
Noname manuscript No.
(will be inserted by the editor)

Strong Substitutes: Structural Properties, and a
New Algorithm for Competitive Equilibrium Prices

Elizabeth Baldwin · Martin Bichler ·
Maximilian Fichtl · Paul Klemperer

the date of receipt and acceptance should be inserted later

October 2021

Received: date / Accepted: date

Abstract We show the Strong Substitutes Product-Mix Auction (SSPMA)
bidding language provides an intuitive and geometric interpretation of strong
substitutes as Minkowski differences between sets that are easy to identify. We
prove that competitive equilibrium prices for agents with strong substitutes
preferences can be computed by minimizing the difference between two linear
programs for the positive and the negative bids with suitably relaxed resource
constraints. This also leads to a new algorithm for computing competitive equi-
librium prices which is competitive with standard steepest descent algorithms
in extensive experiments.

Keywords Competitive equilibrium · Walrasian equilibrium · Strong
substitutes · Product-Mix auction · Envy-free prices · Indivisible goods ·
Equilibrium computation · DC programming · Auction theory · Algorithms ·
product mix auction

Corresponding author:
Maximilian Fichtl. Email: max.fichtl@tum.de, phone: +4917699811410.

Elizabeth Baldwin
Dept. of Economics and Hertford college, Oxford University

Martin Bichler
Dept. of Computer Science, Technical University of Munich

Maximilian Fichtl
Dept. of Computer Science, Technical University of Munich

Paul Klemperer
Dept. of Economics and Nuffield College, Oxford University

2 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

1 Introduction

This paper shows that for an important and widely-studied class of problems–
those for which agents have strong substitutes valuations over multiple units
of multiple differentiated goods–competitive-equilibrium prices can be found
by considering two linear programs. Specifically, we relax resource constraints
on both programs in the same way, and find the relaxation that minimizes
the difference between the objectives of the two programs; the dual prices
of one of these relaxed programs are competitive equilibrium prices. We de-
rive this result by using the geometric representation of preferences provided
by the Strong Substitutes Product-Mix Auction (SSPMA) bidding language.
This then allows us to develop an efficient algorithm to find the competitive
equilibrium prices when preferences are represented this way. Since, as we de-
tail below, the SSPMA language is a natural way for agents to express their
preferences, our algorithm is a practical way to find competitive equilibrium
prices for strong substitutes.

Our paper also provides a novel algorithm to find the prices in an SSPMA,
since these are prices that would be competitive equilibrium prices for the
given aggregate supply if bidders had bid their actual values.1 Participants in
SSPMAs make bids that express “strong-substitutes” preferences for multiple
units of multiple, differentiated, indivisible goods. Strong-substitutes prefer-
ences are those that would be ordinary substitutes preferences if every unit of
every good were treated as a separate good (Milgrom and Strulovici, 2009).
They are an extension of gross substitutes preferences (Kelso and Crawford,
1982) from single-unit to multi-unit, multi-item markets, and are equivalent to
M ♮-concavity (Danilov et al., 2001; Murota, 2016; Shioura and Tamura, 2015).
They have many attractive properties. In particular, all agents having strong-
substitutes preferences is a sufficient condition for the existence of competitive
equilibrium prices in markets with indivisible goods.

Furthermore, even though strong substitutes are a small subset of the set
of all possible valuation functions of a bidder, they are practically relevant for
various applications such as auctions used by the Bank of England (Klemperer,
2008, 2018). So a significant amount of theoretical literature has been devoted
to markets where participants have these valuations (Ausubel, 2006; Baldwin
and Klemperer, 2019; Murota and Tamura, 2003; Paes Leme, 2017).

Importantly, valid bids in the SSPMA bidding language permits the spec-
ification of precisely the set of preferences that are strong substitutes, and
indeed is the only language that is known to do this.2 As we will see, it is

1 Product-Mix Auctions give envy-free allocations to bidders who express their valuations
truthfully. The auctioneer can express its own preferences, and if all the bidders and the
auctioneer express their true valuations (the Bank of England does in its role as a product-
mix auctioneer, and bidders approximate this if no one bidder is too large) then the auction
yields a competitive equilibrium.

2 See Baldwin and Klemperer (2016, 2021). By contrast, Ostrovsky and Paes Leme (2015)
show Hatfield and Milgrom (2005)’s endowed assignment messages cannot express all strong
substitute valuations, Fichtl (2021) likewise shows Milgrom (2009)’s (integer) assignment
messages cannot express all strong substitute valuations, and Tran (2019) shows that it is

Strong Substitutes: Structural Properties, and a New Algorithm 3

also parsimonious, or “compact”, in that many valuations can be expressed
using only a small number of simple bids.3 Finally, it expresses valuations in
a natural way, which can be understood and analyzed geometrically; we show
aggregate demand is the Minkowski difference between two easily identified
demand sets.

1.1 The Strong Substitutes Product-Mix Auction (SSPMA)

There is significant literature on computing competitive equilibria with strong
substitutes valuations. See, for example, Kelso and Crawford (1982), Bikhchan-
dani and Mamer (1997), Gul and Stacchetti (1999), Murota and Tamura
(2003), Ausubel (2006), Nisan and Segal (2006), Milgrom and Strulovici
(2009), Paes Leme (2017), Bichler et al. (2020), and Paes Leme and Wong
(2020).4 The interest in strong substitutes is due to the fact that it captures
practically relevant valuations for indivisible goods, but the allocation prob-
lem can be solved in polynomial time and Walrasian competitive equilibrium
prices always exist, which is not the case for general valuations (Bikhchandani
and Ostroy, 2002).

Prior literature requires either value oracles for exponentially many bun-
dles, or demand oracles. Demand oracles can be understood as indirect or
iterative mechanisms, where bidders reveal their demand correspondence for a
set of prices specified by the auctioneer. So in a large market with many goods
that is organized as a sealed-bid auction, the auctioneer needs to perform an
exponential number of value queries for each bidder before the allocation algo-
rithm can be run. Such enumerative (XOR) bid languages are used in spectrum
auctions, but can lead to “missing bids” problems, which can significantly af-
fect prices, and also create efficiency losses (Bichler et al., 2013).5

The SSPMA was developed by Klemperer (2008) for the Bank of England
to provide liquidity to financial institutions by auctioning loans to them. The
SSPMA is neither based on a value nor a demand oracle.6 A collection of bids
specifies a large number of package values, which mitigates the missing bids
problem. This type of preference elicitation permits efficient ways to compute
Walrasian prices, and allows us to uncover new properties of strong substitutes
valuations.

not possible to express all strong substitute valuations as combinations of weighted ranks
of matroids on a ground set bounded by the number of goods.

3 See Goetzendorff et al. (2015) for a discussion of compactness.
4 Paes Leme and Wong (2020) provides the fastest algorithm for value oracles and a new

algorithm for aggregate demand queries. However, the latter is different in spirit to our
paper which addresses a market design for applications such as the Bank of England’s.

5 Bidders who do not submit the very large number of bids required to fully specify their
valuations are treated as if they place no value on the packages they fail to bid for.

6 If a demand oracle is what is available, a conversion to SSPMA is available via Goldberg
et al. (2020)’s algorithm which computes the (unique) list of bids corresponding to a bidder’s
demand preferences, given access to either a demand or a valuation oracle.

4 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

Each bidder makes a set of bids, each of which is a vector b, incorporating
an integer weight w(b). Each bidder’s set of bids is interpreted as specifying a
quasi-linear utility function over multiple units of each of n goods plus money.
A bid in which w(b) > 0 (a “positive” bid) is simply interpreted as a bid for
up to, but not more than, w(b) units, in total, of the goods i = 1, . . . , n, in
which the expressed value of receiving xi units of good i is xi · bi.

Example 1. A bidder might be interested in 2 units, and be willing to pay
up to price 2 for each unit of good 1, but only up to price 1 for each unit of
good 2. These preferences can be implemented by a single bid b = (2, 1) with
w(b) = 2. Figure 1 shows how the bid b divides price space into three regions:
for example, if the price vector p = (p1, p2) lies in the region labeled as “(2, 0)
demanded” then, at this price vector, receiving the bundle (2, 0) maximizes the
bidder’s utility among all feasible bundles. The black lines mark the borders at
which the demanded bundle changes. If prices lie exactly on the boundary of
two or more regions, then the set of demanded bundles is given by the discrete
convex hull of the bundles demanded in the adjacent regions. For example, if
p = (2, 4), the bidder demands bundles (0, 0), (1, 0) or (2, 0).

20

(0,0)
demanded(2,0)

demanded

(0,2)
demanded

1

1

𝑝1

𝑝2

(+2)

Fig. 1 Example of using a single bid to represent preferences in a Product-Mix
auction. The single bid with weight 2, implementing the preferences of Ex. 1. The total
demand generated by the bid is indicated in each region of price space.

Bids in which w(b) < 0 (“negative” bids) are interpreted as “cancellation”
bids that cancel part of the demand created by positive bids. But this means
that all bids can be treated by the auctioneer in exactly the same way: a
bid is accepted whenever at least one of its prices exceeds the corresponding
auction price and, if it is accepted, then it is allocated the good on which its

Strong Substitutes: Structural Properties, and a New Algorithm 5

5

7 k2

(+40)

(+80)

(+100)

0

Strong (%))
Price on

Weak (%))
Price on

(-40)

(k-2)

(100,80)
demanded

(40,0)
demanded

(0,40)
demanded

(0,80)
demanded

(100,0)
demanded

Fig. 2 Example of using positive and negative bids to represent preferences in a
Product-Mix auction. The set of bids implementing the preferences of Ex. 2. The sizes of
the bids ($millions) are shown next to the black and white circles that represent the positive
and negative bids, respectively. The total demand generated by the complete set of bids,
($millions of weak, $millions of strong), is indicated in each region of price space.

price exceeds the corresponding auction price by most.7 The following example
from Klemperer (2008, 2010) demonstrates the potential usefulness of negative
bids in the context of the Bank of England’s auctions, in which the different
goods were “weak collateral” and “strong collateral”, and the prices were the
interest rates that the winning bidders paid:8

Example 2. A bidder might be interested in $100 million of weak collateral
(good 1) at up to a 7% interest rate, and $80 million of strong collateral (good
2) at up to a 5% interest rate. However, even if prices are high, the bidder
wants an absolute minimum of $40 million (see Figure 2). These preferences
can be implemented by making all of the following four bids:

I $100 million of weak at 7%.
II $80 million of strong at 5%.
III $40 million of {weak at maximum permitted bid OR strong at maximum

permitted bid less 2%}.
IV minus $40 million of {weak at 7% OR strong at 5%}.

Note that the bids lead to an arrangement of hyperplanes, at each of which
the agent is indifferent among more than one bundle. Bids (I) and (II) together
generate the demand shown in the three quadrants to the left of (7, 0) and/or

7 Note that negative dot bids cannot be understood as offers to sell–an offer to sell would
be accepted whenever its price is sufficiently low, whilst a negative bid cancels a purchase
whenever one of its prices is sufficiently high.

8 Although negative bids were offered as an option to the Bank of England in Klemperer
(2008), its Product-Mix auctions did not use them. Prior to 2014, bidders could make any
set of positive bids, and the auctioneer (the Bank of England) expressed its own preferences
using a supply function that was equivalent to using any set of positive bids (see Appendix E1
of Klemperer (2018)). Since 2014, the auctions run by the Bank have allowed the auctioneer
to use richer preferences than this, but have restricted to bidders to sets of bids “on the
axes” (that is, to sets of bids each of which has bi > 0 for only one i).

6 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

below (0, 5), but would on their own imply zero demand in the top right
quadrant. Adding the high positive bid, (III), at (k, k − 2), in which k is
the maximum permitted bid on either good (we assume k is large), would
add demand of $40 million of weak everywhere above the 45 deg diagonal
line through (2, 0), and $40 million of strong everywhere below this line; the
negative bid, (IV), at (7, 5) then cancels this bid everywhere to the left of, and
below, (7, 5).

