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Combinatorial auctions have found widespread application for allocating multiple items in the presence
of complex bidder preferences. The enumerative XOR bid language is the de facto standard bid language
for spectrum auctions and other applications, despite the difficulties, in larger auctions, of enumerating all
the relevant packages or solving the resulting NP-hard winner determination problem. We introduce the
FUEL bid language, which was proposed for radio spectrum auctions to ease both communications and
computations compared to XOR-based auctions. We model the resulting allocation problem as an integer
program, discuss computational complexity, and conduct an extensive set of computational experiments,
showing that the winner determination problem of the FUEL bid language can be solved reliably for large
realistic-sized problem instances in less than half an hour on average. In contrast, auctions with an XOR bid
language quickly become intractable even for much smaller problem sizes. We compare a sealed-bid FUEL
auction to a sealed-bid auction with an XOR bid language and to a simultaneous clock auction. While the
sealed-bid auction with an XOR bid language incurs significant welfare losses due to the missing bids problem
and computational hardness, the simultaneous clock auction leads to a substantially lower efficiency than

FUEL due to the exposure problem.
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1. Introduction

One of the thorniest problems in the theory of resource allocation concerns how to allocate resources
efficiently in large scale problems with minimal structure on the potential buyers’ possible values.
Some kinds of structure in such problems allow huge simplifications. Classical economic theory
shows that with convex consumer preferences and convex sets of feasible allocations, price messages
can decentralize and decompose society’s overall resource allocation problem. This means that

once the market-clearing prices are known, the problem can be solved by solving the separate
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problems for each consumer and firm. When there is no such structure and the resources are
indivisible, the general problem is much harder. Analysts do not attempt to work out a universal
resource allocation, but instead limit their attention to problems of a manageable size, commonly
recommending the use of a combinatorial auction with XOR bidding, in which bidders simply
enumerate values for all the possible combinations of items. The auctioneer uses the enumeration
to solve a combinatorial optimization problem, which finds the allocation that maximizes the total
bids. Such auctions have not only attracted the interests of researchers, but have also been used
for public and private sector auctions, with auctions of radio spectrum being prominent examples
(Bichler and Goeree 2017).

As the number of items to be allocated becomes large, however, a full XOR-based approach
to auctioning quickly becomes impractical for two reasons. The first is related to communication
complexity (Nisan and Segal 2006). For example, in combinatorial spectrum auctions in Canada
using XOR bidding, there have sometimes been more than 100 spectrum licenses for sale, leading
to more than 2'% different packages — far too many for any bidder to enumerate (Kroemer et al.
2017). The second reason is that computations at this scale easily become impractical. To address
that problem, the auctioneer in Canada limited the number of XOR bids that each bidder is
permitted to submit to 2,000, treating the many missing packages as if they have received bids
of zero. In lab experiments comparing an XOR design to alternatives, the resulting missing bids
problem from XOR bidding leads to substantial efficiency losses, even with many fewer than 100
licenses (Bichler et al. 2014).

One alternative to a full XOR-based auction is the Simultaneous Multi-Round Auction (SMRA)
and related clock auction formats. While these types of auctions mitigate the communication
complexity of XOR-based bid languages, they limit the expressiveness of bids and may cause
bidders to end up winning only a subset of their desired items at prices exceeding their valuation,
creating the well known exposure problem. Combinatorial clock auctions avoid the exposure risk
for bidders by interpreting bids in each round as package bids (Porter et al. 2003, Ausubel et al.
2006). However, straightforward bidding in the clock phase does not generally lead to an efficient
allocation and strategic bidding can lead to further allocative inefficiencies (Bichler et al. 2013).

The Flexible Use and Efficient Licensing (FUEL) bid language, as described below, aims to tame
the communication and computational complexity of an XOR auction design, but avoids most of
the exposure problems of clock auction formats. It enables larger combinatorial auctions by allowing
to decompose computations: FUEL leverages the fact that there are general economies of scale
within product categories, but limited economies of scope for local bidders across such categories.
This reduces the interdependencies among bids and the resulting problem decomposition leads to

significant speedups in the computations.
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The design of parametric bid languages is at the core of market design. Defining the format to
which bidders must adhere when expressing their preferences is fundamental to any auction design.
Simplifications and limitations are almost always required. Leveraging domain knowledge is often
key for the development of bid languages that are restrictive enough to reduce the communication
and computation complexity of combinatorial auctions while still allowing bidders to state their
preferences accurately. Devising domain-specific parametric bid languages has received some atten-
tion in the literature (Milgrom 2009, Bichler et al. 2011, Eilat and Milgrom 2011, Bichler et al.
2017), but it is rarely an issue for the design of spectrum auctions in practice. In combinatorial
spectrum auctions world-wide, the XOR bid language is the de-facto standard.

We explain the rationale for the FUEL language in three parts, related to its enabling of decom-
position to simplify computations, its applicability as a good approximation for some significant
combinatorial problems, and test results demonstrating its computational tractability and efficiency
to both an XOR-based approach and a simultaneous clock auction format.

For our computational experiments, we assume a high level of participation in the auction by
bidders with similar valuations as this is thought to make the optimization more challenging by
providing more near-optimal combinations of bids for the software to rule out. Our simulations
show that even with a vastly reduced bid set, accurate computations with XOR bids require
significantly more computation time than FUEL. The optimization problem coded using the FUEL
bid language utilizes many binary variables, and just as for the XOR auction, computing the
optimal solution is NP-hard (Arora and Barak 2009). Informally, large problems in this class quickly
become intractable and it is widely believed that there are no polynomial-time algorithms for
NP-hard problems, although that has not been proven. However, our computational experiments
indicate that, in practice, even in auctions with more participating bidders than are expected
for an actual spectrum auction, optimal solutions for the FUEL auction can be computed on
a desktop computer in mere minutes using commercial off-the-shelf optimization software with
minimal customization. When comparing FUEL to a clock auction design, we observe that due to
the exposure problem the investigated clock auction format incurs significant efficiency losses in
settings with large complementarities. If bidders do not exhibit any synergies, the efficiency of the
FUEL and clock auction design are similar.

The FUEL bid language was originally proposed in mid-2019 for a private auction by a consor-
tium of companies providing satellite downlink for commercial television in the United States. The
C-band offering consists of spectrum licenses at 3.7-3.98 GHz. The spectrum licenses were to be
offered in 406 geographical areas — the Partial Economic Areas (PEAs) with 14 licenses to use
20 MHz of bandwidth in each, so the number of possible combinations that any bidder might win

in the proposed auction was 15%%. In February 2020, the US Federal Communications Commission
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rejected the private auction proposal and chose instead to conduct a public auction using its usual
standard simultaneous clock auction format (Federal Communications Commission 2020a,b).
Combinatorial auctions on this scale have received little attention in the literature so far. For our
computational experiments, we use the C-band licenses and compare FUEL to a standard XOR bid
language as well as to the FCC’s simultaneous clock auction design. While the FUEL bid language
was constructed to express good approximations for spectrum values, it is likely to be useful as well
for other large combinatorial auctions, especially in procurement, in which managers regularly have
to buy large quantities of multiple, related items, respecting economies of scale within products
and economies of scope among products or delivery locations (Bichler et al. 2006). As an example,
consider the procurement of office paper for a multi-national company with hundreds of subsidiaries
worldwide that have a demand of several tons of paper per year. There are suppliers who are only
active in some countries or continents and there are international suppliers who bid on parts or
all of the demand in most or even all regions. Similarly, buyers of sale of fishery access rights in
different regions may enjoy economies of scale in each region and of scope across regions (Iftekhar
and Tisdell 2012) and buyers of TV ads (Goetzendorff et al. 2015) who typically seek “reach and
repetition” may have similar scale and scope concerns. If bidder values in these and other auctions
can be similarly well approximated by the FUEL language, our computational tests for the C-band

auction hint at similar performance over a wide set of applications.

1.1. Contributions

An important question about any parametric bid language is whether it is sufficiently expressive to
approximate actual bidder values. The FUEL language was based in part on an understanding of
the common way broadband networks are engineered. A company that needs additional bandwidth
for services in a particular PEA can often provide that either by having more frequencies available or
by constructing additional cell sites to densify its network in that PEA. If the costs of densification,
which tend to be additive across PEAs, are what drive value adjustments for deviations from a
base business plan, then the FUEL language may provide a good framework for bidders to describe
their actual spectrum values.

How does the FUEL language work and why are its optimizations so fast? FUEL allows each
bidder to build collections of package bids called bid groups. Each bid group is built from a single
all-or-nothing package bid — the base bid, which consists of a base package and a corresponding
base price. A bid group is created from the base bid specifying additions to or subtractions from the
base price in case licenses are added or subtracted in any PEA. The value expressions are simplified
because any price adjustments are summed over PEAs to get the bid for any adjusted package.

For example, if the assigned package has different numbers of licenses than the base package for
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five PEAs, then the implied bid for that adjusted package is the base price plus the sum of the
five positive or negative adjustments. In principle, a bid group including all of the 14 possible
adjustments for each of the 406 PEAs — 5,685 numbers in all — would specify prices for every
one of the 15%% packages. In this sense, FUEL tames the communication complexity compared to
XOR bidding.

FUEL’s bid group structure also tames the computational complexity. For any fixed combination
of winning bid groups, computations are fast because the overall problem is then decomposed into
many small problems — one for each of the 406 PEAs. If the number of combinations of winning
bid groups is small or well structured, then the overall optimum can be computed quickly.

For the nationwide mobile network operators in the United States, nearly complete nationwide
coverage is important for network engineering, so the value of a collection of licenses with, say,
40 MHz of spectrum rights everywhere (or at least in all the major cities) may be much greater
than that of a less comprehensive collection. Using FUEL, a base bid for 40 MHz in every PEA
can reflect that value pattern. If the bid-group adjustments do not include decrements in major
cities, then packages that do not include those areas have a value of zero. Less extreme adjustments
can also be included in the FUEL bid groups and additional bid groups by the same bidder can
incorporate other value patterns.® The commonly noted exposure problem for nationwide bidders
in clock auctions is avoided by FUEL because a nationwide bidder either wins a package defined
by one of its FUEL bid groups or wins nothing at all.

With many bidders or many potentially winning bid groups per bidder, there could still be very
many combinations of potentially winning bid groups, leading to potentially long computation
times. To tame that possibility, FUEL includes three kinds of limits on the bid groups submitted
by each bidder. Each FUEL bid group must be either a nationwide or a local group. To qualify
as a nationwide group, the sum of the populations covered by each license in the base package
bid must be at least twice the sum of the populations of all the PEAs. For example, if a base
package consists of two licenses in every PEA, then the bid group qualifies as a nationwide group.
A nationwide bidder can have only a limited number of mutually exclusive bid groups. Each local
bid group can include only licenses from PEAs within a single Economic Area (EA), and a local
bidder can have a limited number of mutually exclusive bid groups for each EA. There are 176
EAs which partition the set of PEAs, with an average of 2.5 PEAs in a typical EA.

