
Learning equilibrium in bilateral bargaining games

Martin Bichler, Nils Kohring, Matthias Oberlechner, Fabian Pieroth

Department of Computer Science
Technical University of Munich

85748 Garching, Germany

Abstract

Bilateral bargaining of a single good among one buyer and one seller de-

scribes the simplest form of trade, yet Bayes-Nash equilibrium strategies

are largely unknown. Only for the average mechanism in the standard in-

dependent private values model with independent and uniform priors, we

know that there is a continuum of equilibria. However, a non-uniform prior

distribution already leads to a system of non-linear differential equations for

which closed-form bidding strategies cannot be derived. Recent advances in

equilibrium learning provide a numerical approach to equilibrium analysis,

which can push the boundaries of existing results and allow for the analy-

sis of environments that have been considered intractable so far. We study

Neural Pseudogradient Ascent (NPGA) and Simultaneous Online Dual Av-

eraging (SODA), two new equilibrium learning algorithms for Bayesian auc-

tion games with continuous type and action spaces. Although the environ-

ment is simple to describe, the continuum of equilibria makes it challenging

for equilibrium learning algorithms. Empirically, NPGA finds the payoff-

maximizing linear equilibrium, while SODA also finds non-differentiable

step-function equilibria. Interestingly, the algorithms also find equilibrium

with non-uniform priors and risk-averse traders for which we do not know an

analytical solution. We show that the game is not globally monotone, but

we can prove local convergence for a model with uniform priors and linear

bid functions.

Keywords: Auctions bidding, Game theory, Machine learning

1. Introduction

Trade in some of the most important markets for homogenous goods is

governed by double auctions. For example, major exchanges use versions of
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a double auction for trading stocks, bonds, agricultural commodities, met-

als, and derivative securities (Friedman, 1992). Yet, the game-theoretical

analysis of such simple institutions has turned out challenging. Even the

simple bilateral trade model with only one buyer, one seller, and one indi-

visible good has led to several decades of research trying to prove existence

and equilibrium bidding strategies under different assumptions. The strate-

gic problem of the traders in this literature is usually modeled as a Bayesian

game. In the independent private values model, both buyers know their

value ex-interim but only have distributional information about the oppo-

nent’s value. In a seminal paper, Myerson and Satterthwaite (1983) showed

that no mechanism simultaneously satisfies individual rationality, budget

balance, incentive-compatibility, and efficiency in bilateral trade.

The Vickrey-Clarke-Groves (VCG) mechanism is individually rational,

incentive-compatible, and efficient, but not budget-balanced in such two-

sided markets, which provides a reason why it can rarely be found in practice.

As a result, the analysis of non-truthful mechanisms has received significant

attention. The k-double auction has assumed a central role in the litera-

ture (Leininger et al., 1989; Satterthwaite and Williams, 1989; Kadan, 2007;

Gresik, 2011; Satterthwaite et al., 2022). It is not incentive-compatible but

simple and closer to real-world practices such as a uniform price call market

as it is often used on financial markets, where there is a single price at which

all trades are cleared. The k-double auction determines the terms of trade

when a buyer and a seller negotiate the sale of an item. The buyer submits

a bid b, and the seller submits an ask s. Trade occurs if b exceeds s at a

price kb+(1−k)s. For example, if k = 0.5, this is the average mechanism or

0.5-double auction. Given that the traders’ reports affect the price and the

likelihood of trade in the average mechanism, there is an incentive to mis-

represent the true value. As a result of this strategic bidding, some trades

that could happen do not, which leads to an efficiency loss. The model is

so simple to explain that it has become central to the equilibrium analysis

of trading mechanisms. Wilson (1985) argues that understanding bilateral

bargaining provides a foundation for a theory of large markets.

Yet, even for this simple and central model of trade, we only know equi-

librium bidding strategies for very restricted model assumptions. In a sem-

inal contribution, Leininger et al. (1989) analyze the average mechanism

with independent private values and quasi-linear utility functions and find
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a multitude of equilibria. One family of equilibria has differentiable strate-

gies, another family is composed of (non-differentiable) step-functions with

arbitrarily many jumps. In the earlier paper by Chatterjee and Samuelson

(1983) also strategies for risk-averse bidders were derived in this setting.

While some extensions have been analyzed (e.g., with general k, interdepen-

dent private values, or multiple bidders), explicit equilibrium bid functions

are unavailable. The equilibrium problem in the k-double auction and many

other auction models can often be described as the solution to a system of

differential equations. Unless there are simple (uniform) distributional as-

sumptions and simple assumptions about the bidders’ utility functions and

the goods, we typically do not have a general solution theory. Even setting

up the differential equations can be challenging.

1.1. Equilibrium Computation

Numerical methods for computing approximate equilibria in Bayesian

games with continuous type and action space would be very useful for equi-

librium analysis and comparative statics. Actually, there is a long history

of thought on equilibrium computation in operational research (Jofré et al.,

2007; Bigi et al., 2013). However, while there has been significant research

on equilibrium computation in complete-information n-player games with

finite actions and players, the computation of Bayes-Nash equilibria (BNE)

in games with continuous type- and action-spaces, as they are used to model

auctions, has received little attention. The infinite type-space is a key chal-

lenge because equilibrium computation algorithms need to find an equilib-

rium bid function of unknown shape.

Only recently, there have been a number of advances in developing equi-

librium learning methods with notable success in single-sided auction games

(see Section 2). Neural Pseudogradient Ascent (NPGA) (Bichler et al., 2021)

and Simultaneous Online Dual Averaging (SODA) (?) have led to break-

throughs providing versatile equilibrium solvers that find equilibrium in a

wide variety of single-sided auctions, including single-object, multi-unit, and

combinatorial auctions. NPGA and SODA are both based on simultane-

ous gradient ascent on the expected utility function of each player. Both

methods allow for interdependent types and various utility functions, includ-

ing ones with risk or loss aversion. While NPGA learns approximate pure

Bayes-Nash equilibria using self-play and neural networks, SODA learns dis-
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tributional strategies on a discretized version of the game. Although there

is not yet a complete theory of games that are “learnable” and those that

are not, we know that if SODA converges to a pure strategy, then it is an

equilibrium.

Unfortunately, identifying characteristics of games where gradient-based

algorithms converge to a BNE turned out to be a daunting task. Recent

results on complete-information normal-form games showed that gradient

dynamics either circle, diverge, or are even chaotic (Sanders et al., 2018).

Actually, the study of gradient dynamics in games is akin to studying dy-

namical systems and characterizing environments, where gradient dynamics

converge to a Nash equilibrium (if one exists), has been described as arbi-

trarily complex (Andrade et al., 2021). The study of Bayesian games with

continuous action and type space adds a layer of complexity. This is because

we not only need to learn an equilibrium bid but a bid function that can take

an arbitrary shape. The fact that we do find equilibrium consistently in a

wide variety of auction games demands a closer look. The k-double auction

with one buyer and one seller is the simplest environment that still captures

the main challenges of the equilibrium computation in auction mechanisms

and allows us deeper insights into the reasons for convergence in this paper.

1.2. Contributions

The contributions of this article are two-fold: First, we provide a novel

convergence result for NPGA for the bilateral bargaining model. Already

the convergence analysis of gradient dynamics in this simple model is very

challenging. The difficulty arises from the fact that the equilibrium problem

is a system of non-linear ordinary differential equations that has the inverse

of an unknown bid function as one of its components. There is no analyt-

ical solution theory for such differential equations for general priors, and

even standard numerical techniques for solving differential equations lead to

problems, as we will discuss.

If a game satisfies a payoff monotonicity condition, no-regret learning al-

gorithms are known to converge to an equilibrium in continuous- and finite-

action games. This corresponds to monotonicity in variational inequalities,

which guarantees convergence of various algorithms. In the bilateral trade

environment with uniformly distributed types, we know that there is a lin-

ear equilibrium strategy for both traders. Assuming that we know that
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the equilibrium bid function is linear, we can explore the expected utility

function of each player and check for montonicity. Unfortunately, we can

show via an explicit counterexample that the monotonicity condition is not

satisfied globally. However, the assumption of a linear bid function allows

us to show local convergence of the NPGA equilibrium learning algorithm.

More precisely, we prove that in the 0.5-double auction with two quasi-linear

traders and linear strategies, the NPGA equilibrium learner will converge

locally. Our analysis of this restricted bilateral trade model sheds light on

the question why it is so difficult to provide a priori convergence guarantees

for gradient dynamics in more general Bayesian games with continuous type

and action space.

Second, we provide empirical results of equilibrium computation on bilat-

eral trade and explore equilibria with different prior distributions, different

levels of risk-aversion, or different numbers of buyers and sellers and their

impact on overall efficiency. So far, no explicit equilibrium bid functions

have been known for these environments. In the standard environment with

uniform priors for which explicit equilibrium bid functions are known, we

reliably find the linear equilibrium with NPGA. Interestingly, with SODA,

we find step-function equilibria. This has to do with NPGA only being able

to learn continuous equilibrium bid functions. In contrast, the discretization

of the type and action space allows SODA also to learn non-differentiable

equilibrium bid functions. The multitude of equilibria differs from many

single-sided auction models, and it is surprising that equilibrium learning

algorithms find one of these equilibria consistently. They do not cycle or

end up in disequilibrium with a high utility loss. This way, we push the

boundaries of equilibrium analysis to the challenging case of bilateral trade

with a continuum of equilibria.

The remainder of this article is structured as follows. The following

section will discuss literature on bilateral trade and equilibrium learning.

Section 3 introduces the economic model as Bayesian games, whereas in

Section 4 the two learning methods will be introduced. Section 5 provides

our numerical results before we conclude in Section 6.

2. Related Literature

In what follows, we introduce additional related literature on bilateral

trade and equilibrium learning.
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2.1. Bilateral Trade

The famous theorem by Myerson and Satterthwaite (1983) states that

in the simple bilateral trade environment, for a single good between one

buyer and one seller, no mechanism can be individually rational, budget bal-

anced, incentive-compatible, and efficient. The impossibility result spawned

substantial research on bilateral trade. A number of different mechanisms

for double auctions with multiple buyers and sellers have been proposed in

Gresik and Satterthwaite (1989), McAfee (1992), or Williams (1999). The

k-double auction is probably the most popular one as it is deterministic and

budget-balanced and, as such, resembles real-world practices. Already Chat-

terjee and Samuelson (1983) examined BNE and showed that double auc-

tions are asymptotically efficient as the agents become strongly risk-averse.

Leininger et al. (1989) analyzed the case of identically distributed costs and

benefits of the participants. With a uniform distribution, the sealed-bid

game has a continuum of equilibria. Obviously, such equilibrium predic-

tions are weak. One family of equilibria consists of differentiable strategies

(including a linear BNE). Another family is composed of step-functions with

arbitrarily many jumps. With general independent distributions of benefits

and costs the, authors find similar families of equilibria. Radner and Schot-

ter (1989) experimentally analyze the properties of the average mechanism

and find linear equilibrium strategies also in the lab. Furthermore, Satterth-

waite and Williams (1989) model the environment as a Bayesian game and

prove the existence of a multiplicity of equilibria. Their paper focuses on

differentiable equilibrium strategies.

Leininger et al. (1989) provide closed-form equilibrium strategies for

quasi-linear traders and uniformly distributed priors. For general inde-

pendent prior distributions, they only show the existence of equilibria. A

number of articles analyze different effects on market efficiency under this

mechanism. The inefficiency in a k-double auction decreases for increas-

ingly risk-averse agents (Chatterjee and Samuelson, 1983). Additionally,

Satterthwaite and Williams (2002) show that the k-double auction reduces

the worst-case inefficiency at the fastest possible rate among all interim indi-

vidually rational and budget-balanced mechanisms. More recent work goes

beyond the independent private values model (Kadan, 2007; Satterthwaite

et al., 2022), and it explores posted-price (Blumrosen and Dobzinski, 2021)

or randomized mechanisms (Garratt and Pycia, 2020).
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Overall, this stream of literature spans almost forty years by now, but ex-

plicit equilibrium bid functions are unknown except for specific models with

uniform distributions, quasi-linear utility functions, and independent private

values. Numerical methods that allow us to derive equilibrium predictions

for specific models with non-uniform, possibly asymmetric or interdepen-

dent, priors or risk-averse traders in minutes rather than years could push

the boundaries of equilibrium analysis for bilateral trade with two traders

also for larger environments.