Preferences of the kind illustrated in Example 2 are very natural for a
liquidity-constrained bidder, but cannot be accurately represented without
the use of a negative bid.9 However, with positive and negative bids, valid
bids in the bidding language can precisely represent any “strong substitutes”
preferences.10 Moreover, the way in which positive and negative bids define
demand sets has a nice geometric interpretation as Minkowski differences, as
we will show. And, importantly, as we discuss below, in practical settings ex-
pressing valuations with SSPMA bids is likely to be much more compact than
listing valuations explicitly as assumed in Bikhchandani and Mamer (1997) or
subsequent literature. For all these reasons, the SSPMA is a natural choice for
applications.

To make practical use of SSPMAs, however, requires that we can find
competitive equilibrium prices among participants using the bid language.11

That is, given the collection of the sets of bids made by all the participants,
we need to be able to find a price vector at which any given quantity vector of
goods would be exactly demanded if all the bids expressed participants’ actual
preferences.

If all the bids are positive, the competitive equilibrium price vectors are
just the shadow price vectors in the solution to a simple linear program, more
specifically a network flow problem, in which the number of variables is lin-
ear in the number of bids and distinct goods. The reason is that competitive

9 One way to understand a negative bid for a unit is that it is the highest price at which
you would cancel a bid for one unit. Reducing your purchases only at low prices makes no
sense on its own. However, in two dimensions, for example, it does make sense in conjunction
with a positive bid north-east of the negative bid which gives higher prices at which you
would buy (and that the negative bid therefore cancels when prices are low) and also other
bids to the west and south of it, at least one of which is accepted when the cancellation
operates (and without which there would be no reason for the cancellation).
10 Klemperer (2010) stated this result for the case of multiple units of each of two goods.
Baldwin and Klemperer (2016) and Baldwin and Klemperer (2021) show the general result,
and also show that any preferences represented by this language that are valid (i.e., the de-
mand for a good cannot decrease if its price falls while no other price changes–see discussion
below Definition 2) must be strong substitutes.
11 Bidders in a Product-Mix auction simultaneously make sets of bids that express their
preferences. The auctioneer then chooses the aggregate supply and allocates each participant
its competitive-equilibrium allocation at competitive-equilibrium prices, assuming that all
the expressed preferences are accurate. Ties between bids can be broken arbitrarily, since
participants who express their preferences accurately are indifferent. If there are multiple
competitive equilibria, the Bank of England’s Product-Mix auctions choose the best one for
bidders (this is uniquely defined–see discussion below Definition 2). See Klemperer (2008,
2010) for more details.

Strong Substitutes: Structural Properties, and a New Algorithm 7

equilibrium maximizes social surplus in our setting, so the relevant linear pro-
gram allocates the bids among participants to maximize the sum of their
surpluses, subject to allocating exactly the available supply.12 With negative
bids, however, the allocation problem cannot be modeled with only a single
linear program, and the computation of prices is then more challenging.

1.2 Our Contribution

We study characteristics of strong substitutes by using the SSPMA language.
First, we show that the positive and negative bids in the SSPMA allow us
to interpret strong substitutes as Minkowski differences between sets that are
easy to identify. This gives new insight into the geometric structure of strong
substitutes, a valuation class that is difficult to characterize. We then illustrate
the SSPMA language’s expressiveness using Ostrovsky and Paes Leme (2015)’s
notorious example of strong substitutes that other languages cannot represent.
We also explain that the language is compact for realistic settings, since the
bidder need not explicitly give a value for every bundle which it might be
allocated.

Our main contribution is an equivalence result for different mathematical
formulations of the pricing problem. We show that minimizing the difference
between the maximum social surpluses attained by solving certain pairs of al-
location problems–each of which is a simple problem–provides the information
we need to compute the equilibrium prices. Specifically, the correct quantity of
negative bids, s, accepted by the auctioneer minimizes the difference between
the objective function of the linear program that would be solved to allocate
the available supply increased by s if only the positive bids were available (we
call this the “positive program”), and the objective of a corresponding linear
program that would be solved to allocate a quantity of s using only the neg-
ative bids (the “negative program”). Moreover, the competitive equilibrium
price vectors are the shadow price vectors for the positive program for this
value of s.13 We prove these results by showing that minimizing the difference
between the positive and negative programs is dual to minimizing a Lyapunov
function L(p). More precisely, we show that the Toland-Singer dual (Maehara
and Murota, 2015; Toland, 1979) of L(p) is the minimum difference between
the positive and negative linear programs.

Baldwin, Goldberg, Klemperer, and Lock (2019) have recently shown that
a standard steepest-descent algorithm based on the Lyapunov function (fol-
lowing Murota and Tamura (2003)) can solve the SSPMA pricing problem, but
their method takes only limited advantage of the special features of the geo-

12 This is the solution method currently used by the Bank of England’s Product-Mix
program, which does not allow bidders to use negative bids.
13 These shadow price vectors are a subset (often a proper subset) of the shadow price
vectors for the negative program for this s.

8 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

metric representation.14 By taking fuller advantage of the structure of strong
substitutes analyzed in this paper, we find an alternative to steepest descent
on the Lyapunov function. Our algorithm draws on DC (difference of con-
vex functions) programming.15 Steepest descent algorithms on the Lyapunov
function are known to be very efficient. But we find that the DC algorithm
is at least similarly fast in all our experiments. Neither algorithm is consis-
tently faster, and in environments with only a low number of negative bids
(which we conjecture are the most likely ones in practice–see Section 2.3),
the DC algorithm is the faster one. So, while both algorithms terminate in a
few seconds even for large problem instances, the DC algorithm provides an
valuable new alternative by taking advantage of the structural properties of
strong substitutes.

1.3 Outline

We proceed as follows. Section 2 introduces the SSPMA bidding language. We
illustrate its expressiveness, and explain that it is a compact language that
expresses all strong-substitutes valuations (and no others) as the Minkowski
difference of positive and negative bids. Section 3 proves that the pricing prob-
lem can be solved by minimizing the difference between the objectives of the
two linear programs, by showing that this is dual to minimizing the Lyapunov
function. Section 4 takes advantage of this result to use “DC programming”
(difference of convex functions programming) to specify an algorithm to solve
the problem, and uses numerical experiments to compare our algorithm to a
steepest-descent algorithm based on the Lyapunov function. Section 5 con-
cludes. All proofs are in the Appendix.

2 The SSPMA Bid Language

2.1 Formal description of the SSPMA language

In the SSPMA, each of m bidders j ∈ {1, . . . ,m} submit an arbitrary
number of bids for distinct goods i ∈ {1, . . . , n}. A bid is a vector b =
(b1, . . . , bn; bn+1) ∈ Zn

≥0 × (Z \ {0}). Here, for i = 1, . . . , n, coordinate bi gives
the value for good i. The final coordinate bn+1 ∈ Z\{0} is the weight of the bid;
we write w(b) for the projection to this final coordinate. We refer to positive
and negative bids according to the sign of w(b). Prices p = (p1, . . . , pn) ∈ Rn

14 Unlike Baldwin, Goldberg, Klemperer, and Lock (2019) we focus on the structural prop-
erties of strong substitutes that arise from the SSPMA bid language as well as the economic
interpretation of the Toland-Singer dual of the widely used Lyapunov function.
15 Minimizing the difference between two M♮-convex functions is in general NP -hard
(Kobayashi, 2015; Maehara et al., 2018): the difference between the positive and negative
programs is neither convex nor concave. However, this specific problem can be solved in
polynomial time, as is clear from the relationship to the Lyapunov function.

Strong Substitutes: Structural Properties, and a New Algorithm 9

are linear. Our bundles of indivisible goods will be written x,y ∈ Zn
≥0. We

write ei for the coordinate vectors i = 1, . . . , n in Zn.
A positive bid b expresses the willingness of the bidder to pay at most bi

for units of good i = 1, . . . , n, and for up to w(b) units in total. It defines a
valuation vb on the domain ∆w(b) of bundles of at most w(b) units, that is,
∆w(b) = {y ∈ Zn

≥0 :
∑n

i=1 yi ≤ w(b)}, with vb(y) =
∑n

i=1 biyi. The utility
associated with this bid is quasi-linear, vb(y) − ⟨p,y⟩, so the indirect utility
associated with such a bid is just

ub(p) = w(b) max
i∈{1,...,n}

(bi − pi, 0), (1)

where we include 0 because the bid may instead be rejected. Any combination
of w(b) units of utility-maximizing goods is acceptable, as are fewer units
when ub(p) = 0, so the demand set is

Db(p) :=

{
y ∈ ∆w(b) :

n∑
i=1

yi(bi − pi) = ub(p)

}
. (2)

This set comprises all integer bundles in the convex polytope in which the
bundles w(b)ei, where i maximizes bi − pi ≥ 0, are vertices, and 0 is also a
vertex if maxi∈{1,...,n}(bi−pi, 0) = 0. If Db(p) contains more than one bundle,
we say all goods i = 1, . . . , n maximizing bi−pi are marginal for bid b at p. If
{0} ⊊ Db(p) then we say the bid is marginal to be accepted. If Db(p) = {0}
we say the bid is rejected.

Now consider a multiset B of positive bids, which could be all those placed
by a single bidder, or could, for example, be all bids from all bidders. The
aggregate indirect utility uB(p) is just the sum of indirect utilities: uB(p) =∑

b∈B ub(p), and the aggregate demand set DB(p) is the Minkowski sum of
demand sets DB(p) =

∑
b∈B Db(p).

However, we also allow negative bids: those for which w(b) < 0. These
do not represent a meaningful economic valuation on their own, but do so in
“valid” combinations with positive bids. Given a collection B of bids, write
respectively B+ and B− for the positive and negative bids in B. Write |b| for
the bid (b1, . . . , bn; |w(b)|), and write |B−| for the set of bids |b| where b ∈ B−.
Now the aggregate indirect utility is an appropriately signed sum of indirect
utilities:

uB(p) :=
∑
b∈B+

ub(p)−
∑

b∈|B−|

ub(p). (3)

We say that the set B is valid when the indirect utility uB is concave. (See The-
orem 1 of Baldwin, Goldberg, Klemperer, and Lock (2019); further discussion
of this notion is given below after Definition 2.)

To define the aggregate demand set with positive and negative bids, first
define the demand Db(p) associated with an individual negative bid b as
Db(p) = −D|b|(p) = {−x | x ∈ D|b|(p)}. Let Q comprise all price vectors q
in a small neighborhood of p, and such that Db(q) = {xb(q)} are singletons

10 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

for all b ∈ B. Then the aggregate demand set is equal to the discrete convex
hull

DB(p) = conv

{∑
b∈B

Db(q) : q ∈ Q

}
∩ Zn.

In particular, if Db(p) is a singleton for all b ∈ B, then DB(p) is just∑
b∈B Db(p) =

∑
b∈B+

Db(p) −
∑

b∈|B−| Db(p): negative bids are used to
“cancel” part of the demand arising from positive bids. We cannot extend
this rule to prices at which the demand set is non-unique simply by taking
the Minkowski sum of demand sets associated with all bids; negative bids
which are marginal between goods must be treated consistently with positive
bids marginal on those same goods.16 However, if the bids Bj of each bidder
j = 1, . . . ,m are valid, then the full aggregate demand set DB(p) defined by
B =

⋃m
j=1 Bj is indeed the Minkowski sum: DB(p) =

∑m
j=1 DBj (p).

When B contains only positive bids, we can aggregate the simple valuations
implied by individual bids, to obtain the aggregate valuation vB : ∆W → Z,
where W =

∑
b∈B w(b):

vB(y) = max

{∑
b∈B

n∑
i=1

xibbi :
∑
b∈B

xib ≤ yi ∀i and
n∑

i=1

xib ≤ w(b)∀b ∈ B

}
.

(4)
As usual, the relations uB(p) = maxx∈Zn

≥0
vB(x) − ⟨p,x⟩ and vB(x) =

minp∈Rn uB(p)+ ⟨p,x⟩ hold. The latter equation also gives us an indirect way
to identify the aggregate valuation if B is a valid set of positive and negative
bids. However, one of our main results, which is also the starting point to our
equilibrium pricing algorithm, is a purely primal expression for the aggregate
valuation in the presence of negative bids (Theorem 1).