The function of these limitations is highlighted by the special case in which there are only local

bidders. In this specific case, the optimal solution can be computed by separately solving each

! Additional evidence that FUEL may be a good description comes from the package bids submitted in the sealed-bid
phase of the Canadian spectrum auction in 2014. Those bids can be described very well (R2 close to 1 for most
bidders) with a linear regression model. Thus, these bids could be described with high precision using a single FUEL
bid group.
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EA to optimality. Although these problems are also NP-hard, they are small because the EAs
are small. Problems with only local bid groups can be solved in seconds in our experiments. The
presence of bid groups across EAs by the nationwide bidders makes the problem significantly more
complex, but there are only a few of these large nationwide bidders. In particular, the nationwide
bidders cannot be expected to enumerate all possible package values in an XOR bid language, but
a limited number of FUEL bid groups covers a huge number of XOR, bids. For our experiments,
we assume that there are 10 nationwide bidders, which is more than there are in the United States
currently. We show experimentally that the state-of-the-art integer programming solvers can exploit
the problem structure very well, as long as the local bidders are restricted to bid groups within
one or a few EAs.

For our complexity analysis, we reduce from the multidimensional knapsack problem to show
NP-hardness of the FUEL allocation problem. However, this problem is fixed parameter tractable
(Downey and Fellows 2012), which explains the only linear increase in runtime that we observe
when increasing only the numbers of bids but keeping other parameters such as the number of
PEAs and their supply constant. With the FUEL restrictions on bid groups in place, we are able,
in practice, to solve large problems with more than 400 licenses and more than 1,000 bidders using
a state-of-the-art branch-and-cut algorithm in a few minutes of runtime. Similar problems, we will
show, are intractable when coded using the XOR bid language and beyond what one would expect
to solve to optimality. In contrast, the efficiency of simultaneous clock auctions suffers from the

exposure problem as we show in another set of experiments.

1.2. Outline

In Section 2, we discuss related literature on bid languages. In Section 3, we provide a complete
description of the proposed FUEL bid language, introduce a binary program to formulate the FUEL
winner determination problem, and show that the problem is strongly NP-hard. In Section 4, we
introduce the XOR bid language as it is widely used in spectrum auctions worldwide. Section 5
presents the clock auction format that was adopted for the upcoming C-band auction. Section 6
describes the experimental design. The results of our extensive numerical tests are presented in

Section 7 and the key insights of the paper are summarized in Section 8.

2. Bid Languages and Spectrum Auction Formats

Spectrum auctions worldwide have raised hundreds of billions of dollars and become a model for
market-based approaches in the public and private sectors (Milgrom 2004, Bichler and Goeree 2017)
and multiple researchers have addressed the computational challenges for those auctions, both for
allocation and pricing (Kelly and Steinberg 2000, Pekec and Rothkopf 2003, Day and Raghavan
2007, Goeree and Holt 2010, Day and Cramton 2012). The number of package bids submitted and

the language used to express those can both affect the computational hardness of these problems.
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2.1. Bid Languages

Generally, a bid in an auction expresses a bidder’s willingness to pay money for various outcomes
and depends both on the bidder’s private preferences and its bidding strategy. A bid language
defines the format used to communicate the bids. For combinatorial auctions, some common bid
languages are built from elements including bundles (also known as packages), which are subsets
of the item set, atomic bids, which associate a price with a bundle, and logical rules, which govern
which bids can win simultaneously. The two most popular and intuitive bid languages of this kind
are exclusive-OR (XOR) and additive-OR (OR).

DEFINITION 1 (XOR BID LANGUAGE). The bid language exclusive-OR (XOR) allows bidders to
submit multiple atomic bids with the restriction that at most one of each bidder’s atomic bids can
win. (This means that the bidder either gets all items contained in the bundle listed in exactly one
of her atomic bids or she gets nothing.) In this language, if no bid is submitted for some bundle, a
bid of zero is imputed for it.

In principle, any valuation function can be expressed as a collection of atomic XOR bids, simply
by listing each bundle and its associated price. Such a language is said to be fully expressive. In
the XOR language, however, that expressiveness is achieved by making an exponential number of
atomic bids. For example, in a spectrum auction with 100 distinct licenses for sale, there are 2%
packages that must be enumerated to achieve this expressiveness. In practice, only a tiny fraction
of bundles receive positive bids, and the fraction of all allocations that the auction algorithm can
explore is obtained by multiplying the individual bidders’ fractions. This is known as the missing
bids problem. Laboratory experiments have shown that in realistic settings with many fewer items
and packages, that problem can lead to substantial efficiency losses compared with the simultaneous
multi-round auction, where bids can be submitted only on individual items (Bichler et al. 2014).

One simple way to reduce the number of missing bids is to use an alternative language, such as
the OR language.

DEFINITION 2 (OR BID LANGUAGE). The bid language additive-OR (OR) allows bidders to sub-
mit multiple atomic bids with the understanding that any non-intersecting combination of atomic
bids can win. (This means that the bidder either gets all items contained in each of the bundles
listed in some non-intersecting set of her atomic bids or she gets nothing.)

The OR bid language can express values for more different combinations in a compact way, but
it can represent only valuations that have limited patterns of substitution (Boutilier and Hoos
2001, Nisan 2006): if two disjoint packages are substitutes for a bidder, an OR bid might win both
of them rather than just one.

Limitations of general languages such as XOR and OR have encouraged the development of

parametrized or compact, domain-specific bid languages (Goetzendorff et al. 2015). These leverage
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domain knowledge about values and can sometimes remedy the combinatorial explosion. Examples
include volume discount auctions for multi-unit and multi-item procurement markets (Bichler et al.
2011), bid languages for TV ad sales (Goetzendorff et al. 2015), and bid languages for electricity
markets in the United States (Papavasiliou et al. 2017, Cramton 2017). The structure of values
in these domains can often be usefully exploited. For example, bidding languages for procurement
may implement the kinds of discount policies that are widely used to reflect the economies of
scale and scope in production. Bidding languages in electricity markets also leverage agreed-upon
specifications of cost functions in energy production, such as distinguishing between ramp-up costs

and marginal costs in a bid.

2.2. Spectrum Auction Formats

Preference elicitation in combinatorial auctions has long been an issue in the literature (Conen
and Sandholm 2001, Sandholm and Boutilier 2006). Parkes (2006) identifies the communication
complexity and the bidders’ cost for determining exact values for many bundles as the two key
problems of preference elicitation in combinatorial auctions. While compact domain-specific bid
languages can tame the communication complexity, they still require bidders to determine exact
values for a large number of bundles. Iterative combinatorial auctions are sometimes seen as a way
to improve preference elicitation as bidders do not have to provide their entire valuations in one
step. However, with several hundreds of objects and many auction rounds, bidding can become
very challenging for bidders or bidding teams in high-stakes auctions. Note that the number of
rounds in iterative multi-object auctions can easily become very large unless the bid increments
are very high, which can lead to inefficiencies. There is limited experimental research on larger
ascending combinatorial auctions, but already in auctions with only 18 objects, bidders preselect
packages which leads to significant inefficiencies (Scheffel et al. 2012).

The simultaneous multi-round auction and related simultaneous clock auction formats allow OR
bids on single objects only. The bidding process in such simultaneous clock auctions consists of a
series of subsequent rounds in which the auctioneer announces a price for each individual item and
the bidders respond with the quantities that they demand for each item at the current price. If the
aggregated demand of the bidders exceeds an item’s supply, the auctioneer raises the item’s price in
the next clock round. Even though bidders cannot set the prices themselves, their demand response
to clock prices can be interpreted as OR bids. In particular, each OR bid consists of the number of
units demanded for a specific item and is associated with the item’s respective clock price. As the
bidders’ bids for different items can be accepted independently of one another, simultaneous clock
auctions implement an OR bid language. However, this may cause bidders to end up winning only
a subset of their desired items at prices exceeding their valuation. This exposure problem causes

bidders to bid strategically.
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In recent years, combinatorial clock auctions have been adopted for spectrum sales in many
countries around the world (Ausubel et al. 2006, Bichler and Goeree 2017). Combinatorial clock
auctions consist of two phases: the clock rounds and a subsequent supplementary round. In contrast
to simultaneous clock auctions, bidders submit all-or-nothing package bids during the clock phase,
mitigating the exposure problem. A standard XOR bid language is used for the subsequent sealed-
bid supplementary phase which allows bidders to specify bids for additional packages. In the end,
the auctioneer solves a winner determination problem considering all bids submitted in both phases
and accepting at most one bid per bidder. Despite its popularity for spectrum sales around the
world, the CCA has some drawbacks. First, there can be strategic problems due to the two-stage
nature of the auction (Bichler et al. 2013, Levin and Skrzypacz 2016). Second, in order for the
winner determination problem to stay tractable, bidders are often restricted in the number of bids
they are permitted to submit in the supplementary round (Ausubel and Baranov 2014). The CCA
shares the missing bids problem with first-price auctions that have been run in countries such as
France or Norway using the XOR, bid language (Bichler and Paulsen 2018). The resulting missing
bids problem is particularly apparent when the number of products for sale grows large which is
the case for the upcoming C-band auction.

FUEL strikes a balance, seeking both to allow bidders to express relevant preferences for many
packages using a small number of parameters and also leading to tractable optimization problems
when exact solutions are not available and incentive issues are paramount (Nisan and Ronen 2001).2
The carefully designed, parsimonious bid language of FUEL allows fast, large-scale optimization
with currently available integer programming techniques. This makes it possible, for example, to use
the Vickrey-Clarke-Groves (VCG) mechanism to implement the efficient allocation while providing
incentives for truthful bidding.

3. FUEL Auction Design

We introduce the FUEL bid language as proposed for the C-band auction in the United States.
This specific application allows us to discuss a real-world case and generate realistic instances
considering all real-world constraints. As indicated earlier, the FUEL design is not limited to the

C-band auction but is applicable for a variety of markets with many items and multiple units each.

3.1. Product Design

Similar to previous auctions designed by the Federal Communications Commission (FCC), the
market area for the C-band auction is geographically subdivided into smaller entities, so-called
Economic Areas (EAs). As some local market participants are expected to be only interested

2Even when deterministic approximation mechanisms for general valuations are unknown, black-box mechanisms
using randomized mechanisms may still be available (Lavi and Swamy 2011) to mitigate the computational problem.
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in spectrum for some part of an Economic Area, each EA is split again into Partial Economic
Areas (PEAs), with the number of PEAs in an EA ranging from 1 to 12. In total, there are 170
EAs and 406 PEAs across the contiguous United States.