2.2. Equilibrium Learning Algorithms

Let us also discuss related literature on equilibrium learning. As indi-

cated earlier, most of this literature deals with finite games (Fudenberg and

Levine, 2009). Gradient dynamics in games have been studied in evolution-

ary game theory and multi-agent learning. While earlier work considered

mixed strategies over normal-form games (Zinkevich, 2003; Bowling and

Veloso, 2002; Bowling, 2005; Busoniu et al., 2008), more recently, motivated

by the emergence of GANs, there has been a focus on (complete-information)

continuous games (Mertikopoulos and Zhou, 2019; Letcher et al., 2019; Bal-

duzzi et al., 2018; Schaefer and Anandkumar, 2019; Bailey and Piliouras,

2018). A common result for many settings and algorithms is that gradient-

based learning rules do not necessarily converge to Nash equilibria and may

exhibit cycling behavior but often achieve no-regret properties and thus con-

verge to weaker Coarse Correlated equilibria (CCE). An analogous result ex-

ists for finite-type Bayesian games, where no-regret learners are guaranteed

to converge to a Bayesian CCE (Hartline et al., 2015).

Earlier approaches on finding equilibria in auctions were usually set-

ting specific and relied on reformulating the BNE first-order condition of

Eq. (9) as a differential equation and then solving this equation analytically

(where possible) (Vickrey, 1961; Krishna, 2009; Ausubel and Baranov, 2020).

Armantier et al. (2008) introduced a BNE-computation method based on ex-

pressing the Bayesian game as the limit of a sequence of complete-information

games. They show that the sequence of Nash equilibria in the restricted

games converges to a BNE of the original game. While this result holds

for any Bayesian game, setting-specific information is required to generate

and solve the restricted games. Rabinovich et al. (2013) study best-response

dynamics on mixed strategies in auctions with finite action spaces. These
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articles were focused on single-object auctions. Bosshard et al. (2017, 2020)

were the first to compute equilibria for combinatorial auctions. The method

explicitly computes point-wise best responses in a fine-grained discretization

of the strategy space via sophisticated Monte-Carlo integration.

We focus on NPGA (Bichler et al., 2021) and SODA (?). These two re-

cent contributions have shown to be very versatile and allowed for the com-

putation of BNE in a large variety of different (single-sided) auction models.

Moreover, in contrast to earlier work, both techniques implement gradient

dynamics compared to the best-response algorithms mentioned above. They

compute approximate equilibria in minutes for standard auction models from

the literature. A more detailed explanation will be provided in Section 4.

3. Economic Model

We first introduce notation and equilibrium solution concepts used in

our analysis. Next, we discuss the k-double auction and equilibrium bidding

strategies.

3.1. Preliminaries

A simple two-sided exchange market with unit demand can be modeled

as a Bayesian game G = (I,A,V, u, F ). The agents I consist of nB buyers

and nS sellers. Each buyer wants to buy one item and each seller wants to

sell one item. The action space A = A1×· · ·×AnB ×AnB+1×· · ·×AnB+nS

represents the possible bids that buyers and sellers can submit. A buyer’s

bid denotes the amount he is willing to pay, whereas a seller’s bid denotes

how much she wants to receive when selling her good. The agents’ type

space V = V1 × · · · × VnB+nS denotes their possible values for the good.

That is, vi ∈ Vi denotes the value agent i places on the good. For a buyer,

that is the maximum value he is still willing to pay. For a seller, it might

denote the cost that she invested and is the minimum amount she wants

to receive when selling the good. We assume the type and action spaces to

be non-negative Ai = Vi = R+
0 . The joint probability density function f :

V → R+
0 describes a prior distribution over the agents’ types and is assumed

to be common knowledge. The marginal distributions are denoted by fi,

and Fi denotes the associated cumulative distribution function. The vector

u = (u1, . . . , unB+nS ) of f -integrable, individual (ex-post) utility functions

ui : Vi × A → R assigns the game outcome for each possible action and
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valuation profile. In the game’s interim stage, an agent knows its valuation

but not those of the others, whereas, in the ex-ante stage, each agent only

knows about the prior distribution f .

In the ex-ante stage of the game, each agent is tasked with finding a

strategy βi that maps from each type to an action, i.e., βi : Vi → Ai. The

strategy profile is denoted by β = (β1, . . . , βnB+nS ) = (βi, β−i) for every

i. An index −i denotes a partial profile for all agents but agent i. We

denote the ex-ante action space of agent i by Σi ≡ AVii and the joint ex-

ante action space by Σ ≡
∏
i Σi. Note that the spaces Σi are, in general,

infinite-dimensional. The equilibrium learning algorithms described in Sec-

tions 4.1 and 4.2 transform the infinite-dimensional game with Σ into one

with finite-dimensional strategies while maintaining sufficient expressiveness

to approximate arbitrary equilibrium strategies.

Fixing a strategy profile β, we can formulate utilities for the game’s

interim and ex-ante stages. Agent i’s interim utility is defined as

uinterim
i (vi, βi(vi), β−i) = Ev−i|vi [ui(vi, βi(vi), β−i(v−i))] . (1)

Extending this to the ex-ante stage gives the ex-ante utility of agent i by

uante
i (βi, β−i) = Evi

[
uinterim
i (vi, βi(vi), β−i)

]
. (2)

An ε-Bayes-Nash equilibrium (ε-BNE) is given by a strategy profile β∗, such

that no agent can increase its utility by more than ε ≥ 0 by unilaterally

deviating from it. That is,

uante
i (βi, β

∗
−i)− uante

i (β∗i , β
∗
−i) ≤ ε for all βi ∈ Σi and i ∈ I. (3)

The case of ε = 0 corresponds to a Bayes-Nash equilibrium (BNE).

The interim stage formulates the individual agent’s task when the val-

uation is already known, reducing the complexity of the strategy space to

a single action. In contrast, the ex-ante stage captures the full complex-

ity of the given strategic interaction, which is, e.g., needed to analyze the

algorithms’ convergence properties (see Section 4).

The game outcomes, i.e., the goods’ allocation and the respective prices

the buyers need to pay and payments the sellers receive, are determined by

a market mechanism. The mechanism collects the bids b ∈ A of buyers and
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sellers and outputs an allocation vector x(b) ∈ {0, 1}nB+nS and a payment

vector p(b) ∈ RnB+nS . It holds that a buyer i ∈ {1, . . . , nB} gets an item if

and only if xi(b) = 1. A seller j ∈ {nB+1, . . . , nB+nS} sells her item if and

only if xj(b) = 1. Tie-breaking rules may be encoded into the allocations

x. Agent i’s payment satisfies pi(b) = 0 if xi(b) = 0. The baseline utility

function is that of a risk-neutral agent with quasi-linear utility. The quasi-

linear ex-post utilities for the buyers are given by

uQLi (vi, b) =

xi(b) · vi − pi(b) for i ∈ {1, . . . , nB},

0 else.
(4)

The sellers’ ex-post utilities are respectively

uQLj (vj , b) =

pj(b)− xj(b) · vj for j ∈ {nB + 1, . . . , nB + nS},

0 else.
(5)

We extend this by including risk-aversion into our setting, arguably one

of the most studied behavioral effects in single- and double-sided markets.

We model this via utilities uRA
i = (uQL

i )ρ where ρ ∈ (0, 1] denotes the

risk-attitude. The case of ρ = 1 corresponds to the risk-neutral traders

with quasi-linear utilities. If not stated otherwise, we assume risk-neutral

bidders.

3.2. k-Double Auction

We focus on the k-double auction, because, as discussed, it is relevant,

strategically complex, and some BNE strategies are known for non-trivial

settings1. Special cases are the average double auction with k = 0.5, the

buyer’s bid double auction with k = 1, and the seller’s bid double auction

with k = 0. Sellers and buyers simultaneously submit asks and bids for one

unit each. After collecting the bids b = (b1, . . . , bnB+nS ), the mechanism

sorts them according to a natural ordering, i.e.,

b1 ≥ b2 ≥ · · · ≥ bnB and bnB+1 ≤ bnB+2 ≤ · · · ≤ bnB+nS , (6)

1Other common mechanisms for two-sided markets are not as strategically complex
?Blumrosen and Dobzinski (2021) or applicable McAfee (1992).
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to form supply and demand curves. The buyers’ bids are sorted to be de-

creasing, whereas the sellers’ bids are ordered so that they are increasing.

One then determines the break-even index ` such that ` is the largest index

satisfying b` ≥ bnB+` and b`+1 < bnB+`+1. This corresponds to the crossing

of the supply and demand curves. In the case of ties, a lottery decides the

ordering and break-even index. The index ` determines the allocations. The

first ` sellers with the lowest asks pass their goods to the first ` buyers with

the highest bids, i.e., xi(b) = 1 for i ≤ ` and nB + 1 ≤ i ≤ nB + ` and

0 otherwise. The market-clearing trade price is derived from b` and bnB+`

and fixed at Pi(b) = kb` + (1 − k)bnB+` for agents that trade, i ≤ ` and

nB +1 ≤ i ≤ nB + `, and 0 otherwise. Unlike in some other mechanisms like

the famous VCG auction, having this constant market-clearing price ensures

budget balance by definition.

3.3. Equilibrium Analysis

This subsection focuses on the bilateral bargaining setting with two

traders for the k-double auction mechanism. For this case, we present dif-

ferent classes of equilibrium strategies. However, we start by deriving the

first-order conditions for continuous bidding functions, that play a central

role in deriving equilibria, as well as for a convergence analysis of NPGA in

Section 4.1. We simplify the notation for the case of bilateral bargaining,

i.e., a two-sided market with exactly one buyer and seller so that the buyer’s

variables are indexed by B, and the seller’s by S, e.g., the buyer’s valua-

tion is denoted by vB and the seller’s by vS . Let us first introduce some

assumptions.

Assumption 1. Let the priors be defined on bounded intervals ΩB = [vB, vB]
and ΩS = [vS , vS ] ⊂ R.2 We assume that the strategies βB : ΩB →
[bB, bB] =: Ω̂B and βS : ΩS → [bS , bS ] =: Ω̂S of buyer and seller respec-
tively, satisfy the following:

1. βB and βS are strictly increasing,

2. βB, β−1
B , βS and β−1

S are Lipschitz continuous.

2Note that allowing unbounded intervals for the prior distributions leads to an addi-
tional (but well-behaved) error term for the seller’s interim utility. Therefore, we omit
this special case for clarity.
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These assumptions do not constitute strong restrictions for the setting. It

is common to consider strictly increasing bid functions and some additional

regularity to derive the first-order conditions (Chatterjee and Samuelson,

1983; Leininger et al., 1989). Independently, they will allow us to prove

our convergence result (Proposition 1), which describes a first set of ex-ante

criteria for which NPGA finds an equilibrium. Property 1 will be relaxed at

other occasions. Here, together with property 2, it ensures that there exist

inverse functions β−1
B and β−1

S . Assuming independent prior distributions,

the interim utilities of the buyer and seller can now be derived and are given

by

uinterim
B (vB, βB(vB), βS)

= 1{βB(vB)≥bS}

∫ min{βB(vB),bS}

bS

(vB − P (βB(vB), y))fS(β−1
S (y))(β−1

S )′(y)dy

(7)

and

uinterim
S (vS , βB, βS(vS))

= 1{bB≥βS(vS)}

∫ bB

max{βS(vS),bB}
(P (x, βS(vS))− vS)fB(β−1

B (x))(β−1
B )′(x)dx,

(8)

where 1 denotes the indicator function of wether or not trade takes place.