The valuation implied by such bids is for strong substitutes:

Definition 1 (Ordinary and Strong Substitutes, Milgrom and
Strulovici (2009) and Baldwin and Klemperer (2019)) A valuation
v is ordinary substitutes, if for any price vectors p′ ≥ p with singleton demand
sets Dv(p

′) = {x′} and Dv(p) = {x}, we have x′
k ≥ xk for all k with p′

k = pk.
A valuation v is strong substitutes, if, when we consider every unit of every
good to be a separate good, v is ordinary substitutes.

The SSPMA only expresses preferences of this kind, and can express any
strong substitutes valuation (Baldwin and Klemperer, 2016, 2021)17. It is, to
our knowledge, the only bidding language that provably has this feature.

In an SSPMA such as the Bank of England’s, total supply is not pre-
determined; the auctioneer represents its preferences as supply schedules, and

16 For example, (140, 40) is not in the demand set at p = (3, 1) in the right-hand side of
Figure 1; the bids for −40 and 40 units must be treated consistently.
17 Klemperer (2010) stated this result for the case of multiple units of two goods. Lin
and Tran (2017) describes how any valuation can be analyzed tropical-geometrically and
can be decomposed into a combination of simpler pieces, but if the valuation is not strong
substitutes, these simpler pieces do not correspond to positive and negative bids.

Strong Substitutes: Structural Properties, and a New Algorithm 11

the auction finds competitive equilibrium given the auctioneer’s and bidders’
expressed preferences. However, the auctioneer can equivalently auction the
maximum quantity of each good that it would ever sell at any price vector,
and place appropriate bids to buy back quantities at lower prices.18 So we
index the auctioneer as agent 0 and include its bids in the set B of all bids
from all bidders. This paper therefore addresses the following problem:

Definition 2 (Equilibrium pricing problem) Given a valid set B of all
bids from all bidders (including the auctioneer) and a target supply t, find a
price vector p ∈ Rn, such that t is demanded at p, that is, t ∈ DB(p). Such
a price vector is called an equilibrium price.19

It is well-known that a competitive equilibrium does indeed exist, given
our assumptions of strong substitutes and a seller who will retain units of any
underdemanded good at a price of zero (Danilov et al., 2001; Milgrom and
Strulovici, 2009). Indeed, this also implies that equilibrium price in Rn

≥0 exists.
The set of equilibrium prices forms a lattice with respect to the Euclidean
ordering (Gul and Stacchetti, 1999; Murota, 2003), i.e., for any valuations
v1, · · · , vm, if p and p′ are equilibrium prices for such valuations, then p ∧ p′

and p∨p′ are also equilibrium prices. This implies that there exists an unique
minimal equilibrium price vector. It is possible to modify the algorithm we will
develop to find the minimal equilibrium price vector rather than an arbitrary
price vector.

To understand the “validity” of bids in the SSPMA, we briefly outline some
geometric ideas from Baldwin and Klemperer (2019). First, the collection B of
bids induces a set of prices at which the aggregate demand is not unique: the
“locus of indifference prices” (LIP), notated LB := {p : |DB(p)| > 1}. For a
price p to be in the LIP, at least one bid must be marginal, so some equality
of the form bi = pi or bi − pi = bj − pj must hold, where i, j ∈ {1, . . . , n} and
j ̸= i. Therefore, LB consists of a union of pieces of hyperplanes with normals
in {ei, ei − ej : 1 ≤ i < j ≤ n}. These pieces of hyperplanes are known as
facets. To each facet F , we assign a weight w(F), given by the sum of the
weights of bids that are marginal at a price in the relative interior of F . Facets
always have nonzero weight; if the sum of weights of marginal bids is zero then
one may see that demand is in fact unique.

The LIP LB splits price space into multiple unique demand regions (UDRs)
at which a unique bundle is demanded. Let p be a price vector in an UDR for
which the demand is known (for example, for p large, the demand is 0). If the
price p changes along a curve, and crosses a facet F of LB, then the demand

18 Klemperer (2018) (Appendix E1) illustrates how the auctioneer can do this for general
supply schedules; for the special case in which it just wishes to sell a bundle t = (t1, . . . , tn)
at any non-negative prices, it will simply auction supply t and enter a bid (0, . . . , 0;

∑
i ti)

into the auction.
19 This paper takes competitive behavior as given; we do not address the extent to which
bidders may distort their preferences. In an SSPMA it is rational for bidders whose demand
is not too large relative to aggregate demand to make bids that approximately reflect their
true preferences. Throughout this article, we assume that bids reflect true preferences.

12 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

changes by w(F)n, where n is the normal of F pointing into the opposite
direction of the path. For an illustration, see Figure 3. Thus, the LIP fully
encodes the aggregate demand at every UDR-price, and so – by taking convex
hulls – at every price.

20

(0,1)
demanded

(1,0)
demanded

(1,1)
demanded

1

1

𝑝1

𝑝2

2

(0,0)
demanded

Fig. 3 Finding demand in each UDR of a LIP. The black circles represent positive bids
with weight 1, namely (2, 2; 1), (1, 0; 1) and (0, 1; 1); the white circle represents a negative
bid, (1, 1;−1). Note that all facets emanating from this negative bid are canceled by parts of
facets arising from positive bids. A curve which determines demand in every UDR is shown
as a dashed line. The curve starts at a high price, where the demand is (0, 0). The vectors
where the path intersects the LIP indicate the correctly oriented normals of the facets with
respect to the path. For example, inspecting the crossings of facets reveals that the demand
at (0.5, 0.5) is 1 · (1, 0) + 1 · (−1, 1) + 1 · (1, 0) = (1, 1).

Now, a negative-weighted facet cannot arise from a quasi-linear preference
relation: when the price of one good decreases, the demand for that good must
not also decrease. So negative bids must be placed in such a way that, in the
resulting collection of facets, no facet has a negative weight. This condition
is equivalent to concavity of the indirect utility function.20 From now on we
assume that our bid collections are always valid. Note that if each individual
bidder’s bid set is valid, then so is the set of all bids from all bidders.

The following two subsections discuss geometrical interpretations and prop-
erties of this bid language. While they do not contribute directly to our main
Theorem 1 and the algorithm, they provide useful background on the role of
negative bids in the SSPMA and intuition for the overall approach.

2.2 Interpretation via Minkowski Differences

There appears to be a contrast between the intuitive definition of the aggregate
demand set when all bids are positive (so the aggregate demand set is just the
Minkowski sum of the individual demand sets) and the more involved definition

20 See Baldwin, Goldberg, Klemperer, and Lock (2019) Theorem 1, which shows that, at
any price, the sum of the weights of bids marginal between any pair of goods, or between any
good and being rejected, must be non-negative. The failure of this condition is equivalent
to the existence of a negative-weighted facet.

Strong Substitutes: Structural Properties, and a New Algorithm 13

x y

Fig. 4 The Minkowski sum A+(−B) and Minkowski difference A−B of a rectangle
A and a triangle B. Left: the rectangle A (in gray); four instances of a+ (−B), in which
a ∈ A and −B is the triangle (dashed line and its interior); and A + (−B) (black line,
including its interior). Right: the same rectangle A (in gray); six instances of a + B. For
five of these, such as a = x, we have a + B ⊆ A and so a ∈ A − B, but y + B ̸⊆ B and so
y /∈ A−B. The full set A−B is given by the black line and its interior.

when negative bids are present. Recall from Section 2.1 that in this case we
defined the aggregate demand set to be the discrete convex hull of bundles
which are demanded uniquely when we slightly change the price vector p. We
cannot simply take Minkowski sums because we must ensure that negative
bids are treated in a valid way with their associated positive bids (see the
discussion after Definition 2). However, if B is valid, then we can provide a more
parsimonious novel definition by using the Minkowski difference operation. We
recall that A − B consists of all points x ∈ Rn, such that x + B ⊆ A. The
geometric effect of this operation is illustrated in Figure 4. Note in particular
that in general A+ (−B) ̸= A−B.

Proposition 1 Let B be a valid collection of bids in an SSPMA. Then for
every price vector p the demand set DB(p) is equal to DB+(p)−D|B−|(p).

We prove this result in Appendix A.1.

2.3 Expressiveness and compactness of the SSPMA

To illustrate the expressive power of negative bids, we consider Ostrovsky and
Paes Leme (2015)’s notorious example of a valuation, vr, that shows that prior
bid languages such as the endowed assignment valuations by Hatfield and
Milgrom (2005) are strictly less expressive than the set of gross substitutes
(and so also strong substitutes) valuations.21 (We discuss the construction of
vr in Appendix A.2.) However,

Proposition 2 The valuation vr in Ostrovsky and Paes Leme (2015) can be
represented by 8 positive and 6 negative SSPMA bids.

21 Fichtl (2021) uses the same example to show Milgrom (2009)’s (integer) assignment
messages cannot express all strong substitute valuations.

14 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

This proposition illustrates Baldwin and Klemperer (2021)’s more general
result that all strong substitutes valuations can be depicted in the SSPMA.
We prove Proposition 2 without relying on this general result by explicitly
providing the list of SSPMA bids.

Moreover, an important feature of the SSPMA language is that it is parsi-
monious: the valuations that are most used in practice can be expressed very
simply, using far fewer bids than the number of different bundles valued. Let
W :=

∑
b∈B w(b). Note that W equals the maximum number of units that a

bidder who makes bids b ∈ B is interested in. Then SSPMA bids can assign a
“non-trivial” value to Ω(Wn) bundles:

Proposition 3 Consider an SSPMA with n goods, and suppose a bidder
makes bids B. Let D :=

⋃
{DB(p) : p ∈ Rn} and let W :=

∑
b∈B w(b).

Then D = ∆W and so |D| =
(
n+W

n

)
≥ (1 +W/n)n.

Moreover, bidders in practical applications are likely to need to make far
fewer bids than Proposition 3 suggests: Expressing a demand function for each
good independently is trivial—it just requires providing a separate list of bids
for each i with, for each i, bj = 0 for all j ̸= i. In many settings these bids will
express much of the information about bidders’ valuations.

At a second, higher, level of complexity, any bid which selects the “best
value” among any number of goods can be expressed using only positive bids.
Observe thatW is the maximum number of bids that a bidder who is interested
in winning at most W units, and who uses only positive bids, needs to make—
and if any of her bids have greater weight than 1, she will need fewer bids. So
such a bidder can express her valuations of all possible bundles with only a
few bids.

More complex features of preferences require negative bids to express, but
these features seem less likely to arise frequently. Example 2 is one example,
and there are others,22 but we expect most bidders would be unlikely to have
to handle more than a very small number of these special issues. In fact,
in the Bank of England’s auctions, bidders showed relatively little interest
even in bids of the “second level” of complexity, and they used such bids only
rarely—perhaps because they are only very important to banks in times of real
crisis.23 So bidders are unlikely to need many negative bids in most practical

22 For example, choosing the best N1 out of N2 options requires the use of negative bids
if N2 > N1 > 1.
23 The need for “second-level” bids is likely to grow, however, as technology develops–
they are most useful for banks who can coordinate different parts of their operations in a
sophisticated way, and “big investment programmes are already underway in many [banks],
to ensure that [they] have real-time information on the collateral they have available globally
across all their business lines, that the collateral they deliver is cost effective, and that the
cost of delivering (and financing) that collateral is factored into their risk and business
decisions. These programmes involve sometimes relatively advanced technology; indeed, as
some of our contacts remark, somewhat alarmed, ‘for the first time in living memory, pointy
heads are sitting on the repo desk’.” (Andrew Hauser [Executive Director of the Bank of
England], 2013) (Hauser, 2013).

Strong Substitutes: Structural Properties, and a New Algorithm 15

auction settings.24 The number of bids needed by a bidder who is interested
in winning at most W units, and who needs only a small number of negative
bids, cannot much exceed W . Moreover, such a bidder will need to use many
fewer than W bids unless most or all of her bids are of weight only 1. So these
bidders, too, are likely to be able to express their full valuations with only a
few bids.

The number of bundles valued by a set of bids of mixed sign can be much
smaller than the lower bound on the number of bundles valued by the same
number of bids that are all positive.25 But we expect the SSPMA bidding
language will be much more “compact”26 in most practical cases than—say—
listing valuations for all bundles explicitly.