(b) EA 13

.\

»

(a) 170 EAs and 406 PEAs throughout the contiguous US (c) PEA'5

Figure 1 Map (a) shows all EAs and PEAs in the contiguous United States. The EAs are highlighted with
different colors. Neighboring regions of the same color represent PEAs belonging to the same EA. For illustrative

purposes maps (b) and (c) highlight the EA and PEA containing Washington, D.C.

In each PEA, 280 MHz of spectrum is sold in the C-band auction. The spectrum in a PEA is
split into 14 homogeneous blocks, each containing 20 MHz of the 280 MHz available per PEA.3

3.2. Bid Language

Assuming the C-band auction is organized with 406 PEAs and 14 spectrum blocks per PEA, the
number of potential distinct packages equals 15%%: far too many to enumerate. The FUEL bid
language circumvents this problem by using bid groups. Each bid group is based on a single package
bid, called the base bid, consisting of a base package and a base price. Bid groups also incorporate
adjustments that define the price that applies to a package that increments or decrements the
number of licenses to be purchased in a PEA. Each increment is associated with a markup to
the base price and each decrement is associated with a discount (see Figure 2). Adjustments are
intended to provide a natural and intuitive way for bidders to specify their demand for spectrum
and at the same time avoid the missing-bids problem.

31n 46 of the 50 most populous PEAs the satellite companies were able to free up 100 MHz (5 blocks) of spectrum
earlier than the remaining spectrum blocks. The original proposal of the FUEL bid language differentiated between
so-called early and late spectrum and allowed bidders to submit their bids either in the early/mixed or late category.

As the differentiation between early and late spectrum complicates the bid language but does not lead to substantially
different results, we will treat all 14 available license blocks to be homogeneous for the remainder of this article.
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Bidder 1 SMALL Base price: 200

#Licenses
EA|PEA|O0| 1 2 3|4 |5/6|7/8/9/10/11(12|13|14
60 | 155 -90 | Base | 100 | 170
60 | 354 Base

Figure 2 Bidder 1 submits a bid group whose base package contains 2 licenses in PEA 155 and 2 licenses in
PEA 354. She also defines adjustments (in $) for 1, 3, and 4 licenses in PEA 155. If the auctioneer accepts her
bid group and assigns her 4 licenses in PEA 155 and 2 licenses in PEA 354 (highlighted blue), her bid for this set
of licenses is $200 + $170 + $0 = $370.

Bid groups are classified with respect to the MHz-pop of their base package. The MHz-pop of a
set of licenses for the same PEA is given by the product of the frequency bandwidth in MHz and
the population of the respective PEA. Summing up the MHz-pop of all PEAs present in the base
package gives the MHz-pop of the base package. If the MHz-pop of a base package is no less than
the MHz-pop equivalent of two nationwide licenses (i.e. two licenses in all 406 PEAs), then the
corresponding bid group is considered to be a nationwide bid group and is labeled large, otherwise
it is a local bid group and is classified small. While large bid groups may include any combination
of PEAs, small bid groups may only contain PEAs from the same EA. Bidders may either win a
single large bid group or multiple small bid groups, but never large and small bid groups at the
same time. In addition to that, small bid groups can never become winning simultaneously if they
contain bids in the same EA.

More formally, if there exist 170 Economic Areas and a bidder submits n, small bid groups for
EA a € A as well as m large bid groups, the following Boolean expression defines the combination
of bid groups that might be accepted simultaneously by the auctioneer. The i-th bid group of the
bidder containing bids for EA a is denoted by s’ and the j-th large bid group of the bidder is
denoted ¢’. The logical OR and XOR operators are denoted V and @, respectively.

[(51 B sSTD ... D)V ...V (S170 D Sigg D ... D 3?7150)} ® [61 ® Ll D ...

Depending on the domain, bidders might have to be restricted in the number of small and
large bid groups they are allowed to submit in order for the underlying allocation problem to be
computationally tractable. Note that in contrast to OR-of-XOR languages as described in Nisan
(2006), FUEL has bid groups which allow for adjustments rather than atomic bids on packages of

items. We will analyze restrictions for the C-band auction in Section 7.1.

3.3. Winner Determination Problem
The allocation or winner determination problem of the main bidding round can be represented
as a binary program, for which the solution identifies the set of winning base bids and associ-

ated adjustments. To formalize the winner determination problem of the FUEL bid language, we
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will introduce additional notation and then express the rules of the FUEL bid language through

constraints in the binary program.

Sets and indices:

1el Set of bidders.

acA Set of Economic Areas (EAs).

peP Set of Partial Economic Areas (PEAs).

g€ G?Y  Set of small bid groups of bidder i € I.

g€ G Set of small bid groups of bidder i € I that include bids on EA a € A.

g€ GE  Set of large bid groups of bidder i € I.

geG,; Set of all bid groups submitted by bidder i € I, i.e., G; = G¥ UGE.

pE P! Set of PEAs contained in the base package of bid group g € G; of bidder i € I.
ke K Set of possible base bid adjustments, i.e., K ={0,...,14}.

K C K Set of base bid adjustments in bid group g € G; of bidder i € I for PEA p € P.

Parameters:

L, Number of licenses offered in PEA p € P. Note that L, =14 for all p € P.
by? Number of licenses demanded in the base bid of bid group g € G; for PEA p.

)

w;  Base price for bid group g € G; of bidder ¢ € I.

3
gpk

" Markup/discount on the base price of bid group g € G; of bidder i € I for a total
of k licenses in PEA p € P. The parameter is 0 when k equals b{’. Otherwise, if k
specifies an increment or decrement, the number is positive or negative, respectively.

M The maximum number of small bid groups that any bidder submits.

Decision variables:

x?€{0,1} Binary variable denoting whether bidder i € I wins bid group g € G;.

y?* € {0,1} Binary variable denoting whether bidder i € I wins in total k& € K licenses in
PEA p € P! as stated in bid group g € G;.

z;€{0,1}  Binary variable denoting whether bidder i € I wins multiple small bid groups (z = 0)
or one large bid group (z=1).

maxZwa +ZZZZ gpkgpk (1)

i€l geG; i€l geG; pepg kngp

s.t. Z ygpk ng VZ S I7vg € G'vap € Pig (2)

keKJP

DD k)< VpeP (3)

i€l geGi keKJP

Yy al <y Viel (4)
qEGiL
> al<M(1-z) Viel (5)
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d af<i VieI,Yae A (6)
gEGiSa
z] €{0,1} VieI,Vg e G; (7)
Y €{0,1} Vie I,VgeGy,Vpe P! Vke K (8)
Z; € {0, 1} Viel (9)

Objective & Constraints:

(1) The objective is the sum of base prices of winning bid groups and the respective base
price markups/discounts of the winning adjustments.

(2) In case a bidder wins a bid group g € G;, she must win exactly one adjustment in each
PEA being part of the bid group’s base package.

(3) Supply constraint for the number of licenses in PEA p € P.
(4) Bidder i € Iy may win at most one large bid group.

(5) If Bidder i € I, wins a large bid group (z =1), she cannot win any small bid groups. In
case she does not win a large bid group (z =0), the coefficient M ensures that she can
win all her small bid groups simultaneously.

(6) At most one bid group of a bidder may become winning per EA. The constraint is explicitly
formulated only for small bid groups because it is implicitly given for large bid groups by
constraint (4).

The winner determination problem of the FUEL bid language is related to the d-dimensional
knapsack problem (DKP).

DEFINITION 3 (DKP). A set of n items with profits p; > 0 and 1 < j < d resources with capacities
given by c € RY are given. Each item i consumes an amount w;; > 0 of resource j. The decision
version of the d-dimensional knapsack problem asks whether there exists a selection of items with
total profit larger than r such that the chosen items do not exceed the resource capacities c;.

Let us briefly define the decision version of the FUEL winner determination problem which we
denote D-FUEL. We refer to the PEAs in the C-band auction as items, and the available licenses
within a PEA as units. We focus on the case where bidders do not make use of the optional
adjustments and each bidder specifies a single bid group only.

DEFINITION 4 (D-FUEL). There are n’ bidders submitting a single bid group i’, each specifying
a number of desired units wi; > 0 for each of d' items. The overall number of units available for
sale in each of the 1 < j' < d' items is ¢; > 0. The bid price for each bid group is p; > 0. Is there an
allocation of bids, such that the total sum of accepted bids exceeds the revenue r'?

Now, given an instance I of DKP, there is a 1-to-1 mapping of a variables x in DKP to 2’ to

construct an instance I’ of D-FUEL. Any instance of DKP can be reduced to an instance of D-FUEL.

PROPOSITION 1. D-FUEL s strongly NP-complete.
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Since DKP is strongly NP-complete (Fréville 2004, Varnamkhasti 2012), it follows that D-FUEL
must also be strongly NP-complete. If a problem is strongly NP-complete, then it remains NP-
complete even if all of its numerical parameters (e.g., object sizes and knapsack sizes) are bounded
by a polynomial in the length of the input. Importantly, any strongly NP-hard optimization problem
cannot have a fully polynomial-time approximation scheme (or FPTAS) unless P = NP (Garey
and Johnson 1979). It has also been shown that there is no efficient polynomial-time approximation
scheme (EPTAS) for pkp (Kulik and Shachnai 2010).

Recent work by Gurski et al. (2019) has looked at knapsack problems from the point of view of
fixed-parameter tractability (fpt). Parametrized complexity studies the parameters of a problem
on which the runtime depends (Downey and Fellows 2012). This allows the classification of NP-
hard problems on a finer scale than in the traditional way, where the complexity of a problem is
only measured as a function of the number of bits in the input. By separating the problem into
two parts (the input and the parameters), one hopes to find an algorithm that has good runtime
as a function of one part (the input), while allowing for arbitrarily bad runtime as a function of
the other part (the parameters). For example, the number of licenses for sale in the PEAs in our
setting doesn’t change (the parameters), but the number of bids (input) varies. Fixed-parameter
tractability generalizes polynomial time computability by admitting algorithms whose runtime is
exponential, but only regarding the parameters.

An algorithm A is an fpt-algorithm with respect to a parameter x, if there is a computable
function f and a constant ¢t € N such that for every instance I the runtime of A on [ is at most
f(&(D))-[I|'. If f is also a polynomial, A is referred to as polynomial fpt (PFPT) algorithm with
respect to k. Actually, for a fixed parameter x(I) = (c1,--- ,cq), the capacities in DKP, the problem
is PFPT (Gurski et al. 2019). The problem is even linear in n, the number of items, in the worst
case usind a specific dynamic program. Similarly, in D-FUEL, the 14 licenses (c; = 14) in each of
the d’ = 406 PEAs describe the fixed parameter set, but we are interested in scaleability in the
number of bids. Although, we use a general purpose branch-and-cut solver considering the various
additional variables and constraints and not a dynamic program, also in our experimental results
we find that for a fixed number of licenses per PEA the runtime develops linearly on average in

the number of bids. Apparently, the branch-and-cut solver can exploit the problem structure well.

