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The computation of market equilibria is a fundamental and practically relevant problem. Current advances in

computational optimization allow for the organization of large combinatorial markets in the field. While we

know the computational complexity and the types of price functions necessary for combinatorial exchanges

with quasilinear preferences, the respective literature does not consider financially constrained buyers. We

show that computing market outcomes that respect budget constraints, but are core-stable, is Σp2-hard.

Problems in this complexity class are rare, but ignoring budget constraints can lead to significant efficiency

losses and instability as we demonstrate in this paper. We introduce mixed integer bilevel linear programs

(MIBLP) to compute core-stable market outcomes, and provide effective column and constraint generation

algorithms to solve these problems. While full core stability quickly becomes intractable, we show that realis-

tic problem sizes can actually be solved if the designer limits attention to deviations of small coalitions. This

n-coalition stability is a practical approach to tame the computational complexity of the general problem,

and at the same time provides a reasonable level of stability for markets in the field where buyers have

budget constraints.
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1. Introduction

The analysis of market equilibria is arguably one of the most fundamental problems in the economic

sciences. In the textbook model of perfect competition, a competitive equilibrium occurs when

demand equals supply (Mas-Colell et al. 1995). The resulting price is often called the competitive

price or market clearing price that will not change unless demand or supply changes. Participants

have no incentive to change their behavior and the outcome is considered stable.

Most of the more recent micro-economic literature on competitive equilibria assumes a utilitarian

or Benthamite welfare function, which maximizes the sum of all participants’ utilities. This litera-

ture assumes an economy with purely quasilinear utility functions (i.e., bidders maximize payoff)

and no budget constraints. However, ignoring budget constraints can lead to significant welfare

losses and instability.
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We draw on the core as the most prominent notion of stability. We aim to find core-stable

outcomes in combinatorial markets with indivisible goods and general preferences that maximize

welfare subject to budget constraints. Our main theoretical result proves that it is Σp
2-hard to find

stable outcomes in combinatorial exchanges with payoff-maximizing but financially constrained

participants. Then, we introduce algorithms to solve these problems. Despite the high computa-

tional complexity, we provide empirical evidence that stable solutions can be found for small but

realistic problem sizes.

1.1. Combinatorial Markets

We focus on combinatorial markets, which allow bidders to specify package bids. This means a

price is defined for a subset of the items. The bid price specified is only valid for the entire package

and the package is indivisible such that bidders can express quasilinear preferences for general

valuations including complements and substitutes. Combinatorial markets have found widespread

application for the sale of spectrum licenses (Bichler and Goeree 2017), in truck-load transportation

(Caplice and Sheffi 2006), for airport time-slots (Pellegrini et al. 2012, Ball et al. 2017), in day-

ahead energy markets (Martin et al. 2014), for supply chain coordination (Fan et al. 2003, Guo

et al. 2012, Walsh et al. 2000), and in transportation and industrial procurement (Schwind et al.

2009, Sandholm 2012). Milgrom (2007) has highlighted the importance of such markets for theory

and practice.

Although package bids in a fully enumerative (XOR) bid language allow for general valuations,

this generality comes at a price. First, the winner determination problem with an XOR (or also an

OR) bid language becomes an NP -hard optimization problem (Pekec and Rothkopf 2003). Second,

competitive equilibrium prices need to be non-linear and personalized to allow for maximum welfare

(Bikhchandani and Ostroy 2002, Bichler and Waldherr 2017). Our definition of combinatorial

markets in this paper is broad and includes all types of bid-languages that make the allocation

problem a combinatorial optimization problem (Goetzendorff et al. 2015).

1.2. The Core

In an economy with purely quasilinear utilities and no budget constraints, a competitive equilibrium

is defined as a feasible allocation and set of prices where buyers and sellers maximize payoff and the

market is budget balanced (Bikhchandani and Ostroy 2002). In these economies the core coincides

with the set of competitive equilibria, in which each participant maximizes payoff at the prices.

The core is the set of feasible allocations that cannot be improved upon by a subset or coalition

of the economy’s agents if the coalition was to trade among each other. A core allocation consists

of an assignment of items and its supporting price system and is weakly Pareto efficient. Weak

Pareto efficiency describes an outcome for which there are no possible alternative outcomes whose

realization would cause every participant to gain.
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Example 1. Consider an auction with a single seller s that sells a good without a reserve price.

Suppose there are two buyers, b1 with a value of $5 for the good, and b2 with a value of $3 for

the good. The core allocations consist of assigning the good to b1 for any price p with $3≤ p≤ $5

which results in a payoff of p for s, a payoff of 5−p for b1 and of 0 for b2. In these cases, no subset

of the economy’s agents can improve upon the outcome:

i) The two buyers b1, b2 cannot both gain since they cannot trade with each other (hence both

payoffs would be 0).

ii) Trading with b2 will lead to a payoff of at most $3 for seller s, so s and b2 cannot both gain

from forming a coalition.

iii) If s and b1 would agree on a different price p′ 6= p for trading the good, it would either lower

the payoff of s or b1, hence both cannot improve.

The core is the most prominent notion of stability and it can also be computed for markets

with multiple objects for sale and multiple bidders (Day and Cramton 2012). The principle of

core-stability is central for the computation of payments in high-stakes spectrum auction mar-

kets (Bichler and Goeree 2017). However, this literature assumes quasilinear utility functions, and

bidders do not have budget constraints.

1.3. Exogenous Budget Constraints

Budget constraints are an important concern in most markets including spectrum auctions (Janssen

et al. 2017), display ad auctions (Wu et al. 2018), and sponsored search auctions (Colini-Baldeschi

et al. 2011). In most markets, bidders can only submit their budget-capped valuations, which can

lead to significant inefficiencies as we show in this paper. Although the consideration of budget con-

straints appears as a practically important extension of the established quasilinear utility model,

it turns out that it leads to substantial problems. Competitive equilibria in which each participant

maximizes her payoff at the given prices might not be possible with budget constraints, as the

package that maximizes the payoff of a buyer could not be affordable to her. It is also straight-

forward to see that a core-stable solution does not need to maximize welfare when bidders have

budget constraints, see the following Example 2.

Example 2. Suppose there are two buyers, b1 and b2, having a value of $10 and $9 for a good,

respectively. In addition, buyer b1 has a budget constraint of $1 and cannot spend more money.

There are sellers s1 and s2 with reserve prices of $0 and $4. The welfare-maximizing allocation is

to match b1 and s1 at a price between $0 and $1, and b2 and s2 at a price somewhere between $9

and $4, which yields $15 gains from trade. However, this efficient allocation is not stable, because

s1 could approach b2 and they could agree to deviate at a price of less than $4 and more than $1,

which is profitable for both of them. Matching buyer s1 to b2 is stable, but does not allow b1 to
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trade with s2. Therefore, the gains from trade are only $9, as compared to the welfare-maximizing

allocation with gains from trade of $15.

The example highlights an important impossibility: While core outcomes maximize welfare in

Arrow-Debreu model (Arrow and Debreu 1954) and in markets with quasilinear utility but no

budget constraints (Bikhchandani and Ostroy 2002), this no longer holds with budget constraints.

Welfare-maximizing but unstable outcomes are hard to justify and maintain, which is why core con-

straints are enforced in high-stakes spectrum auctions. Therefore, we aim for core-stable outcomes

that maximize welfare subject to budget constraints.

1.4. Contributions

Our paper has three main contributions. The first contribution is theoretical, as we provide a

thorough analysis of the computational complexity of computing welfare-maximizing and core-

stable outcomes of a combinatorial exchange with payoff-maximizing but financially constrained

participants. This is a new and fundamental problem. We focus on combinatorial markets as they

do not restrict the types of bidder valuations, and for their practical relevance. We prove that in the

presence of payoff-maximizing, but budget-constrained buyers, the allocation and pricing problem

becomes a Σp
2-hard optimization problem. This is important to show formally, but requires an

elaborate reduction from the canonical Σp
2-hard problem QSAT2. Problems in this complexity class

are rare and considered intractable for all but toy problems. The hardness of these problems comes

from the fact that prices and budgets need to be considered in the allocation problem, whereas

with quasilinear preferences one can first solve the allocation and then the pricing problem (e.g, via

core constraint generation as in Day and Raghavan (2007)). In addition, we also show restricted

cases with dyadic coalitions that can be modeled and solved as integer programs and therefore are

not Σp
2-hard, but in NP . Finally, we introduce n-coalition stability, describing a solution that is

robust against coalitions of size at most n. This leads to a more tractable notion of stability as

we will show. The cost of forming large coalitions with a dozen participants in a combinatorial

market can be considered prohibitive in most markets. Note that it is already NP -hard for a given

coalition with a given set of prices to determine whether a profitable deviation exists.1

Second, we provide a quite general mixed integer bilevel linear program (MIBLP) to model the

allocation and pricing problem of a combinatorial market with budget and core constraints, which

can easily be adapted to specific bid languages.2 While bilevel programming has been a topic in the

literature for many years, algorithms to solve MIBLPs have only seen progress recently. Based on

1 One can fix the allocation and set prices to zero. Then, finding a deviating coalition reduces to the standard winner
determination problem in combinatorial auctions (Lehmann et al. 2006).

2 Note that if we assume divisible goods then the model reduces from a MIBLP to a continuous bilevel program,
which is known to be NP -hard. We do not discuss markets with divisible objects in this paper.
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the MIBLP formulation, we develop column and constraint generation algorithms for combinatorial

exchanges with budget constraints.

It is not obvious that realistic problem sizes of a Σp
2-hard problem could be solved in practice. In

our third contribution, we perform extensive experimental analyses in which we provide evidence

that even full core solutions can be found for small but realistic problem sizes. If we limit ourselves

to n-coalition stability, we can compute much larger problem sizes while still providing a good

level of stability for practical applications. We analyze two types of combinatorial markets, an

airport time-slot allocation problem based on the CATS instance generator (Leyton-Brown et al.

2000), and a fishery rights exchange (Bichler et al. 2019). While full core stability quickly becomes

intractable, we show that small but realistic problem sizes can actually be solved if the designer

limits attention to deviations of coalitions with limited size. Our experimental results also show

that if budget constraints are ignored and bidders can only submit budget-capped valuations, the

computed prices and allocations are not stable and the welfare loss is substantial.

2. Related Work

Early on in the economic sciences, general equilibrium theory attempted to explain competitive

equilibria in a market with multiple commodities. The Arrow–Debreu model shows that under

convex preferences and perfect competition there must be a set of competitive equilibrium prices

(Arrow and Debreu 1954). Market participants are price-takers, and they sell or buy goods in

order to maximize their total value subject to their budget or initial wealth. The results derived

from the Arrow–Debreu model led to the well-known welfare theorems, an important argument

for markets as an efficient way to allocate resources. The first theorem states any competitive

equilibrium leads to a Pareto efficient allocation of resources. The second theorem states that any

efficient allocation can be attained by a competitive equilibrium, given the market mechanisms

leading to redistribution.