So in the settings that we believe are most likely to arise, bidders can prob-
ably build up their valuations bit by bit through adding individual bids. We
expect most of these bids will be positive; moreover, software can make enter-
ing negative bids easier, by checking feasibility and by allowing the bidding of
“words,”27, and by checking feasibility.28

At least with human participants, it seems less likely that a valuation func-
tion with all exponentially many package values would be available, but in this
case the prices can be computed directly, using steepest descent or linear pro-
gramming algorithms. Alternatively, bidders could use Goldberg et al. (2020)’s
algorithm to generate bids from an arbitrary value function.29

3 The SSPMA Pricing Problem

With only positive bids, our equilibrium pricing problem (Definition 2) can
be solved via a simple linear program that maximizes the total welfare given
the target bundle t. We know that t ∈ ∆W , where W is the total weight of

24 Moreover, Klemperer (2018) shows how to enhance the SSPMA with additional “words”,
each of which refers to a particular configuration of positive and negative bids. This can
greatly reduce the number of bids required to express special situations. For example, our
Example 2 could be expressed by a single “word” from a parameterised class of words.
Preferences of the kind described in note 22 could also be expressed as “words”.
25 Of course, no language can express every possible valuation using fewer pieces of infor-
mation than the number of bundles that can be independently valued. However, in extreme
cases the number of bids required to express a full valuation for up to W units in the SSPMA
can exceed the number of different possible bundles of up to W units.
26 See Goetzendorff et al. (2015) for a discussion of compactness.
27 See note 24.
28 In more complex cases, we can use the Goldberg et al. (2020) algorithm to generate bids
from an arbitrary value function.
29 Goldberg et al. (2020)’s algorithm has linear query complexity for preferences that
require positive bids only. (An asymptotic lower bound of Ω(B logM) queries are required
to learn a list of B positive bids, where M is the magnitude of the bid vectors w.r.t. the
L∞-norm.) It has exponential query complexity in the worst case when negative bids are
required. (The query complexity of learning bid lists corresponding to strong substitutes
demand has a rate of growth of Θ(B logM +Bn).) However, if the number of goods is not
too large, the algorithm still performs well, even though Lin and Tran (2017) observe that
breaking a general valuation up into constituent simpler parts can be NP-hard.

16 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

bids placed, by our assumption about the bids of the auctioneer. But recall
from Equation (4) that, given the collection B of all bids of all bidders, the
aggregate valuation of any bundle t ∈ ∆W is given - in LP notation - by

vB(t) = max
∑
b∈B

∑
i∈[n]

bixbi (LP)

s.t.
∑
i∈[n]

xbi ≤ w(b) ∀b ∈ B (πb)

∑
b∈B

xbi = ti ∀i ∈ [n] (pi)

xbi ≥ 0 ∀b ∈ B, i ∈ [n].

Here πb and pi denote the respective dual variables. This program always has
an integral optimal solution, as may be seen either by properties of strong-
substitutes valuations, or by recognizing that it is an instance of the min-cost
flow problem. The number of constraints and variables is polynomial in the
number of bids and goods, in contrast to the formulation of Bikhchandani and
Mamer (1997). The set of equilibrium prices can be computed directly:

Proposition 4 In an SSPMA with only positive bids, the equilibrium prices
for the target supply t are the optimal dual variables p = (p1, . . . , pn) of the
network linear program (LP) which can be solved in polynomial time in the
number of goods and bids.

Proposition 4 simply follows from writing down the complementary slack-
ness conditions of (LP), so we do not provide an explicit proof. If B also
contains negative bids, the problem of efficiently computing equilibrium prices
is less obvious. One route, taken by Baldwin, Goldberg, Klemperer, and Lock
(2019), is to minimize the Lyapunov function L : Rn → R (Ausubel, 2006),
defined for target t as

L(p) = uB(p) + ⟨p, t⟩

where aggregate indirect utility uB(p) is as defined in Equation (3). The set
of minimizers of L coincides with the set of equilibrium prices, and structural
properties of L allow for polynomial-time steepest descent algorithms to find
these minima (Baldwin et al., 2019; Murota, 2003; Paes Leme and Wong,
2017). However, this approach works by invoking a rather generic submodular
function minimization algorithm, under the assumption that a demand oracle
is available.

By contrast, with only positive bids we can build upon much more special-
ized algorithms to solve network linear programs. And, as we now show, taking
advantage of the economic structure of the problem allows us to incorporate
negative bids into this approach:

Recall that the total allocation in an SSPMA is equal to that assigned to
positive bids minus that assigned to negative bids. So, to assign t units in
total, we must assign t + s units to positive bids and s to negative bids, for
some “supplementary” bundle s. Recall also that we write B+ for the positive

Strong Substitutes: Structural Properties, and a New Algorithm 17

bids in B, and |B−| for the negative bids b ∈ B endowed with weights |w(b)|.
We introduce two additional SSPMAs: that with bids B+ and target t + s,
which we call the “positive auction”; and that with (positive) bids |B−| and
target s, which we call the “negative auction”. Write W+ and W− for the total
weights of bids in these respective auctions, so that ∆W+

and ∆W− are the
sets of bundles that may be sold by each of them. Note that for each t ∈ ∆W

and s ∈ ∆W− , t+ s lies in ∆W+ (see Appendix Lemma 4).
If we pick s correctly, then this is equivalent to allocating t units in the

auction with bids B. Moreover, since both B+ and |B−| are sets of positive bids,
their respective aggregate valuations and equilibrium prices can be evaluated
using the linear program above. We now show how to find s:

Theorem 1 If B represents all bids from all bidders, then the aggregate val-
uation at the target supply t ∈ ∆W can be written as

vB(t) = min
s∈∆W−

(
vB+

(t+ s)− v|B−|(s)
)
.

Moreover, given a minimizer s̄, each equilibrium price p̄ of the auction with
bids B+ and target supply t + s̄ is an equilibrium price for the auction with
bids |B−| and target supply s̄, and also for the complete auction with bids B
and target supply t.

We prove Theorem 1 in Appendix A.4.
To understand the economic intuition underlying Theorem 1 assume that

the set of equilibrium prices is n-dimensional and consider a price p in its
interior. (Although the SSPMA would choose the minimum of the equilibrium
prices, choosing an interior price simplifies the intuition.) Let s̄ be the vector
of negative bids accepted in the equilibrium. Initially set the target s of the
negative auction to be s̄, which means that p is an equilibrium price for both
the positive and negative auctions.

Consider the effect of changing p on the weighted sum of bids accepted in
these two auctions. Recall that the full set B of positive and negative bids in
the original SSPMA is valid. So for any price at which additional negative bids
are marginal to be accepted, positive bids with at least as great a weight must
also be marginal to be accepted–see the discussion of validity of B at the end
of Section 2.1. (The converse does not hold: positive bids can be marginal at
prices at which no negative bid is marginal.) So, any change in price from p
would alter the total weight of bids accepted in the positive auction by weakly
more than it would alter the total weight of bids accepted in the negative
auction.

Now consider an increase in one coordinate of the supplementary bundle,
from s̄ to s ≥ s̄, in both the positive and negative auctions. The additional
bids that will be accepted in the positive auction with target t+s will, because
of our observation above, have weakly greater value than the additional bids
accepted in the negative auction. That is, vB+

(t+ s)− vB+
(t+ s̄) ≥ v|B−|(s)−

v|B−|(s̄). Similarly, if we decrease one coordinate to s ≤ s̄, then bids which are
now rejected from the positive auction will have weakly lower value than the

18 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

bids rejected from the negative auction. So, again, vB+(t+ s)− vB+(t+ s̄) ≥
v|B−|(s)− v|B−|(s̄). General changes in s may be understood as a sequence of
these two operations.

It follows that s̄ can be identified by minimizing vB+(t+ s)− v|B−|(s).

The formal proof of Theorem 1 rests on applying a version of Toland-Singer
duality (Toland, 1979) to the valuations in the positive and negative auctions,
and relating this to the Lyapunov function L(p). Maehara and Murota (2015)
provide a theoretical treatment of discrete DC-functions, establishing (their
Theorem 4.6) Toland-Singer duality in discrete DC-functions.

First recall that, for a function f : dom f → R, where dom f ⊆ Rn, the
convex conjugate f∗ : dom f∗ → R is defined by f∗(p) = supx∈dom f (⟨p,x⟩ −
f(x)), where dom f∗ ⊆ Rn comprises those p at which f∗(p) is finite-valued.
The subdifferential of f is the set-valued function

∂f(x) = {p ∈ Rn : ⟨p,y⟩ − f(y) ≤ ⟨p,x⟩ − f(x) ∀y ∈ Rn}.

The domain dom ∂f of the subdifferential consists of all points x ∈ dom f with
∂f(x) ̸= ∅. It turns out that for in our application, the convex conjugates and
subdifferentials have an intuitive economic meaning.

Lemma 1 Let B be a collection of positive bids. Then −vB can be naturally
extended to a convex function f : dom f → R with the following properties:

1. dom ∂f = dom f = conv∆W and dom ∂f∗ = dom f∗ = Rn

2. f∗(q) = uB(−q) and ∂f∗(q) = convDB(−q)
3. ∂f(x) = −{p ∈ Rn : x ∈ convDB(p)}.

We will use the following version of Toland-Singer duality, which allows for
restricted domains:

Theorem 2 (Toland-Singer Duality) Let f : dom f → R and g : dom g →
R be proper convex lower semi-continuous functions with closed and convex
domains dom f ⊆ dom g ⊆ Rn and such that dom g∗ ⊆ dom f∗ ⊆ Rn. If one
of the differences f(x) − g(x) and g∗(y) − f∗(y) has a minimum in dom f ,
respectively dom g∗, the other difference also has one, and

min
x∈dom f

f(x)− g(x) = min
y∈dom g∗

g∗(y)− f∗(y).

Moreover, if x̄ minimizes f(x)− g(x), then any ȳ ∈ ∂g(x̄) minimizes g∗(ȳ)−
f∗(ȳ). Conversely, for any minimizer ȳ of g∗(y) − f∗(y), any x̄ ∈ ∂f∗(ȳ)
minimizes f(x)− g(x).

For a proof see Tao and An (1997, Theorem 1). We will apply Theorem
2 to the convex extensions of −v|B−| and −vB+

(to the convex hulls of their
domains).

Strong Substitutes: Structural Properties, and a New Algorithm 19

4 The Pricing Algorithm

Using Theorem 1, we can approach the pricing problem by minimizing the
difference vB+

(t + s) − v|B−|(s). While the valuations vB+
and v|B−| can be

extended to concave functions, and can efficiently be evaluated with linear
programs at any given pair of bundles, their difference is in general neither
concave nor convex. Moreover, as recently shown by Kobayashi (2015), min-
imizing the difference between two M ♮-convex functions is an NP-hard opti-
mization problem. However, there is a class of algorithms on the difference of
convex functions (DC algorithms; see An and Tao, 2005; Tao and An, 1997),
that find at least local minima of such problems and are often very fast in
practice.

4.1 A DC Auction Algorithm

By Theorem 1, we seek s̄ minimizing vB+(t+ s)− v|B−|(s). We will approach
this by minimizing f(s)− g(s), where f(s) and g(s) are the convex extensions
of −v|B−|(s), respectively −vB+

(t + s), to the convex hulls of their domains.
A necessary condition for such s̄ is that it gives a stationary point, that is,
s̄ ∈ dom ∂f with ∂f(s̄) ∩ ∂g(s̄) ̸= ∅. To interpret this in our context, if q ∈
∂f(s̄)∩∂g(s̄) then p = −q is a price at which t+ s̄ is demanded in the positive
auction, and s̄ is demanded in the negative auction (see Lemma 1).

The DC Algorithm 1 finds a stationary point for two convex functions
f : dom f → R and g : dom g → R with dom ∂f ⊆ dom ∂g and dom ∂g∗ ⊆
dom ∂f∗ (Tao and An, 1997). Our functions f and g, defined above, satisfy
these conditions: By Appendix Lemma 4, dom f = conv∆W− ⊆ conv{s ∈ Zn :
t+s ∈ ∆W+} = dom g, dom g∗ = Rn = dom f∗, and by Lemma 1 the domains
of the respective functions coincide with the domains of their subdifferentials.