4. Sealed-Bid XOR Auction Design
We compare the empirical complexity of auctions with the FUEL bid language to auctions with a
standard XOR bid language. For this purpose, we briefly introduce the XOR . bid language and the

corresponding winner determination problem.
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4.1. Bid Language

Similar to FUEL bid groups an XOR bid consists of a set of PEAs for which the bidder would like
to acquire licenses. For each of these PEAs, the bidder specifies the number of licenses that the
bidder would like to purchase. Every XOR bid is also associated with a price which expresses the
bidder’s valuation for the set of licenses specified in the XOR bid. Bidders may submit multiple
XOR bids but at most one of them is accepted. In contrast to the FUEL bid language, the XOR
bid language does not distinguish between small and large bids. It is well-known that the winner
determination problem with an XOR bid language is strongly NP-hard and can be modeled as a
weighted set packing problem (Lehmann et al. 2006). An instance of the problem asks whether a
given collection C' of n sets (or bids) contains z mutually disjoint sets. It has been shown early
on that unless P = NP there is no PTAS for the winner determination problem (Sandholm 2002),
and we can only hope for a constant factor approximation (Lehmann et al. 2002). We can also
not expect parametrized algorithms. With z being the parameter, the problem is W[l]-complete,
i.e., we cannot expect an algorithm of complexity polynomial in n, and proportional to f(z) for
any function f (Downey and Fellows 2012). These problems are believed to be fixed-parameter

intractable.

4.2. Winner Determination Problem

For the binary formulation of the winner determination problem of the XOR bid language, we
reuse the notation introduced in Section 3.3 and modify it in the following way. The set G; no
longer refers to the FUEL bid groups but to the XOR bids submitted by bidder ¢ € I. We further
introduce variables dJ” that denote how many license blocks bidder i demands in her XOR bid ¢

for PEA p.

max »_ > (zfwf) (1)

el geG,;

st Y ) (afd?) <L, Vpe P (2)
el geG;
o al<1 Viel (3)
9€G;
x! €{0,1} Vie I, Vg e G; (4)

Objective & Constraints:

(1) Objective function summing up prices of winning XOR bids.
(2) Supply constraint for the number of licenses in PEA p € P.
(3) Each bidder i € I may win at most one XOR bid.
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5. Simultaneous Clock Auction

In August 2020 the FCC adopted a simultaneous clock auction format for the upcoming C-band
auction (Federal Communications Commission 2020b). In the following, we will briefly summarize
the most important rules of the clock phase of the adopted C-band auction defined in the FCC’s

technical guide (Federal Communications Commission 2020a).

5.1. Product Design

Similar to the FUEL product design from Section 3.1, the adopted C-band auction differentiates
406 products, each representing licenses in one of the 406 PEAs. There are 14 homogeneous 20
MHz license blocks offered for each product. The minimum opening bid for each product is set with
respect to the MHz-pop of the respective license block. In order to guarantee a speedy auction, the
minimum opening bids are chosen by the FCC to approximate the relative value of the licenses.
Taking the feedback of the competing telecommunication companies into account, the FCC decided
that for PEAs 1-50, 51-100, and 101-406 the minimum opening bid amounts are based on $0.03
per MHz-pop, $0.006 per MHz-pop, and $0.003 per MHz-pop, respectively, subject to a minimum
of $1,000 (Federal Communications Commission 2020b).

5.2. Auction Process

In the first round of the auction, the bidders simply state their demand for each product at the
opening prices which equal the minimum opening bids. In any subsequent round, the auctioneer
announces two prices for each product, the start-of-round price and clock price. At the beginning
of a clock round the price of a product equals the start-of-round price. While processing the bids,
a product’s price can be raised up to its clock price.

At certain prices, bidders may want to adapt their demand. They can do so by submitting bids
for the respective products. Each bid is associated with a single product, a price, and the number
of licenses that the bidder demands from this price onward. The bid price must lie in between
the start-of-round and clock price of the current clock round and can also be stated in terms of
a price point, which defines the percentage position of the bid price between the start-of-round
and clock price. A bidder may submit up to five bids per product. The price points of bids for
the same product must be distinct and the trajectory of the number of requested licenses must be
monotonically increasing or decreasing with respect to the associated price points.

EXAMPLE 1. Assume a bidder states a demand for 5 blocks for a certain product in the first
clock round. In the second clock round, the start-of-round price for the product is $1,000, the clock
price is $2,000. The bidder reduces her demand to 4 blocks at the 20% price point (i.e., at price
$1200) and to 2 blocks at the 60% price point (i.e., at price $1600). She is not able to submit a
third bid for 3 blocks at the 80% price point (i.e. at $1800) as her demand trajectory would no

longer be monotonic.
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If a bidder would like to maintain her current demand for a product throughout the clock round,
she submits a bid at clock prices associated with the number of demanded license blocks. In case
she does not desire any spectrum in a PEA, she submits a bid stating a demand for 0 blocks at
the start-of-round prices.

After all bidders submitted their bids for the clock round, the auctioneer starts to process the
bids in the following order. First, all bids that maintain a bidder’s demand for a product are
applied. Afterwards, the remaining bids of all bidders are inserted into a queue in increasing order
with respect to their price points. Ties are broken according to a bid-specific pseudo-random
number. The auctioneer processes the bids in the queue one after another and applies each bid to
its maximum possible extent, meaning that a bid may either be fully applied, partially applied, or
rejected. Bids to reduce demand are only processed to the extent that no excess supply is created
or further increased; bids to increase demand are only applied as long as the respective bidder still
has enough eligibility (see Section 5.3). Bids that can be fully applied are removed from the queue.
In case a bid can only be processed partially, it remains in the queue as it might be possible to
process it later on. Whenever a bid can be processed partially or entirely, the queue is re-tested
from the beginning in order to check whether any higher prioritized bids can now be applied. This
process continues until all bids are processed and no bid in the queue can further be applied. Bids
remaining in the queue after this process are discarded at the end of the round.

EXAMPLE 2. Assume there are two bidders A and B competing for 14 license blocks within the
same PEA. Both bidders initially demand 8 blocks. For the current clock round, bidder A reduces
her demand to 7 blocks at the 20% price point, while bidder B reduces her demand to 6 licenses at
the 50% price point. When the clock round closes, the auctioneer first applies the bid of bidder A as
it is associated with a smaller price point. The bid of bidder B can only be processed partially (i.e.,
the second bidder is allocated 7 license blocks) as fully applying her bid would lead to oversupply.
If the auction ended after this round, the second bidder is forced to purchase 7 licenses at the 50%
price point even though she wanted to reduce her demand to 6 licenses.

After processing the bids, the auctioneer determines the posted prices of the current clock round.
If a product is overdemanded after processing the bids from round ¢, its posted price equals its
clock price of round ¢. In case the auctioneer processed some bids in round t that reduced the
aggregate demand for a product so that it equals the supply, then the posted price is set to the
price of the bid that reduced the aggregate demand to the supply. In any other case, the product’s
posted price equals the start-of-round price of round ¢. The start-of-round prices of round ¢ + 1
equal the posted prices of round ¢, while the clock prices of round ¢+ 1 are set between 10% (the

bid increment) higher than the posted prices of round ¢.*

4 The bid increment percentage is set within the range of 5% to 20% inclusively and may change between the auction
rounds. The default value is 10% (Federal Communications Commission 2020a).
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The auction terminates when there are no more overdemanded products. Each bidder is allocated
the products according to the bid processing of the last clock round. The final clock prices of all

products are given by the final clock round’s posted prices.

5.3. Eligibility Rule

During the clock phase of the C-band auction, bidders are subject to an eligibility rule. For this
purpose each product is associated with a number of bidding units which is based on the MHz-
pop of the respective license block — more precisely, it is approximately 1/20th of the product’s
minimum opening bid. A bidder’s eligibility in the first round is determined by the bidding units
associated with an upfront payment that each bidder makes before the start of the auction.’

At the beginning of an auction round a bidder may submit bids whose associated bidding units
can be as high as 120% of the bidder’s eligibility.® While processing the bids, however, the auctioneer
accepts bids at most up to the bidder’s eligibility. Once an auction round closes, a bidder’s processed
demand is given by the number of licenses that are assigned to the bidder at the end of the
auction round. The processed activity describes the number of bidding units associated with the
processed demand. If a bidder’s processed activity falls below 95% of its current activity, then the
bidder’s next round eligibility is set to the ratio of the bidder’s processed activity divided by 0.95.7

Otherwise, the bidder’s eligibility in the next round equals the one of the current round.

6. Experimental Design

In the C-band auction of the FCC, there are expected to participate two types of bidders: up to 10
large telecommunication providers who strive for nationwide coverage and a few hundred smaller
competitors who are only interested in spectrum for a small subregion. In our tests we model the
10 national bidders explicitly, assuming that they are interested in license blocks in almost all
406 PEAs. Local bidders, on the other hand, are modeled implicitly. We over-approximate the
number of local bidders to 1,000 but assume that they are only active in a single economic area.
As small FUEL bid groups may only contain PEAs from at most one economic area, a bidder who
is interested in licenses from three economic areas has to submit three separate FUEL bid groups.
Thus, from a computational point of view, such a bidder can be modeled by three individual bidders
submitting one bid group each. The advantage of modeling local bidders implicitly is that we do
not have to fix the market area sizes of local bidders before running our simulation.

5 For each PEA the minimum opening bid, the number of bidding units, and the upfront payment are listed at
https://www.fcc.gov/file/19175/download.

5 The activity upper limit is set within the range of 100% to 140% inclusively and may change between auction rounds.
The default value is 120% (Federal Communications Commission 2020a).

" The activity requirement percentage is set within the range of 90% to 100% inclusively and may change between the
auction rounds. The default value is 95% (Federal Communications Commission 2020a).
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To construct synthetic bids for our numerical simulation of the market, we have to make suitable
design decisions regarding the following two aspects: (1) What are the assumed valuations of
bidders for the different products and (2) for which products are bidders actually submitting bids
in the auction? In Section 6.1, we address the first aspect by proposing a value model that we use
for modeling the bidders’ preferences for both FUEL and XOR bids. As the FUEL and XOR bid
language pose different restrictions on which PEAs can be included simultaneously in a bid, we

address the second aspect separately for the two bid languages in Sections 6.2 and 6.3, respectively.

6.1. Value Model

A widespread international metric for comparing the prices of spectrum is the license price per
MHz-pop. The FCC follows this convention for defining minimum opening bids for each product
in the upcoming C-band auction (see Section 5.1). We use this approximation for our value model
and define w, to be the minimum opening bid for PEA p € P.