The detailed derivations can be found in Appendix C. The first-order condi-

tions to optimize the interim utilities can now be summarized in the following

system of non-linear ordinary differential equations (ODE):

A(vB, vS , βB, βS) :=

(
d

dβB(vB)u
interim
B (vB, βB(vB), βS)

d
dβS(vS)u

interim
S (vS , βB, βS(vS))

)
=

(
0

0

)
. (9)

How to solve such systems to determine strategies βB and βS , which are

non-trivial (i.e., such that trade occurs over a set of non-zero measure)

is an open problem. In general, there is no principled method to derive

closed-form solutions for systems of non-linear ODEs, and also numerical

techniques turned out challenging.

A few articles discuss the related equilibrium problem in the asymmetric
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independent private values model of one-sided auctions, which also results

in a system of non-linear ODEs (Hubbard and Paarsch, 2014). Because the

Lipschitz condition is not satisfied for the system, much of the theory con-

cerning systems of ODEs no longer applies and numerical methods for differ-

ential equations such as the class of Runge-Kutta methods (Butcher, 2008)

have been explored. Fibich and Gavish (2011) discuss the inherent numeri-

cal instability of such shooting methods. Importantly, the derived solutions

might not constitute inverses of valid bidding strategies. That is due to the

solution’s dependence on the initial value and boundary conditions, which

do not guarantee that Assumption 1 holds for the derived strategies. Ad-

ditionally, the system’s complexity increases tremendously with more types

of bidders or by allowing interdependent prior distributions, which holds

true for asymmetric auctions and bilateral trade. For general interdepen-

dent priors, an agent i needs access to the conditional distribution Fv−i|vi to

find its optimal action. Thus, one cannot even state the ODEs because they

require explicit knowledge of the conditional distributions for which there is

no general analytical framework (Hormann, 2013). Moreover, such numeri-

cal techniques to solve asymmetric independent private values auctions lack

convergence guarantees (Hubbard and Paarsch, 2014).

Only when making further assumptions on the system of ODEs, such

as a specific payment rule and prior, can one derive analytical solutions by

finding the inverse bid functions for well-chosen initial values and then using

the implicit function theorem to find the optimal bid function. Linear equi-

librium bid strategies satisfy Eq. (9) in a model with independent uniform

priors under the k-DA pricing rule (see Satterthwaite and Williams (1989)):

βB(vB; k) =

 1
1+kvB + k(1−k)

2(1+k) , if vB ∈
[

1−k
2 , 1

]
,

hB(vB), else,
(10)

βS(vS ; k) =

 1
2−kvS + 1−k

2 , if vS ∈
[
0, 2−k

2

]
,

hS(vS), else.
(11)

The functions hB and hS can be arbitrary as long as they do not lead to

more trade, i.e., hB < 1−k
2 and hS >

2−k
2 . We refer to the whole class and

any strategy from this class of equilibrium strategies as linear equilibrium.

The linear equilibrium is of special interest as it has the highest expected

gains from trade of any equilibrium (Myerson and Satterthwaite, 1983).
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Figure 1: Exemplary equilibrium strategies for symmetric and step function equilibria
classes.

For the special case of the average double auction (k = 0.5) with uniform

distributions, one can derive a broader continuum of equilibrium strategies

(see Chatterjee and Samuelson (1983) and Leininger et al. (1989)). For

example, if we set hB and hS to be the continuation of the corresponding

linear functions in the linear equilibrium, one obtains an equilibrium strategy

that belongs to the class of symmetric equilibria. This class has been derived

by using the symmetry condition

βB(vB) = 1− βS(1− vB), (12)

which means that the curve of βS is obtained from βB by a rotation of π. In

a symmetric equilibrium, the buyer underbids, when his valuation is vB, by

the same amount that the seller overbids when her valuation is vS = 1−vB.

It turns out that a symmetric equilibrium is uniquely determined by choos-

ing a value gsym ∈ (0, 1/2) at the symmetry point 1/2, which constitutes a

unique equilibrium strategy for each value of gsym. See Figure 1(a) for some

exemplary strategies from this class. The linear equilibrium is attained for

gsym = 3/8 and is the only value where a closed-form solution is known

(Leininger et al., 1989). This class of equilibria has several notable prop-

erties. It consists of infinitely many different equilibria and the efficiency
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obtained in equilibrium, and the resulting gains from trade range from zero

to second-best.

The third class of equilibria consists of strategies where bidders only

submit a finite number of different bids. That means buyer and seller may

post identical bids for different valuations3. This class has particular rele-

vance for real-world situations where it is usually required to submit bids in,

e.g., full dollars. We denote this set as the class of step function equilibria.

Leininger et al. (1989) provide properties and explicit equilibria for the case

of the average mechanism and the case of buyer and seller using strategies

with an equal amount of steps. They show that all step function equilibria

with exactly n steps are of the following form:

βS(vS) =



a1, 0 6 vS 6 x1,

a2, x1 < vS 6 x2,
...

an, xn−1 < vS 6 xn,

1, xn < vS 6 1,

βB(vB) =



0, 0 6 vB < z1,

a1, z1 6 vB < z2,

a2, z2 6 vB < z3,
...

an, zn 6 vB 6 1,

(13)

where

0 < a1 < a2 < · · · < an < 1,

z1 = a1, zi = ai +
xi−1

(xi − xi−1)

(ai − ai−1)

2
for i = 2, . . . , n,

xi = ai −
(1− zi+1)

(zi+1 − zi)
(ai+1 − ai)

2
for i = 1, . . . , n− 1, xn = an.

Note that this is only a necessary condition and does not guarantee functions

of the form of Eq. (13) to be an equilibrium for all a ∈ [0, 1]n such that

0 < a1 < · · · < an < 1. We denote this subset of step function equilibria as

the class of n-step equilibria. Some of their notable properties are that,

1. the buyer’s lowest bid has to be zero, whereas the seller’s highest bid

has to be one,

2. every non-marginal bid (non-zero for the buyer and unequal one for

3Note that these equilibrium strategies do not satisfy Assumption 1.
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the seller) of one bidder lies in the set of potential bids of the other,

3. the supports of non-marginal bids for both bidders coincide.

Furthermore, Leininger et al. (1989) provide several explicit examples of n-

step equilibria that in part constitute continua of equilibria on their own.

Figure 1(b) shows some strategies for a different number of steps. How-

ever, these are not determined by the number of steps alone. For example,

for a single step, a1 = a (see Eq. (13)) constitutes an equilibrium for any

a ∈ (0, 1). For more details on this class of equilibria, we refer to (Leininger

et al., 1989). Another important property of every n-step equilibrium is

its robustness to small perturbations (see Proposition 3.6 in their work),

which indicates that these equilibria are likely to be attracting under local

search algorithms. Even though their results only regard n-step equilib-

ria, we observe similar properties for general step function equilibria in our

experiments in Section 5.3.

For the special case of an average mechanism, Chatterjee and Samuelson

(1983) also derived another linear BNE under risk-averse traders. With a

risk parameter of ρ, the equilibrium profile is given as:

βB(vB) =

(
1− 1

2c

4c2 − 1

)
+

(
1− 1

2c

)
vB, (14)

βS(vS) =

(
c− 1

2

2c2 − 1
2

)
+

(
1− 1

2c

)
vS , (15)

for c = 21/ρ − 1
2 . This also covers the special case of risk-neutral traders in

the linear BNE from Eq. (10). Intuitively, the higher the risk aversion, the

lower the marginal utility of misreporting one’s valuation compared to the

possible loss under no trade. This leads to risk-averse traders asymptotically

biding truthfully for increasing risk aversion.

So, given these different assumptions on the market and possibly mul-

tiple classes of equilibria, bidders face a substantial coordination problem.

Moreover, it is unclear which equilibria will be found by equilibrium learning

algorithms or if such algorithms even find an equilibrium.

3.4. Expected Utility with Linear Strategies

The analysis of gradient dynamics and the types of equilibria emerging in

a game requires a thorough understanding of the participants’ utility func-
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tions. For example, Rosen (1965) showed that games admit a unique Nash

equilibrium when the participants’ utility functions satisfy the strict mono-

tonicity. More recently, Mertikopoulos and Zhou (2019) showed conditions

of the utility functions for which no-regret learning algorithms result in a

Nash equilibrium if they converge to a pure equilibrium. However, without

knowing the parametric form of the bid function, it is impossible to study

the properties of the expected utility functions.

To keep the analysis of the utilities tractable, we focus on bilateral bar-

gaining with one buyer and one seller, independent and uniform prior dis-

tributions FB(x) = FS(x) on [0, 1], and assume linear strategies, which are

known to include a BNE in the unrestricted game, as we have seen in the

previous subsection. This means, there exist mB,mS , tB, tS ∈ R such that

the strategies are given by

βB(vB) = mBvB + tB, βS(vS) = mSvS + tS . (16)

Based on Assumption 1, we can define the feasible set for all possible linear

strategies for this setting.

1. mB,mS > 0;

2. ΩB = ΩS = [0, 1] and Ω̂B = [tB,mB + tB], Ω̂S = [tS ,mS + tS ];

3. β−1
B (y) = 1

mB
· (y − tB);

4. β−1
S (y) = 1

mS
· (y − tS).

Besides, we need to make the following assumption to restrict the slope of

the linear strategies so that they cannot be arbitrarily flat, ensure that the

intersects tB and tS are bounded, and restrict ourselves to situations where

demand is not strictly exceeding supply.

Assumption 2. In the restricted setting of linear strategies, we make the
following additional assumptions:

1. There exists an ε0 > 0 such that mB,mS ≥ ε0 > 0,

2. there exists a K > 0 such that |tB|, |tS | ≤ K <∞,

3. mBx+ tB ≤ mS + tS for all x ∈ [vB, vB], i.e., the highest ask price of
the seller is at least as high as any bid of the buyer,
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4. mSy + tS ≥ tB for all y ∈ [vS , vS ], i.e., the lowest bid price of the
buyer is less or equal to any ask of the seller.

The first two properties guarantee Lipschitz continuity of the ex-ante util-

ities later on. Properties three and four considerably simplify calculations

by restricting the setting to competitive market scenarios. Note that this

simplification is not restrictive, in the sense that the resulting feasible set

includes the equilibrium. We can now derive the ex-ante utility of the buyer

and seller for the general k-double auction (see Appendix E for details):

uante
B (mB, tB,mS , tS , k) (17)

= − 1

6mB
2mS

(mB + tB − tS)2

· (tB − tS +mB (mB + tB + 2tS − 2) +mBk (mB + tB − tS)).

Similarly, the seller’s ex-ante utility is

uante
S (mB, tB,mS , tS , k) (18)

= − 1

6mBmS
2
(mB + tB − tS)3

+
1

6mBmS
2
mS (mB + tB − tS)2 (mB + tB + 2tS + kmB + ktB − ktS).

Figure 2 depicts the utility landscape (based on mB and tB) from the

buyer’s perspective when faced with a seller playing the linear BNE in the av-

erage double auction. This resulting utility surface is concave in large parts,

which gives some rationale why gradient-based learners converge in this envi-

ronment. Following Rosen (1965), we demonstrate that global monotonicity

of the game is not satisfied (see Appendix F). Even in this restricted game

with linear strategies, the game is only locally monotone, e.g., in a neighbor-

hood of the equilibrium. This is a strong indication that global monotonicity

is not satisfied for more complex parametrizations as well.

Additional visualizations of the expected utility landscape assuming ar-

bitrary linear, concave, or convex bid functions can be found in Appendix

Appendix D. These figures plot utility as a function of value and bid sub-

mitted. Interestingly, all of them are concave in large regions, as well.