Algorithm 1: A DC-algorithm
Input: Convex functions f : dom f → R, g : dom g → R with dom ∂f ⊆ dom ∂g

and dom ∂g∗ ⊆ dom ∂f∗

Output: Stationary points s̄ ∈ Rn of f − g and q̄ of g∗ − f∗

1: Choose an initial q0 ∈ Rn

2: for k = 0, 1, . . . do
3: Choose sk ∈ ∂f∗(qk)
4: Choose qk+1 ∈ ∂g(sk)
5: if g∗(qk+1)− f∗(qk+1) = g∗(qk)− f∗(qk) then
6: return (sk,qk)
7: end if
8: end for

However, s̄ being a stationary point for f and g is not a sufficient condition
for s̄ to globally minimize f − g. So we check whether a corresponding p is

20 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

a local – and hence global – minimizer of the Lyapunov function L. If it is,
then it is indeed an equilibrium price. If not, we go one step in the direction of
steepest descent of the Lyapunov function and then restart the DC-algorithm.
This is Algorithm 2 (where lines 1-8 are exactly Algorithm 1 with expressed
in their economic interpretation; see Lemma 1 for more details).

Algorithm 2: DC auction algorithm
Input: Valid set B of SSPMA bids
Output: Equilibrium price p and supplementary bundle s̄
1: Choose an initial price p0

2: for k = 0, 1, . . . do
3: Choose a bundle sk demanded at price pk in the negative-bids auction
4: Choose an integral price vector pk+1 at which t+ sk is demanded in the

positive-bids auction
5: if L(pk+1) = L(pk) then
6: return (sk,pk)
7: end if
8: end for
9: if there exists e ∈ ±{0, 1}n with L(pk + e) < L(pk) then
10: Restart the algorithm with p0 := pk + e
11: end if

The value of L(pk) decreases by at least one in every iteration 2-8 of the
algorithm until the termination criterion in Step 5 is satisfied (we refer to
Appendix A.5 for details). Whenever the algorithm is restarted in Step 10,
L also decreases by at least one. Since there exists a minimizer for L, the
algorithm terminates:

Theorem 3 Algorithm 2 always terminates in a Walrasian equilibrium price.

Algorithm 2 does not specify how to choose bundles sk and prices pk+1.
Determining bundles sk is particularly simple when valuations are expressed
in the SSPMA - we just allocate each bid with utility maximizing goods. For
finding prices pk+1, an instance of (LP) must be solved. We use a min-cost
flow solver to do so. Appendix A.6 explains our implementation in more detail.

Obtaining sharp worst-case bounds for Algorithm 2 is challenging due to
the very generic nature of the DC-Algorithm 1. Note that the class of functions
representable as a difference of convex functions is very large - for example,
it contains all functions with continuous second derivative (Horst and Thoai,
1999). Also recall that Kobayashi (2015) shows that minimizing the difference
of two general M ♮-convex functions is NP-hard. Intuitively, we expect Algo-
rithm 2 to perform particularly well when the number of negative bids is small.
For example, when there are no negative bids at all, the algorithm boils down
to solving the min-cost flow problem (LP). For the general case, we provide
the following simple bound for Algorithm 2 by the number of negative bids.

First, observe that we may implement Step 3 to choose a bundle sk which is
uniquely demanded at some price–and indeed we do so in our practical imple-
mentation, because the vertices of demand sets D|B−|(p

k) have this property.

Strong Substitutes: Structural Properties, and a New Algorithm 21

We also assume that prices in Step 4 are chosen deterministically – for the
same bundle, the algorithm always returns the same price.

Second, observe that if sk+1 = sk, then the chosen prices in Step 4 are also
equal, so the termination criterion 5 is satisfied. After a possible restart, the
algorithm also can never reach this bundle again – this would contradict the
strict monotonicity properties as we explain in the Appendix (Lemma 6). So in
the worst case, after each restart of the algorithm, we directly choose bundles
s0 = s1 in the first two iterations which immediately causes another restart. It
follows that every possible bundle uniquely demanded in the negative auction
is chosen at most twice in Step 3 of the algorithm.30 If there is only one single
negative bid, these are exactly n+1 bundles, and so the number of iterations,
by which we mean the total number of iterations through the loop from Step
2 to Step 8, of Algorithm 2 is in O(n). Note that after each restart, we iterate
at least once through the for loop, so the number of restarts is also in O(n).

More generally, Proposition 3 shows that
(
n+|B−|

n

)
bundles are demanded in

total in the negative auction if the weights of all negative bids are equal to
one. Since the number of uniquely demanded bundles does not change if we
increase weights,

(
n+|B−|

n

)
bounds the number of uniquely demanded bundles

in general negative auctions. This therefore provides an upper bound on the
number of bundles demanded uniquely in this auction, so on the number of
iterations of Algorithm 2.

Proposition 5 Algorithm 2 requires at most O
((

n+|B−|
n

))
iterations for solv-

ing the equilibrium pricing problem.

This analysis gives a rather pessimistic worst-case bound for the algorithm,
but it suggests that the algorithm performs particularly well with a low number
of negative bids. In fact, in our experimental evaluation, we find that the DC
algorithm is even faster than steepest descent in these environments.

When there are only positive bids, Algorithm 2 boils down to solving a
single linear program, which can be formulated as a min-cost flow problem on
a graph with |V | = O(n+ |B|) vertices and |E| = O(n|B|) edges (see Appendix
A.6). The enhanced capacity scaling algorithm (Ahuja et al., 1993) finds an
optimal integral solution in

O(|E| log |V |(|E|+ |V | log |V |))

iterations, which implies that the pricing problem can be solved in time

O(n2|B|2 log2(n+ |B|)) = Õ(n2|B|2)

this way. On the other hand, Baldwin, Goldberg, Klemperer, and Lock (2019)
provide the worst-case bound O(n2|B|2 logM +n|B|T (n)) for the steepest de-
scent algorithm, where M = maxb∈B∥b∥∞ is the maximal price of a bid vector

30 Moreover, if the same bundle is chosen twice, it is unnecessary to repeat step 4 – the
most computationally costly part of the algorithm – so checking for sk+1 = sk provides a
practical runtime improvement, although it does not alter the complexity class.

22 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

and T (n) is the complexity of minimizing an n-dimensional submodular func-
tion. Note that the total asymptotic runtime of the network flow formulation
coincides with the first summand n2|B|2 logM of the steepest descent formula-
tion up to a logarithmic factor. However, we may expect the second summand
n|B|T (n) to dominate the runtime. To the best of our knowledge, the best
known weakly polynomial worst case bound for minimizing a general integral
submodular function is O(n2 log nU ·EO+n3 logO(1) nU), where U is an upper
bound for the maximal value of the submodular function (Chakrabarty et al.,
2017; Lee et al., 2015). Thus, the worst-case bound for n|B|T (n) cannot be
better than O(n4|B| log(nU)) using known methods. Hence, in particular when
the number of goods increases, we may expect the min-cost flow formulation to
outperform the steepest descent formulation in the absence of negative bids.31

Paes Leme and Wong (2020) present a polynomial time algorithm for com-
puting competitive equilibrium prices for bidders with general preferences and
provide a specialization of their algorithm for gross substitutes valuations,
which is the fastest algorithm for this setting currently known. They provide
the worst-case bound

mn · TV +O(mn logm+ n3 log(mnM) + n3 logO(1)(mnM)) =

= Õ(mn · TV + n3)

for the runtime of their algorithm, where n is the number of goods, m is the
number of bids, M is the maximum value a bid has for a bundle and TV is the
runtime of the value oracle. So the worst-case runtime of Paes Leme and Wong
(2020)’s algorithm grows linearly in the number of bidders, while the worst-case
runtime of our algorithm (when all its bids are positive) grows quadratically.32

However, our algorithm performs much better than Paes Leme and Wong
(2020)’s as we increase the number of units available without changing the
number of goods (when all the SSPMA bids are positive), because its worst
case is unaffected, whilst Paes Leme and Wong (2020)’s worst case is cubic
in the number of units because they must treat each additional unit as an
additional good.33 Moreover, even when there are only small numbers of units
available of each distinct good, we expect the use cases for the two algorithms
to be different: in a setting where fast direct access to bidders’ valuations is

31 Baldwin, Goldberg, Klemperer, and Lock (2019)’s algorithm’s worst case also depends
on M , while our algorithm’s does not, so our algorithm is more robust to increases in the
precision with which valuations can be expressed (e.g, expressing valuations in cents rather
than dollars multiplies M by 100).
32 We assume that the runtime TV of a value query is constant, and that the total number
of SSPMA bids grows linearly in the number of agents.
33 The worst-case bounds suggest our algorithm also performs better as we increase the
number of goods, but this comparison is less clear. The analysis of our algorithm is for
bidders with strong substitutes preferences expressed via positive SSPMA bids, and bidders
may submit more SSPMA bids in markets with more goods. Although a bid in Paes Leme
and Wong (2020)’s algorithm describes the entire valuation function of a bidder with general
gross substitutes preferences, the runtime TV of a value query may depend on the number
of goods. Ignoring both these effects, our algorithm’s worst case depends quadratically on
the number of goods, while Paes Leme and Wong (2020)’s has cubic dependence.

Strong Substitutes: Structural Properties, and a New Algorithm 23

possible, we expect applying Paes Leme and Wong (2020)’s algorithm would be
preferable to first computing the corresponding SSPMA bids for every bidder
and then applying our algorithm. On the other hand, when preferences are
provided by bidders in the SSPMA bid language, we expect it is faster to
use our algorithm directly, rather than translating the SSPMA bids into value
oracles first and then using Paes Leme and Wong (2020).

4.2 Experimental Evaluation

We implemented both the DC auction algorithm and a steepest descent al-
gorithm based on the Lyapunov function. The Lyapunov approach and the
restart step in the DC algorithm require the minimization of a submodular
function. As in Baldwin, Goldberg, Klemperer, and Lock (2019), we use the
Fujishige-Wolfe algorithm (Chakrabarty et al., 2014), which in practice often
outperforms other submodular minimization algorithms.

In our experimental evaluation we solved problems with 10-50 goods,
1020/1200/1500/3020/3500 positive and 20/200/500 negative bids. We drew
on a specialization of the algorithm by Baldwin et al. (2016) to randomly gen-
erate valid groups of bids, each group consisting of 3 positive and 1 negative
bids. Algorithm 4 in Appendix A.7 describes this procedure, and Table 2 in
Appendix A.8 gives our results.

The DC algorithm appears to be faster if there are not too many negative
bids (less than 200, in our experiments). Table 1 shows a selection of our results
for the case of 20 negative bids. So if the number of negative bids is small,
which we consider the most likely scenario (see section 2.3), our DC algorithm
is a particularly good choice.

#pos. bids #neg. bids #goods time DC (ms) time SD (ms)

1020 20 10 31 394
1020 20 30 105 410
1020 20 50 206 665
3020 20 10 115 1152
3020 20 30 445 1278
3020 20 50 970 1366

Table 1 Runtimes of the DC and the steepest descent (SD)-algorithm for instances where
the number of negative bids is low.

However, the main conclusion from Table 2 is that both algorithms are
very fast, solving even the largest problems in our experiments in less than 3
seconds. Experiments with up to 50 goods and 10,000 bids can also be solved
in a few seconds only.34

34 Obviously our results are sensitive to the details of the implementations. In particular,
in a first, textbook-style implementation, the steepest descent algorithm was much slower
beyond 50 goods and 4000 bids. However, an additional pre-processing step led to significant

24 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

5 Conclusion

Strong substitutes valuations are of central importance for both theory and
practical applications. We have developed a new algorithm for computing com-
petitive equilibrium prices when agents’ preferences are expressed using the
Strong Substitutes Product-Mix Auction bidding language, a compact lan-
guage that permits the expression of all strong-substitutes valuations (and no
other valuations). By contrast with a previous approach of using a standard
steepest-descent algorithm that tests candidate solutions in turn, we began
from the economics of the problem. We used the fact that the shadow prices
of two separate linear programs that maximize value for “positive” and “nega-
tive” bids, respectively, must be equal, and proved that our model formulation
is dual to the Lyapunov function. We also used the bidding language to provide
new insight into the geometric structure of strong substitutes valuations.