In the Arrow–Debreu model each participant has an endowment of goods and money. Fisher

markets are a simpler version of the Arrow–Debreu model, in which the total quantity of each

product is given, and each buyer comes only with a monetary budget. They follow a tradition

where utility is cardinal and individuals have interpersonally commensurable utility functions.

These markets have received significant attention in the past twenty years in computer science,

when researchers have gone beyond existence theorems and tried to find algorithms to actually

compute allocations and prices (Vazirani 2007, Vazirani and Yannakakis 2011, Cole et al. 2017).

In the Eisenberg-Gale convex program to solve Fisher markets, buyers have linear valuations that

they aim to maximize subject to a budget constraint (Vazirani 2007). The designer maximizes a
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Nash social welfare function, which is described as the budget-weighted geometric mean of the

bidders’ utilities.3

Most of the more recent micro-economic literature on competitive equilibria assumes a utilitarian

or Benthamite welfare function, which maximizes the sum of all participants’ utilities.4 As in the

earlier literature on general equilibrium, the central question is when competitive equilibria exist.

A number of authors explore conditions for linear and anonymous competitive equilibrium prices,

so-called Walrasian equilibria (Kelso and Crawford 1982, Gul and Stacchetti 1999, Ausubel 2006,

Leme 2017, Bichler et al. 2020). Bikhchandani and Mamer (1997) have shown necessary conditions

for the aggregate valuation function of all individuals and Baldwin and Klemperer (2019) have

characterized necessary conditions for the individual valuation functions to yield Walrasian equi-

libria. Baldwin et al. (2020) recently extended these results to markets with income effects, e.g.

those with financial constraints. In addition, Bikhchandani and Ostroy (2002) discuss existence of

non-linear and personalized competitive equilibrium prices. As indicated earlier, this entire liter-

ature assumes purely quasilinear utility functions and no budget constraints: market participants

maximize their payoff, i.e. the value of an allocation minus the total price they pay for it. We con-

tinue to use these standard market design assumptions, but consider exogenous budget constraints

that buyers might have.

Roughgarden and Talgam-Cohen (2015) highlight the tight connection between pricing, algo-

rithms, and optimization and our work contributes to this line of research. We know that simple

quasilinear preference models with unit demand allow for efficient computation and Walrasian

prices, while more complex quasilinear preferences including complements and substitutes require

the solution of NP-hard optimization problems and they demand non-linear and personalized

prices. Table 1 relates different types of preferences to the type of price function necessary and the

computational complexity to solve the allocation and pricing problem. In this paper, we show that

the consideration of exogenous budget constraints yields an allocation and pricing problem that

is even higher in the polynomial hierarchy compared to combinatorial exchanges with quasilinear

utilities.

3 Often the literature assumes divisible goods. The Eisenberg-Gale program has been extended to accommodate
indivisible objects (Cole et al. 2017) or separable, piecewise-linear concave utilities (Anari et al. 2018). With indivisible
objects, the Nash social welfare maximization problem is NP-hard and APX-hard in general (Lee 2017), which has
led to work on efficient approximation algorithms (Cole and Gkatzelis 2015, 2018). So far, however, the literature is
restricted to relatively simple valuation functions.

4 The utilitarian welfare function is not only assumed in this theoretical literature, but also in spectrum auction
markets (Bichler and Goeree 2016), in electricity markets (Madani and Van Vyve 2015), in markets for natural
resource rights (Bichler et al. 2019), and most other market designs in the field. In a market with multiple buyers and
sellers the prices cancel and the utilitarian welfare maximizes the gains from trade. We will also talk about maximum
welfare or maximum efficiency in this case.
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Table 1 Complexity Results and Price Functions for Computing a Core-Stable and Welfare Maximizing

Outcome based on Different Types of Preferences

Preferences Prices Complexity References
Unit demand linear and anonymous P Shapley and Shubik (1971)
Strong substitutes linear and anonymous P Milgrom and Strulovici (2009)
General quasilinear non-linear and personalized NP Bikhchandani and Ostroy (2002)
General w. budgets non-linear and personalized Σp

2 this paper

Even though budget constraints have not been considered in the more recent competitive equi-

librium theory, they have been a concern in other streams of the literature. Auction theory focuses

on smaller auction markets with strategic bidders able to influence the price. Here, auctions are

modeled as Bayesian games. While quasilinearity is also a standard assumption in this literature

(Krishna 2009), a number of papers have dealt with the impact of budget constraints in auctions

(Benoit and Krishna 2001, Borgs et al. 2005, Dütting et al. 2016). Unfortunately, it was shown

that we cannot hope for any incentive-compatible mechanism in the presence of private budget

constraints in multi-object auctions (Dobzinski et al. 2008, Colini-Baldeschi et al. 2011, Dütting

et al. 2016), and there is a long literature addressing payoff-maximizing but budget-constrained

bidders from a mechanism design perspective (Che and Gale 1998, Benoit and Krishna 2001, Pai

and Vohra 2014). Many authors also deal with budget constraints in the context of dynamic adver-

tising auctions (Conitzer et al. 2017, Borgs et al. 2007, Conitzer et al. 2018). Advertisers often

have a budget for a campaign and they want to maximize payoff but consider their budget in a

sequence of auctions. In contrast, we analyze a static environment with multiple buyers and sellers

as is standard in competitive equilibrium theory, and want to compute prices that constitute a

stable outcome where no coalition of budget-constrained buyers and sellers can deviate profitably.

3. Model and Preliminaries

In the following, we provide a formal definition of our model and concepts. We first introduce

a model without budget constraints based on Bikhchandani and Ostroy (2002) and Bichler and

Waldherr (2017). The papers show equivalence of the core and the set of competitive equilibria

in a combinatorial exchange by drawing on specific linear programming formulations. The model

without budget constraints is a convenient starting point for the analysis of budget constrained

buyers.

There is a finite set of bidders N , consisting of buyers i ∈ I and sellers j ∈ J with I ∪ J = N

and I ∩ J = ∅, as well as a finite set of indivisible objects or items, K. Each buyer i ∈ I has a

non-negative value for each set of objects S ⊆K denoted vi(S)∈R≥0 with vi(∅) = 0.

Sellers also have values or reservation prices for packages Z ⊆K with vi(Z) ∈R≥0. Buyers and

sellers have free disposal. Every package is priced and each buyer i ∈ I pays the price pi(S) for
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the bundle S he receives, and each seller j ∈ J receives the payment pj(Z) for the bundle Z he

supplies. The vectors Pi = (pi(S))i,S and Pj = (pj(Z))j,Z describe the non-linear prices of buyers

and sellers. In our initial analysis the preferences are quasilinear, i.e., the payoff of the buyer is

πi = vi(S)−pi(S) and that of the seller is πj = pj(Z)−vj(Z). Later we will add budget constraints.

The problem of finding an efficient assignment maximizing gains from trade among buyers and

sellers can be formulated as a linear program as follows: We use binary variables xi(S) to describe

whether package S is assigned to bidder i and yj(Z) to describe whether package Z is supplied

by seller j. The vectors X = (xi(S))i,S and Y = (yj(Z))j,Z describe the allocations of buyers and

sellers. The model enumerates all possible allocations similar to the single-seller model in de Vries

et al. (2007). The set of all possible object assignments is denoted as Γ, a specific assignment as

(X,Y )∈ Γ. For each possible allocation, we have a binary variable δX,Y , which is 1 if an allocation

is selected and 0 otherwise. The model allows for a very natural interpretation of the dual variable

as prices. The dual variables of P are written in brackets.

wP = max
∑

i∈I

∑
S⊆K vi(S)xi(S)−

∑
j∈J

∑
Z⊆K vj(Z)yj(Z)

s.t. xi(S)−
∑

X:xi(S)=1 δX,Y = 0 ∀i∈ I,∀S ⊆K (pi(S))

−yj(Z) +
∑

Y :yj(Z)=1 δX,Y = 0 ∀j ∈ J,∀Z ⊆K (pj(Z))∑
S⊆K xi(S)≤ 1 ∀i∈ I (πi)∑
Z⊆K yj(Z)≤ 1 ∀j ∈ J (πj)∑

(X,Y )∈Γ δX,Y = 1 (πa)

0≤ xi(S) ∀S ⊆K,∀i∈ I
0≤ yj(Z) ∀S ⊆K,∀j ∈ J
0≤ δX,Y ∀(X,Y )∈ Γ

(P)

The formulation P introduces a variable δ(X,Y ) for each possible allocation, making the linear

program large but integral. An LP solver is guaranteed to select a vertex such that δ(X,Y ) = 1, such

that we always get integer allocations xi(S) and yj(Z) of P (Bichler and Waldherr 2017). At least

one of these allocations maximizes the gains from trade, i.e., welfare in the economy. Note that

even though P is a linear program, its size is exponential in the number of bids since the linear

program introduces a variable for each possible allocation. The underlying allocation problem in

combinatorial exchanges is known to be NP-hard (Sandholm et al. 2002, Pekec and Rothkopf 2003).

Even with the restriction of allowing only a single seller, the problem is equivalent to the winner

determination problem in combinatorial auctions, which is also known to be NP -hard (Lehmann

et al. 2006).5

Note that there are more effective formulations as binary programs that we will use in Section

5, where we discuss a bilevel program to compute core payments in the presence of financially

5 Note that even though the problem is NP -hard, there are algorithms that run in polynomial time in the size of the
input if the number of bids is very large compared to the number of items (Lehmann et al. 2006).
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constrained bidders. However, model P nicely shows how core payments can be computed without

budget constraints.

The core-prices resulting from the dual variables of P are non-linear and personalized. We can

now formulate the dual D of P.

min
∑

i∈I πi +
∑

j∈J πj +πa
s.t. πi ≥ vi(S)− pi(S) ∀i∈ I,∀S ⊆K (xi(S))

πj ≥ pj(Z)− vj(Z) ∀j ∈ J,∀Z ⊆K (yj(S))∑
yj(Z)∈Y pj(Z)−

∑
xi(S)∈X

pi(S) +πa ≥ 0 ∀(X,Y )∈ Γ (δX,Y )

πi, πj, pi(S), pj(Z)≥ 0 ∀S,Z ⊆K,
∀i∈ I,∀j ∈ J

πa ∈R

(D)

The LP relaxation of the primal P is always integral such that strong duality holds. Now, the

dual D introduces a price for each bidder and package, i.e., a non-linear and personalized price.