18



slope mB

0.0
0.2

0.4
0.6

0.8
1.0

y-intercept tB

0.00
0.05

0.10
0.15

0.20
0.25

0.30

expected utility u

0.02

0.04

0.06

Figure 2: Ex-ante utility of the buyer under an opposing seller that plays according to the
linear BNE strategy. The maximal utility on the feasible action set (black dot) is achieved
by also playing the BNE strategy βB(v) = 2

3
v+ 1

12
. Note that the points are restricted to

the feasible set according to Assumption 1.

4. Learning Algorithms

Let us briefly introduce NPGA and SODA, the two learning algorithms

we will use in our numerical experiments, and discuss important properties.

On a high level, both methods rely on an approximation of the original

problem. NPGA uses neural networks to approximate pure strategies with a

finite-dimensional parameter space and learns Bayes-Nash equilibria through

self-play. Individual agents submit bids, observe the ex-post utility of their

bids in a large batch of auctions, and then go a step in the direction of their

utility gradient. The fact that the ex-post utility is discontinuous describes

a key technical challenge, which is solved using smoothing techniques. In

contrast, SODA solves an approximate game based on a discretized version

of the type and action space. While this leads to an additional error term in

the original game, the utility gradient is available exactly and does not need

to be estimated from the smoothed utility function. The method uses the

dual averaging method and learns distributional strategies, an extension of

mixed strategies for Bayesian games. We also know that if SODA converges,

then it has to converge to an equilibrium. While SODA is very fast for small

environments with only a few participants and strategies, it suffers from a

curse of dimensionality for larger markets with many players and strategies.

Let us now introduce these algorithms in more detail.
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4.1. NPGA

NPGA follows the gradient dynamics of a game via simultaneous gra-

dient ascent of all bidders. Conceptually, players observe a gradient-oracle

∇βiuante
i (βi, β−i) with respect to the current strategy profile βt in each iter-

ation. Then the rule proposes that players perform a gradient update:

βti ≡ βt−1
i + ∆t

i with ∆t
i ∝ ∇βiu

ante
i (βi, β−i), (19)

Note that in this high-level description, we refer to the gradient dynam-

ics of the ex-ante utility uante. Consequently, βi ∈ Σi are functions in an

infinite-dimensional function space, so the gradient ∇βiuante
i is itself a func-

tional derivative such as a Gateaux derivative4 over the Hilbert space Σi. To

compute the gradient estimate in practice, NPGA represents each bidder’s

strategy by a neural network βi(vi) ≡ πi(vi; θi) and a corresponding param-

eter vector θi ∈ Rdi . di ∈ N is finite and we thus transform the problem of

choosing an infinite-dimensional strategy into choosing a finite-dimensional

parameter vector θi.

Due to the discrete nature of the allocations x, the ex-post utilities

ui(vi, bi, b−i) are usually discontinuous, and thus the gradient provides wrong

signals. Therefore, NPGA estimates the gradient using evolutionary strate-

gies (ES) as it was used by Salimans et al. (2017). To calculate ∇θuante,

we perturb the parameter vector P times, θi;p ≡ θi + εp, using zero-mean

Gaussian noise εp ∼ N (0, σ2) for p ∈ {1, . . . , P}, where P and σ are hy-

perparameters. NPGA then calculates each perturbation’s fitness, ϕp ≡
uante
i (πi(vi; θi;p), β−i), via Monte-Carlo integration, and estimates the gra-

dients as the fitness-weighted perturbation noise ∇ESθ ≡ 1
σ2P

∑
p ϕpεp. The

technique gives an asymptotically unbiased estimator of∇θuante. The pseudo-

code of NPGA is given in Algorithm 1. Note that the original paper by

Bichler et al. (2021) focuses on symmetric auctions, where all bidder val-

uations are drawn from the same prior distribution, and all bidders share

the same equilibrium bid function. Therefore, only a single neural network

needs to be trained in such one-sided auctions. The bilateral bargaining

model that we analyze in this paper is inherently asymmetric, and we train

two neural networks, one for the buyer and one for the seller. In larger

4Gateaux derivatives are a generalization of directional derivatives in Euclidean spaces
to Banach spaces (of which Hilbert spaces are a subset of).
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ALGORITHM 1: Neural Pseudogradient Ascent using Evolutionary Strate-
gies

Input: Initial policy, ES population size P , ES noise variance, learning rate,
batch size

for t = 1, 2, . . . do
Sample a batch of valuation profiles;
Calculate joint utility of current strategy profile;
for each agent i ∈ I do

for each p ∈ {1, . . . , P} do
Perturb agent i’s current policy;
Evaluate fitness of perturbation p by playing against current
opponents;

end
Calculate ES pseudogradient as fitness-weighted perturbation noise;
Perform a gradient ascent update step on the current policy;

end

end

environments with more participants, symmetry among some or all of the

bidders on one side is a widespread assumption. Therefore, we only need to

train a single neural network for bidders in a symmetry class, which makes

the implementation of larger markets much more efficient.

Given a vectorized implementation of the joint ex-post utility u, esti-

mating uante via Monte-Carlo integration over V is feasible due to parallel

execution on hardware accelerators such as GPUs. In our experiments, we

use custom vectorized implementations of the double auction mechanisms

considered using the PyTorch framework (Paszke et al., 2017). This effec-

tively allows us to simulate hundreds of thousands of games in parallel to get

more precise approximations for the gradients and utilities on consumer-level

hardware.

The action space is usually restricted, e.g., for auctions, the bids and

asks must be non-negative. This can be achieved, e.g., by equipping the

neural networks’ last layer with a ReLU activation function so that negative

values are mapped to be zero. If not stated otherwise, we pretrain the

neural networks for 500 iterations to submit truthful bids, similar to the

original paper by Bichler et al. (2021). This makes the experiments easier

to compare, prevents numerical instabilities (see Section 5.2 for details) and

prevents the so-called dead-ReLU problem.

It is interesting to understand when NPGA converges to an equilibrium.
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Unfortunately, the analysis of gradient dynamics, in general, can be arbi-

trarily complex (Andrade et al., 2021). Learning dynamics do not generally

obtain a Nash equilibrium (Benaim and Hirsch, 1999). A number of re-

cent results on matrix games showed that gradient dynamics may circle,

diverge, or are even chaotic (Sanders et al., 2018). However, for bilateral

bargaining with uniform priors, we can show that the linear equilibrium is

locally attracting for NPGA in the space of linear strategies. That means,

if one initializes the algorithm close enough, it is ensured to converge to the

equilibrium. In other words, assuming that NPGA receives exact gradient

feedback, the learning rate is small enough, and the starting point is in the

region of attraction, NPGA converges to the linear BNE strategy:

Proposition 1. Consider the bilateral bargaining model with two quasi-
linear traders and independent uniform priors under the average double auc-
tion (k = 1/2) satisfying Assumptions 1 and 2. Suppose agents learn with
NPGA under exact gradient feedback, neural networks consisting of a single
neuron, and a learning rate s.t. 0 < γ < γ̃, where γ̃ = arg minh>0 maxj |1−
hλj(J(θ∗))| = 1 and λj(J(θ∗)) denotes the j’th eigenvalue of the game Jaco-
bian J(θ∗). Then, NPGA converges to the linear BNE from Eq. (10) when
initialized in the region of attraction, θ0 ∈ R(θ∗): θk → θ∗ exponentially.

The detailed proof with the corresponding derivations can be found in Ap-

pendix Appendix G. We draw on a recent result by Chasnov et al. (2020)

on local convergence of gradient-based learners. Note that even without a

priori convergence guarantees, we can certify an approximate BNE ex-post

(see Section 4.3).

4.2. SODA

Instead of approximating pure strategies β : V → A, simultaneous online

dual averaging (SODA) (?) aims for distributional strategies in a discretized

version of the auction game. Distributional strategies (Milgrom and Weber,

1985) are a form of mixed strategies for Bayesian games and are modeled as

probability measures over Vi × Ai. By discretizing the type spaces Vi and

action spaces Ai, we get discrete versions of the distributional strategies.

In this setting, the set of feasible discrete distributional strategies Si is a

compact and convex subset of the probability simplex ∆N ·M , where N is the

number of discretization points of the type space and M of the action space.

Learning discrete distributional strategies means learning an N×M matrix,
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where each coefficient denotes the probability of the respective discrete type-

action pair. The discretized auction game can be interpreted as a complete

information game, where the set of feasible strategies Si corresponds to a

compact, convex action set, and the expected utility function corresponds

to the respective utility function that is linear in the bidders’ own actions.

This discretized formulation allows us to compute the gradient exactly,

which implement well-known gradient-based learning methods for complete

information games such as dual averaging. Dual Averaging (Nesterov, 2009)

is based on two steps: (1) Given the current strategies of all traders, bidder

i computes the individual gradient of the expected utility and performs a

gradient ascent step in the dual space. (2) The updated dual variable is

mirrored back to the feasible set in the primal space using a link function

which leads to an updated strategy. This step is performed simultaneously

by all bidders. It can be shown that if this procedure converges to a pure

strategy for all bidders, then this profile is a Bayes-Nash Equilibrium for

the discretized auction game (?, Corollary 1). Therefore, SODA provides

an ex-post certificate. Moreover, for some single-object auction formats such

as first or second-price sealed bid and all-pay auctions, it is shown that if

SODA finds an approximate equilibrium of the discretized game, this is also

an approximate equilibrium of the continuous auction game (?, Theorem 1).

To evaluate the computed strategies in the settings we consider, bids

are sampled from the discrete distributional strategy. Given an observed

valuation in the original continuous setting, the nearest discrete valuation

is identified and a bid is sampled from the induced conditional probability

distribution over the discrete bids.

4.3. Empirical Certification

While global a priori convergence guarantees might be out of reach, we

can verify the quality of a solution ex-post. Our primary evaluation metric

will be the relative efficiency in terms of the gains from trade achieved in

an equilibrium, which allows us to compare different environments. Besides,

we will report metrics about the quality of the learned strategy profile β

learned with NPGA and SODA.

Whenever we know the analytical equilibrium β∗, we use it for direct

comparison. In this case, we sample the BNE utility of each player, ûi(β
∗) =

1
nbatch

∑
v ui(vi, βi(vi), β−i(v−i)) ≈ uante

i (β∗i , β
∗
−i), as well as the utility βi
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played against the BNE, ûi(βi, β
∗
−i) ≈ uante

i (βi, β
∗
−i), with a sample size

of nbatch = 222 valuations from V. Then, we report the resulting relative

ex-ante utility loss:

Li(βi) = 1−
ûi(βi, β

∗
−i)

ûi(β∗i , β
∗
−i)

. (20)

Besides, we report the probability-weighted root mean squared error of βi

and β∗i in the action space, which approximates the L2 distance ‖βi−β∗i ‖Σi
of these two functions:

L2(βi) =

(
1

nbatch

∑
vi

(βi(vi)− β∗i (vi))
2

) 1
2

. (21)

This metric circumvents the drawback of Li that even a strategy with a loss

very close to zero could be arbitrarily far from the actual BNE in strategy

space.

When no analytical BNE is available, we compute the ex-ante utility loss

`ante
i (βi, β−i) = sup

β′i∈Σi

uante
i (β′i, β−i)− uante

i (βi, β−i). (22)

Our estimator ˆ̀
i of `ante

i relies on finding approximate interim best-responses.