The bidders’ valuations for licenses in a particular PEA differ depending on their financial
strength and their current possession of frequencies. To generate idiosyncratic bidder valuations,
we therefore introduce value factors r;, for each bidder i € I and PEA p € P which scale the
minimum opening bid w, of a PEA for a particular bidder. In general, local bidders are financially
weaker than nationwide bidders so that we choose value factors r;, for local and nationwide bidders
uniformly at random from the intervals [1.0,1.3] and [1.1,1.4], respectively.

To provide a functional 5G network, bidders need spectrum bandwidth of at least 40 MHz which
corresponds to 2 license blocks in the C-band-auction. Therefore, bidders have only little interest
in being allocated less than 2 licenses. On the other hand, a bidder’s marginal valuation for more
than 5 licenses is very small. As a consequence, the assumed valuation of a bidder is represented
best by a sigmoid function whose point of inflection A; is a bidder specific value chosen uniformly
at random from the interval [2,4]. Scaling this sigmoid function with the idiosyncratic bidder

valuations above gives a bidder’s valuation function for a particular PEA:
0 if x=0,

Vip(T) = L .
p( ) Wp Tip <1_|_+A> OtherW1se,
e TR

where z is the number of licenses demanded by bidder ¢ € I in PEA p, w, is the minimum opening
bid in PEA p, r;, is the idiosyncratic value factor of bidder i for PEA p, A, defines the point of
inflection, and L = 14 is a constant defining the number of licenses available in each PEA. Figure 3
displays three different valuation functions for exemplary values of w,, r;;, and A,.

While we carefully select the parameters of our value model to resemble the actual preferences of

bidders in the C-band auction as accurately as possible, the model is certainly still a simplification
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Figure 3  The three valuation functions vi, v2, v3 represent the valuations of three different bidders for the
same PEA p with w, =1,000. The bidder specific parameters r;;, and A; are chosen as follows:

v1: r1p=1.0 and A, =3; va: T2p = 1.0 and Ay =4; v3: r3p=1.1 and Az =3.

of the bidders’ valuations in practice. For other practical applications with a substantially smaller
number of items, less complementarities in the bidders’ preference relations, and different assump-
tions on the bidders’ valuations, other auction designs such as the simultaneous clock auction might

be preferable.

6.2. FUEL Bid Generation
We assume that every local bidder is active in only a single EA and submits small bid groups
containing licenses for that particular EA. The number of PEAs included in the bidder’s small
bid group is chosen uniformly at random between one and the number of PEAs available in the
respective EA (at most 12). In practice, some local bidders may be active in several PEAs belonging
to different EAs, but for the purposes of estimating runtime, these bidders can equivalently be
represented as multiple independent local bidders as discussed at the beginning of Section 6.

Unlike local bidders, we assume that nationwide bidders are active throughout the whole United
States: each of their bid groups covers at least 380 of the 406 PEAs. The PEAs not contained in a
bid group are chosen uniformly at random among the 50% least populous PEAs so that nationwide
bidders are always able to provide service in all of the most densely populated areas whenever one
of their bid groups is accepted by the auctioneer.

When local and nationwide bidders place a bid on licenses in a PEA, they have to state a base

bid and may additionally specify some adjustments. According to the sigmoid value model (see
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Section 6.1), a bidder’s largest marginal gain for a license is at A;, the point of inflection of the
bidder’s valuation function v;,. Therefore, the base package either contains [A;| or [A;] licenses
in each PEA. Furthermore, it is assumed that a bidder specifies between 0 and 4 adjustments for
each PEA in the bid group. The exact number is again chosen uniformly at random. The selected
adjustments always constitute a consecutive interval around the base bid as it is assumed that this
models the bidders’ valuations most accurately.

The number of bid groups that local and nationwide bidders are allowed to submit is a parameter
that was still undefined for the C-band auction at the time the design was proposed. It was to
be chosen to ensure the computational tractability of the winner determination problem. We will

address this question in Section 7.1.

6.3. XOR Bid Generation
In contrast to the FUEL bid language, bids in the XOR bid language are no longer subject to any
EA restrictions. In particular, this means that bidders can submit bids for any subset of PEAs

even though they belong to different EAs (see Figure 4).

1

(a) Small FUEL bid group (b) XOR bid
Figure 4  Visualization of the PEAs included in the bids of two bidders, where the first bidder submits a FUEL
bid group and the second one an XOR bid. EAs are highlighted with different colors. Neighboring regions of the
same color represent PEAs belonging to the same EA. While the PEAs in a small FUEL bid group must all belong
to the same EA (i.e., all PEAs in the FUEL bid group are of the same color); XOR bids can contain PEAs from
different EAs (i.e., bids can contain PEAs of different colors).

When generating XOR bids it is assumed that any local bidder’s market area contains between
one and seven PEAs (potentially belonging to different EAs) which form a highly cohesive com-
ponent. Each XOR bid of a local bidder contains between one and the maximum number of PEAs
available in her market area. On average every local bidder’s XOR bid encompasses 2.5 PEAs

which roughly equals the average number of PEAs per EA which is 406/170 =~ 2.4. Nationwide
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bidders are active throughout the entire 406 PEAs. Similar to a nationwide bidder’s FUEL bid
groups, each XOR bid contains at least 380 of the 406 PEAs. The PEAs not contained in an XOR
bid of a nationwide bidder are chosen uniformly at random among the 50% least populous PEAs.
As explained in our value model, bidders need at least two license blocks for setting up a viable
5G network but are assumed to have little interest in being allocated more than five licenses, we
assume that both nationwide and local bidders will submit XOR bids that state a demand between
two and five licenses in each PEA. The exact number of licenses is chosen uniformly at random
from this interval for each XOR bid and each PEA.

In order to compare different auctions, we need to derive XOR bids from FUEL bid groups,
FUEL bid groups from XOR bids, and clock bids from FUEL bid groups. This is described in
detail in the Appendices A to C.

7. Results

In this section we report the results of our computational experiments using the Gurobi Opti-
mizer 9.1.0 to solve the winner determination problem up to a tolerance (“MIPGap”) of 1074, i.e.,
the solution computed by Gurobi differs from the optimal solution by no more than 0.01%. The time

limit is set to 30 minutes for all test instances. Our test computer contains two Intel(R) Xeon(R)

CPU E5-2620 @ 2.00GHz and 64GB of RAM. All test instances are available upon request.

7.1. FUEL Bid Groups

The original FUEL proposal did not specify the number of bid groups that local and nationwide
bidders would be allowed to submit but proposed to choose those numbers to ensure the compu-
tational tractability of the winner determination program.

Let z; and zx denote the number of bid groups that local and nationwide bidders are allowed
to submit, respectively. For each configuration of z; and zy in Table 1, we generated 25 random
instances with our FUEL bid generator. Table 1 summarizes the number of bid groups submitted
by all bidders, the average number of binary variables and constraints in the winner determination
problem, the average runtime, the number of test instances that exceed the time limit of 30 minutes
(TLE = time limit exceeded), the maximum MIPGap of all 25 test instances, and the average
number of licenses that remain unsold out of 5,684 (406 x 14) licenses. Test instances that exceed

the time limit of 30 minutes are weighted with 1,800 seconds when computing the average runtime.

Result 1 If the 1,000 local bidders are restricted to submit at most seven small FUEL bid groups
and the 10 national bidders are limited to place at most seven large FUEL bid groups, the winning
allocation can be determined within 144 seconds and a MIPGap of only 0.0001 on average. If

nationwide bidders were absent in the auction, then the FUEL winner determination problem can
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2L | 2N Bid Binary Constr. Runtime TLE Max. Unsold

Groups Variables in sec. MIPGap | Licenses
1 1 1,010 17,864 6,033 3 0 of 25 0.00010 53.4
3 3 3,030 53,579 18,282 39 0 of 25 0.00010 14.4
5 5 5,050 89,515 29,569 144 0 of 25 0.00010 6.6
7 7 7,070 124,992 40,769 236 0 of 25 0.00010 4.0
10 | 10 10,100 178,897 57,672 678 5 of 25 0.00044 2.0
15 | 15 15,150 268,366 85,808 935 6 of 25 0.00051 1.1
15 0 15,000 91,246 26,828 11 0 of 25 0.00010 11.6
30 0 30,000 182,680 52,280 41 0 of 25 0.00010 3.3
50 0 50,000 304,204 86,145 96 0 of 25 0.00010 2.5

Table 1 Average values of 25 test instances for different configurations of the number of small and large FUEL

bid groups that local and nationwide bidders submit, respectively.

be solved in less than 100 seconds even when local bidders are allowed to submit up to 50 small

FUEL bid groups each.

According to our test results in Table 1, the number of small and large FUEL bid groups that
bidders are allowed to submit has a direct impact on the number of binary variables and constraints
present in the FUEL winner determination problem. Restricting the number of bid groups in the
auction is, therefore, a viable method for auctioneers to tame the computational complexity.

If nationwide bidders are absent, then all bid groups only contain bids for a single EA. Thus,
the FUEL winner determination problem can be solved separately for each of the 170 EAs, leading
to substantially reduced runtimes even when local bidders are allowed to submit 50 bid groups.
Once nationwide bidders are added to the auction, their large bid groups create interdependencies

between different EAs which increases the complexity of the allocation problem substantially.

7.2. FUEL Admissible EAs
Even when restricting bidders to at most seven bid groups, the binary program for solving the
FUEL allocation program is still very large, with roughly 125,000 binary variables and 40,000
constraints. The reason such large binary programs can still be solved within 30 minutes is the
hierarchical structure of EAs and PEAs. In fact, if no large bid groups were submitted by any
nationwide bidder, the allocation program could be solved independently in each of the 170 EAs
as every small bid group contains PEAs from only a single EA. This hierarchical structure allows
the optimizer to decompose the problem and apply effective cuts in the branch-and-cut algorithm.
Branch-and-cut involves running a branch-and-bound algorithm and using cutting planes to tighten
the linear programming relaxations (Mitchell 2002). Such algorithms are the basis for most of the
mixed-integer programming solvers available today.

In the following test, we analyze the degree to which the hierarchical structure impacts the

runtimes. For this, we successively increase the maximal number of EAs contained in a small bid
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group. Raising this number above one creates inter-dependencies between small bid groups and
therefore effectively prevents the optimizer from decomposing the full binary problem into smaller
subproblems. The benefit of this relaxation for local bidders is that they are given the ability to
express synergies between licenses of PEAs belonging to different EAs in their small bid groups.
The bid generation of the FUEL bid generator is adapted as follows. Let k denote the parameter
that defines the maximum number of EAs for which bidders may state demand within the same
bid group. In a first step, we determine the market area for every local bidder which is given by
a set of k EAs that form a highly cohesive component. Within this market area, a bidder submits
small bid groups, each containing bids for at least one and at most all PEAs present in the bidder’s
market area. The bid generation for nationwide bidders is independent of parameter k as there is
no restriction regarding the number of EAs contained in large bid groups that nationwide bidders
submit. For the following tests, we assume that local bidders submit seven small bid groups and
nationwide bidders submit seven large bid groups as our tests in Section 7.1 indicate that for k =1

such instances can be solved within the time limit of 30 minutes.