Definition 1. Let Πi = (πi)∈R|I|≥0 and Πj = (πj)∈R|J|≥0 be the payoff vectors of the buyers and

sellers in the auction E and V (·) be the coalitional value function, i.e., the maximum transferable

utility that can be gained by a coalition. Then (Πi,Πj) is in the core of the auction game E , denoted

(Πi,Πj)∈ core(E), if∑
i∈I πi +

∑
j∈J πj = V (N) core efficiency∑

i∈C πi +
∑

j∈C πj ≥ V (C) ∀C ⊂N = I ∪J core rationality

Bichler and Waldherr (2017) show that if πa = 0, an optimal solution of D lies in the core of the

auction, and the core is non-empty.

Quasilinear utility functions describe a game with transferable utility. The presence of budget

constraints Bi of the buyers i ∈ I violates quasilinearity, however, and only parts of the utility of

the buyer up to the budget are transferable. We analyze the impact of this change in the following

sections.

4. Complexity Analysis

In what follows, we analyze the complexity of welfare maximization subject to budget and core

constraints. Example 2 has already illustrated that budget constraints can reduce the gains from

trade. Even more issues can come up when bidders are not allowed to communicate their budget

constraints, as is the standard in combinatorial auctions where bidders only submit their (non-

restricted) bids.

Example 3. Consider an example with two sellers, s1 offering item A and s2 offering item B

and two buyers and their respective values and budgets as depicted in Table 2. Each buyer wants

to obtain exactly one of the two items. If buyer b1 is not allowed to communicate her budget and

values, she can only place a bid of at most 4 for any of the items, leading to an assignment of
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A to b1 and B to b2 which maximizes welfare for these reported values. However, this allocation

is not stable since b1 would approach s2 to obtain item B in order to increase her true utility.

Communicating financial constraints is necessary to ensure stability in this case.

Table 2 Example of values and budgets. If b1 is not allowed to communicate her budget, the welfare-maximal

allocation is unstable with regards to the true values.

{A} {B} Budget
Buyer b1 4 10 4
Buyer b2 2 3 3

From Bikhchandani and Ostroy (2002) we know that the core of a combinatorial exchange can

be empty even without budget constraints. But even if the core is non-empty without budget

constraints, it can be empty if such constraints are added.

Proposition 1. A budget-constrained combinatorial exchange instance may have an empty

core, even if the core is non-empty when budgets are ignored.

Proof: Consider a case with two sellers, s1 offering item A and s2 offering item B and two

buyers with values and budgets as demonstrated in Table 3. Without budget constraints, buyer

b1 can pay a price of 4 for each of the items, resulting in a core outcome. However, if we consider

the budget constraints, there is no core outcome. Suppose buyer b1 obtains {A,B} for a combined

price of at most 3. Then there is at least one seller with a payoff lower than 2, and buyer b2 and

this seller can form a coalition in which both are better off. Similarly, suppose b2 obtains one of

her desired items from one of the sellers while b1 does not obtain any items. Since the combined

payoff of the sellers is at most 2, b1 and the sellers can form a coalition where all three are better

off. Q.E.D.

Table 3 Example of values and budgets. There exists a stable allocation when no bidder is financially

constrained, but the core is empty in the presence of budgets.

{A} {B} {A,B} Budget
Buyer b1 0 0 10 3
Buyer b2 4 4 4 2

The previous examples show that ignoring budget constraints can lead to substantial problems

in combinatorial markets. Providing values and budget constraints in a market is not unusual. For

example, in Google’s auction for TV ads buyers were allowed to specify both (Nisan et al. 2009).

However, allowing for budgets to be communicated comes at a price as well. In the following, we

will show that it can be quite challenging to find core-stable outcomes in the presence of budget

constraints.
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A combinatorial exchange with budget constraints on the buyers’ side can be seen as a game with

partially transferable utility. The problem has a specific structure and therefore it is important

to understand its computational complexity. We show that the problem is actually Σp
2-hard, a

complexity class in the polynomial hierarchy that is higher than the class of NP-hard problems

(Stockmeyer 1976).

Theorem 1. Computing a welfare-maximizing core outcome or providing a certificate that the

core is empty in a combinatorial exchange with budget constraints is Σp
2-hard.

Proof techniques for this complexity class are much less developed than those for lower levels in

the polynomial hierarchy. The proof (see Appendix) reduces from QSAT2 and requires an elaborate

construction. A reduction from more abstract problems such as min max clique, which are known

to be Σp
2-hard, appears simpler at first sight, but is not practical upon application.

The hardness of the problem comes from the fact that the allocation and pricing problem needs

to be treated in a single optimization problem. Without budget constraints, the auctioneer can

compute the welfare-maximizing solution first and then compute core-stable payments, as it is

currently done for spectrum auctions (Day and Raghavan 2007). In this case, the welfare-maximal

solution does always allow for prices such that the outcome is in the core (for example, charging the

total bid amount). Thus, both calculations can be made independently. With budget constraints,

however, this is not the case as there might not exist prices such that the welfare-maximizing

solution can be extended to a core outcome.

An interesting question is whether there are some sufficient conditions for a combinatorial

exchange to have a non-empty core that are simple to check. For transferable utility games the

Bondareva-Shapley theorem describes balancedness as a necessary and sufficient condition for the

core of a cooperative game with transferable utility (TU) to be non-empty (see Bondareva (1963)

and Shapley (1967)). Balancedness is a rather obscure property, but it can be checked with linear

programming in transferable utility games, and linear programming is also used to decide whether

the core is empty in combinatorial exchanges without budget constraints (Bichler and Waldherr

2017).

A combinatorial exchange with budget constraints is closer to a game with non-transferable

utility (NTU). The main result for NTU-games is that balanced games have a non-empty core, but

the converse is not true (Scarf 1967). So, balancedness is a requirement that is sufficient for TU and

NTU games to have a non-empty core. Scarf’s algorithm is a central result to compute whether

the core of an NTU game is empty. The computational version of Scarf’s lemma is PPAD-complete

(Kintali 2008). Moreover, the algorithm requires a matrix as an input that has a column with

the payoff of each player for every coalition. In a combinatorial exchange with budget constraints,
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every coalition can have multiple allocations with different payoffs. Moreover, we have partially

transferable utility (up to the budget constraint), and the payoff vectors for each coalition are

not unique for a coalition as is the case for a pure NTU game, but depend on the prices. In such

price-guided markets Scarf’s algorithm does not provide a solution.

Therefore, it is interesting to understand restricted cases for which the problem falls into a lower

complexity class. This approach has shown to be successful for standard multi-object markets with

quasilinear bidders. For example, it is well-known that the gross substitutes condition is equivalent

to M ]-concavity, a form of discrete concavity of a valuation function, which is a sufficient condition

allowing for Walrasian prices and polynomial time algorithms to solve the allocation problem

(Danilov et al. 2001, Milgrom and Strulovici 2009, Baldwin and Klemperer 2019).

One important case that simplifies the problem, however, is that of markets where we only care

about dyadic coalitions, i.e., coalitions of size two, for which we introduce an integer program to

solve in Section 6.3. Let us first introduce a bilevel optimization problem that allows us to solve

the general case.

5. Optimization Model

Mixed integer bilevel linear programs (MIBLP) provide an adequate mathematical abstraction to

model the allocation and pricing problem with budget-constrained bidders. Integer bilevel pro-

grams (IBLPs) are Σp
2-complete (Jeroslow 1985) as is our specific problem. Only recent algorithmic

advances suggest that such problems can be solved in practice (Zeng and An 2014, Fischetti et al.

2017, Tahernejad et al. 2017).

MIBLPs belong to the class of bilevel optimization problems that have roots in the seminal work

by Von Stackelberg (1934). Bilevel linear programs (BLPs) are frequently used to model sequential

distributed decision-making. In these situations, typically a leader makes the first decision and

a follower reacts after observing the leader’s decision. The follower’s action is important to the

leader as it might interfere with the leader’s objective. The challenge of the leader is to predict

the follower’s reaction and take action in such a way that after the follower’s reaction the leader’s

objective is reached to the highest possible degree.

More technically, a BLP is a linear program that is constrained by another linear optimization

problem. Usually the first optimization problem is called the upper level problem (leader) while

the constraining problem is referred to as the lower level problem (follower). Given an upper

level solution, the lower level computes an optimal solution under consideration of its respective

constraints. This in turn affects the upper level by altering the value of the objective function

or violating constraints, possibly making the overall solution infeasible. For this introduction to
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bilevel optimization, let X be the set of variables in the upper level problem and Y be the set of

variables in the lower level problem. Then, the general form of the problem is

max
x∈X

F (x, y) (1a)

s.t. G(x, y)≤ 0 (1b)

min
y∈Y

f(x, y) (1c)

s.t. g(x, y)≤ 0 (1d)

where F,f :Rn×Rm→R1,G :Rn×Rm→Rp, g :Rn×Rm→Rq are continuous, twice differentiable

functions. Note that in MIBLP, F and f are represented by linear objective functions of the upper

and lower level, while G and g are the respective linear constraints. BLPs, where X and Y include

only continuous variables, are already NP -hard (Dempe 2002). A standard way to solve BLPs is

to add the Karush-Kuhn-Tucker conditions of the lower-level program to the upper-level program.

This adds complementarity constraints that can be modeled via integer variables. MIBLPs may

include integer variables in the upper as well as in the lower level of the bilevel programming

problem. In this case, the MIBLP cannot simply be formulated by modeling the KKT conditions

of the lower level and the problems become very hard to solve.

The MIBLP we suggest finds core allocations in combinatorial exchanges with budget constraints.

If the core is not empty, the solution of the bilevel program consists of a core allocation with

maximum welfare. Additionally, we obtain prices and payments for buyers and sellers. If the core

is empty, the MIBLP is infeasible. The goal of the upper level is to find prices P = {Pi, Pj}, such

that the corresponding allocation (X,Y ) is in the core and there is no core allocation with a higher

welfare.

In the lower level of the bilevel program, we look for a coalition of bidders and sellers which can

all improve their payoffs when trading among each other. For this, we introduce a variable d ∈R,

indicating the minimum improvement a member of the coalition can achieve. Lower level variables

χi(S) ∈ {0,1} and γj(Z) ∈ {0,1} denote the allocation of bundles S,Z ⊆K which are traded, and

ρi(S), ρj(Z) describe the corresponding prices and payments. Then, for each bidder that trades at

least one item in the lower level, her difference in payoff (based on her trade in the upper and lower

level) is calculated and considered for the minimum improvement d.