References

Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms,
and Applications. Prentice hall (1993)

An, L.T.H., Tao, P.D.: The dc (difference of convex functions) program-
ming and dca revisited with dc models of real world nonconvex optimiza-
tion problems. Annals of Operations Research 133(1), 23–46 (Jan 2005),
ISSN 1572-9338, doi:10.1007/s10479-004-5022-1, URL https://doi.org/

10.1007/s10479-004-5022-1

Ausubel, L., Milgrom, P.: The lovely but lonely Vickrey auction. In: Cramton,
P., Shoham, Y., Steinberg, R. (eds.) Combinatorial Auctions, chap. 1, pp.
17–40, MIT Press, Cambridge, MA (2006)

Ausubel, L.M.: An efficient dynamic auction for heterogeneous commodities.
The American Economic Review pp. 602–629 (2006)

Baldwin, E., Goldberg, P., Klemperer, P.: Valid combinations of bids. Tech.
rep., Oxford University (2016)

Baldwin, E., Goldberg, P.W., Klemperer, P., Lock, E.: Solving strong-
substitutes product-mix auctions. arXiv preprint arXiv:1909.07313 (2019)

Baldwin, E., Klemperer, P.: Proof that any strong substitutes preferences can
be represented by the strong substitutes product-mix auction bidding lan-
guage. Tech. rep., (day 2 slides on Tropical intersections and equilibrium,
Baldwin, E., Goldberg, P. and Klemperer, P.) Hausdorff School on Tropical
Geometry and Economics (2016), URL http://people.math.gatech.edu/

~jyu67/HCM/Baldwin2.pdf

Baldwin, E., Klemperer, P.: Understanding preferences: “demand types,” and
the existence of equilibrium with indivisibilities. Econometrica 87(3), 867–
932 (2019)

improvements in the steepest descent algorithm, and we report the results for this improved
steepest descent algorithm. With this improvement in the steepest descent algorithm, the
differences between the algorithms seem likely to be small in most applications.

https://doi.org/10.1007/s10479-004-5022-1
https://doi.org/10.1007/s10479-004-5022-1
http://people.math.gatech.edu/~jyu67/HCM/Baldwin2.pdf
http://people.math.gatech.edu/~jyu67/HCM/Baldwin2.pdf

Strong Substitutes: Structural Properties, and a New Algorithm 25

Baldwin, E., Klemperer, P.: Proof that the strong substitutes product-
mix auction bidding language can represent any strong substitutes
preferences. (2021), available from http://elizabeth-baldwin.me.uk/

papers/strongsubsproof.pdf and http://www.nuff.ox.ac.uk/users/

klemperer/strongsubsproof.pdf

Beck, M., Robins, S.: Computing the Continuous Discretely - Integer-point
Enumeration in Polyhedra. Springer Science & Business Media, Berlin Hei-
delberg (2007), ISBN 978-0-387-29139-0

Bichler, M., Fichtl, M., Schwarz, G.: Walrasian equilibria from an optimiza-
tion perspective: A guide to the literature. Naval Research Logistics (NRL)
n/a(n/a) (2020), doi:https://doi.org/10.1002/nav.21963

Bichler, M., Shabalin, P., Ziegler, G.: Efficiency with linear prices? a game-
theoretical and computational analysis of the combinatorial clock auction.
Information Systems Research 24(2), 394–417 (2013)

Bikhchandani, S., Mamer, J.W.: Competitive equilibrium in an exchange econ-
omy with indivisibilities. Journal of economic theory 74(2), 385–413 (1997)

Bikhchandani, S., Ostroy, J.M.: The package assignment model. Journal of
Economic theory 107(2), 377–406 (2002)

Chakrabarty, D., Jain, P., Kothari, P.: Provable submodular minimization
using Wolfe’s algorithm. In: Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information
Processing Systems 27, pp. 802–809, Curran Associates, Inc. (2014)

Chakrabarty, D., Lee, Y.T., Sidford, A., Wong, S.C.w.: Subquadratic sub-
modular function minimization. In: Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pp. 1220–1231, STOC 2017,
Association for Computing Machinery, New York, NY, USA (2017), ISBN
9781450345286, doi:10.1145/3055399.3055419, URL https://doi.org/10.

1145/3055399.3055419

Danilov, V., Koshevoy, G., Murota, K.: Discrete convexity and equilibria in
economies with indivisible goods and money. Mathematical Social Sciences
41(3), 251–273 (2001)

Fichtl, M.: On the expressiveness of assignment messages. Economics Letters
208, 110051 (2021), ISSN 0165-1765, doi:https://doi.org/10.1016/j.econlet.
2021.110051, URL https://www.sciencedirect.com/science/article/

pii/S0165176521003281

Goetzendorff, A., Bichler, M., Shabalin, P., Day, R.W.: Compact bid languages
and core pricing in large multi-item auctions. Management Science 61(7),
1684–1703 (2015)

Goldberg, P.W., Lock, E., Marmolejo-Cosśıo, F.J.: Learning strong substitutes
demand via queries. In: Chen, X., Gravin, N., Hoefer, M., Mehta, R. (eds.)
Web and Internet Economics - 16th International Conference, WINE, Lec-
ture Notes in Computer Science, vol. 12495, pp. 401–415, Springer (2020),
doi:10.1007/978-3-030-64946-3\ 28

Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. Journal
of Economic Theory 87, 95–124 (1999)

http://elizabeth-baldwin.me.uk/papers/strongsubsproof.pdf
http://elizabeth-baldwin.me.uk/papers/strongsubsproof.pdf
http://www.nuff.ox.ac.uk/users/klemperer/strongsubsproof.pdf
http://www.nuff.ox.ac.uk/users/klemperer/strongsubsproof.pdf
https://doi.org/10.1145/3055399.3055419
https://doi.org/10.1145/3055399.3055419
https://www.sciencedirect.com/science/article/pii/S0165176521003281
https://www.sciencedirect.com/science/article/pii/S0165176521003281

26 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

Hatfield, J.W., Milgrom, P.R.: Matching with contracts. American Economic
Review 95(4), 913–935 (September 2005)

Hauser, A.: The future of repo: ‘too much’ or ‘too little’? (June
2013), URL https://www.bankofengland.co.uk/-/media/boe/files/

speech/2013/the-future-of-repo-too-much-or-too-little, speech at
the ICMA Conference on the Future of the Repo Market

Horst, R., Thoai, N.V.: Dc programming: overview. Journal of Optimization
Theory and Applications 103(1), 1–43 (1999)

Kelso, A.S., Crawford, V.P.: Job matching, coalition formation, and gross sub-
stitutes. Econometrica 50, 1483–1504 (1982)

Klemperer, P.: A new auction for substitutes: Central bank liquidity auctions,
the U.S. TARP, and variable product-mix auctions. Tech. Rep. 1, Oxford
University (2008)

Klemperer, P.: The product-mix auction: A new auction design for differenti-
ated goods. Journal of the European Economic Association 8(2-3), 526–536
(2010)

Klemperer, P.: Product-mix auctions. Working Paper 2018-W07, Nuffield Col-
lege (2018)

Kobayashi, Y.: The complexity of minimizing the difference of two m-convex
set functions. Operations Research Letters 43, 573–574 (11 2015), doi:10.
1016/j.orl.2015.08.011

Lee, Y.T., Sidford, A., Wong, S.: A faster cutting plane method and its im-
plications for combinatorial and convex optimization. In: 2015 IEEE 56th
Annual Symposium on Foundations of Computer Science, pp. 1049–1065
(10 2015), doi:10.1109/FOCS.2015.68

Lin, B., Tran, N.M.: Linear and rational factorization of tropical polynomials.
arXiv preprint arXiv:1707.03332 (2017)

Maehara, T., Marumo, N., Murota, K.: Continuous relaxation for discrete dc
programming. Mathematical Programming 169(1), 199–219 (2018)

Maehara, T., Murota, K.: A framework of discrete dc programming by discrete
convex analysis. Mathematical Programming 152(1), 435–466 (2015)

Milgrom, P.: Assignment messages and exchanges. American Economic Jour-
nal: Microeconomics 1(2), 95–113 (2009)

Milgrom, P., Strulovici, B.: Substitute goods, auctions, and equilibrium. Jour-
nal of Economic theory 144(1), 212–247 (2009)

Murota, K.: Discrete convex analysis, vol. 10. SIAM (2003)
Murota, K.: Discrete convex analysis: A tool for economics and game theory.
Journal of Mechanism and Institution Design 1(1), 151–273 (2016)

Murota, K., Tamura, A.: New characterizations of M-convex functions and
their applications to economic equilibrium models with indivisibilities. Dis-
crete Applied Mathematics 131(2), 495–512 (2003)

Nisan, N., Segal, I.: The communication requirements of efficient allocations
and supporting prices. Journal of Economic Theory 129(1), 192–224 (2006)

Ostrovsky, M., Paes Leme, R.: Gross substitutes and endowed assignment
valuations. Theoretical Economics 10(3), 853–865 (2015)

https://www.bankofengland.co.uk/-/media/boe/files/speech/2013/the-future-of-repo-too-much-or-too-little
https://www.bankofengland.co.uk/-/media/boe/files/speech/2013/the-future-of-repo-too-much-or-too-little

Strong Substitutes: Structural Properties, and a New Algorithm 27

Paes Leme, R.: Gross substitutability: An algorithmic survey. Games and Eco-
nomic Behavior 106, 294–316 (2017)

Paes Leme, R., Wong, S.C.w.: Computing Walrasian equilibria: fast algorithms
and structural properties. In: Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 632–651 (2017)

Paes Leme, R., Wong, S.C.w.: Computing walrasian equilibria: Fast algo-
rithms and structural properties. Mathematical Programming 179(1), 343–
384 (2020)

Rockafellar, R.T.: Convex analysis. 28, Princeton university press (1970)
Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge Uni-
versity Press, Cambridge, 2 edn. (2013)

Shioura, A., Tamura, A.: Gross substitutes condition and discrete concavity for
multi-unit valuations: a survey. Journal of the Operations Research Society
of Japan 58(1), 61–103 (2015)

Tao, P.D., An, L.T.H.: Convex analysis approach to dc programming: Theory,
algorithms and applications. Acta Mathematica Vietnamica 22(1), 289–355
(1997)

Toland, J.F.: A duality principle for non-convex optimisation and the calculus
of variations. Archive for Rational Mechanics and Analysis 71(1), 41–61
(1979)

Tran, N.M.: The finite matroid-based valuation conjecture is false (2019)

A Appendix: Additional Proofs

A.1 Proof of Proposition 1

We need the following simple Lemmas.

Lemma 2 [See, e.g. Schneider (2013) Lemma 3.1.11] Let A,B ⊆ Rn be convex. Then
(A+B)−B = A.

Lemma 3 Suppose (convA) ∩ Zn = A and (convB) ∩ Zn = B. Then (convA− convB) ∩
Zn = A−B.

Proof. If x ∈ (convA−convB)∩Zn then x ∈ Zn and x+convB ⊆ convA, so x+(convB)∩
Zn ⊆ (convA)∩Zn, and therefore x+B ⊆ A. So x ∈ A−B. Conversely, if x ∈ A−B then
x ∈ Zn, and x+B ⊆ A implies conv(x+B) = x+ convB ⊆ convA.

Proof of Proposition 1. By the strong-substitutes property, the sets DB+
(p) and D|B−|(p)

are equal to the set of integer points of their respective convex hull, as by definition is
DB(p). So if we can show that convDB(p)+convD|B−|(p) = convDB+

(p), this implies by

Lemma 2 that convDB(p) = convDB+
(p)− convD|B−|(p) and by Lemma 3 consequently

that DB(p) = DB+
(p)−D|B−|(p).

But, as B is a valid set of bids, we know by Baldwin, Goldberg, Klemperer, and Lock
(2019) Theorem 2.3 that uB is the indirect utility of a strong substitutes valuation v such
that Dv(p) = DB(p) for all p ∈ Rn. It follows that each vertex x of DB(p) is the unique
element of DB(q) for a price q close to p and such that x minimizes (q − p) · x′ for
x′ ∈ DB(p). But similarly the minimizers of (q−p) ·x′ for x′ ∈ DB+

(p) and x′ ∈ D|B−|(p)

are, respectively, the unique elements of DB+
(p) and D|B−|(p). By definition, we have

28 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

DB(q) = DB+
(q) − D|B−|(q), so DB(q) + D|B−|(q) = DB+

(q). As this holds for all

extreme points of DB(p), it follows that convDB(p) + convD|B−|(p) = convDB+
(p), as

required.

