4 8 OPTIMAL -4.0e-05 21 14.38s

TABLE I

The SDP is formulated for different number of pieces 𝑚, maximal degrees for the Lyapunov function,
and maximal degrees for the polynomials used for the SOS decomposition. The feasible set is given

by B𝑚
𝛿

with 𝛿 = 1
20 . We only report results, where the SDP is solved with a sufficiently low objective

value, indicating that a Lyapunov function has been found. Additionally to the objective, we report
the number of iterations, status, and runtime of the MOSEK solver.

4.3. Stability analysis: results for higher dimensions

The theoretical results presented above provide a priori guarantees that projected gradient
dynamics converge toward equilibrium in first-price auctions with up to three pieces. In this
section, we extend the analysis empirically by presenting experiments that demonstrate
convergence behavior for instances with up to sixteen pieces.

For each experimental run, we sample an initial strategy uniformly at random over the
feasible set B𝑚

𝛿
. This is achieved by normalizing i.i.d. samples drawn from a suitable

exponential distribution, following the method described by Devroye (1986, page 208).
We run a projected gradient ascent algorithm to optimize the utility. The learning rate

at time step 𝑡 is set to 𝜂𝑡 =
1
𝑡0.05 . To ensure comparability across different dimensions,

we normalize the distance to equilibrium by a factor of 1√
𝑚

. Each experiment runs for a
maximum of 100,000 steps or until the norm of the gradient falls below 10−10, whichever
occurs first. We run 100 trials for each configuration and report the mean and standard
deviation.
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Figure 2.—Distance to BNE for gradient ascent algorithm for different number of pieces. The lines display the
mean, whereas the shaded areas display the standard deviations over 100 different starting points.

Figure 2 summarizes the empirical results for up to sixteen pieces. We observe that
the distance to equilibrium consistently decreases, although the rate of convergence is
poor in higher dimensions. This aligns with the observation made in the two-dimensional
case, where the gradient flow reaches a flat region quickly so that convergence towards
equilibrium is slow (see Figure 1). These findings provide additional empirical support for
the hypothesis that simple gradient-based algorithms can learn equilibrium strategies in
first-price auctions, even in high-dimensional settings. They also reinforce our conjecture
that theoretical guarantees may extend to these more complex cases.

5. CONCLUSIONS

Learning in games has received much recent attention in the literature. It is well known,
that learning algorithms do not always converge to an equilibrium in games, but they do
converge in some types such as potential games. Recent advances in equilibrium learning
showed that learning algorithms converge in a wide variety of auction games. The reasons
for these observations are not well understood. We draw on the connection between auction
games and infinite-dimensional variational inequalities, which has not been explored so far.
In particular, there are sufficient conditions for which it has been shown that independent
optimization algorithms find a solution to the variational inequality. Monotonicity can be
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seen as a generalization of convexity in optimization, and it provides a sufficient condition
for first-order optimization methods to converge to the unique solution of a monotone
variational inequality.

Our analysis shows that neither the second- nor the first-price auctions are monotonous.
There are even counterexamples for the weaker pseudo- and quasi-monotonicity conditions.
More recent literature on non-monotone variational inequalities uses the Minty condition
to show the convergence of extragradient algorithms (cf. Appendix A). In the first-price
auction, this condition is also not satisfied, even when assuming a simple uniform prior.
These findings highlight the need to go beyond traditional conditions, such as monotonicity
or the Minty condition, to understand the convergence behavior of learning algorithms. This
requires finding a Lyapunov function for the corresponding dynamical system.

Finding Lyapunov functions in games is challenging in general, but it is particularly
difficult in games because constraints on the action space need to be considered. Our main
result is the construction of such a Lyapunov function for piece-wise linear bid functions
showing that the gradient flows lead to the BNE in the first-price auction independent of
the initial condition. This proves the asymptotic stability of the BNE and thus provides
a convergence proof for this central auction format and this generic set of bid functions.
Establishing the convergence of learning algorithms to equilibrium in other auction games
would offer a strong justification for using equilibrium as a predictive concept – one that
does not depend on agents having prior information and unbounded rationality.
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APPENDIX A: Minty condition and the Optimistic Dual Extrapolation
Algorithm

In Lemma 2, we have shown that a unique solution to the MVI exists for the symmetric,
second-price sealed-bid auction. In the following, we discuss the applicability of the op-
timistic dual extrapolation algorithm, which was shown to converge to the solution of the
MVI by Song et al. (2020). To apply their results, we first need to reformulate the problem
in a Hilbert space setting. To this end, we use the Hilbert space H = 𝐻1((0,1);𝐹) with
inner product

(𝑣, 𝑤)H :=
∫ 1

0
𝑣(𝑥)𝑤(𝑥) + 𝑣′(𝑥)𝑤′(𝑥)d𝐹 (𝑥)

and induced norm ∥𝑣∥H :=
√︁
(𝑣, 𝑣)H . Analogously to the set B𝛿 ⊂ 𝑉 for a Banach space 𝑉 ,

we consider in the Hilbert space H the closed and convex set

W𝛿 := {ℎ ∈ H : 0 < 𝛿 ≤ ℎ′ ≤ 𝛿−1 𝐹-a.e., and 0 ≤ ℎ ≤ 1 𝐹-a.e.}

for 0 < 𝛿 ≤ 1. Note that W𝛿 ⊊ B𝛿, i.e. this setting is slightly more restrictive that that of
Section 3.1. We proceed by showing the assumptions of Song et al. (2020, Assumptions 1,
2 and 3):