In the following, (CEx) presents the general frame of the bilevel program that finds welfare-

maximal core allocations and prices. For the moment, we ignore domain-specific allocation and

pricing constraints. Hence, we simply denote the set of feasible allocations and prices by A and P

in the upper level, and by AL and PL in the lower level, respectively. Depending on the exchange,

these can represent arbitrary linear constraints that constitute a feasible trade. We assume an
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XOR bidding language because it does not pose restrictions on the valuations. This means that

A contains a constraint that allows each bidder to only buy or sell a single bundle, respectively.

This allows for a simpler representation of the welfare function as well as the calculation of the

lower level deviation that should only depend on bidders actually participating in the blocking

coalition. The general approach is not limited to XOR bidding languages, however, and can easily

be adapted to other bid languages or exchanges that allow participants to buy and sell at the same

time. We will give examples of how to adapt the general MIBLP (CEx) in Section 7. It is also

straightforward to include swap bids that allow bidders to buy and sell items in a single bid.

max
xi(S),yj(Z)

∑
S⊆K

∑
i∈I

vi(S)xi(S)−
∑
j∈J

∑
Z⊆K

vj(Z)yj(Z) (CEx)

s.t.
∑
S⊆K

pi(S)xi(S)≤min

{
Bi,

∑
S⊆K

vi(S)xi(S)

}
∀i∈ I (UBC)

pj(Z)yj(Z)≥ vj(Z)yj(Z) ∀Z ⊆K,∀j ∈ J (UIRS)

x, y ∈A (UFA)

p∈P (UFP)

d≤ 0 (Core)

d= maxd (Lower Level)

s.t.
∑
S⊆K

ρi(S)χi(S)≤min

{
Bi,

∑
S⊆K

vi(S)χi(S)

}
∀i∈ I (LBC)

ρj(Z)γj(Z)≥ vj(Z)γj(Z) ∀j ∈ J,∀Z ⊆K (LIRS)

χ,γ ∈AL (LFA)

ρ∈PL (LFP)

d≤
∑
S⊆K

(vi(S)− ρi(S))χi(S)−

∑
S⊆K

(vi(S)− pi(S))xi(S) +M

(
1−

∑
S⊆K

χi(S)

)
∀i∈ I (Imp-B)

d≤
∑
Z⊆K

ρj(Z)γj(Z)−
∑
Z⊆K

pj(Z)yj(Z) +M

(
1−

∑
Z⊆K

γj(S)

)
∀j ∈ J (Imp-S)∑

i∈I

∑
S⊆K

χi(S) +
∑
j∈J

∑
Z⊆K

γj(Z)≥ 1 (Part)

χi(S)∈ {0,1} ∀S ⊆K, i∈ I (Binary)

γj(Z)∈ {0,1} ∀Z ⊆K,j ∈ J (Binary)

ρi(S)∈R+
0 ∀S ⊆K, i∈ I (Real)

ρj(Z)∈R+
0 ∀Z ⊆K,j ∈ J (Real)

d∈R (Real)
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xi(S)∈ {0,1} ∀S ⊆K, i∈ I (Binary)

yj(Z)∈ {0,1} ∀Z ⊆K,j ∈ J (Binary)

pi(S)∈R+
0 ∀S ⊆K, i∈ I (Real)

pj(Z)∈R+
0 ∀Z ⊆K,j ∈ J (Real)

The objective of (CEx) is to maximize gains from trade by determining an assignment of bun-

dles and corresponding prices, such that the prices respect the budget constraints and individual

rationality of buyers (BC) and sellers (UIRS). Furthermore, allocations and prices have to sat-

isfy all domain-specific feasibility conditions for the allocation (UFA), and the prices (UFP). The

prices have to be set in such a way that there is no coalition of participants which can benefit

from deviating. To find such a coalition, an assignment χ,γ with payments ρ is determined in the

lower level. Similar to the upper level, these assignments have to respect budget constraints (LBC),

and individual rationality (LIRS) as well as all other feasibility conditions for assignments (LFA),

and prices (LFP). Constraints (Imp-B) and (Imp-S) determine an upper bound for the minimum

deviation of participants by calculating the improvement for each individual buyer and seller when

participating in this coalition. Herein, M is a very big number to not restrict d in the case that a

buyer or seller is not participating in a trade within the lower level (i.e., is not part of the block-

ing coalition). Constraint (Part) requires at least one participant in the lower level, a necessary

condition since d would otherwise be trivially maximized by setting all χ,γ to zero in constraints

(Imp-B) and (Imp-S). The objective of the lower level is to maximize the minimum improvement

of participants of a blocking coalition. For the allocation (X,Y ) and the corresponding payments

to be in the core, this improvement must not be positive for any coalition (Core).

Note that the bi-linear term
∑

S⊆K pi(S)xi(S) can easily be replaced by a single variable pi

(similar with pj) for non-linear and personalized prices. In contrast, sometimes an auctioneer might

want to have non-linear but anonymous prices and he could replace the variables pi(S) (pj(Z))

for all i (j) by a single variable p(S) (p(Z)) for each package S (Z). Neither personalized nor

anonymous prices might be unique.

It is important to understand that the Σp
2-hardness of the problem hinges on the fact that items

are indivisible. If the auctioneer had the opportunity to allocate fractional items or fractional pack-

ages, then both the lower- and the upper-level programs only contain rational allocation variables

in [0,1] instead of binary variables, and the mixed-bilevel integer program reduces to a BLP.

Unfortunately, the core of the combinatorial exchange can also be empty, i.e., no allocation of

items with prices for which there is no blocking coalition may exist. However, the gains for each

blocking coalition might only be marginal and exceed the costs of finding such a blocking coalition
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for the participants. In cooperative game theory, the ε-core is defined as the set of outcomes for

which blocking coalitions can only improve by at most ε when deviating from the grand coalition.

For the combinatorial exchange as defined above, the ε-core is equivalent to those allocations and

prices for which there is no blocking coalition of buyers and sellers such that every member can

improve its payoff by more than ε. A welfare-maximal ε-core outcome can be calculated by changing

constraint (Core) to d≤ ε.

6. Algorithms

If the lower level problem does not contain integer variables and is an LP, bilevel programs can

be reformulated as single-level problem by replacing the lower level with its optimality conditions

(e.g., Karush-Kuhn-Tucker (KKT)) and then solving the resulting mathematical program with

equilibrium constraints, which can easily be translated into a mixed integer programming (MIP)

problem and solved via standard MIP techniques (Bard and Moore 1990, Dempe 2002).

Bard and Moore (1990) initiated algorithmic solutions to mixed integer bilevel linear programs

(MIBLPs). However, algorithms for MIBLPs are a relatively new research field, and there are no

standard techniques for solving MIBLPs. MIBLPs with nonconvex lower level have been considered

“still unsolved by the operations research community” (Delgadillo et al. 2010, Dempe 2003).

It has only been recently that two quite general branch-and-cut MIBLP algorithms have been

proposed. Fischetti et al. (2017) propose an algorithm for MIBLPs with binary upper-level vari-

ables. They require the linking variables, those variables that have non-zero coefficients and are

present in the upper- and lower-level program, to be integer. Tahernejad et al. (2017) propose

another MIBLP solver based on cut generation which is available as open source in the MibS solver

and has the same requirement on the linking variables.

A näıve technique would be to write down the full program with all optimality conditions of the

lower level for all possible solutions of the upper level. However, this program would be huge and

intractable for all but the smallest of toy instances. Even the smallest instances we consider in our

computational experiments allow for 960 coalitions and hundreds of possible assignments for each

of these coalitions. Hence, a näıve approach, enumerating all those options (and introducing KKT

conditions for all of them) would be intractable to solve.

It is natural to use column and constraint generation techniques as the search space tends to

be large. Zeng and An (2014) discuss a generic column and constraint generation framework. The

authors first make use of the high-point relaxation of the bilevel program, wherein all lower level

variables and constraints are duplicated into the upper level and a classical MILP is solved. This

yields a solution that is feasible with respect to upper and lower level constraints, but not optimal

with respect to the lower level. Actually, the high point relaxation is generally adopted as the
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fundamental relaxation within MIBLP techniques in the literature (Moore and Bard 1990, Xu and

Wang 2014, Scaparra and Church 2008). The solution serves as an upper bound UB for the optimal

solution of the MIBLP.

A generic scheme for column and constraint generation in MIBLP, like that explored in Zeng

and An (2014), can be summarized in the following steps:

1. Given an assignment x∗ of the upper level variables in the single-level reformulation, the

lower level problem is then solved to optimality, yielding an assignment y∗ for the lower level

variables.

2. If the combined solution (x∗, y∗) is feasible for the MIBLP, then F (x∗, y∗) is a lower bound

LB for its optimal solution. In the case that LB =UB, (x∗, y∗) is also an optimal solution.

3. Otherwise, let yZ ∈ YZ consist of the lower level variables with integer domain and yR ∈ YR

denote the continuous lower level variables. The single-level reformulation is extended by KKT

optimality conditions of the lower level with the integer variables fixed to y∗Z.

The procedure continues as described above, until lower bound and upper bound converge to

the same value or the single-level reformulation is infeasible. Column and constraint generation

is a wide-spread and textbook-level technique to solve large-scale integer programming problems.

The challenge is how constraints and columns are generated and this is typically specific to the

problem at hand.

In the case of computing welfare-maximal core allocations, the problem has a very special struc-

ture. For instance, simply adding the lower level variables and constraints to the upper level problem

(i.e., using the high-point relaxation) does not restrict the upper level since the core feasibility

constraint can be trivially satisfied (with d= 0) by setting the lower level allocation variables to

the exact copy of the upper level allocation variables. Additionally, solving the lower level does not

yield any meaningful lower bounds for the optimization problem: Either the lower level solution

leads to an infeasibility, or the solution of the upper level is optimal.

In the following, we present an algorithm for computing welfare-maximal core allocations. As

in the scheme by Zeng and An (2014) introduced above, our algorithm is also based on the clas-

sical idea of transforming the bilevel program into a single-level problem by dynamically adding

columns and constraints, which are specific to our welfare maximization and pricing problem. The

overall solution to the allocation and pricing problem involves the initial MIBLP formulation, an

algorithm to solve the MIBLP formulation via column and constraint generation, the restriction

on n-blocking-coalitions, and the delayed coalition generation discussed below. These components

allowed us to solve realistic problem sizes as we show in our experiments.
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6.1. Column and Constraint Generation

In what follows, we introduce our bilevel integer programming algorithm for the specific problem

of computing a welfare-maximal core allocation and core prices in combinatorial exchanges.