For this, we place an equidistant grid indexed with w = 1, . . . , ngrid over

the action space Ai ranging from zero to the maximum valuation. For a

value vi and each of the alternative bids bw we evaluate the interim utility,

uinterim
i (vi, bw, β−i), against the current opponent strategy profile. In the

case of independent private values, this is easily done by keeping vi fixed

and drawing a batch of samples from the opponents’ valuations v−i. For

nbatch samples of vi and nbatch samples of v−i|vi for each of the vi’s, we then

have
ˆ̀
i(β) =

1

nbatch

∑
vi

max
w

λi(vi, bw, β) (23)

with λi being the estimated expected utility gain by deviating from playing

according to βi to playing action b′:

λi(vi, b
′, β) =

1

nbatch
(24)

·
∑
v−i|vi

(
ui
(
vi, b

′, β−i(v−i)
)
− ui (vi, βi(vi), β−i(v−i))

)
.
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For an increasing number of samples and alternative actions, we have ˆ̀
i →

`ante
i . Our estimate for ε in an ex-ante ε-BNE is then ε ≡ maxi ˆ̀

i. Based on

these estimates, we can compute an approximate relative ex-ante utility loss

without access to an analytical BNE:

L̂i(β) = 1− ûi(β)

ûi(β) + ˆ̀
i(β)

. (25)

This metric is the average loss incurred by not playing a best-response but

instead playing the strategy learned via NPGA. For SODA we achieve a

similar approximation of the utility loss by increasing the discretization to

ngrid. The computed strategy is translated to the higher level of discretiza-

tion by assigning the probability weights for a given valuation action pair

to the nearest discrete action of the new discretization and distributing it

among the closest valuations such that we get a feasible strategy. We can

then compute the best-response and hence the relative utility loss L̂.

Hyperparameters that were used throughout our experiments for both

algorithms can be found in Appendix A.

5. Results

This section summarizes the experimental results using NPGA and SODA.

We analyze the few environments for which we have a closed-form equilib-

rium strategy and others for which this is not the case. Sometimes, we use

the VCG mechanism as a baseline, for which we know that bidders have a

dominant strategy to bid truthfully.

Further experimental results for multiple buyers and sellers can be found

in Appendix B.

5.1. Two Quasi-Linear Traders with Uniform Priors

First, let us analyze the average mechanism (k = 0.5) with two quasi-

linear traders and a uniform prior distribution for which closed-form so-

lutions are available. We first report the results using NPGA and then

those achieved with SODA. We show that NPGA reliably finds the welfare-

maximizing linear BNE from Figure 1(a), whereas SODA converges to dif-

ferent step function equilibria depending on the initialization.
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Table 1: Mean and standard deviation for different initialization procedures for the 1/2-
double and VCG auction for NPGA over ten different seeds. The selective random initial-
ization is a random initialization excluding those runs where one starts with non-trading
strategies. The training period was 2000 iterations for all runs.

auction initialization bidder L2 L

0.5-DA truthful
buyer 0.0081 (0.0042) 0.0028 (0.0004)
seller 0.0076 (0.0031) 0.0004 (0.0003)

VCG selective rand.
buyer 0.0090 (0.0040) 0.0009 (0.0002)
seller 0.0089 (0.0039) 0.0003 (0.0003)

5.2. NPGA.

The first experiment is meant to validate that NPGA finds an equilibrium

strategy and, if so, which one. The strategies are initially pretrained to be

truthful to make them more comparable (see Section 4.1). The agents are

subsequently trained for 2,000 iterations. The results for ten different seeds

are presented in the first two rows of Table 1. The relative utility loss L
is close to zero, i.e., each bidder plays close to a best-response given that

the opponent plays the linear BNE strategy. The L2 loss is also low, which

means the learned strategies are close to the linear BNE strategy in the L2-

norm. These results indicate that NGPA finds the linear equilibrium reliably

for the truthful initialization, bypassing any sub-optimal equilibrium from

the class of differentiable equilibria (see Figure 1(a)).

5.3. SODA.

With SODA the results look different. In general the algorithm finds

step function equilibria that show similar properties as the n-step equilibria

mentioned in Section 3.3. One might argue that due to the discretization

of the valuation and action space the computed strategies always resemble

step function, but our experiments show that there are significant differences.

For example, if we initialize the strategy near the welfare-maximizing linear

equilibrium, the algorithm converges to a strategy that resembles a step

function but closely approximates this equilibrium, which indicates that the

equilibrium is at least locally attracting for SODA. In Table 2 we can see

that the approximated L2 distance to the linear equilibrium has almost the

same accuracy as NPGA.

On the other hand, if we start with random initializations, we can ob-

serve that SODA consistently finds step function equilibria that might look
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Table 2: Mean and standard deviation over ten runs of SODA for the two most common
mechanisms in the bilateral bargaining setup. For the average double auction, we only
compare the learned strategies to the payoff dominant equilibrium strategies.

auction initialization bidder L2 L

0.5-DA
near equil.

buyer 0.0103 (0.0000) 0.0014 (0.0012)
seller 0.0081 (0.0000) 0.0009 (0.0011)

random
buyer 0.0734 (0.0063) 0.0398 (0.0151)
seller 0.0725 (0.0064) 0.0386 (0.0150)

VCG random
buyer 0.0140 (0.0003) 0.0006 (0.0000)
seller 0.0139 (0.0004) 0.0006 (0.0000)

different depending on the initialization or even the step size used in the

algorithm. In this case, the computed strategies approximate step functions

with very few steps (Figure 3). Note that for low valuations of the buyer or

high costs of the seller where no trade takes place, no strategy is learned and

the bids are more or less at random in the respective interval. For the VCG

mechanism, the bids derived from the learned distributional strategy closely

match the analytical equilibrium regardless of different initializations.
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Figure 3: 500 bids sampled from the strategies computed with SODA after initialization
near the linear equilibrium BNE1 (left) and after random initilization (right) for the
average mechanism with uniform prior.

5.4. Two Quasi-Linear Traders with Gaussian Priors

The uniform distribution makes the analytical treatment much easier,

but often one is interested in predictions for non-uniform priors. Below, we

report SODA and NPGA for scenarios with a Gaussian prior for which no
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closed-form equilibrium is known. Table 3 shows the results for the VCG

and average auction for Gaussian priors with a mean 15 and a standard

deviation of 5 when running NPGA and SODA. The results are comparable

to the uniform case in the sense that the learned strategies reach similar low

levels of utility loss and SODA ends up in different step-function equilibria

depending on the initialization in the average auction.

Table 3: Mean and standard deviation over ten runs of 2,000 iterations with NPGA
and SODA of the learning metrics for the two most common mechanisms in the bilateral
bargaining setup for a Gaussian prior with Mean 15 and standard deviation 5. The NPGA
strategies were pretrained on the truthful strategy for 500 iterations whereas SODA was
initialized with random strategies.

auction bidder NPGA L̂ SODA L̂

0.5-DA
buyer 0.030 (0.002) 0.001 (0.002)
seller 0.034 (0.006) 0.001 (0.001)

VCG
buyer 0.024 (0.000) 0.001 (0.000)
seller 0.024 (0.000) 0.001 (0.000)

5.5. Two Risk-Averse Traders

It is well-known that risk aversion among bidders mitigates the efficiency

loss in double auctions and dates back to work by Chatterjee and Samuelson

(1983). For the specific case of uniform priors and equal risk attitudes of

the traders, we again can compare our results to the analytical equilibrium

from Eq. (14). Figure 4 compares the efficiency loss of the average double

auction and the VCG double auction as predicted analytically and when

learning with NPGA and SODA. Here, we measure the gains from trade in

the strategy profile at hand compared to the gains from trade if the agents

were truthful. As expected, the VCG mechanism is efficient throughout.

5.5.1. NPGA

For the average double auction, efficiency increases for higher levels of

risk-aversion from about 84% under risk neutrality to above 99% for high

levels of risk-aversion. One observes higher deviations from the predicted

levels of efficiency for stronger risk aversion. This is explained by the fact

that a decreasing exponent in (uQL
i )ρ leads to its convergence to 1 for all

values of uQL
i , effectively squishing the learning signals of NPGA that only

has a fixed absolute precision. This is also measured in the relative utility
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Figure 4: Mean and standard deviation of efficiency for NPGA (left) and SODA (right)
applied to the average and VCG double auction with different risk parameters. Dashed
lines depict efficiency in the linear BNE.

Table 4: Evaluation of the algorithms for multiple levels of risk aversion in the average
double auction. Results are averaged over five runs each.

risk ρ bidder NPGA L2 NPGA L SODA L2 SODA L

0.1
buyer 0.015 (0.002) 0.011 (0.002) 0.016 (0.000) 0.014 (0.000)
seller 0.016 (0.002) 0.014 (0.003) 0.016 (0.000) 0.014 (0.000)

0.5
buyer 0.007 (0.001) 0.001 (0.000) 0.044 (0.003) 0.018 (0.003)
seller 0.007 (0.003) 0.001 (0.000) 0.043 (0.004) 0.018 (0.004)

0.9
buyer 0.007 (0.002) 0.002 (0.000) 0.066 (0.005) 0.033 (0.010)
seller 0.007 (0.002) 0.000 (0.000) 0.065 (0.006) 0.031 (0.011)

loss of NPGA (see Table 4), where we observe a correlation between low-

risk attitudes (larger values of ρ) towards better performance. Overall, the

relative utility loss decreases consistently below 1.4%.

5.5.2. SODA

When learning with SODA, the increasing efficiency with higher levels of

risk-aversion can also be observed for the step-function equilibria, albeit at

a lower level. It is surprising that despite the different outcomes in the com-

puted strategies regarding the number and position of the steps, a consistent

level of efficiency with a standard deviation of less than 1% is achieved for

fixed risk parameters. In general, we see that as risk aversion increases, the

number of steps in the approximated strategies increases and the strategies

continue to converge to the linear equilibria (see Table 4).
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6. Conclusions

Bilateral trade is an interesting environment to study. First, it is as

simple as possible with only a single participant on each side and a single

object. With independent and uniform prior distributions and possibly risk-

averse bidders, we even have a simple linear equilibrium bidding strategy.

The environment nonetheless is very challenging, because there is a contin-

uum of equilibria such that it is unclear, whether equilibrium computation

would converge in this setting. The assumption of linear bid functions al-

lows us to study the expected utility landscape in much more detail than

would be possible in richer environments. We show that in equilibrium the

utility functions are concave in large domains. However, we can also show

that the game is not globally monotone, and we cannot rely on convergence

results for variational inequalities. Nevertheless, we can prove local conver-

gence of NPGA in this specific bilateral trade model. Further, we use both

techniques to find equilibrium in a variety of bilateral trade environments

for which no explicit equilibrium bid function was known so far. This in-

cludes bilateral bargaining with Gaussian priors or risk averse traders. In

the appendix, we report experiments with multiple buyers, multiple sellers,

or both. This way, the paper pushes the boundaries of equilibrium compu-

tation and contributes to the understanding of equilibrium learning in the

simplest and arguably most well-known model of trade.

We gratefully acknowledge financial support from the German National

Science Foundation through Grant DFG BI-1057/I-9.

References

Andrade, G. P., Frongillo, R., and Piliouras, G. (2021). Learning in matrix

games can be arbitrarily complex. 134:159–185.

Armantier, O., Florens, J.-P., and Richard, J.-F. (2008). Approximation

of Nash equilibria in Bayesian games. Journal of Applied Econometrics,

23(7):965–981.

Ausubel, L. M. and Baranov, O. (2020). Core-selecting auctions with incom-

plete information. International Journal of Game Theory, 49:251–273.

30



Bailey, J. P. and Piliouras, G. (2018). Multiplicative weights update in zero-

sum games. In Proceedings of the 2018 ACM Conference on Economics

and Computation, pages 321–338. ACM.

Balduzzi, D., Racaniere, S., Martens, J., Foerster, J., Tuyls, K., and Grae-

pel, T. (2018). The mechanics of n-player differentiable games. In Dy,

J. and Krause, A., editors, Proceedings of the 35th International Confer-

ence on Machine Learning, volume 80 of Proceedings of Machine Learning

Research, pages 354–363. PMLR.