Result 2 If 1,000 local bidders are allowed to submit seven bid groups across two EAs (not only
within one FEA), there already exists one test instance that cannot be solved within the time limit.
If the admissible number of EAs per small bid group is increased to 15, only one out of 25 test

mstances can be solved within the time limit.

For each configuration of k (the maximum number of EAs contained in any local bidder’s small
bid group), we generate 25 random test instances. Table 2 lists the number of bid groups submitted
by all bidders, the average number of binary variables and constraints in the winner determination
problem, the average runtime, the number of test instances that exceed the time limit of 30 minutes,
the maximum MIPGap, and the average number of licenses that remain unsold of all 5,684 (406 x

14) licenses.

k Bid Binary Constr. | Runtime TLE Max Unsold
Groups Variables in sec. MIPGap | Licenses

1 7,070 124,992 40,769 236 0 of 25 0.00010 4.0

2 7,070 147,180 49,131 322 1 of 25 0.00013 2.7

3 7,070 172,622 58,552 452 1 of 25 0.00012 2.8

5 7,070 223,804 77,553 542 1 of 25 0.00012 2.7

7 7,070 278,374 97,584 1,105 3 of 25 0.00075 2.6

10 7,070 354,776 125,916 1,593 15 of 25 0.00108 5.1

15 7,070 473,227 169,964 1,784 24 of 25 0.00423 8.1

Table 2 Average values of 25 test instances for different restrictions on the number of EAs that can be

contained in a single small bid group.
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The test results in Table 2 imply that raising the maximum admissible number of EAs for small
bid groups has a significant impact on the runtime. Moreover, we witness an increase of binary
variables and constraints in the binary program despite the number of bid groups staying constant
for all configurations of k. This is mainly due to the fact that with a higher value for k£ local bidders
have a larger market area in which they are active so that they tend to be interested in spectrum
of more PEAs.

One could argue that the substantial increase in runtime is predominantly due to the fact that
the binary program becomes much larger when raising parameter k whereas the impact of the
underlying hierarchical structure is negligible. The substantially larger binary program stems from
the fact that the number of PEAs in a local bidder’s small bid group is chosen uniformly at random
between one and the maximal number of PEAs in her market area. As the market area grows when
raising k, bidders submit more bids which causes the binary program to grow substantially. In
order to keep the number of binary variables and constraints constant across different parameter
settings of k, we divide the number of local bidders by k for each treatment. At the same time, we
assume that a local bidder’s bid group contains at least k (previously one) and at most all PEAs

present in the bidder’s market area. The results of this test are shown in Table 3.

k Local Bid Binary Constr. | Runtime TLE Max Unsold
Bidders Groups Variables in sec. MIPGap | Licenses

1 1,000 7,070 124,992 40,769 236 0 of 25 0.00010 4.0

2 500 3,570 119,955 40,240 491 2 of 25 0.00021 18.5

3 333 2,401 119,466 40,465 549 3 of 25 0.00096 27.3

4 250 1,820 119,008 40,499 734 4 of 25 0.00062 40.5

5 200 1,470 119,063 40,579 767 3 of 25 0.00046 55.2

Table 3 Average values of 25 test instances for different restrictions on the number of EAs that can be

contained in a single small bid group.

Even though the number of binary variables and constraints is roughly the same, the runtime
grows significantly when raising parameter k. Note that this test also has an interesting economic
interpretation. For k = 5 there are 200 distinct local bidders whose market area contains 5 economic
areas each. For this choice of k, the 200 bidders can express synergies between licenses of different
economic areas as their small bid groups may contain bids for up to £k =5 EAs. In the treatment
where k =1 the same 200 bidders cannot express synergies. Instead, they must formulate individual
bid groups for each EA. The FUEL bid generator encodes this by representing each one of the 200
bidders as five distinct bidders so that there are 1,000 local bidders competing in the auction for

the treatment k=1.
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7.3. Unrestricted XOR

The FUEL bid language poses the restriction that small bid groups may only contain PEAs belong-
ing to the same EA. A standard XOR bid language, however, is fully expressive, which means that
bidders must be able to bid on packages of licenses belonging to any subset of PEAs (see Figure 4).

In the following test, we check whether an XOR bid language that only restricts bidders in the
maximum number of admissible XOR bids without imposing any further restrictions is computa-
tionally tractable for the C-band auction. Similar to our previous tests, we assume that there are
10 nationwide and 1,000 local bidders. We generate the XOR bids according to Section 6.3.

For different configurations of the maximum number of XOR bids that local and nationwide
bidders may submit in the auction, we generate 25 random test instances. Table 4 shows the
maximum number of XOR bids that local and nationwide bidders may submit in the respective
treatment (denoted z; and zy), the average total number of XOR bids present in the auction
(denoted ) z), the average number of binary variables and constraints in the winner determination
problem, the average runtime in seconds, the number of test instances that exceed the time limit of
30 minutes, the maximum MIPGap for any test case in the respective treatment, and the average

number licenses that remained unsold out of all 5,684 (406 x 14) available licenses in the auction.

zZL | 2N >z Binary Constr. | Runtime TLE Max Unsold

Variables in sec. MIPGap | Licenses
1 1 1,010 1,010 1,416 11 0 of 25 0.00010 651.1
2 2 2,020 2,020 1,416 200 2 of 25 0.00049 344.2
3 3 3,030 3,030 1,416 630 8 of 25 0.00175 218.8
5 5 5,050 5,050 1,416 977 13 of 25 0.00615 112.8
10 | 10 9,376 9,376 1,416 1,532 20 of 25 0.00124 43.3
25 | 25 | 22,402 22,402 1,416 1,381 18 of 25 0.00256 6.7

Table 4 Average values of 25 test instances for different restrictions on the number of XOR bids that both

local and nationwide bidders are allowed to submit.

Result 3 Even if both local and nationwide bidders are restricted to submit no more than two
XOR bids without restrictions on the EAs, two out of 25 instances cannot be solved within the time

limit of 30 minutes.

Our tests indicate that because of the additional inter-dependencies between bids containing
PEAs of different EAs, the corresponding winner determination problem becomes more complex.
If all bidders are restricted to submit no more than 10 XOR bids, 20 out of the 25 instances
cannot be solved within the time limit, even though this number of XOR bids is far too small

to give a reasonable account of a nationwide bidder’s preferences. Such limited bids also result
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in many licenses remaining unsold. When bidders are restricted to 5 bid groups, an average of
6.6 licenses remain unsold when using the FUEL bid language (see Table 1), while 112.8 licenses
cannot be allocated when applying the XOR bid language, causing a significant revenue loss for
the auctioneer. In this subsection, we did not report welfare losses due to the missing bids problem,
because we are not able to solve the problem with all possible valuations submitted. However, we

study the welfare loss compared to FUEL in the next subsection.

7.4. FUEL vs. XOR

The XOR bid language suffers from the missing bids problem and the fact that the winner deter-
mination problem quickly becomes intractable. On the other hand, the FUEL bid language makes
some restrictions on the types of package bids that can be expressed. In particular, small bid groups
can only be submitted within an EA. In this section, we want to analyze both effects. We analyze
two scenarios. In the first one, we derive XOR bids from previously generated FUEL bid groups
(see Appendix A) and analyze to what degree the missing bids problem affects the efficiency of the
XOR bid language. In the second scenario, we derive FUEL bid groups from previously generated
XOR bids (see Appendix B) and analyze the impact of the exposure risk of local bidders in the
FUEL bid language on welfare.

7.4.1. XOR Efficiency Losses due to the Missing Bids Problem
To compare the efficiency of a fully combinatorial XOR bid language to a FUEL bid language,
we need to ensure that we solve essentially the same problem instances with both the FUEL and
XOR bid language. Therefore, we first generate a random FUEL instance and then derive XOR
bids from the given FUEL bids as described in Appendix A. As a consequence, bidders in the XOR
auction have the same valuations as in the FUEL auction, but they are only able to state a fraction
of the potential winning FUEL bid combinations.

For our FUEL instances, we assume that local and nationwide bidders submit seven bid groups
as our tests in Section 7.1 suggest that such instances can be solved within the time limit of
30 minutes. In order to keep the XOR allocation problem tractable, we restrict local and nationwide
bidders in the maximal number of XOR bids they are allowed to submit and denote these upper
bounds by z; and zy, respectively.

Table 5 shows the auction type, the maximum number of bids that local and nationwide bidders
may submit (denoted z; and zy, respectively), the total number of submitted XOR bids (denoted
> z), the average number of binary variables and constraints in the winner determination program,
the average runtime in seconds to solve the allocation problem up to a MIPGap of 10~*, the
maximal MIPGap, the number of test cases that exceed the time limit of 30 minutes, the average

number of unsold licenses out of 5,684 (406 x 14) licenses, and the average efficiency (denoted Eff.).
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Type | z1 | 2N >z Bin. Constr. | Runtime TLE Max Unsold Eff.
Vars. in sec. MIPGap | Licenses
FUEL 7 7 7,070 | 124,992 | 40,769 236 0 of 25 0.00010 4.0 1.000
XOR 1 1 1,010 1,010 1,416 0 0 of 25 0.00010 764.6 0.822
XOR 3 3 3,029 3,029 1,416 265 3 of 25 0.00015 376.0 0.913
XOR 5 5 5,010 5,010 1,416 478 5 of 25 0.00033 256.8 0.936
XOR 7 7| 6,648 6,648 1,416 612 8 of 25 0.00125 204.4 0.945
XOR | 10 | 10 | 8,718 8,718 1,416 629 8 of 25 0.00367 164.4 0.952
XOR | 15 | 15 | 12,080 | 12,080 1,416 683 9 of 25 0.00662 124.9 0.957

Table 5 Average values of 25 test instances for different limitations on the number of XOR bids that local and

nationwide bidders are allowed to submit.

Result 4 If bidders are only allowed to submit the same number of bids in the XOR as in the
FUEL auction, more than 3.5% of all licenses remain unsold, the welfare loss compared to FUEL
is 5.5%, and there are already 8 out of 25 test instances that are intractable. Even when bidders are
allowed to submit more than twice as many XOR as FUEL bids, still 2.2% of the licenses remain

unsold and the welfare loss is 4.3%.