First, the upper level is solved to optimality, ignoring the core constraint and possible blocking

coalitions. Afterwards, given an optimal allocation x∗, y∗ and prices p∗ in the upper level, the lower

level is solved to optimality for the corresponding optimal assignment of the upper level linking

variables. If the optimal deviation d is at most zero, then there exists no coalition of bidders

that block the upper level allocation and prices. In this case the upper level solution is feasible

and, moreover, the welfare-maximal core allocation. If, however, the lower level yields a positive

deviation d, let χ∗, γ∗ be the allocation of items within the blocking coalition as determined by

the lower level. Then, the upper level is extended by the Karush-Kuhn-Tucker (KKT) optimality

conditions of the lower level with the integer variables (i.e., χ and γ) fixed to the result of the

lower level. These additional constraints force the upper level to determine a new allocation and /

or new prices such that there is no possibility for a blocking coalition with an allocation χ∗, γ∗ to

determine payments among each other such that all members of the coalition can profit.

Algorithm 1 illustrates the overall procedure. A welfare-maximal upper level solution (x, y, p)

considering the current constraints is determined in Line 3 of the while loop. If the upper level

is infeasible and no allocation has been fixed, then there exists no stable outcome. Otherwise,

if the allocation in the upper level was fixed before, no prices for this allocation exist. Hence,

the allocation is unfixed in Line 9 and this allocation and all other allocations with higher social

welfare are forbidden since they were proven to be unstable in previous iterations. Afterwards, the

upper level is solved again. If the upper level is feasible, we solve the lower level in order to find

a deviating coalition that can improve upon the upper level allocation and prices. If there is no

such coalition, (x, y, p) constitute welfare-maximal core allocations and prices. Otherwise, we add

the KKT condition for the fixed lower level integer variables to the upper level in Line 17 and fix

the current welfare-maximal allocation in Line 18.
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Algorithm 1: Bilevel algorithm to obtain welfare-maximal core allocation and prices

1 Set fixedAllocation = false;
2 while true do
3 Solve the upper level U to obtain allocation x, y and prices p;
4 if U is infeasible then
5 if fixedAllocation = false then
6 return that there exist no core allocation and prices;
7 else
8 Add a constraint to U to forbid allocation (x, y) as well as all allocations with

higher social welfare;
9 Set fixedAllocation = false;

10 Continue;
11 end
12 end
13 Solve the lower level L with allocations x, y to obtain deviation d and allocation χ,γ;
14 if d< 0 and fixedAllocation == false then
15 return x, y, p as the welfare-maximal core allocation and prices
16 else
17 Add KKT condition for allocation χ,γ to U ;
18 Fix allocation x, y in U ;
19 Set fixedAllocation = true;
20 end
21 end

Algorithm 1 already offers a sufficient framework to obtain welfare-maximal core allocations

and prices. However, the nature of the problem and its inherent complexity can lead to very long

runtimes. In the following, we introduce several methods to further improve our algorithm in order

to obtain solutions faster, or at all. First, in Section 6.2, we discuss some computational approaches

such as branching schemes and reducing the size of the IPs that need to be solved in Algorithm 1.

Afterwards, we address the computational challenges by restricting the number and size of blocking

coalitions. As we show in Section 6.3, with blocking coalitions of size 2, the problem is even in NP

(and hence no longer Σp
2-hard). Based on these ideas, we introduce delayed coalition generation in

Section 6.5.

6.2. Computational Approaches

First, we discuss two speedup strategys to improve Algorithm 1. It should be noted that the effect

of these improvement depends on the structure of specific instances and can lead to large improve-

ments in some cases while having only little effect in others. Hence, while discussing these two

general strategies, we also lay out in which cases these strategies lead to the biggest improvements.

Branching over possible payments for fixed allocations. In each level, branching can be defined

by selecting a subset of bidders B and a payment threshold p′ dividing the problem into

two subproblems, one using the constraint
∑

b∈B
∑

S⊂K pb(S) ≥ p′ and one using the constraint∑
b∈B
∑

S⊂K pb(S)≤ p′. Since for a fixed allocation, the precise payments have no impact on the
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welfare, we can terminate the algorithm as soon as we find a core-stable outcome for any of the

subproblems. In instances where a welfare-maximal core allocation is easy to find (i.e., not many

allocations have to be forbidden in Line 9), but finding prices is very difficult, this branching pro-

cedure led to noticeable speedups in determining whether an allocation can be supported by prices

to result in a stable outcome. However, in cases where it is easy to find blocking coalitions for the

allocations determined in the upper level regardless of prices, adding additional constraints via

a branching scheme to differentiate between prices can even lead to unnecessary computational

overhead.

Removal of old KKT conditions. Another modification to speed up the algorithm is by not

only adding new constraints and variables in each iteration in the form of KKT conditions, but

to also remove old ones regularly in order to keep the upper level problem from becoming too

large. Deviating coalitions and the allocation of items among them depend significantly on the

upper level solution. Thus, the KKT conditions that were added iteratively for a fixed allocation

x, y in the upper level, become redundant when the allocation could be proven to not allow for

stable prices and a new allocation x′, y′ is determined. In this case, the coalitions that blocked

the previous outcome might no longer form based on the new allocation. Then, instead of keeping

the corresponding KKT conditions for the remainder of the solution process, these constraints and

variables can be removed and a singular constraint can be introduced which prohibits the allocation

that was proven not to support core prices. This strategy is very effective when allocations with

high welfare are very different from another (i.e., very different allocations are fixed in Line 18 in

successive rounds of Algorithm 1). On the other hand, if these allocations are very similar, they

also lead to similar blocking coalitions and hence a re-creation of the removed KKT conditions.

6.3. Exclusion of Dyadic Coalitions

A fundamental problem of the MIBLP is the exponential number of coalitions that could possibly

block the upper level solutions. The concept of the core considers coalitions of any size. Large

coalitions are costly, not only in terms of tractability of the bilevel program, but also for participants

to find. The computation of the coalitional value of each possible coalition is NP -hard to compute

in general.

An alternative approach is to focus on coalitions of restricted size. For some applications, it

might be sufficient to find a solution that avoids deviations of dyadic coalitions.

For this, we introduce variables ρij(S) ∈ {0,1} for each possible package trade between a buyer

i and seller j over all packages S ⊂K(j) where K(j) denotes all bundles Z ⊆K which are offered

by j. The variable ρ is set to 1, whenever the respective dyad would form a blocking coalition.
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Similar to the general problem, we introduce constraints such that only outcomes without blocking

coalitions are feasible.

max
xi(S),yj(Z)

∑
S⊆K

∑
i∈I

vi(S)xi(S)−
∑
j∈J

∑
Z⊆K

vj(Z)yj(Z)ρijS (DY)

s.t.
∑
S⊆K

pi(S)xi(S)≤min

{
Bi,

∑
S⊆K

vi(S)xi(S)

}
∀i∈ I (BC)

pj(Z)yj(Z)≥ vj(Z)yj(Z) ∀Z ⊆K,∀j ∈ J (IRS)∑
i∈I

∑
S⊆K

pi(S)xi(S) =
∑
j∈J

∑
Z⊆K

pj(Z)yj(Z) (BB)∑
S:k∈K

∑
i∈I

xi(S)≤
∑
Z:k∈K

∑
j∈J

yj(Z) ∀k ∈K (Supply)∑
S⊆K

xi(S)≤ 1 ∀i∈ I (XOR-B)∑
Z⊆K

yj(Z)≤ 1 ∀j ∈ J (XOR-S)

πi =
∑
S⊆K

(vi(S)− pi(S))xi(S) ∀i∈ I (payoffB)

πj =
∑
Z⊆K

(pj(Z)− vj(Z))yj(Z) ∀j ∈ J (payoffS)

πj + vj(S)≥Biδij(S) ∀i∈ I,∀j ∈ J,∀S ⊆K(j) (Block-B)

πj + vj(S)≥ vi(S)−πi−Mγij(S) ∀i∈ I,∀j ∈ J,∀S ⊆K(j) (Block-Imp)

δij(S)≥ γij(S) ∀i∈ I,∀j ∈ J,∀S ⊆K(j) (No-Block)

xi(S)∈ {0,1} ∀S ⊆K, i∈ I (Binary)

yj(Z)∈ {0,1} ∀Z ⊆K,j ∈ J (Binary)

δij(S), γij(S), ρij(S)∈ {0,1} ∀i∈ I,∀j ∈ J,∀S ⊆K(j) (Binary)

πi, pi(S)∈R+
0 ∀S ⊆K, i∈ I (Real)

πj, pj(Z)∈R+
0 ∀Z ⊆K,j ∈ J (Real)

Constraints (Block-B) to (No-Block) of (DY) characterize blocking dyads and require some

explanation. Note that a buyer i wants to deviate if for her new payoff vi(S)− pij(S)> πi would

hold, where pij(S) is some transfer price in a blocking dyad. Similarly, a seller j would want to

deviate if pij(S)− vj(S)> πj. Rearranging terms, πj + vj(S)< vi(S)− πi characterizes a blocking

coalition, i.e., with πj +vj(S)≥ vi(S)−πi a dyad would not be blocking (see (Block-Imp)). We also

need to consider budget constraints of buyers Bi. With πj + vj(S) ≥ Bi in constraint (Block-B),

we avoid payments to the seller j characterized by the LHS of the constraint that are higher

than the budget of the buyer Bi. The binary variable γij(S) = 1 indicates if a dyad would deviate
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due to improvement in payoffs, variable δij(S) = 1 if the required payments would exceed budget.

Constraint (No-Block) demands that a dyad can only be willing to deviate due to payoffs if the

required payments would exceed the budget of the buyer involved, since this dyad would otherwise

be blocking the outcome.

Note that without the constraints (BC), (Block-B), (Block-Imp), and (No-Block), we have the

winner determination problem in a combinatorial exchange, which is known to be NP-hard. With

these additional constraints involving additional binary variables, the problem cannot be solved in

polynomial time. Interestingly, however, the problem is not Σp
2-hard anymore, but is in NP since

it can be solved by the integer program mixed integer program (DY).

6.4. Restrictions on Blocking Coalitions

Beyond dyadic coalitions, one can restrict the cardinality of coalitions to those with only a few

participants. We will refer to such outcomes where we only achieve stability against blocking

coalitions with at most n bidders as n-coalition stable or in short n-stable outcomes. Such a

restriction speeds up the solution process in two places. First, the solution space of the lower level

program becomes smaller due to the additional constraints on coalitions and possible omission

of participants. Second, the smaller number of prospective deviating coalitions obviously leads to

fewer options for deviations and hence to fewer KKT conditions that need to be added to the upper

level before obtaining welfare-optimal outcomes which are n-coalition stable. In a similar way,

one can leverage prior information about likely coalitions and find outcomes that are stable with

respect to these coalitions. In many cases, it might be sufficient to find n-coalition stable outcomes

or outcomes that are stable against coalitions of close participants due to the high computational

or organizational cost (or even inability) for these bidders to find blocking coalitions of larger sizes,

themselves.