Benaim, M. and Hirsch, M. W. (1999). Mixed Equilibria and Dynamical

Systems Arising from Fictitious Play in Perturbed Games. Games and

Economic Behavior, 29:36–72.
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Appendix A. Reproducibility and Hyperparameters

All our experiments are run with the following learning parameters, if

not specified otherwise.

Appendix A.1. NPGA

We use common hyperparameters across almost all settings (except where

noted otherwise): Fully connected neural networks with two hidden layers of

ten nodes each with SeLU activations on the inner nodes (Klambauer et al.,

2017), as well as ReLU activations in the output layer. The parameters θi

are then given by the weights and biases of these networks. All experiments

were performed on a single Nvidia GeForce 2080Ti with 11GB of RAM and

batch sizes in Monte-Carlo sampling were chosen to maximize GPU-RAM

utilization: A learning batch size of nbatch = 218; primary evaluation batch

size (for L and L2) of 222; and secondary evaluation batch size 213 and grid

size ngrid = 210 (for ˆ̀ and ε̂). The code will be available at blinded for

review. Run times for the markets with a single seller and a single buyer are

around 0.36 seconds per iteration. The more extensive experiments with up

to eight agents took about 0.95 seconds per iteration. The middle column

of Table A.5 shows the average time per iteration for a different number of

agents per experiment. We found that it made no difference for the run-

time whether we have more buyers or sellers but only the total number of

agents. We averaged over all seeds and runs with the same total number

of agents using a uniform distribution to make the results comparable. The

results show that the runtime increases sublinearly in the number of agents,

demonstrating the efficiency of running the whole learning process on GPU.
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Table A.5: Mean runtime per iteration for NPGA and SODA with a different number of
agents. The average is over all iterations and experiments with a uniform prior distribu-
tion.

num agents
time/iter [s]

NPGA
time/iter [s]

SODA

2 0.363 0.001
3 0.506 0.035
4 0.561 2.281
5 0.624 –
6 0.823 –
8 0.949 –

Appendix A.2. SODA

To discretize the problem we split the valuation and action space in

ndiscr = 64 equally sized intervals and take the respective midpoints as

discretization points. If the valuation space is unbounded we only consider

a suitable compact interval, e.g., [0, 30] for the Gaussian prior N (15, 5).

Further, we assume that the action space is equal to the valuation space.

For the update step in the dual space we use a decreasing step size of the

form ηt = η0/t
β where t is the current iteration, β = 0.05 and η0 = 200

for uniform priors, and η0 = 20 for the gaussian prior. The algorithms

either stops after 2,000 iterations or when the relative utility loss within

the discretized setting is less than 10−4. All experiments where performed

on a single Intel Core i7-8565U CPU @ 1.80 Ghz and 16GB of RAM. The

way the game is discretized limits the applicability of SODA due to the

curse of dimensionality. To compute the gradient or the utility, given a

strategy profile, one must take the weighted sum over all possible valuation

and action profile combinations. The number of such possible combinations

increases exponentially in the number of agents, i.e., nnB+nS+1
discr . This has

significant impact on the running time as we can observe in Table A.5 and on

the amount of storage required. For this reason, we could not, for instance,

calculate the utility loss L̂ for three or four agents, or even compute the

respective strategies for larger settings on our current hardware with SODA.

Therefore, we only report the results for NPGA in Appendix B.
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Appendix B. Experiments for Multiple Buyers and Sellers

Up to this point, we considered bilateral bargaining with one buyer and

one seller only. Next, we study markets with multiple buyers or sellers. For

the k-double auction, already for one seller and two buyers (or vice versa),

there is no closed-form BNE. From the view of a single buyer (seller), the

task is symmetric in the sense that each buyer (seller) has the same utility

function and faces opponents from the same market side with the same

prior distributions. We conducted experiments allowing different strategies

for all agents on both sides of the market, thus, allowing for the discovery

of asymmetric equilibria. We found that there was no significant difference

and, therefore, restrict our presentation to symmetric strategies for each

market side for clarity in the presentation. This slightly reduces memory

consumption and the variance in learning.

We are going to place a special emphasis on the market efficiency in

analyzing equilibria in markets using the k-double auction. That is due to

a number of articles that analyze the implications of increasing the level

of competition market efficiency Wilson (1985); Rustichini et al. (1994).

Overall, the inefficiency in a k-double auction decreases for symmetrically

growing markets (Cripps and Swinkels, 2006). However, this increase in

efficiency does not happen if the market is growing asymmetrically, e.g., if

the number of buyers grows faster than the number of sellers.

Appendix B.1. Asymmetrically Growing Markets

Let us first analyze asymmetric markets with multiple buyers and one

seller (or vice versa). Imagine a case with nB buyers and one seller, where

the buyers’ priors are independent. For a drawn valuation vS of the seller,

denote the probability that the valuation vBi of one of the buyers is below vS

by P (vBi < vS). Then the probability that all buyers’ valuations are below

vS is given by
∏n
i=1 (1− P (vB−i < vS)). This means, for more buyers, it

becomes more likely that at least one buyer’s valuation is above that of

the seller. A seller can leverage this asymmetry for his strategy, which is

something that we can observe in our experiments.

Table B.6 shows the approximate relative utility loss of the traders and

the distance to the truthful strategies for 2, 3, and 4 buyers (2b-4b) and one

seller (1s). Whereas the buyers’ strategies tend towards the truthful strat-

egy the more buyers participate in the market, the single seller’s strategy
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deviates more from it. Figure B.5 illustrates this observation for the case

of four buyers and one seller. The buyers’ strategy is very close to being

truthful (blue downward-pointing triangles), whereas the seller’s strategy is

to bid significantly higher for lower costs (red upward-pointing triangles).

One gets qualitatively similar results for the reversed scenario with multiple

sellers and one buyer.

Table B.6: Mean and standard deviation over ten runs of 2,000 iterations with NPGA for
the 0.5-DA mechanism with several buyers and one seller for a uniform prior.

auction bidder L̂ Ltruthful
2

2b1s
buyers 0.065 (0.004) 0.060 (0.004)
seller 0.051 (0.001) 0.200 (0.004)

3b1s
buyers 0.065 (0.004) 0.039 (0.007)
seller 0.043 (0.001) 0.248 (0.004)

4b1s
buyers 0.070 (0.004) 0.035 (0.011)
seller 0.038 (0.002) 0.281 (0.003)
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Figure B.5: The strategies of four buyers
and one seller after 2,000 iterations with
NPGA for a uniform prior in the average
mechanism.
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Figure B.6: The strategies of buyers and
seller after 4,000 iterations with NPGA
for a uniform prior with four buyers and
sellers in the average-auction.

Appendix B.2. Symmetrically Growing Markets

Theoretical results suggest that a symmetric market with more buyers

and sellers should become more and more efficient with growing size (Cripps

and Swinkels, 2006). That is, for the number of buyers and sellers going to
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infinity, all non-trivial BNE strategies for buyers and sellers are converging

towards the truthful strategy.

Figure B.6 shows the learned strategies in a scenario with four buyers

and sellers with NPGA after 4,000 iterations. We can see that the learned

strategies are closer to the truthful strategy (which is also depicted as refer-

ence). This observation is supported by Table B.7. The distance to truthful

strategies is decreasing with an increasing number of buyers and sellers.

Table B.7: Mean and standard deviation over ten runs of 4,000 NPGA iterations of the
learning metrics for the 0.5-DA mechanism in a double auction setup with several buyers
and sellers for a uniform prior.

auction bidder L̂ Ltruthful
2

2b2s
buyers 0.046 (0.001) 0.104 (0.005)
sellers 0.046 (0.001) 0.107 (0.002)

3b3s
buyers 0.039 (0.001) 0.089 (0.004)
sellers 0.039 (0.002) 0.093 (0.002)

4b4s
buyers 0.036 (0.001) 0.083 (0.003)
sellers 0.036 (0.001) 0.085 (0.003)

Appendix C. First-Order Conditions in Bilateral Bargaining

For drawn valuations vB ∼ fB and vS ∼ fS of buyer and seller, respec-

tively, let the buyer’s bid be bB = βB(vB) and the seller’s ask be bS = βS(vS).

Then, the ex-post utility of the buyer is given by

uB(vB, bB, bS) = 1{bB≥bS} · (vB − P (bB, bS)) ,

where P denotes the price function that the buyer has to pay and the seller

receives. For some other mechanisms, one may also want to differentiate

between the payments. The seller’s corresponding ex-post utility is given by

uS(vS , bB, bS) = 1{bB≥bS} · (P (bB, bS)− vS) .

If the buyer’s bid bB is smaller than the lowest ask price bS , the buyer’s

interim utility is zero. This describes a case where the buyer bids so little

that there is no trade for any valuation of the seller. Reversely, the same

holds for the seller’s interim utility if the seller’s ask price bS is higher than

the highest bid of the buyer bB. We derive the interim utilities for all other
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cases next. We will start with the buyer’s assuming that βB(vB) ≥ bS :

EvS∼fS [uB(vB, bB, βS(vS))]

=

∫
ΩS

uB(vB, βB(vB), βS(vS)) · fS(vS)dvS

=

∫
β−1
S (Ω̂S)

uB(vB, βB(vB), βS(vS)) · fS(vS)dvS

(∗1)
=

∫
Ω̂S

uB(vb, βB(vB), y) · fS(β−1
S (y)) · |(β−1

S )′(y)|dy

prop. 1
=

∫ min{βB(vB),bS}

bS

(vB − P (βB(vB), y)) · fS(β−1
S (y)) · (β−1

S )′(y)dy

PI
=
[
(vB − P (βB(vB), y)) · FS(β−1

S (y))
]min{βB(vB),bS}
y=bS

+

∫ min{βB(vB),bS}

bS

d

dy
P (βB(vB), y) · FS(β−1

S (y))dy

(∗2)
= (vB − P (βB(vB), βB(vB))) · FS

(
β−1
S

(
min{βB(vB), bS}

))
+

∫ min{βB(vB),bS}

bS

d

dy
P (βB(vB), y) · FS(β−1

S (y))dy.

Note that we used substitution in multivariate integrals for bi-Lipschitz

functions (Federer, 1996) in step (∗1) which uses both conditions of As-

sumption 1. In step (∗2), one can see that β−1
S (bS) = vS , again due to

Assumption 1. This results in FS(β−1
S (bS)) = FS(vS) = 0, as FS is the CDF

of fS on [vS , vS ] = ΩS .

Analog derivations for the seller’s interim utility give the following under

the assumption that βS(vS) ≤ bB.

EvB∼fB [uS(vS , βB(vB), bS)]

=

∫ bB

max{βS(vS),bB}
(P (x, βS(vS))− vS) · fB(β−1

B (x)) · (β−1
B )′(x)dx

PI
=
[
(P (x, βS(vS))− vS) · FB(β−1

B (x))
]bB
x=max{βS(vS),bB}

−
∫ bB

max{βS(vS),bB}

d

dx
P (x, βS(vS)) · FB(β−1

B (x))dx

=
(
P (bB, βS(vS))− vS

)
−
(
P
(
max{βS(vS), bB}, βS(vS)

)
− vS

)
· FB

(
β−1
B

(
max{βS(vS), bB}

))

41



−
∫ bB

max{βS(vS),bB}

d

dx
P (x, βS(vS)) · FB(β−1

B (x))dx.