At first sight, it might be surprising that the efficiency of the XOR bid language is still around
90% even though bidders can only state a fraction of their valuations. This is mainly due to the
unequal population distribution among the PEAs. While more than 50% of the population live
in the 25 most populous PEAs, the 50% least populous PEAs account for less than 10% of the
population. As the value of a license block in a PEA is based on the population living in a PEA
according to our value model (see Section 6.1), allocating the licenses in the 50% most populous
PEAs already corresponds to serving 90% of the population. Thus, even though a large fraction of
licenses remains unsold, the efficiency can still be considerably high when allocating licenses in the
most populous PEAs. It is important to note that we can only solve the XOR instances because
the XOR bids generated from FUEL reflect the hierarchical structure of EAs and PEAs such that
many XOR bids of local bidders do not overlap across EA boundaries. With unrestricted XOR

bids, we would suffer from significantly higher MIP gaps as can be seen in Section 7.3.

7.4.2. FUEL Efficiency Losses due to the Exposure Problem When bidders must bid
separately for different EA-packages without including them in a single package bid, that introduces
an exposure problem: a bidder could win licenses in some EAs without winning the package it
needs for a sensible business plan. The next experiments explore the magnitude of the losses this
imposes when bidders have values for 10 or 25 XOR packages and zero for all other packages. This
raises a question about how to generate FUEL bids when the actual packages are XOR ones. We

do this by converting each XOR bid into one or more FUEL bid groups (in those cases where
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an XOR bid includes PEAs from multiple EAs, see Appendix B).® This naive conversion leads
to a proliferation of FUEL bid groups and to a consequent failure to solve some FUEL instances
to optimality within 30 minutes. However, even when the solution process is terminated after 30
minutes, the maximum MIP gap across the 25 instances is low. Although we cannot compute
the XOR winner determination problem with 10 bids per bidder to optimality (see Section 7.3),
our data reports assume that the solution with XOR bids is optimal and measure the efficiency
loss from the FUEL exposure problem relative to that value. Although this environment is biased
against FUEL bid groups, the average efficiency loss in our computations is only around 2% when
every bidder submits 25 package bids, even with high synergies. This happens because a certain
amount of the package bids of local bidders in our model is within an EA, and for all of these
packages bidders can express their synergies appropriately.

As discussed further in Appendix B, when deriving FUEL bid groups from XOR bids, we mitigate
the exposure problem by reducing the base price of the corresponding FUEL bid groups by a
fixed percentage, which we call the synergy level. We consider three different synergy levels in our
experiments, namely 30%, 50%, and 70%, using the respective XOR test instances from Section 7.3
as baseline when calculating the efficiency of the derived FUEL instances.

Table 6 lists the synergy level, the number of XOR bids that local and nationwide bidders
submit (denoted z;, and zy, respectively), the average total number of FUEL bid groups derived
from these XOR bids, the average number of binary variables and constraints in the FUEL winner
determination problem, the average runtime in seconds to solve the FUEL allocation problem up
to a MIPGap of 10~%, the maximal MIPGap of any test instance, the number of test instances that
exceed the time limit of 30 minutes, the average number of unsold licenses out of 5,684 (406 x 14)

licenses, and the average efficiency (denoted Eff.) with respect to the XOR instances of Section 7.3.

Synergy | zr | 2N Bid Bin. Constr. | Runtime | TLE Max Unsold Eff.
Level Groups | Vars. in sec. MIPGap | Licenses
30% 10 | 10 | 17,371 81,135 66,689 143 1 of 25 | 0.00058 3.5 0.968
30% 25 | 25 | 42,971 | 202,239 | 162,204 765 9 of 25 | 0.00715 0.2 0.983
50% 10 | 10 | 17,371 81,135 66,689 370 4 of 25 | 0.00242 4.9 0.961
50% 25 | 25 | 42,971 | 202,239 | 162,204 1,057 14 of 25 | 0.00979 0.2 0.981
70% 10 | 10 | 17,371 81,135 66,689 604 8 of 25 | 0.00369 5.8 0.958
70% 25 | 25 | 42,971 | 202,239 | 162,204 1,124 15 of 25 | 0.01030 0.2 0.981

Table 6  Average values of 25 test instances for different synergy levels and number of XOR bids.

& One could compute the minimal set of FUEL bid groups required from the XOR bids of a bidder, which would be
a topic beyond this analysis.
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Result 5 If local bidders submit 25 XOR bids each, the efficiency loss of the FUEL auction com-
pared to the unrestricted XOR bid language is less than 2% even if bidders are assumed to have
strong synergistic valuations. With 10 XOR bids per bidder, the efficiency loss is at around 4%.
This comparison assumes a naive conversion of XOR bids into FUEL bid groups and assumes that
bidders have only 10 or 25 XOR bids and no value for any other combination, which zeroes out
the missing bids problem. Increasing the number of admissible XOR bids per bidder has a positive

effect on the efficiency of the derived FUEL instances.

7.5. FUEL vs. C-band Clock Auction

We also compare the efficiency of the FUEL auction design to the clock auction format, which
was the format used for the FCC’s C-band auction. As discussed in Appendix C and illustrated in
Example 2, bidders might be allocated a set of licenses in the clock auction that does not match any
of the packages specified in their FUEL bid groups, that is, licenses for areas that are geographically
scattered. In such cases, the bidders’ synergy effect for the allocated set of licenses can be expected
to be reduced or missing. We reflect this in our tests by reducing a bidder’s valuation for such
scattered packages by a fixed percentage, which we denote as synergy level in the tests below. More
specifically, we first determine the underlying value of the packages using our value model and then
reduce that value by either 30%, 50%, or 70% depending on the test scenario. For completeness,
we also run our experiments for the 0% scenario in which bidders are assumed to have no synergies
and, therefore, do not reduce their values for scattered license packages. For the four different
synergy levels, we analyze the efficiency for different limits on the number of admissible FUEL bid
groups.

For all our treatments, we use the same FUEL bid groups that we generated for our tests in
Section 7.1 and derive the clock bids from them as described in Appendix A. When running the
simultaneous clock auction, we apply the default values for the bid increment percentage (10%),
activity requirement percentage (95%), and upper activity limit (120%). Table 7 shows the max-
imum number of FUEL bid groups that local and nationwide bidders may submit (denoted z,
and zy, respectively), the average number of clock auction rounds, the average number of licenses
allocated to bidders whose allocated set of licenses does not match any of their FUEL packages,
and the average efficiency for synergy levels of 0%, 30%, 50%, and 70% compared to the respective
FUEL treatments from Section 7.1.

Result 6 If bidders are restricted to a single FUEL bid group and reduce the values for license
packages not represented by their FUEL bid group by only 30%, the efficiency loss of the clock
auction design is already larger than 10% and more than 41% of the licenses are allocated to bidders

who did not desire them. Raising the number of admissible FUEL bid groups above one leads to
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zZL | 2N Clock Undesired Efficiency Efficiency Efficiency Efficiency
Rounds Licenses Synergy 0% | Synergy 30% | Synergy 50% | Synergy 70%
1 1 15.6 2,348 1.001 0.891 0.818 0.745
3 3 15.8 3,290 0.997 0.839 0.733 0.628
5 5 16.7 3,965 0.996 0.798 0.667 0.536
7 7 16.4 3,653 0.995 0.812 0.690 0.568
10 | 10 16.6 3,943 0.995 0.798 0.667 0.536
15 | 15 16.6 3,763 0.995 0.804 0.678 0.551

Table 7 Average values of 25 test instances for different limitations on the number of admissible FUEL bid

groups per bidder, and different synergy levels for scattered license packages.

higher efficiency losses and a larger fraction of licenses being awarded to bidders who did not desire

them at the final clock prices.

If bidders are assumed to have no synergies for winning licenses in neighboring regions (i.e., the
0% synergy level scenario), then the efficiency of the clock auction design is close to the FUEL
auction design. In fact, as bidders may end up winning license packages in the clock auction which
are not included in their FUEL bid groups, the efficiency of the clock auction may even slightly
exceed the one of FUEL. However, in spectrum sales, some bidders appear to have strong synergies
between license blocks in neighboring geographic areas. The clock auction does not allow bidders
to express such synergies as only item-level bids are permitted. Our tests show that in settings
with large complementarities this restriction leads to substantial welfare losses compared to the
FUEL auction design where package bids are permitted.

When increasing the number of admissible FUEL bid groups, bidders may try to bid on packages
associated with different FUEL bid groups during different auction rounds. As the set of PEAs
contained in different FUEL bid groups may differ, a bidder’s risk to win a set of licenses not
aligned with any FUEL package grows. This explains the efficiency losses that we witness in our

tests when raising the number of permitted FUEL bid groups per bidder above one.

7.6. Summary

Let us briefly summarize the main findings from our extensive computational experiments. First,
with FUEL we can solve problems with 10 nationwide and 1,000 local bidders each submitting
seven bid groups within 237 seconds to optimality. These problem sizes are larger than what we
can expect in the USA and other countries. In contrast, if local bidders instead submit three
(unrestricted) XOR package bids, then 8 out of 25 test instances cannot be solved within the time
limit. Obviously, a restriction to three XOR bids would result in a huge missing bids problem with
substantial efficiency losses. In contrast, suppose a local bidder submitted a FUEL bid group with
14 adjustments to the base package in each of 10 PEAs. This would describe the valuation for
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almost 576 billion (15'°) package valuations. With only four adjustments for the 10 PEAs, a bidder
would already cover close to 10 million package valuations (5'%).

In the tests just described, the locals are limited to submit bid groups within an EA. The
efficiency loss from these restrictions depends on the synergies assumed. Even under the unrealistic
assumption that bidders submitted 25 XOR bids and had no value for any other package, the
efficiency loss due to the EA-restriction is only in the order of 2%, even when synergies account
for 70% of the package value.

For the simultaneous clock auction, inefficiencies in settings with large complementarities result
from bidders not being able to submit package bids. We show that depending on the synergies
the efficiency loss in the simultaneous clock auction can be substantial, even if we assume truthful
revelation of the payoff-maximizing package in each round. As a result, sealed-bid auctions with
an XOR bid language as well as the simultaneous clock auction risk substantial welfare losses in
large-scale spectrum sales where bidders exhibit high synergies between the licences of neighboring
regions, while FUEL provides a tractable alternative even with many licenses available in each

area.

8. Conclusion

The design of combinatorial auctions with hundreds of items is challenging. In large spectrum
auctions, the XOR bid language is the standard and has rarely been debated in the auction design.
In this paper, we investigate the computational hardness of the FUEL bid language based on the
case of the planned C-band auction for the US, which constitutes an important real-world case.
Even though the winner determination problem of the FUEL bid language is NP-hard and contains
roughly 125,000 binary variables and 40,000 constraints, our experiments indicate that this auction
can consistently be solved in less than 30 minutes, and usually much less. We find evidence that
the short solution times predominantly result from the hierarchical structure created by FUEL,
which allows the optimization algorithms to decompose the binary program effectively, in which
combinations of bid groups serve as messages to decompose the problem. This likely explains our
empirical finding that limiting the number of bid groups that local and nationwide bidders may
submit and restricting the maximal number of economic areas that local bidders can include in a
small bid group effectively reduces the empirical hardness of the allocation problem.