6.5. Delayed Coalition Generation

As discussed in the previous sections, stable outcomes against subsets of coalitions are easier to find

than stable outcomes against all possible blocking coalitions. In delayed coalition generation (DCG),

instead of considering all coalitions and their possible trades from the beginning, we determine an

initial set of coalitions C ⊆C and solve the MIBLP, only considering coalitions in C. For example,

we can search for n-coalition stable outcomes by defining C as the set of all coalitions with size

at most n. If we find an outcome that is stable against coalitions in C, then we extend C in order

to obtain stability with regards to a larger set of coalitions. If, however, one cannot find a stable

outcome against coalitions in C, the auction cannot be stable in general. DCG can also be seen as

a procedure to determine the largest size of blocking coalitions, for which a stable outcome can

exist.
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7. Experimental Design

At first sight the problem appears to be too hard to solve even small problems. Interestingly, we

show that small but realistic problem sizes can actually be solved at the present time. Given the

advances in mixed integer bilevel programming and hardware in the last ten years, we expect to

solve increasingly larger problem sizes in the future.

In order to evaluate the empirical hardness of the problem, we draw on two problem types with

different characteristics, a combinatorial exchange for the allocation of airport time slots to airlines,

and a market for fishery access rights. For the airport time slot market, we could handle instances

up to 8 airports, 40 airlines and 80 slots traded. In the fishery access rights market we could solve

problems with 10 sellers and 10 buyers and hundreds of units traded of two distinct items (share

classes). The bidding languages differ, but the MIBLP is very flexible and can easily be adapted

on the upper and lower level to the very specifics of the allocation problem. In both environments,

we restricted the analysis to a computation time of 10 minutes and for some instances to two

hours. First, this allowed us to run a large number of experiments. Second, we found that even

computation times of 24 hours typically did not get much better results.

7.1. Airport Time Slots

The first market we consider is the allocation of airport time slots which has been discussed

repeatedly in the literature (Rassenti et al. 1982, Castelli et al. 2011, Pellegrini et al. 2012). Current

assignment mechanisms for slots have come under much scrutiny over the years. Theoretically,

airport time slots are reallocated at the start of each season. However, within the current slot

allocation process, airlines in Europe and the US enjoy grandfather rights over the slots they

obtained in previous seasons which leads to inefficient usage. For example, in 2016, only 22 slots

were made available for auction by the Heathrow airport. Ball et al. (2017) argue that currently

there is a strong case for the use of market mechanisms to allocate or reallocate such slots. Package

bids are essential in this domain: A takeoff slot is only valuable with a landing slot. Such slots can

cost millions of US dollars. Haylen and Butcher (2017) report airlines that bid up to 75 million

US dollars for a pair of slots at the Heathrow airport. Airlines are interested in many of these

combinations, but there are concerns about depressed bidding of smaller airlines that are financially

constrained (Debyser 2016).

7.1.1. Data

For our experiments we draw on the valuation model for airport slot allocation in the combinatorial

auction test suite (CATS) (Leyton-Brown et al. 2000), a very widely used instance generator for

combinatorial auctions. Given the input of a number of airports, their respective location, and

available slots, CATS generates values for pairs of slots at two distinct airports, representing a
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flight between these two respective cities. Each bidder is interested in obtaining one pair of slots.

The values for these pairs are based on a common value for each slot at a given airport as well as

a private deviation for each bidder. The instances we generate for our market describe bids by up

to 40 bidders that are interested in up to 80 slots at the eight coordinated airports. In addition to

the values generated by CATS, we randomly generated budgets for buyers which lie between the

buyer’s highest value and half of this amount. In the generated instances, the bidders truthfully

bid these values and budgets. All problem instances are available online.6

7.1.2. Domain-Specific Adaptations for the MIBLP

In the airport slot allocation model as described above, buyers submit bids for various packages of

two items where each of the items is owned by a seller (airport). Because each trade of slots requires

at least one buyer and two sellers, it is not possible for dyadic coalitions to block an allocation.

Each buyer is only interested in obtaining one of these packages, i.e., the buyers use an XOR

bidding language. Hence, the sets A and AL in the MIPBL of Section 5 describe all allocations

where each buyer is assigned at most one pair of two slots. Sellers can freely dispose all slots that

are not assigned to buyers.

7.2. Fishery Access Rights

The second market we consider is one for fishery access rights (catch shares) that was recently

implemented in Australia (Bichler et al. 2019). A catch share describes the right to catch a certain

volume of a specific type of fish in a specific region. After a reform, some fishers needed more catch

shares while others wanted to sell some or even all their endowment and exit the market. This

made package bidding a necessity, because sellers who wanted to exit did not want to sell only

part of their shares. There were concerns about buyers being financially constrained such that they

could not bid up to their net present value for shares. We analyze an exchange design where we

do consider budget constraints explicitly and one where bidders can only submit budget-capped

values and explore problem sizes we can solve.

In this exchange, there exists a set of share classes L which are traded among a set I of buyers

and J of sellers. Each buyer i ∈ I can submit multiple bids, one for each share class and can win

any combination of these bids (OR bids). A bid for share class l ∈ L by a buyer has to include

a lower and an upper bound X il, and X il of the desired units of this share class and a value vil

for a single unit of l. However, each seller j ∈ J submits a single bid for a bundle of share classes

containing the number of units per share class in the bundle and an ask price. Sellers are only

interested in selling their entire bundle.

6 http://anonymized.com
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7.2.1. Data

We were fortunate to draw on an instance generator used to evaluate the scalability of a combina-

torial exchange design that was later used in the field (Bichler et al. 2018). The instance generator

is based on information of the real-world market with regards to the licenses each registered fishing

business owns and the estimated revenue generated by these shares calculated by landings and fish

market prices. Given this field data, a distribution of share classes and values was generated. For a

specified number of bidders, sellers, and share classes, the generator then constructed correspond-

ing instances based on these distributions. While these are synthetic instances smaller than those

described in Bichler et al. (2018), care was taken to closely reflect the specifics of the market, the

very bidders that participated, their endowments, and historical catch levels. The instance gener-

ator allowed us to simulate small and large exchanges by taking only subsets of the participants

and share classes into account.

Based on historical market data, the generator simulates values for share classes and generates

bids (i.e., the lower and upper bound X il, X il of shares requested by the buyer, as described in the

previous section). Budget constraints were not part of the generator, and hence we added them

based on the following assumption. We assumed the upper bounds on requested shares simulated

by the generator to be induced by an underlying financial constraint: A buyer would bid for a larger

number of shares but could not afford to pay up to the reported valuation for them. Therefore,

we set the budget at the amount that a buyer would pay if she was to obtain all of her requested

shares. Afterward, we multiplied the upper bounds of all requested share classes by a random factor

between 1.3 and 2.0. This led to the scenario outlined above: Buyers requested more shares, but

were only able to pay up to their values for a smaller fraction of shares. Again, all instances used

for our experiments are available online.

7.2.2. Domain-Specific Adaptations for the MIBLP

In order to adapt the MIBLP program of Section 5, for each buyer i ∈ I the variables xi(S) can

be replaced by variables xil ∈N where xil is the number of units per share class l ∈L that buyer i

receives. Then, terms
∑

S⊆K vixi(S) can be replaced by
∑

l∈L vilxil. Likewise, for each seller j ∈ J ,

the variables yj(Z) can be replaced by yj since they only offer a single bundle. The variables χ

and γ of the lower level can be replaced in the same way. Further, the lower and upper bounds of

share classes for each buyer have to be included in the constraint sets A and AL and the constraint

(Imp-B) in the lower level has to be adapted in order to implement an OR rather than an XOR

bidding language for the buyers.
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8. Results

The number of participants and items were the main treatment variables in both sets of exper-

iments. Runtime for the core computations and also welfare gains compared to markets where

buyers can only provide capped values were the main focus variables.

For our experiments we used a 24 core Intel Xeon ES-2620 (2.00 GHz) with 64 GB memory on

Ubuntu 19.04.01, using Gurobi 8.1.0 for solving the mixed integer linear programs.

8.1. Airport Time Slots

Let us first discuss the results for the exchange of airport time slots for which we used CATS to

generate several instances for the 8 coordinated airports (referred to as sellers). Treatment variables

for our experiments include the number of airlines that submit bids (referred to as buyers), the

number of slots that are sold by the airports (referred to as items), and the size n of blocking

coalitions for which we can reach n-coalition stability. First, we present results for the performance

of our algorithm with regard to runtime and size of instances that can still be solved. Then, we

discuss the negative effects of not considering the budget constraints within the computation.

We consider the market for airport slot allocation with 8 sellers, between 40 and 80 items that

were endowed uniformly across all sellers, and 10 to 50 buyers. These scenarios cover markets that

range from little competition to those with a large amount of competition over the items and the

number of possible blocking coalitions becomes quite large as shown in Table 4. Note that each

blocking coalition must include at least two sellers (since buyers are only interested in bundles of

items from two distinct sellers) and contain at most two sellers for each buyer (since buyers are

only interested in a bundle).

number of coalitions of
#buyers #items size 3 size 5 unrestricted size

10 8 280 7,420 182,350
25 8 700 90,300 ≈ 8 · 108

40 8 1,120 343,280 ≈ 2 · 1014

50 8 1,400 653,100 ≈ 2 · 1017

Table 4 Number of coalitions of up to a specific size for the problem sets in the airport market.

8.1.1. n-Coalition Stability For each combination of buyers and number of items, we gener-

ated 8 instances and tried to determine welfare-maximal core allocations and prices with Algorithm

1 within a time limit of 10 minutes. We also applied the algorithm to find allocations and prices

that are n-coalition stable for n= {3,5}. In Table 5 we report for each treatment combination, for

how many of these 8 instances Algorithm 1 returned a solution within that time limit (i.e., how
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many of the instances were “solved”). Noticeably, for all instances in which the algorithm termi-

nated, a stable outcome could be found. Further, we report the mean runtime to find a solution

(in those cases where a solution was found) and its standard error.

3-stable 5-stable core-stable
time time time

#buyers #items solved mean std.err. solved mean std.err. solved mean std.err.