A.2 The valuation vr from Ostrovsky and Paes Leme (2015)

We now explain the construction of vr from Ostrovsky and Paes Leme (2015). Let G = (V,E)
be an undirected graph with 4 vertices and 6 edges E = {1, . . . , 6}, such that every vertex
is connected to every other vertex by an edge (see Figure 5). A subset H of E is called
independent if it contains no cycles. For any H ⊆ E, the rank of H is the maximal cardinality
of an independent subset contained in H:

rank (H) = max
{
|H′| : H′ ⊆ H is independent

}
.

The rank function induces the valuation vr : {0, 1}6 → Z given by vr(x) =
rank ({i : xi = 1}). As Ostrovsky and Paes Leme (2015) show, vr is strong substitutes.
However, it does not satisfy the property of strong exchangeability which, as Ostrovsky and
Paes Leme (2015) show, is a characteristic of every endowed assignment valuation. Conse-
quently, it is not possible to express vr by endowed assignment messages. We demonstrate,
however, that it can be expressed using the SSPMA. Note that valuations induced by SSPMA
bids are always defined on a scaled simplex ∆W for some total weight W ∈ Z≥0. We thus
naturally extend vr to ∆6 ⊇ {0, 1}6 by assuming free disposal: vr(x) = rank({i : xi ≥ 1}).

Proof of Proposition 2. Given H ⊆ E, we write bH :=
∑

i∈H ei. We make the following
bids:

0. Place a bid b∅ with w(b∅) = 3
1. For all H ⊆ E with |H| = 3 and Hc is a cycle in G, make a bid bH with w(bH) = 1.
2. For all H ⊆ E constituting a cycle of length 4, make a bid bH with w(bH) = 1.
3. For all H ⊆ E with |H| = 5 make a bid bH with w(bH) = −1.
4. Make a bid bE with w(bE) = 2.

Denote by vr(x) = rank({i : xi ≥ 1}) for x ∈ ∆6 the valuation induced by the rank function,
and by vB(x) the valuation induced by the above bids. Our goal is to show vB = vr. Note
that bid 0 only ensures that the domains of vr and vB are equal, and does not “contribute”
to the valuations apart from this. So let us check that indeed dom vB = ∆6. There is 1 bid
of type 0, 4 bids of type 1, 3 bids of type 2, and 1 bid of type 4. So summing up the weights
of these bids gives W+ = 12. On the other hand, there are 6 bids of type 3, so W− = 6, and
consequently dom vB = ∆12−6 = ∆6.

We have ur(p) = maxx∈∆6 vr(x) − ⟨p,x⟩ and uB is defined by Equation (3). Recall
from Section 2.1 that, for i ∈ {r,B}, we have vi(x) = minp∈R6 ui(p) + ⟨p,x⟩, where one
can check that p 7→ ui(p) + ⟨p,x⟩ always possesses a non-negative minimizer p for x ∈ ∆6.

1

2

4

3

6

5

Fig. 5 Graph used to construct the valuation vr from Ostrovsky and Paes Leme
(2015).

Strong Substitutes: Structural Properties, and a New Algorithm 29

So in order to prove Proposition 2, it suffices to show that ur(p) = uB(p) for all p ∈ R6
≥0.

By L♮-convexity of ur and uB (Murota, 2003), both are determined uniquely on R6
≥0 by the

values ur(p) and, respectively, uB(p) for p ∈ Z6
≥0. Moreover, given p ∈ Z6

≥0, define p̃ by

p̃i = pi if pi ≤ 1 and p̃i = 1, otherwise. Since the marginal value of any good is at most 1 for
vr, and no bid in B has any value greater than 1, allocating a good i with p̃i = 1 can never
increase utilities, so we have ur(p) = ur(p̃) and uB(p) = uB(p̃). So our problem reduces to
showing that ur(p) = uB(p) for all p ∈ {0, 1}6. For H ⊆ {1, . . . , 6}, denote by pH ∈ {0, 1}6
the price vector with pHi = 1 if and only if i ∈ H. We will show that ur(pH) = uB(p

H) for
all H ⊆ {1, . . . , 6}.

We claim that ur(pH) = rank(Hc). To see this, let x be a bundle with ur(pH) =
vr(x)− ⟨pH ,x⟩ = vr(x)−

∑
i∈H xi. Let P = {i : xi ≥ 1}. Then

ur(p
H) = rank(P)− |P ∩H| ≤ rank(P ∩Hc) + rank(P ∩H)− |P ∩H|

≤ rank(P ∩Hc) + |P ∩H| − |P ∩H|

≤ rank(Hc) = vr

 ∑
i∈Hc

ei

− 0 ≤ ur(p
H)

by properties of matroid rank functions. Consequently, equality must hold everywhere, so
ur(pH) = rank(Hc).

Regarding the indirect utility of our bids, we observe that at prices pH , the bid bH̃

generates a utility of w(bH̃) if and only if H̃ ∩ Hc ̸= ∅, i.e., if and only if bH̃ has positive
value for at least one good not in H. Otherwise it generates utility 0.

We now consider all subsets H ⊆ {1, . . . , 6} and show that in each case, ur(pH) =
uB(p

H).
First, for price vectors pH with |H| < 3, all bids are accepted, since every placed bid

has positive values for at least 3 goods. There are 4 bids of type 1, 3 bids of type 2, 6 bids
of type 3 and 1 bid of type 4. In total, we get

ub(p
H) = 4 · 1 + 3 · 1 + 6 · (−1) + 1 · 2 = 3.

On the other hand, one can see from Figure 5 that every subset containing at least 4 edges
contains a cycle free subset of cardinality 3, and there is no cycle free subset with more than
3 elements. Consequently, ur(pH) = rank(Hc) = 3.

Now consider pH with |H| = 3. Obviously, all bids on more than 3 edges get accepted.

A bid bH̃ with H̃ = 3 is rejected, if and only if H = H̃. In this case, Hc is a cycle of length
3, so ur(pH) = rank(Hc) = 2. We then also clearly have uB(p

H) = 2, since exactly one bid
is rejected, and all others are accepted.

On the other hand, if |H| = 3 and no bid is rejected, Hc is cycle free, so ur(pH) =
rank(Hc) = 3 = uB(p

H).
Next, suppose |H| = 4, so ur(pH) = rank(Hc) = 2, because 2 edges cannot form a

cycle. Regarding the bids, if H is a cycle of length 4, one bid of type 2 is rejected. In this
case, Hc consists of two non adjacent edges. Consequently, there is no i ∈ H such that
{i} ∪Hc is a cycle. Equivalently, for no H̃ ⊆ H with |H̃| = 3 we have that H̃c is a cycle, so
no bid of type 1 is rejected, and uB(p

H) = 2.
If, otherwise, H has no cycle of length 4, Hc consists of two adjacent edges. Thus, there

is a unique e ∈ H with {i} ∪ Hc being a cycle, so a single bid of type 1 is rejected, which
means that again uB(p

H) = 2.
Concerning |H| = 5, since the graph is complete, we can assume by symmetry that

H = {1, 2, 3, 4, 5}. Then the bids bH̃ with

H̃ ∈ {{1, 2, 5}, {3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}}

are rejected, and uB(p
H) = 2 · 1 + 2 · 1 + 5 · (−1) + 1 · 2 = 1 = rank(Hc) = ur(pH).

Finally, for H = E, all bids are rejected, so uB(p
H) = ur(pH) = 0.

We have shown that for all p ∈ {0, 1}6, uB(p) = ur(p), which proves our statement.

30 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

A.3 Proof of Proposition 3

Proof of Proposition 3. We will show that D = ∆W = Zn ∩W∆, where ∆ is the standard
simplex in dimension n, spanned by 0 and the standard unit vectors ei. Since W∆ contains
exactly

(n+W
n

)
integer points (Beck and Robins, 2007, Theorem 2.2), the remaining results

follow.

By the strong substitutes property, D = (convD) ∩ Zn, so it suffices to show that
convD = W∆. To that goal we note that if we set pi = −1 and pj very large for j ̸= i,
then D(p) = {Wei}, since every bid b is allocated with w(b) items of good i and the
total weight of all bids is W . Also, for a very large price (in every coordinate) p, we have
DB(p) = {0}. Consequently, convD ⊇ W∆. To see the reverse inclusion, note that any
demanded bundle cannot contain strictly more than W items, as some bid would have to
be allocated with more than w(b) items otherwise. The lower bounds come from the basic
inequality

(m
k

)
≥ (m/k)k.

A.4 Proof of Theorem 1

Proof of Lemma 1. The linear program (LP) of Section 3 is clearly defined for any x = t ∈
conv∆W , and we can use this to assign a real value to ṽB(x) for x ∈ conv∆W and set
f = −ṽB. Since f is a polyhedral convex function according to (Rockafellar, 1970, p. 172),
its subdifferential is nonempty at every point of dom f (Rockafellar, 1970, Theorem 23.10),
so dom ∂f = dom f = conv∆W . Let us consider the convex conjugate f∗ of f(x) = −ṽB(x).
By definition, f∗(q) = maxx∈conv∆W

⟨q,x⟩+ ṽB(x), or in LP-form:

f∗(q) = max
∑
b∈B

∑
i∈[n]

(bi + qi)ybi

s.t. xi =
∑
b∈B

ybi ∀i ∈ [n]

∑
i∈[n]

ybi ≤ w(b) ∀b ∈ B

ybi ≥ 0 ∀b ∈ B, i ∈ [n].

Note that since the set of feasible solutions x is compact, f∗(q) attains a finite value for
all q ∈ Rn, so dom ∂f∗ = dom f∗ = Rn, since f∗ is also polyhedral convex. Let us now
derive the expressions for ∂f and ∂f∗. To that goal, note that x maximizes the above linear
program if and only if x ∈ ∂f∗(q), which is in turn equivalent to q ∈ ∂f(x) (Rockafellar,
1970, Theorem 23.5). It is not hard to see from Equations (1) and (2) that the variables
ybi constitute an optimal solution for the above linear program, if and only if for every
fixed b the vector (ybi)

n
i=1 lies in convDb(−q), which can be seen to be equivalent to

x ∈ convDB(−q) (recall that in the case of only positive bids, the aggregate demand set
is just the Minkowski sum of the individual demand sets). It now directly follows that
∂f∗(q) = convDB(−q) and ∂f(x) = −{p : x ∈ convDB(p)}.

Lemma 4 Let B be a valid collection of bids. Let t ∈ ∆W and s ∈ ∆W− . Then t + s ∈
∆W+

. Consequently, for the convex extensions f of s 7→ −v|B−|(s) and g of s 7→ −vB+
(t+s)

we have that dom f = conv∆W− ⊆ conv{s ∈ Zn : t+ s ∈ ∆W+
} = dom g.

Proof. As t ∈ ∆W , we have
∑n

i=1 ti ≤ W . Similarly,
∑n

i=1 si ≤ W−. Since W = W+−W−
it follows that

∑n
i=1(ti + si) ≤ W+, so t+ s ∈ ∆W+

. This directly implies the second part
of the Lemma.

Strong Substitutes: Structural Properties, and a New Algorithm 31

Proof of Theorem 1. Let f be the convex extension of s 7→ −v|B−|(s) and g the convex

extension of s 7→ −vB+
(t + s). Then dom f = conv∆W− ⊆ dom g and dom g∗ = Rn = f∗

by Lemmas 1 and 4. From Lemma 1 we know that f∗(q) = u|B−|(−q). Similarly, g∗(q) =

uB+
(−q)− ⟨q, t⟩. So we can apply Theorem 2 to f − g and get

min
s∈conv∆W−

ṽB+
(t+ s)− ṽ|B−|(s) = min

q∈Rn
uB+

(−q)− u|B−|(−q)− ⟨q, t⟩,

if any of the two problems has a solution. By substituting p = −q, we can rewrite the
problem on the right as

min
p∈Rn

uB+
(p)− u|B−|(p) + ⟨p, t⟩ = min

p∈Rn
uB(p) + ⟨p, t⟩.