Note that the term including the maximal buyer’s bid does not equal zero,

which was the case for the minimal seller’s ask price in the derivations for

the buyer’s interim utility. With the definition of the allocation as above

and for the case of the k-double auction, the buyer’s interim utility is given

by

uinterim
B (vB, βB(vB), βS)

= 1{βB(vB)≥bS} ·

(
(vB − βB(vB)) · FS(β−1

S (min{βB(vB), bS}))

+(1− k) ·
∫ min{βB(vB),bS}

bS

FS(β−1
S (y))dy

)
, (C.1)

and the seller’s interim utility by

uinterim
S (vS , βB, βS(vS))

= 1{bB≥βS(vS)} ·

((
k · bB + (1− k) · βS(vS)− vS

)
· FB(β−1

B (bB))

−
(
kmax

(
βS(vS), bB

)
+ (1− k)βS(vS)− vS

)
· FB(β−1

B (max{βS(vS), bB}))

−k ·
∫ bB

max{βS(vS),bB}
FB(β−1

B (x))dx

)
. (C.2)

The first-order conditions are then given by the following system of non-

linear ODEs:

A(vB, vS , βB, βS) :=

(
d

dβB(vB)u
interim
B (vB, βB(vB), βS)

d
dβS(vS)u

interim
S (vS , βB, βS(vS))

)
=

(
0

0

)
. (C.3)

Appendix D. Utility Landscape

In this section, we will take an empirical look at the utility landscape

that the buyer faces under different circumstances in the bilateral trade set-

ting. Figures D.7 through D.10 show the buyer’s utility for all his possible

valuations and actions against different sellers. Assuming specific priors and

specific strategies of the sellers, the utility can be derived analytically. All
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Figure D.10: Utility of the buyer under an opposing seller that plays according to some
concave strategy: β(v) =

√
v.

Using Eq. (2) and Eq. (7), the buyer’s ex-ante utility is given by

uante
B (βB, βS , k) = uante

B (mB, tB,mS , tS , k) (E.1)

= EvB∼fB
[
uinterim
B (vB,mBvB + tB, (mS , tS), k)

]
(E.2)

=

∫ 1

1
mB

(tS−tB)
uinterim
B (vB,mBvB + tB, (mS , tS), k)dvB.

(E.3)

Note that here we used that the PDF of the uniform distribution is constant
on the unit interval, fB(vB) = 1, and that the integral’s lower bound comes
from the buyer’s interim utility being zero if the bid is below the lowest
ask price of the seller. That is βB(vB) = mBvB + tB < bS = tS . As the

strategies are strictly increasing, we get for all valuations vB < 1
mB

(tS − tB)
that the inner term in the integral is zero. That means we can calculate
the inner term first and then take the integral afterward. For the case of
βB(vB) ≥ tS , the inner term is given by

uinterim
B (vB ,mBvB + tB , (mS , tS), k)

= (vB − βB(vB)) · FS(β−1
S (βB(vB))) + (1− k) ·

∫ βB(vB)

bS

FS(β−1
S (y))dy (E.4)

= (vB −mBvB − tB) · FS(β−1
S (mBvB + tB)) (E.5)

+ (1− k)

∫ mBvB+tB

tS

FS

(
1

mS
(y − tS)

)
dy

= (vB −mBvB − tB) · FS
(

1

mS
(mBvB + tB − tS))

)
(E.6)

+ (1− k)

∫ mBvB+tB

tS

FS

(
1

mS
(y − tS)

)
dy

(∗1)
= (vB −mBvB − tB) · 1

mS
(mBvB + tB − tS) (E.7)

+ (1− k)

∫ mBvB+tB

tS

1

mS
(y − tS) dy

=
1

mS
·

[
(vB −mBvB − tB)(mBvB + tB − tS) + (1− k)

[
1

2
y2 − tSy

]mBvB+tB

y=tS

]
(E.8)
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=
1

mS

[
−m2

Bv
2
B − 2mBtBvB +mBv

2
B + tSmBvB − t2B + tBvB + tStB − tSvB

]
+

1− k
2mS

[
m2
Bv

2
B + 2mBtBvB − 2mBtSvB + t2B − 2tBtS + t2S

]
(E.9)

=
1

mS

[(
−m2

B +mB

)
v2B + (−2mBtB + tSmB + tB − tS) vB − t2B + tStB

]
+

1− k
2mS

[
m2
Bv

2
B + (2mBtB − 2mBtS) vB + (tB − tS)2

]
. (E.10)

In step (∗1), we get that the argument of FS always comes from the unit

interval. The lower bound of the integral tS evaluates to an argument of zero,

whereas the upper bound gives 1
mS

((mBvB+tB)−tS) ≤ 1
mS

((mS+tS)−tS) =

1 by property 3 of Assumption 2.
We proceed by calculating the integral from Eq. (E.3). This gives us

uante
B (mB , tB ,mS , tS , k)

=

(
mB −m2

B

mS
+

1− k
2mS

m2
B

)
·
∫ 1

1
mB

(tS−tB)

v2BdvB

+

(
tSmB − 2mBtB + tB − tS

mS
+

1− k
2mS

(2mBtB − 2mBtS)

)
·
∫ 1

1
mB

(tS−tB)

vBdvB

+

(
tStB − t2B

mS
+

(1− k) (tB − tS)2

2mS

)(
1− tS − tB

mB

)
(E.11)

=

(
−mB(mB + kmB − 2)

2mS

)(
(tB − tS)3

3m3
B

+
1

3

)
+

(
− tS − tB +mBtB + kmBtB − kmBtS

mS

)(
1

2
− (tS − tB)2

2m2
B

)
+

(
tStB − t2B

mS
+

(1− k) (tB − tS)2

2mS

)(
1− tS − tB

mB

)
. (E.12)

We expand each of the three terms first, before collapsing it back into a
function of mB, mS , tB, tS , and k.

=

(
− 1

2mS

)
·
(

1

3m2
B

)
(mB + kmB − 2)

(
(tB − tS)3 +m3

B

)
+

(
− 1

2mS

)
·
(

1

3m2
B

)
· 3 (tS − tB +mBtB + kmBtB − kmBtS)

(
m2
B − (tS − tB)2

)
+

(
− 1

2mS

)
·
(

1

3m2
B

)
· 3mB

(
2tStB − 2t2B + (1− k)(tB − tS)2

)
(tS − tB −mB)

(E.13)

= − 1

6mSm2
B

(
km4

B +mBt
3
B −mBt

3
S − 6tBt

2
S + 6t2BtS − 2m3

B +m4
B − 2t3B + 2t3S

)
− 1

6mSm2
B

(
kmBt

3
B − kmBt

3
S + 3mBtBt

2
S − 3mBt

2
BtS + 3kmBtBt

2
S − 3kmBt

2
BtS

)
− 1

6mSm2
B

(
3m3

BtB − 3mBt
3
B − 3m2

BtB + 3m2
BtS + 9tBt

2
S − 9t2BtS + 3t3B − 3t3S − 3kmBt

3
B

)
− 1

6mSm2
B

(
3km3

BtB + 3kmBt
3
S − 3km3

BtS − 3mBtBt
2
S + 6mBt

2
BtS − 9kmBtBt

2
S + 9kmBt

2
BtS

)
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− 1

6mSm2
B

(
3m2

Bt
2
B − 3m2

Bt
2
S + 3mBt

3
B + 3mBt

3
S + 3kmBt

3
B − 3kmBt

3
S − 3mBtBt

2
S

)
− 1

6mSm2
B

(
−3mBt

2
BtS + 3km2

Bt
2
B + 3km2

Bt
2
S + 9kmBtBt

2
S − 9kmBt

2
BtS − 6km2

BtBtS
)

(E.14)

= −
(mB + tB − tS)2

(
tB − tS +mB (mB + tB + 2tS − 2) +mBk (mB + tB − tS)

)
6m2

BmS
.

(E.15)

Inserting the seller’s linear equilibrium strategy, βS(vS) = 2
3vS + 1

4 , into the

equation of the buyer’s ex-ante utility indeed verifies that it has a local max-

imum at the buyer’s corresponding equilibrium strategy, βB(vB) = 2
3vB+ 1

12 .

(See Section 3.3 for more details on the equilibrium strategies.) The buyer’s

ex-ante utility landscape in this scenario is depicted in Figure 2, which shows

the local maximum at that point.
We repeat this process for the seller’s ex-ante utility.

uante
S (mB , tB ,mS , tS , k)

= EvS∼fS
[
uinterim
S (vS , (mB , tB),mSvS + tS , k)

]
(E.16)

=

∫ 1
mS

(mB+tB−tS)

0

uinterim
S (vS , (mB , tB),mSvS + tS , k)dvS (E.17)

= − (mB + tB − tS)3 −mS (mB + tB − tS)2 (mB + tB + 2tS + kmB + ktB − ktS)

6mBmS
2

.

(E.18)

Appendix F. Monotonicity of the Parametrized Game

Rosen (1965) introduced the notion of (strict) monotonicity5 in games,

which has been established as central concept to show convergence of learn-

ing algorithms in games (Mertikopoulos and Zhou, 2019; ?). One can formu-

late the ex-ante game as variational inequality over the infinite dimensional

action space Σ. As we know that the game has more than one equilibrium in

Σ, one can already derive that the game is not strictly monotone (?). In this

section, we demonstrate that this negative result extends to discretizations

of the strategy space, as is done with NPGA and SODA. NPGA considers

the parameter space of a neural network, whereas SODA discretizies the type

and action spaces themselves. Monotonicity, by itself thus cannot explain

the positive convergence results we observed in practice.

5Rosen originally referred to strict monotonicity as diagonal strict concavity.
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Let us start by considering NPGA. For simplicity, we formulate the

monotonicity condition for two players and refer to (Rosen, 1965) for ad-

ditional details. Consider a game between two players i ∈ {1, 2}, with

action spaces Ei ⊂ Rmi ,mi ∈ N, and continuously differentiable utility

functions U1, U2 : E → R for E = E1 × E2. Denote the payoff gradients by

vi = ∇yiUi(y1, y2) for i ∈ {1, 2} and v = [v1, v2]T .

Definition 1. Such a game is called strictly monotone if

〈v(y′)− v(y), y′ − y〉 ≤ 0 for all y, y′ ∈ E, (F.1)

where equality holds if and only if y 6= y′.

The NPGA algorithm’s setting in general double auctions can be iden-

tified with the game above (see Section 4.1). We consider the setting with

linear strategies introduced in Section 3.4 for the average double auction (i.e.,

k = 0.5). Using the derivations for the ex-ante utilities from Eq. (E.15) and

Eq. (18) in Appendix E, we can derive the payoff gradients

vls(mB, tB,mS , tS) =


d

dmB
uante
B

d
dtB

uante
B

d
dmS

uante
S

d
dtS
uante
S



=



(tB−tS)3

3mB3mS
− 6mB+9 tB−3 tS−4

12mS
+ (tB+tS) (tB−tS)2

4mB2mS

−
(mB+tB−tS)

(
tB−mB−tS+

3mB tB
2

+
mB tS

2
+

3mB
2

2

)
2mB2mS

(mB+tB−tS)3

3mBmS3 − (mB+tB−tS)2 (mB+tB+tS)
4mBmS2

(mB+tB−tS)2−mS (mB+tB−tS)
(
mB
2

+
tB
2

+
3 tS
2

)
2mBmS2


.

Consider the following two points

y′ =


0.080

0.171

0.250

0.200

 and y =


0.080

0.171

0.260

0.199

 .

Then one can directly verify that these points do satisfy Assumptions 1 and
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2. However, plugging these points into Eq. (F.1) gives

〈vls(y
′)− vls(y), y′ − y〉 =

3,631

3,000,000,000
> 0.

Therefore, the monotonicity condition does not hold. This is a strong in-

dication that using monotonicity to derive global convergence guarantees,

also for more complex parametrizations, is impossible without further re-

strictions.

For the discretized game from SODA, the experimental results already

show that the monotonicity does not hold. From (Rosen, 1965, Theorem 2)

we know that monotonicity implies uniqueness of the equilibrium point.

Since we can observe that SODA converges to different equilibrium points,

uniqueness and hence monotonicity cannot be satisfied. Moreover, we can

check the monotonicity condition directly. The set of discrete distributional

strategies together with the expected utilities of the discretized game (see

Section 4.2) define a game as defined above. Analogous to NPGA, we then

checked the inequality Eq. (F.1) for different strategies and could verify

numerically that the condition does not hold. This was done for different

numbers of discretization points of the game.