1. The operator 𝐷𝑈 : W𝛿 →H ∗ defined by (8) is Lipschitz-continuous.
2. There are constants 0 < 𝛾 ≤ 1 and 𝐶 > 0 such that the norms satisfy

1
2 ∥𝑤∥

2
H ≥ 1

2 ∥𝑣∥
2
H + 𝐷

( 1
2 ∥𝑣∥

2
H

)
[𝑤 − 𝑣] + 𝛾

2 ∥𝑤 − 𝑣∥2
H ,𝐷 ( 1

2 ∥𝑤∥
2
H

)
H ∗ ≤ 𝐶 ∥𝑤∥ ,

for all 𝑣, 𝑤 ∈ H . Here, 𝐷 ( 1
2 ∥𝑣∥

2
H ) ∈ H ∗ denotes the Gateaux-derivative of 𝑣 ↦→

1
2 ∥𝑣∥

2
H .

3. There exists a solution 𝛽∗ ∈W𝛿 to the symmetric MVI for the second-price sealed-bid
auction.

The latter directly follows from Lemma 2 for 𝛿 ≤ 1, as 𝛽∗ = Id ∈ W𝛿 ⊂ H . The norms
satisfy Assumption 2, due to the Hilbert space setting. In particular, we have 𝐷 ( 1

2 ∥𝑣∥
2
H ) =

(𝑣, ·)H ∈ H ∗, such that we can use 𝛾 = 𝐶 = 1. Finally, the operator 𝐷𝑈 : W𝛿 → H ∗ is
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Lipschitz-continuous with Lipschitz-constant 𝐿𝐷𝑈 ≤ 2𝛿−2∥𝑔∥𝐿∞ since�� (𝐷𝑈 (𝜷) − 𝐷𝑈 ( �̃�)
)
[𝑑]

�� = ����∫ 1

0
𝑑 (𝑥)

[𝑥 − 𝛽(𝑥)
𝛽′(𝑥) − 𝑥 − 𝛽(𝑥)

𝛽′(𝑥)

]
𝑔(𝑥)d𝐹 (𝑥)

����
≤ ∥𝑑∥𝐿2 ∥𝑔∥𝐿∞

 (
𝑥 − 𝛽(𝑥)

)
𝛽′(𝑥) −

(
𝑥 − 𝛽(𝑥)

)
𝛽′(𝑥)

𝛽′(𝑥)𝛽′(𝑥)


𝐿2

≤ ∥𝑑∥H ∥𝑔∥𝐿∞
 𝛽(𝑥) − 𝛽(𝑥)𝛽′(𝑥)


𝐿2

+ ∥𝑑∥H ∥𝑔∥𝐿∞
 (
𝑥 − 𝛽(𝑥)

) (
𝛽′(𝑥) − 𝛽′(𝑥)

)
𝛽′(𝑥)𝛽′(𝑥)


𝐿2

≤ ∥𝑑∥H ∥𝑔∥𝐿∞
(
𝛿−1∥𝛽 − 𝛽∥𝐿2 + 𝛿−2∥𝛽′ − 𝛽′∥𝐿2

)
≤ ∥𝑑∥H2𝛿−2∥𝑔∥𝐿∞ ∥𝛽 − 𝛽∥H

for 0 < 𝛿 ≤ 1.
Following the argumentation (Song et al. 2020, Theorem 1), now applied to the infinite-

dimensionalH instead ofR𝑛, we obtain the convergence of the optimistic dual extrapolation
(Song et al. 2020, Algorithm 1), given here in Algorithm 1. In particular, we obtain:

Proposition 5: After 𝐾 iterations, Algorithm 1 returns a 𝛽𝐾 ∈W𝛿 such that

sup
𝛽∈W𝛿

��𝐷𝑈 ( �̃�𝐾) [𝛽𝐾 − 𝛽]
�� ≤ (

2
√

2 + 16
) (

1 + 𝛿−2)𝐿𝐷𝑈𝐾−1/2.

Here, we optimized the error constant by choosing the maximal free parameter 𝛼 of Song
et al. (2020) and using that

𝛽 − 𝛽H ≤
√

1 + 𝛿−2 for all 𝛽, 𝛽 ∈W𝛿. Note that in Algorithm 1
the proximal mapping 𝑃𝑣 : H ∗ →H for 𝑣 ∈ H is given by

𝑃𝑣 (𝐹) := argmin
𝑧∈W𝛿

(
𝐹 [𝑧] + 1

2
∥𝑧 − 𝑣∥2

H

)
.

This requires solving a monotone VI on W𝛿 for each evaluation.

Co-editor [Name Surname; will be inserted later] handled this manuscript.
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Algorithm 1 Optimistic dual extrapolation algorithm (Song et al. (2020))
Input: Constant 𝑐 =

(
4
√

2𝐿𝐷𝑈
)−1

> 0.
1: 𝛽0 = 𝑧0 ∈𝑊𝛿, 𝐺0 = 0 ∈ H ∗

2: for 𝑘 = 1,2, . . . , 𝐾 do
3: 𝛽𝑘 = 𝑃𝑧𝑘−1

(
− 𝑐𝐷𝑈 (𝜷𝒌−1)

)
4: 𝐺𝑘 =𝐺𝑘−1 − 𝑐𝐷𝑈 (𝜷𝒌)
5: 𝑧𝑘 = 𝑃𝛽0

(
𝐺𝑘

)
6: end for
7: 𝛽𝐾 = argmin𝛽𝑘 : 1≤𝑘≤𝐾

(
∥𝛽𝑘 − 𝑧𝑘−1∥ + ∥𝛽𝑘−1 − 𝑧𝑘−1∥

)
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