In our experiments, in contrast to FUEL, a fully enumerative XOR bid language quickly becomes
computationally intractable. As is well-known, bidders would need to specify an exponentially
large set of XOR bids to express the same preferences as in a FUEL bid group with adjustments.
Although the FUEL bid language is not fully expressive and limits the set of values that can be

expressed relative to an XOR bid language, it is based on common spectrum valuation methods



Bichler, Milgrom, and Schwarz: The FUEL Bid Language
Management Science 00(0), pp. 000-000, © 0000 INFORMS 33

and may often be able to express values close to the bidders’ actual ones. To the extent that FUEL
bids fail to capture actual values, that loss must be weighed against FUEL’s mitigation of the
missing bids problem that inevitably arises in large auctions using XOR, bids. Our experiments
show that both the missing bids problem and computation failures using an XOR bid language
can lead to significant welfare losses.

When comparing FUEL to the simultaneous clock auction format that was eventually used by
the FCC for the C-band auction, the allocative efficiency of the clock auction in our numerical tests
is substantially lower. This is predominantly due to the bidders’ inability to submit package bids
in the clock auction, preventing them to express their assumed strong synergies between license
blocks of geographically neighbored areas accurately.

In summary, by allowing bidders to use bid groups with adjustments to their base bids, the
FUEL bid language gives bidders an intuitive and compact way to describe their valuations and
effectively address the missing bids problem. The hierarchical structure of the bid groups makes
it possible to solve very large problem instances exactly on a desktop computer in a matter of
minutes. The specifics of the bid language allow for exact solutions in large-scale auctions with
several hundred items, which would recently have been considered intractable.

As always, there are some limitations. FUEL assumes a hierarchical structure of the goods,
with economies of scale within product categories or regions and economies of scope across them.
Our experiments further assume that local bidders (active only in one region or product category)
compete against nationwide bidders (active in many regions or product categories). We have argued
that many auction applications appear to exhibit such a value structure. Many bidders may find
this structure intuitive and, mathematically, it allows decomposition of the problem for each region
or product category, conditional on the message of which bid groups are winning.

The FUEL language emphasizes the tradeoff between the structure in the bid language and the
ability to compute exact solutions in large auctions. The simultaneous multi-round auction was
originally introduced despite its problematic bidding language because it was thought to enable
more attention to packages than a sequence of single item auctions. By taming the communication
and computational complexity of large-scale combinatorial auctions, FUEL is the first bid language
to enable practical combinatorial spectrum auctions in the presence of many products with scale
and scope economies, where SMRA based clock auctions have until now been the only practical

solution.
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Appendix A: Deriving XOR Bids from FUEL Bid Groups
In an XOR bid language, bidders are unable to specify adjustments. If a bidder wants to state the same
information as in a FUEL bid, she has to place one XOR bid for each possible combination of adjustments

and adapt the price of the XOR bid according to the chosen markups and discounts (see Figure 5).

SMALL _ Base prlc#eE:LiSé)e(Lses XOR Price: 1,500
EA [PEA 3 4 5 —> E7A PiA #LICSenses
7 44 Base 400 750 51 -

7 271 -50 Base

Figure 5 A random XOR bid is generated from a FUEL bid by picking a random adjustment combination. In
this example the chosen adjustment combination is highlighted blue. The price for the XOR bid is given by the
base price of the FUEL bid adjusted by the selected increment and decrement, i.e., $800 + $750 — $50 = $1,500.

Unfortunately, the number of XOR bids necessary to reproduce a FUEL bid group can become very large.

According to our value model, a bidder places (in addition to her base bid) on average two adjustments for
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each PEA contained in her bid group. If a nationwide bidder submits a bid group containing all 406 PEAs,
this means that there would be 3%%6 ~ 5.14 - 101”3 XOR bids necessary to state the same valuations as in a
FUEL bid group.

Due to this vast amount of adjustment combinations, it is impossible for bidders to express their assumed
valuations to the same degree of accuracy in the XOR bid language as in the FUEL bid language. In fact, in
order to guarantee computational tractability of the XOR allocation problem, it is indispensable to restrict
the number of XOR bids that any bidder is allowed to submit.

To compare the FUEL and XOR bid language in terms of efficiency and runtime we proceed as follows. For
every bidder, we first generate FUEL bid groups according to Section 6.2. For each XOR bid to be generated,
we select one of the bidder’s FUEL bid groups uniformly at random, pick a random adjustment combination,
and finally set the price of the XOR bid to be equal to the implied FUEL bid price, incorporating the

markups and discounts for the chosen adjustments (see Figure 5).
Appendix B: Deriving FUEL Bid Groups from XOR Bids

When deriving FUEL bid groups from XOR bids, one has to distinguish three cases: (1) the XOR bid only
contains bids for PEAs belonging to the same EA, (2) the licenses specified in the XOR bid exceed the
MHz-pop threshold that is necessary for a FUEL bid group to be considered large, and (3) the XOR bid
contains PEAs belonging to different EAs but the demanded licenses do not exceed the MHz-pop threshold
necessary for a FUEL bid group to be considered large.

In cases (1) and (2) the XOR bid can be transformed straightforwardly to a FUEL bid group as follows:
The base package of the FUEL bid group contains the same set of licenses specified in the XOR bid, the
base price of the FUEL bid group equals the price of the XOR bid and the FUEL bid group is labeled small
or large depending on whether it corresponds to case (1) or (2).

However, XOR bids corresponding to case (3) have to be treated carefully. As the MHz-pop of such an
XOR bid does not exceed the MHz-pop threshold, the XOR bid cannot be transformed to a large FUEL bid
group. Transforming it to a single small FUEL bid group is also infeasible as small FUEL bid groups may
only contain bids for a single EA. Therefore, the only possibility is to express the XOR bid through multiple
independent small FUEL bid groups, one for each EA contained in the XOR bid (see Figure 6).

The bidder does not have control over the subset of bid groups that may eventually be accepted by the
auctioneer. Thus, the bidder may end up winning a set of licenses that she did not originally specify in one
of her XOR bids. This exposure risk has to be taken into account when determining the base prices of the
derived bid groups. We reflect such potential efficiency losses by reducing the base price of such small FUEL
bid groups by a fixed percentage which we refer to as synergy level. As the degree of synergies depends on

the domain, we consider several different synergy levels in our tests in Section 7.4.
Appendix C: Deriving Clock Bids from FUEL Bid Groups
To compare the FUEL bid language to the clock auction design adopted for the C-band auction, we first

generate suitable FUEL bid groups for each bidder and then derive clock bids from them in each round of

the clock auction. A distinctive difference between the FUEL bid language and the clock auction format is
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FUEL SMALL Base price: 343
#Licenses
XOR Price: 530 EA | PEA 2 3
EA | PEA || #Licenses | License 6 41 Base
Value /( 6 210 Base
6 41 3 420
6 | 210 2 70 \‘ FUEL SMALL Base price: 28
7 | 271 2 40 #Licenses
EA | PEA 2
7 271 Base

Figure 6 The XOR bid can be expressed by two separate FUEL bid groups. The fourth column of the XOR bid
contains the underlying valuations w.r.t. the sigmoid value model. If the synergy level is set to 30%, then the

base price of the first FUEL bid group equals (1 —0.3) - ($420 + $70) = $343.

that FUEL allows bidders to submit bids on entire packages of products, while the bids of the clock auction
only refer to a single product. Moreover, while a FUEL bid group is entirely accepted or rejected, a bidder
may win some but not all of her bids in the clock auction and might be forced to purchase more license
blocks for a PEA than specified by her bids (see Example 2).

For simplicity, let us at first assume that each bidder submits only a single FUEL bid group. (We will treat
the case where bidders submit multiple FUEL bid groups later on.) Given arbitrary prices for the products,
a bidder is able to identify the FUEL adjustment combination that maximizes the bidder’s utility at the
given prices while requiring fewer bidding units than the bidder’s eligibility. Such an adjustment combination
for a bid group g of bidder ¢ can be determined by maximizing the following integer program. We reuse the

notation from Section 3.3 and add a few more parameters:
¢, Price for a single license block in PEA p € P.
u, Bidding units associated with a license block in PEA p e P.
e; Maximum number of bidding units for which bidder i € I is allowed to submit bids.

max wi + Z Z (yfpk (uﬁ"’k —kcp)) (1)

g gp
pEP? kEKS

s.t. Z Yot =1 Vpe P! (2)

keKJ?

D> Wkw)<e 3)

peP! keK?P

¥ €{0,1} Vpe P{ Yk e K” (4)

We assume that all bidders bid straightforwardly throughout the auction, i.e., in every auction round each
bidder expresses her utility-maximizing FUEL package by a collection of clock bids. Depending on the bids
submitted in a clock round, the price of a product may take on any value between its start-of-round and
clock price. A bidder does not have control over the bids placed by her competitors so that she does not
know ahead of the bid processing which prices the products may take on. Therefore, the bidder solves the
upper integer program not only at the start-of-round and clock prices but also at the 10%, 20%, ..., 90%

price points. In case her demand for a product changes with respect to a previous price point, the bidder
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places a suitable clock bid. Evaluating the optimization problem at 11 distinct price points allows the bidder
to resemble the FUEL bid sufficiently close.

At some point during the clock auction, the prices might get so high that the bidder’s utility for any
adjustment combination becomes negative. In such a situation, the bidder no longer demands any licenses
and therefore specifies a demand of zero licenses for each product. As discussed in Example 2, bids to reduce
demand will only be processed by the auctioneer if they do not create or increase oversupply. As a result, a
bidder may end up with a set of licenses not resembling any adjustment combination specified in her FUEL
bid group. Especially for nationwide bidders, this is very undesirable because they might end up winning a
geographically very scattered set of licenses. Of course, such scattered license packages are of less value to a
bidder than one of the FUEL packages for which the bidder has synergies. Therefore, we assume for our tests
in Section 7.5 that a bidder’s valuation for any set of licenses not representing any of her FUEL adjustment
combinations is reduced by a fixed percentage.

So far we have focused on the situation where each bidder only submits a single FUEL bid group. Whenever
bidders submit multiple bid groups, the utility-maximizing FUEL package may correspond to different bid
groups at different price points during a clock round. However, swapping the demand from one FUEL package
to another has two major drawbacks for a bidder. First of all, it increases the probability that a bidder ends
up with a set of licenses that does not correspond to any FUEL package since FUEL bid groups may contain
different sets of PEAs. Secondly, it may create a situation where the bidder’s demand for a product oscillates
during a clock round. However, according to the rules specified by the FCC, a bidder’s demand trajectory for
a product within a clock round must be monotonic. Therefore, in situations where bidders submit multiple
bid groups, we assume that a bidder first determines the FUEL bid group that maximizes her utility at clock

prices, and then only submits clock bids with respect to this single bid group during a clock round.