Appendix G. Local Convergence of NPGA Assuming Linear Strate-

gies

This section presents the proof of Proposition 1. For this, we use a

result of Chasnov et al. (2020), which is stated first. Then, we draw on the

formulas for the interim utilities derived in Section Appendix C, where we

derive the buyer’s and seller’s ex-ante utilities assuming linear equilibrium

bid functions. With these, we formulate the ex-ante game explicitly and

successively show all needed properties for the result to hold.

Appendix G.1. Convergence of Gradient-based Learning

Consider a set of I = {1, . . . , n} agents, an action space Rd = Rd1 ×
· · · × Rdn (or possibly subsets thereof). Let fi : Rd → R denote agent i’s

cost function. This corresponds to the negative utilities for participants in

bilateral bargaining. Then, the collection of costs (f1, . . . , fn) on the action

space Rd defines a continuous game. Let Difi and D2
i fi denote the first and
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second partial derivative of fi with respect to θi and Djifi denote the partial

derivative of Difi with respect to θj . Define the game gradient as

ω(θ) = (D1f1(θ), . . . , Dnfn(θ)) , (G.1)

and the game Jacobian, i.e., the Jacobian of ω, by

J(θ) =


D2

1f1(θ) · · · D1nf1(θ)
...

. . .
...

Dn1fn(θ) · · · D2
nfn(θ)

 . (G.2)

We make the following assumption so that the game gradient and Jacobian

exist and are well-defined.

Assumption 3. For each i ∈ I, fi ∈ Cq(Rd,R) for q ≥ 2 and ω(θ) is
L-Lipschitz.

The following two definitions characterize local properties of a Nash equi-

librium strategy θ∗ ∈ Rd.

Definition 2 (Definition 3 of Ratliff et al. (2016)). A strategy θ∗ ∈ Rd
is a differential Nash equilibrium if ω(θ∗) = 0 and D2

i fi(θ
∗) > 0 for each

i ∈ I.

Definition 3. Let θ∗ ∈ Rd be a differential Nash equilibrium. If the game
Jacobian J(θ∗) is non-degenerate, i.e., det J(θ∗) 6= 0, and the spectrum of
J(θ∗) is strictly in the right half-plane, i.e., spec(J(θ∗)) ⊂ Co+), then we call
θ∗ a stable differential Nash equilibrium.

Now, we state a special case of Proposition 2 of Chasnov et al. (2020),

which gives conditions on convergence to a Nash equilibrium assuming exact

gradient feedback and a constant learning rate.

Proposition 2. Consider an n-player game G = (f1, . . . , fn) satisfying As-
sumption 3. Let θ∗ ∈ Rd be a stable differentiable Nash equilibrium with
R(θ∗) being its region of attraction. Suppose agents use the gradient-based
learning rule θk+1 = θk − Γω(θk) with Γ = γ · Im s.t. 0 < γ < γ̃, where
γ̃ = arg minh>0 maxj |1− hλj(J(θ∗))| = 1 and λj(A) denotes the j’th eigen-
value of matrix A. Then, for θ0 ∈ R(θ∗), θk → θ∗ exponentially.

Appendix G.2. Proof of Proposition 1

Combining the findings up to this point, we can state the proof of Propo-

sition 1. Proof. We aim to use Proposition 2 to show the final result. For
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this, we check that Assumption 3 holds and the linear equilibrium needs to

be a stable differentiable NE.

We start by showing that Assumption 3 holds. Note that the ex-ante

utilities of buyer and seller from Eq. (E.15) and Eq. (E.18) are rational

functions in mB and mS and polynomials in tB and tS , where the poles are

not in the feasible set as mB,mS > 0 according to Assumption 1. Therefore,

these are in C∞. The game gradient is given by

ω(mB, tB,mS , tS)

=


∂

∂mB
uante
B

∂
∂tB

uante
B

∂
∂mS

uante
S

∂
∂tS

uante
S

 (G.3)

=



3mB(tB−tS)2(tB+tS)−m3
B(6mB+9tB−3tS−4)+4(tB−tS)3

12m3
BmS

− (mB+tB−tS)(tB−mB−tS+ 3
2
mB(tB+tS+mB))

2m2
BmS

− (mB+tB−tS)2(2(tS−tB−mB) 3
2
mS(mB+tB+tS))

6mBm
3
S

− (mB+tB−tS)(tS−tB−mB+ 1
2
mS(mB+tB+3tS))

2mBm
2
S


. (G.4)

The game gradient ω is Lipschitz continuous if its derivative is bounded.

Therefore, we proceed by verifying that every entry of the game Jacobian is

bounded under Assumptions 1 and 2. For this, we derive the game Jacobian

next, which is given by

J(mB, tB,mS , tS) (G.5)

=

[
D2
Bu

ante
B (mB, tB,mS , tS) DB,Su

ante
B (mB, tB,mS , tS)

DS,Bu
ante
S (mB, tB,mS , tS) D2

Su
ante
S (mB, tB,mS , tS)

]
.

All terms are 4× 4 matrices, which are given by

D2
Bu

ante
B (mB, tB,mS , tS) =

(
d1,1
B,B d1,2

B,B

d2,1
B,B d2,2

B,B

)
,

where

d1,1
B,B = −

mB

(
m3
B + (tB − tS)2 (tB + tS)

)
+ 2 (tB − tS)3

2m4
BmS

,
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d1,2
B,B = −

mB

(
3m2

B + (tS − tB) (3tB + tS)
)
− 4 (tB − tS)2

4m3
BmS

,

d2,1
B,B = −

mB

(
3m2

B + (tS − tB) (3tB + tS)
)
− 4 (tB − tS)2

4m3
BmS

,

d2,2
B,B = −

tB − tS + 3
2mB (tB − tS +mB)

m2
BmS

.

Further,

DB,Su
ante
B (mB, tB,mS , tS) =

(
d1,1
B,S d1,2

B,S

d2,1
B,S d2,2

B,S

)
,

where

d
1,1
B,S

=
mB

(
m2

B (6mB + 9tB − 3tS − 4)− 3 (tB + tS) (tB − tS)2
)
− 4 (tB − tS)3

12m3
B
m2

S

,

d
1,2
B,S

= −
−mB

3 +mBtB
2 + 2mBtBtS − 3mBtS

2 + 4tB
2 − 8tBtS + 4tS

2

4mB
3mS

,

d
2,1
B,S

=
(mB + tB − tS)

(
tB −mB − tS + 3

2
mB (tB + tS +mB)

)
2mB

2mS
2

,

d
2,2
B,S

=
2tB − 2tS +mBtB +mBtS +mB

2

2mB
2mS

.

Further,

DS,Bu
ante
S (mB, tB,mS , tS) =

(
d1,1
S,B d1,2

S,B

d2,1
S,B d2,2

S,B

)
,

where

d
1,1
S,B

=
4(mB + tB − tS)2(2mB − tB + tS)− 3mS(mB + tB − tS)

(
2mB

2 +mBtB +mBtS − tB2 + tS
2
)

12m2
B
m3

S

,

d
1,2
S,B

=
4 (mB + tB − tS)2 −mS (mB + tB − tS) (3mB + 3tB + tS)

4mBmS
3

,

d
2,1
S,B

=
m2

B (2−mS)− 2 (tB − tS)2 +mS (tB − tS) (tB + 3tS)

4m2
B
m2

S

,

d
2,2
S,B

=
mB (2−mS) + 2tB − 2tS −mS (tB + tS)

2mBm
2
S

.

Lastly,

D2
Su

ante
S (mB, tB,mS , tS) =

(
d1,1
S,S d1,2

S,S

d2,1
S,S d2,2

S,S

)
,
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where

d1,1
S,S = −

(mB + tB − tS)3 − 1
2mS(mB + tB − tS)2(mB + tB + tS)

mBmS
4

,

d1,2
S,S =

mS (mB + tB − tS)(mB + tB + 3tS)−4 (mB + tB − tS)2

4mBmS
3

,

d2,1
S,S =

mS (mB + tB − tS)(mB + tB + 3tS)−4 (mB + tB − tS)2

4mBmS
3

,

d2,2
S,S =

−mB (mS + 2)− 2tB + 2tS −mS (tB − 3tS)

2mBm2
S

.

As each entry of J is bounded under Assumption 2, we get that ω is Lipschitz

continuous. Therefore, Assumption 3 is satisfied in bilateral bargaining with

linear strategies.

It remains to show that θ∗ =
(

2
3 ,

1
12 ,

2
3 ,

1
4

)
is a stable differential Nash

Equilibrium. One can readily check that

ω

(
2

3
,

1

12
,
2

3
,
1

4

)
= 0.

Furthermore, the matrices

D2
Bu

ante
B

(
2

3
,

1

12
,
2

3
,
1

4

)
=

(
−189

256 −135
128

−135
128 −27

16

)
,

D2
Su

ante
S

(
2

3
,

1

12
,
2

3
,
1

4

)
=

(
− 81

256 − 81
128

− 81
128 −27

16

)

are negative definite. One easily verifies this using the principal minor crite-

rion. Note that the matrices need to be negative definite instead of positive

definite, as we are maximizing utilities instead of minimizing cost functions.

Therefore, θ∗ is a differential Nash Equilibrium. The Jacobian’s determinant

at θ∗ satisfies

det

(
J

(
2

3
,

1

12
,
2

3
,
1

4

))
=

531441

33554432
6= 0.

Finally, using a computer program (Matlab, 2020), we calculate the eigen-
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values of J(θ∗), which are given by

λ (J(θ∗)) =


λ1 (J(θ∗))

λ2 (J(θ∗))

λ3 (J(θ∗))

λ4 (J(θ∗))

 =


σ3
√

214664119193/4σ2σ1(σ113/4+σ5+σ6)σ7
69036339115606897664

σ3
√

214664119193/4σ2σ1(σ113/4−σ5+σ6)σ7
69036339115606897664

σ3
√

214664119193/4σ2σ1(−σ113/4+σ4+σ6)σ7
69036339115606897664

−σ3
√

214664119193/4σ2σ1(σ113/4+σ4−σ6)σ7
69036339115606897664

 ,

where

σ1 =
(

29221932781− 6048
√

1402682838i
)1/6

,

σ2 =
(
−29221932781 + 6048

√
1402682838i

)1/4
,

σ3 = (−1)3/4,

σ4 =
√
−σ8 + σ9 − σ10 − 9487417

√
σ11,

σ5 =
√
σ8 + σ9 − σ10 − 9487417

√
σ11,

σ6 = 63
√

3σ12
1/6σ11

1/4,

σ7 =

(
σ12

1/3
(
−153710549 + 72

√
1402682838i

)
+ 121846σ12

2/3

−473375263673− 319752
√

1402682838i

)1/4

σ8 = 161784

√
87665798343 + 18144

√
1402682838i,

σ9 = 8882σ12
1/3√σ11,

σ10 = σ12
2/3√σ11,

σ11 = 4441σ12
1/3 + σ12

2/3 + 9487417,

σ12 = 29221932781 + 6048
√

1402682838i.

One can numerically verify that all eigenvalues have a strictly negative real

part. Therefore, it holds that spec(J(θ∗)) ⊂ Co−.

That means we can use Proposition 2 to show that, if we use a suffi-

ciently small learning rate, gradient-based algorithms, in particular, NPGA

with exact gradient feedback, indeed converges to the linear equilibrium

strategies, which finishes the proof. �

Remark 1. Note that the proof is conducted for the special case of k = 1/2
as stated in the proposition, but essentially works for any k. However, in
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the final step, we rely on a computer program to calculate the eigenvalues
of the game Jacobian matrix, because there is no obvious way of doing so
for general k. Nonetheless, we successfully conducted the proof for k ∈
{ 0

10 ,
1
10 , . . . ,

10
10}.
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