10 40 8 0.32 0.02 8 0.77 0.05 8 3.03 0.86
10 80 8 5.22 0.83 8 8.37 1.84 8 15.58 7.37
25 40 8 1.42 0.23 8 5.23 1.10 8 98.03 27.26
25 80 8 24.93 3.95 8 48.76 9.79 2 293.84 0.25
40 40 8 2.04 0.12 8 7.68 0.93 6 222.89 30.09
40 80 8 50.01 6.61 8 93.06 16.28 0 – –
50 40 8 3.07 0.27 8 11.85 0.96 5 425.53 52.21
50 80 8 69.24 4.88 8 83.68 5.96 0 – –

Table 5 Computational results of the airport slot market for a variable number of buyers and sellers. For 8

instances each, the number of instances for which outcomes were calculated that are n-coalition stable and the

average computation time in seconds required to solve the instances is shown.

Even for larger sized problems with 50 buyers and 40 items, we were able to solve 5 out of 8

instances within the 10 minute time limit. It should be noted that in the 3 remaining cases, as well

as 6 out of 8 cases for 40 buyers and 80 items, the algorithm was able to derive core-stable solutions

when allowed a time limit of two hours. However, for the largest instances with 50 buyers and 80

items, even allowing for a two hour time limit did not yield core-stable outcomes. Such instances

rarely find the optimal solution even if run overnight.

For all instances we were able to derive n-coalition stable outcomes for coalitions up to size 5

within at most two minutes of runtime. Despite the computational complexity of the problem,

these results show that we are able to find core-stable outcomes in realistic markets.

In Table 6, we report results for delayed coalition generation (DCG). Since coalitions of size

n= 2 can never block any assignment, we start with coalitions of size n= 3. As shown in Table 5,

3-coalition stable outcomes can be computed in very short time. Whenever an outcome is found

that is n-coalition stable, we increase n and search for an n+ 1-coalition stable outcome (or prove

that no such outcome exists). We have again allowed for a time limit of 10 minutes. For these

experiments, we have concentrated on the harder cases with 40 and 50 buyers. Table 6 shows

the number of instances for which we could prove whether the problem was core-stable within 10

minutes. If the algorithm could not prove core stability within this time, we report the maximal n

for which n-coalition stability was proven within the 10 minutes averaged over the instances that

could not be solved completely.
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#buyers #items solved avg. n-stability
of not solved

40 40 5 23.67
40 80 0 8.62
50 40 6 23.00
50 80 0 8.13

Table 6 Results of delayed coalition generation for the airport slot market

Even in instances where no core-stable solution could be obtained without DCG, DCG could find

outcomes that were n-coalition stable for large n. For all instances, DCG could assure 7-coalition

stability and for 80 items an average n-coalitional stability of n ≥ 8 could be achieved. For 50

buyers and 40 items, DCG was able to find one additional core-stable solution compared to the

results of the experiments reported in Table 5.

In all other instances with 40 items full core stability could not be proven, but DCG resulted in

an average n-coalition stability of n≥ 23. In most applications it will be very costly for coalitions

of 23 participants to form, and robustness against coalitions of this size would be considered very

stable.

Longer computation times did not lead to significantly larger problem instances that could be

solved. However, with advances in computational optimization, we expect to see progress made on

these problems in the future.

8.1.2. Welfare Gains An important question concerns the welfare gains one can expect when

considering values and budgets rather than just values capped by the budget constraints of a

bidder, or when ignoring budgets at all. In the first setting, which we refer to as capped bidding,

bidders submit their values up to the budget limit only and the auctioneer computes bidder-optimal

core-selecting prices based on these capped values. In a second unrestricted setting, bidders and

the auctioneer ignore their budget constraints and bid up to their true valuations as if there were

no budget constraints hoping that the prices are within budget.

Table 7 shows the negative effects of ignoring financial constraints. As compared to the resulting

allocation and prices when reporting the budget constraints, in 21 of the 24 instances different

allocations emerged. The gains from trade were on average 8.09 percent lower with capped bidding.

When buyers submitted unrestricted bids up to their valuation, this resulted in violations of their

budget constraints in 16 out of the 24 instances, i.e., bidders actually made a loss.

Overall, a simple bid language that does not let buyers express valuations and overall budgets

can lead to significantly lower welfare and instability.

8.2. Fishery Access Rights

For experiments in the fishery market, treatment variables include the number of fishers that want

to add additional shares (referred to as buyers), the number of fisheries that want to sell their shares
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capped bidding unrestricted bidding
#buyers #items instances with average std. error instances leading

different allocations welfare loss welfare loss to losses

10 40 6 6.30 % 2.40 % 3
10 80 8 16.98 % 1.98 % 5
25 40 7 4.66 % 1.46 % 8

in total 21 9.31 % 1.58 % 16
Table 7 Negative effects of ignoring financial constraints: Welfare loss in case of capped bidding; instances

with prices leading to losses in case of unrestricted bidding

(referred to as sellers), and the size n of blocking coalitions for which we can reach n-coalition

stability. In contrast to the market for airport slots in the previous section, where airlines interested

in operating flights between two airports needed two items (slots) from these two distinct airports,

fishers who want to buy shares need a larger quantity of items (shares) of the same share class

which they can purchase from an arbitrary number of sellers. We consider a fishery market with

two share classes of protected fish, 5 to 10 buyers, and 5 to 15 sellers. The valuations of share classes

for all participants as well as the number of shares in these two classes that were demanded by

buyers and offered by sellers was determined by the generator based on real-world data described

in Section 7.2.1. For the smaller instances with 5 buyers and 5 sellers, the total number of shares

available in the market was between 209 and 430 while for the larger instances with 10 buyers

and 15 sellers it was between 650 and 1050. The variance in the number of shares is due to the

generator that created small but realistic fishery markets with significant competition among the

participants. The number of possible blocking coalitions grows quickly as is shown in Table 8.

number of coalitions of
#buyers #items size 3 size 5 unrestricted size

5 5 125 575 960
5 10 375 4,275 31,712
5 15 750 16,725 1,015,776
10 10 1,000 20,425 1,046,528
10 15 1,875 62,825 33,520,640

Table 8 Number of coalitions of up to a specific size for the problem sets in the fishery market.

8.2.1. N-Coalition Stability As in the experiments for the airport slot market, we generated

8 instances for each combination of buyers and sellers and tried to determine welfare-maximal core

allocations and prices with Algorithm 1 within a time limit of 10 minutes. We also applied the

algorithm to find allocations and prices that are n-coalition stable for n = {3,5}. In contrast to

the airport slot market in Section 8.1, not all instances that we were able to solve allowed for

core-stable outcomes. In Table 9 we report for each treatment combination, how many of these 8
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instances could be solved within that time limit, and how many of these instances are n-coalition

stable. Further, the average time to find a solution (in those cases where a solution was found) and

the corresponding standard error are presented. For example, with 5 buyers and 10 sellers only 4

out of 7 problem instances that could be solved were actually 5-coalition stable, for the other 3

instances we could show that no such allocation and prices exist.

3-stable 5-stable core-stable
time time time

#buyers #sellers solved stable mean std.err. solved stable mean std.err. solved stable mean std.err.

5 5 8 8 0.35 0.10 8 8 1.73 0.51 8 8 2.16 0.73
5 10 8 8 1.40 0.55 7 4 57.07 24.21 6 3 25.07 14.18
5 15 8 8 18.73 10.7 7 7 11.43 6.41 7 6 14.33 3.98
10 5 8 8 13.63 8.24 5 5 39.39 18.83 5 5 51.12 21.53
10 10 6 6 25.48 12.31 3 3 278.00 63.02 1 1 321.59 –
10 15 3 3 367.02 61.60 0 0 – – 0 0 – –

Table 9 Computational results of the fishery market for a variable number of buyers and sellers. For 8 instances

each, the number of instances for which outcomes were calculated that are n-coalition stable and the average

computational time required to solve the instances in seconds is shown.

In Table 10, we report results for DCG. We start with coalitions of size n= 2, for which results

can be obtained relatively easy compared to larger sizes of coalitions (cf. Section 6.3), and increase

n whenever an outcome is found that is n-coalition stable. Again, we allowed for a time limit of

10 minutes. The table shows the number of instances for which we could prove within the time

limit either (a) that the problem was core-stable (i.e., for which we found core-stable allocations

and prices), or (b) that the problem did not allow for a core-stable allocation. In both cases, we

considered the corresponding problem instance to be “solved” by our algorithm. We also describe

for how many of the instances we were able to derive 3- and 5-coalitional stable outcomes and full

core stability (“core”).

Moreover, we analyze those instances which could not be solved by our algorithm(“not solved”).

For these, in the last column of Table 10, we report the maximal n for which n-coalition stability

was proven within the 10 minutes averaged over the instances that could not be solved completely.

For example, in the case of 10 buyers and 10 sellers, none of the 8 instances could be solved, but

we were able to show robustness against coalitions of size 3.5 on average.

With DCG we were able to provide a solution for one additional instance for 10 buyers and

5 sellers when compared to the experiments described in Table 9 (where we could prove that

there are no stable outcomes against coalitions of up to 6 members). Also, we were able to find 3-

coalition stable solutions when starting DCG with coalitions of size 2 as opposed to only considering

coalitions of size 3.
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#buyers #sellers solved 3-stable 5-stable core not solved avg. n-stability of not solved

5 5 8 8 8 8 0 –
5 10 6 8 4 3 2 4
5 15 7 8 7 6 1 3
10 5 6 8 5 5 2 3
10 10 0 8 1 0 8 3.5
10 15 0 4 0 0 8 2.5

Table 10 Results of delayed coalition generation for the test set with two share classes and a variable number

of buyers and sellers

In larger instances especially, it was harder to leverage DCG in order to prove n-coalition stability

for higher n. For example, we were not able to find the core-stable solution for 10 buyers and 10

sellers that we could find when directly looking for outcomes that are stable against coalitions

of arbitrary size. However, we were able to find 2-coalition stable allocations for all instances

and on average 2.5-coalition stable outcomes for the largest instances with DCG. Again, longer

computation times did not lead to significantly larger problem instances that could be solved.

8.2.2. Welfare Gains Like we did for the airport slot market, we also evaluated the negative

effects of ignoring the budget constraints in the fishery market. Again, we considered capped bidding

(i.e., bidders submit their budget capped valuations) and unrestricted bidding (i.e., bidders ignore

their budget constraints and bid up to their valuations). For the test instances for which we were

able to calculate 3-coalition stable outcomes in all instances, we compared these results to the two

alternatives in which budgets cannot be communicated.