The expression uB(p) + ⟨p, t⟩ is exactly the Lyapunov function L(p) introduced in Section
3. For strong-substitutes valuations, the Lyapunov function always attains a minimum, and
the set of minimizers is equal to the set of equilibrium prices for the target t (Ausubel and
Milgrom, 2006). Consequently, the problem mins∈conv∆W−

ṽB+
(t+ s)− ṽ|B−|(s) also has a

solution s ∈ conv∆W− , and the values of both minimization problems are equal. There exists
at least one integral solution s̄ ∈ ∆W to this problem: Let p be a minimizer of the Lyapunov
function. By Theorem 2, each s ∈ ∂f∗(−p) = convDB(p) minimizes ṽB+

(t+ s)− ṽ|B−|(s),

so in particular each s̄ ∈ DB(p) ̸= ∅ does so. Since the valuations vB+
and v|B−| coincide

on integral bundles with ṽB+
and ṽ|B−| by construction,

min
s∈∆W−

vB+
(t+ s)− v|B−|(s) = min

s∈conv∆W−
ṽB+

(t+ s)− v|B−|(s) = min
p∈Rn

L(p).

Finally, again by Theorem 2, if s̄ ∈ ∆W− is a minimizer, each p with −p̄ ∈ ∂g(t + s) =
−{p ∈ Rn : t+ s̄ ∈ convDB+

(p)} minimizes L. In other words, each equilibrium price for
t+ s for the positive auction is an equilibrium price for the complete auction as well.

A.5 Proof of Theorem 3

We now prove Theorem 3 which states that our DC-algorithm always terminates in a global
minimum. First, we collect some properties of the DC-algorithm.

Proposition 6 Algorithm 1 has the following properties

1. The sequences f(sk)− g(sk) and g∗(qk)− f∗(qk) are decreasing. Furthermore, f(sk)−
g(sk) ≤ g∗(qk) − f∗(qk) and g∗(qk+1) − f∗(qk+1) ≤ f(sk) − g(sk). The sequence
g∗(qk)− f∗(qk) is strictly decreasing until the termination criterion is met.

2. If the algorithm terminates with (sk,qk), then sk ∈ ∂f∗(qk) ∩ ∂g∗(qk) and qk ∈
∂f(sk) ∩ g(sk). Furthermore, f(sk)− g(sk) = g∗(qk)− f∗(qk).

Proof. A proof can be found in (Tao and An, 1997, Theorem 3). The sequence g∗(qk) −
f∗(qk) is strictly decreasing because of the algorithm terminates as soon as g∗(qk) −
f∗(qk) = g∗(qk+1)− f∗(qk+1).

Next, we show that we can always restart the DC algorithm from a computed stationary
point.

Lemma 5 Suppose that in Algorithm 2 the termination criterion in line 5 is met with
supply s and price vector p. If p is no equilibrium price, then there exists a descent direction
e ∈ ±{0, 1}n of the Lyapunov function at p. If we restart the algorithm with p̃0 := p+ e,
we have for all elements (p̃k, s̃k) of the new sequence that L(p̃k) ≤ L(p)− 1.

32 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

Proof. If the returned price p is no equilibrium price, then it is no minimizer of the Lyapunov
function (Ausubel, 2006). It follows by L♮-convexity of L that there exists e ∈ ±{0, 1}n
with L(p + e) ≤ L(p) − 1 (Murota, 2003). By Property 1 in Proposition 6 we have that
L(p̃k) ≤ L(p) − 1 for the sequence of prices generated after the restart with initial price
p̃0 = p+e. Since L possesses a minimizer (Ausubel, 2006) and after each restart the value of
the Lyapunov function decreases by at least 1, the algorithm terminates with an equilibrium
price.

This completes the proof of Theorem 3: In each step of the main loop, the value of L(pk)
strictly decreases by an integer amount, and if we leave the main loop, we either restart with
a price vector of a strictly smaller value, or we terminate, if we are at a global minimum
already.

Lemma 6 Suppose that the prices pk+1 in Step 4 of Algorithm 2 are chosen deterministi-

cally. Let R ∈ Z≥0 be the number of restarts of the algorithm and let Sr = (s0r, s
1
r, . . . , s

|Sr|
r)

the sequence of iterates generated in Step 3 after the r-th restart for r = 0, . . . , R (S0 is
the sequence before the first restart). Then for r1 ̸= r2, Sr1 and Sr2 do not contain any

common bundle. Moreover, for each r the bundles s0r, . . . , s
|Sr|−1
r are pairwise distinct.

Proof. Suppose that skr1 = slr2 for some r1 ≤ r2 and k, l. Then we have for the computed

prices in Step 4 that pk+1
r1 = pl+1

r2 , so L(pk+1
r1) = L(pl+1

r2). This can only happen if r1 = r2,

since otherwise L(pl+1
r2) ≤ L(pk+1

r1) − 1 by Lemma 5. Now suppose that r1 = r2 = r and

k ≤ l. Then again L(pk+1
r) = L(pl+1

r). By Property 1 of Proposition 6, it follows that
k = l− 1 and the termination criterion is satisfied in iteration l, so l = |Sr| and the bundles

s0r, . . . , s
|Sr|−1
r are pairwise distinct.

A.6 DC Algorithm

𝐛𝟏

𝐛𝐦

.

.

.

𝐠𝟏

𝐠𝐧

.

.

.

d

bidsgoods

Fig. 6 A flow graph modeling (LP).

For the DC algorithm, reformulating the (LP) as a min-cost flow problem comes with a
significant computational advantage as compared to solving it with a generic LP-solver. We
briefly describe the general min-cost flow problem. For more details, we refer to Ahuja et al.
(1993). Given a directed graph, an arc is a tuple (v,w) where v andw are nodes of the graph.
We denote by u(v,w) ≥ 0 the maximum capacity of this arc and by c(v,w) ∈ R the cost per
unit flow along (v,w). For a node v, we denote by β(v) ∈ R the supply at node v. Depending
on the sign of β(v), a total flow of |β(v)| must leave (positive sign) or enter (negative sign)
v. If the supply is 0, the inflow must equal the outflow. A flow f assigns a value f(v,w) ∈ R
to each arc, the amount of flow from v to w. It is feasible, if 0 ≤ f(v,w) ≤ u(v,w) for each
arc (v,w) in the network, and

∑
w f(v,w)−

∑
w f(w,v) = β(v) for all nodes v, where the

sums run over all w such that (v,w), respectively (w,v) is an arc in the network. The cost

Strong Substitutes: Structural Properties, and a New Algorithm 33

of the flow is equal to
∑

(v,w) c(v,w)f(v,w). The objective of the min-cost flow problem is

to find a feasible flow with minimal cost.
The linear program (LP) is used to solve Step 4 in Algorithm 2 where we need to

compute a price vector pk+1 at which the bundle t + sk is demanded. A straightforward
network flow model for (LP) is illustrated in Figure 6. For each good i ∈ {1, . . . , n} there
is a node gi, and for each of the m = |B+| positive bids indexed by j ∈ {1, . . . ,m} there
is a node bj . Finally, there is a destination node d. In our flow network, there is an arc
(gi,bj) from each good i to each bid j with unlimited capacity u(gi,bj) = ∞ and cost

c(gj ,bi) = −bji , i.e., the negative value of bid j for good i. The arcs (bj ,d) from the bids
to the destination node have capacity u(bj ,d) = w(bj) and cost c(bj ,d) = 0. In Step 4 of
Algorithm 2, a supply of t + sk must be distributed among the bids. We set the supply of
node gi to β(gi) = ti + ski and the supply of node d to β(d) = −

∑n
i=1 ti + ski . Finally,

the supply of node bj is set to β(bj) = 0. Since t + sk ∈ ∆W+
(Appendix Lemma 4),∑n

i=1 ti + ski ≤
∑m

j=1 w(bj), so a feasible flow f exists. Moreover, since the capacities and
supplies are all integral, an integral optimal flow exists. Note that the proposed flow network
contains arcs with negative cost. If required by a specific solver, it can however easily be
transformed into a network with only non-negative costs (Ahuja et al., 1993, p. 40).

We assume that the applied min-cost flow solver provides us with an integral optimal flow
f , as well as with an integral optimal dual solution, consisting of node potentials π(v) ∈ R for
each node v in the network. These satisfy the following complementary slackness conditions
(Ahuja et al., 1993, Theorem 9.4).

1. If c(v,w) + π(v)− π(w) > 0, then f(v,w) = 0.
2. If 0 < f(v,w) < u(v,w), then c(v,w) + π(v)− π(w) = 0.
3. If c(v,w) + π(v)− π(w) < 0, then f(v,w) = u(v,w).

From the complementary slackness conditions it is not hard to deduce that p defined by
pi = π(gi) − π(d) is an equilibrium price vector for the supply t + sk, so we can choose
pk+1 = p in Step 4 of the algorithm.

Let us finally consider Step 3 of Algorithm 2, where a bundle sk must be chosen that
is demanded at price pk ∈ Zn in the negative auction. This is particularly easy to do
in the Product-Mix Auction (see also Baldwin, Goldberg, Klemperer, and Lock (2019)):
For each bid b in the negative auction, choose a bundle s(b) ∈ Db(p). By Equations
(1) and (2), this can be done in linear time in the number of different goods. Then set
sk =

∑
b∈|B−| s(b). In our implementation, we choose a bundle sk which is a vertex of

D|B−|(p). This can be achieved by suitably perturbing p: Let q = p + ∆ be a price such

that D|B−|(q) ∩D|B−|(p) ̸= ∅ and |D|B−|(q)| = 1. For example, ∆ = (ε, 2ε, . . . , nε) works

for ε > 0 small enough. Then simply choose the unique s(b) ∈ D|B−|(q) and construct sk

as above.

34 E. Baldwin, M. Bichler, M. Fichtl, P. Klemperer

A.7 Generating Valid Bid Groups

Algorithm 4: Algorithm for generating valid groups of positive and
negative bids, used for experiments.
Input: Random parameters a0, . . . an ∈ Z>0, a random permutation σ ∈ Sn,

weight w ∈ Z>0, displacement parameter c ∈ Zn
≥0.

Output: Group of 3 positive and 1 negative bids.
1: Generate 2 vectors v1,v2 ∈ Zn

≥0:

2: for i ∈ {1, 2} do
3: Set vij = 0 for all j with σ(j) ≤ 2 and σ(j) ̸= i.

4: Set vij = aj if σ(j) = i.

5: Otherwise, choose vji ∈ {0, aj} uniformly at random.
6: end for
7: Place positive bids at v1,v2.
8: Place a negative bid at the coefficient-wise maximum v1 ∧ v2.
9: Let J = {j : v1j ̸= v2j }. Place a positive bid at v1 ∧ v2 + a0eJ .
10: Assign weight w to all these bids and shift them by c.

Strong Substitutes: Structural Properties, and a New Algorithm 35

A.8 Experimental Results

#pos. bids #neg. bids #goods time DC (ms) time SD (ms)

1020 20 10 31 394
1020 20 20 63 352
1020 20 30 105 410
1020 20 40 133 505
1020 20 50 206 665
1200 200 10 60 502
1200 200 20 157 478
1200 200 30 288 522
1200 200 40 453 620
1200 200 50 597 791
1500 500 10 128 649
1500 500 20 313 664
1500 500 30 562 682
1500 500 40 916 775
1500 500 50 1163 962
3020 20 10 115 1152
3020 20 20 252 1116
3020 20 30 445 1278
3020 20 40 592 1225
3020 20 50 970 1366
3200 200 10 175 1303
3200 200 20 413 1236
3200 200 30 628 1226
3200 200 40 1082 1421
3200 200 50 1649 1588
3500 500 10 244 1620
3500 500 20 606 1559
3500 500 30 983 1509
3500 500 40 1642 1575
3500 500 50 2803 1919

Table 2: Runtimes of the DC- and the steepest descent (SD)-algorithm. For
each experimental setting, we generated 15 sample auctions. The indicated
runtimes are the averages over the respective 15 samples.

	Introduction
	The SSPMA Bid Language
	The SSPMA Pricing Problem
	The Pricing Algorithm
	Conclusion
	Appendix: Additional Proofs