Table 11 summarizes the results. As compared to the 3-stable outcome, the gains from trade

were on average 32.17% lower with capped bidding. Moreover, in 9 of the 32 instances different

allocations emerged, not only with respect to the number of share classes traded per bidder, but

with respect to which buyers traded which share classes. When buyers submitted unrestricted bids

up to their valuation, this resulted in violations of their budget constraints in 17 out of the 32

instances, i.e., bidders actually made a loss.

capped bidding unrestricted bidding
#buyers #items instances with average std. error instances leading

different allocations welfare loss welfare loss to losses

5 5 2 35.48 % 3.62 % 5
5 10 1 37.33 % 2.20 % 5
5 15 0 36.54 % 2.29 % 0
10 5 6 17.52 % 3.70 % 7

in total 9 32.17 % 2.02 % 17
Table 11 Negative effects of ignoring financial constraints: Welfare loss in case of capped bidding; instances

with prices leading to losses in case of unrestricted bidding
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The market for fishery access rights shows that there can be substantial welfare losses when

only capped valuations are taken into account and bidders cannot properly express valuations and

prices. Capped valuations allow buyers to only bid for a lesser number of items in this market,

while in the airport slot market package bids are only on pairs of slots. However, even in the airport

time slot auction the welfare loss was significant.

9. Conclusions

In this paper, we have analyzed combinatorial exchanges in the presence of financially constrained

bidders. We have shown that ignoring budgets and allowing bidders only to submit budget capped

values leads to welfare losses and instability, even though the outcome was stable with respect

to the capped values. In order to maximize welfare subject to stability of the market, a market

designer therefore should take budget constraints into account.

We have proven that computing welfare maximizing and core-stable outcomes leads to a Σp
2-

hard optimization problem. Problems in this level of the polynomial hierarchy are rare in business

practice and are typically considered intractable. This is an important insight and contributes to the

literature connecting algorithm design and market design. Although the computational hardness

of the problem could be interpreted as an impossibility result at first sight, we were able to solve

markets with restricted forms of core stability and smaller problem instances even to full core

stability.

To this end, we have introduced a bilevel integer programming formulation and effective algo-

rithms to compute welfare maximizing outcomes that are robust against coalitions of restricted size,

i.e., n-coalition stability. While bilevel integer programs have been discussed for several decades,

they have received more attention in the past five years. Still, there are no established black-box

approaches as they are available for integer programming nowadays. In this paper, we have provided

a column and constraint generation framework which is tailored to our problem and surprisingly

effective in solving realistic problem instances. In particular, delayed column generation provided

an effective way to systematically increase the size of the coalitions against which a computed

outcome is stable. An outcome that maximizes welfare, considers budget constraints, and is robust

against deviations of coalitions with four or five participants is computable even for large markets.

This might well be sufficiently stable in practice, because it is computationally hard for larger

coalitions to evaluate whether they can find a profitable deviation.

Given the advances in computational optimization in the past three decades we expect to solve

increasingly larger problem sizes, such that we can hope to find core-stable solutions in real-

world environments where budget constraints matter. In addition, it will be interesting to further

explore specific types of restricted bidder preferences and allocation problems that have a lower

computational complexity and allow for more efficient computation.
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Figure 1 Illustration of buyers’ interests, only concerning items of type ψ
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Appendix A: Complexity Analysis

In the following we prove that finding a welfare-maximizing core allocation with exogenous budget constraints

is Σp
2-complete by a reduction from the canonical Σp

2-complete problem QSAT2.

2-Quantified Satisfiability, QSAT2: Given a n + m variable Boolean formula ϕ(x, y) in DNF with

x= (x1, . . . , xn) and y= (y1, . . . , ym) is it true that ∃x∀yϕ(x, y)?

A.1. Membership in Σp
2

We first prove that the problem of finding a core outcome of welfare D is in the class Σp
2. Let

x(S), y(Z), p(S), p(Z) be a certificate for the allocations and prices. The gains from trades can be easily

verified in polynomial time by using this certificate. Further, showing that this outcome is in the core is

in co−NP since any blocking coalition C with corresponding assignments χC(S), γC(Z), pC(S), pC(Z) is a

certificate that the outcome is not in the core.

A.2. Idea behind the transformation

Before formally proving the theorem, we give a short explanation of the reduction and the ensuing relationship

between an instance of QSAT2 and the corresponding combinatorial exchange. We concentrate on the main

items and buyers with a direct correspondence to the world of QSAT2 and omit the various auxiliary items,

buyers and sellers. For these, we refer to the complete description of the transformation below.

In the combinatorial exchange, we define items relating to the truth assignment of x and y variables as

well as the truth values which clauses evaluate to. For the variables x and y, items χ and γ are introduced

and the truth assignment of variables x and y in QSAT2 depends on which of the buyers obtains these items.

Each clause is represented by n2 items of type ψ which will indicate whether the clause evaluates to true or

false, again depending on which buyers obtain which of these items.

We introduce different types of buyers. For i ≤ n, buyers BKi and BMi , each concerned with the items

corresponding to the truth assignments of variable xi and the clauses affected by it. For j ≤m, buyers BGj ,

which are concerned with the items corresponding to the truth assignments of yj and the clauses affected by

it. The construction is such that either all buyers of type BK win one of their preferred packages or they do

not win any items. In the former case, the corresponding instance of QSAT2 evaluates to true, in the latter

case it is false.
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The connection between χ,γ and ψ variables in the exchange and the correspondence of setting clauses

to false by assigning truth values to variables in QSAT2 is done via defining bundles of items in which the

buyers are interested in. Figure 1 demonstrates the situation, showing the items ψ corresponding to three

clauses in form of a matrix (we will refer to these as clause matrices in the following). Additionally, items

χ, γ and bundles in which buyers of the various types are interested in, are shown. Buyer BKi is interested

in either χi or χi items as well as the i-th ‘row’ of one clause matrix. More formally, he is interested in the

bundle

(χi ∨χi)∧ ({ψ1i1, . . . ,ψ1in}∨ {ψ2i1, . . . ,ψ2in}∨ · · · ∨ {ψLi1, . . . ,ψLin}) ,

where L is the number of clauses. Buyers BMi are interested in buying one out of χi or χi as well as the

i-th ‘column’ in all clause matrices of clauses which include the corresponding xi or xi variable. In Figure

1, a bundle for buyer BM2 , including χ2 and the second column of the first clause matrix (since C1 is the

only clause containing x2) is depicted. Finally, buyers BGj are interested in bundles which contain one item

out of γj or γj and complete clause matrices for clauses which include the corresponding yj or yj variables.

As can be seen, the individual bundles block each other and can not be obtained simultaneously for each

clause matrix. The corresponding clause evaluates to true if and only if neither buyers of type BM buys a

column of the matrix or buyers of type BG buy the complete matrix. For example, in Figure 1, no items of

the second clause matrix are won by either a buyer type BM or BG. In this case, buyers of type BK can all

obtain their respective row of the (second) clause matrix. Consequently, for this example, the second clause

and therefore the entire expression evaluates to true.

The valuations and budgets of buyers are defined in such a way that buyers of type BK have the highest

value for their respective bundles, but only small budgets which does not allow them to bid up to their true

valuation. In contrast, buyers BM have high valuations and sufficient budget to buy the bundle they are

interested in. Buyers BG have low valuations and can not compete with buyers BM. However, their budget

is high enough in order to outbid buyers BK. In order to obtain sufficiently high welfare gains, buyers BK

must obtain their desired bundles (i.e. win one of the clause matrices) and the outcome must be stable such

that BG and the sellers do not want to deviate by assigning the items to buyers BG or BM instead. Each

buyer of type BK can only obtain one of his desired bundles containing at least one row in one clause matrix

(see Figure 1, which is equivalent to the corresponding clause evaluating to true in QSAT2), when no other

buyer purchases a column within this matrix.

Buyers BK and BM are designed in such a way that BKi obtains the χi-item corresponding to the truth

assignment of xi and BMi its negation. Thus, buyers BM obtain the columns in each clause matrix relating to

the clauses which are set to false due to the truth assignment of variables x. Because of their lower valuations

and budgets, buyers BG can only compete for columns in clause matrices corresponding to clauses not yet

set to false due to the assignment of x. These buyers maximize their payoffs when they can purchase as

many complete matrices as possible which are not blocked by buyers BM. In QSAT2 this corresponds to

assigning truth values to variables y in such a way that as many as possible of the remaining clauses evaluate

to false (i.e. those which are not already evaluating to false due to the assignment of x variables). Only if

the buyers of type BG cannot manage to block all remaining clause matrices (the y variables in QSAT2),
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buyers BK can purchase rows in at least one of the matrices (the x variables in QSAT2) relating to one clause

which evaluates to true. Then, the assignments of items corresponding to truth values of x is a solution for

the QSAT2 problem. In other words, if BK win in every allocation, then there exists a stable outcome that

achieves the pre-defined welfare in the decision problem.

A.3. Transformation

We present a transformation with valuations using an XOR bidding language. The transformation can easily

be done for an OR bidding language as well, however this requires additional auxiliary items.

For a given formula ϕ(x, y) with clauses C1, . . . ,CL construct an instance CExϕ(x,y) of a combinatorial

exchange with bidders and items as follows. First, consider n+L+ 2 sellers:

� One seller Sχi for each i= 1, . . . , n. Each seller Sχi offers items χi and χi. These items will later indicate

which logical values have to be assigned to the literals x such that ∀yϕ(x, y) is true.

� One seller Sψl for each l = 1, . . . ,L. Each seller Sψl offers items ψlii′ for i, i′ = 1, . . . , n. The sellers

correspond to the clauses of ϕ(x, y) and below we describe how an allocation of the items from a seller

of type Sψ corresponds to the truth value the corresponding clause evaluates to.

� One seller Sγ,φ who offers items γj , γj for j = 1, . . . ,m as well as items φli for l= 1, . . . ,L and i= 1, . . . , n.

The items of type γ correspond to the possible values which can be assigned to literals y. The items

φli are auxiliary items which indicate which clauses evaluate to false as a result of the assignment of

y. While items of type ψ already correspond to the truth assignments of the clauses, these additional

auxiliary items are necessary in the proof for stability reasons since seller Sγ,φ now also needs to be

part of any blocking coalition involving items corresponding to the truth assignment of clauses.

� One seller Sλ who offers items λki and λ
k

i for i= 1, . . . , n and k = 1,2. These serve as auxiliary items

to increase competition for buyers in order to drive up prices and deplete the budgets of buyers, as we

will describe below

We introduce the following short notations for bundles of items:

� T ψ,φli = {ψlii′ |i′ = 1, . . . , n}∪ {φli}

� Fψli = {ψli′i|i′ = 1, . . . , n}

� T ψl = {ψlii′ |i, i′ = 1, . . . , n}

� Fψ,φl = T ψl ∪{φli|i= 1, . . . , n}
Figure 2 illustrates an example for these bundles of items sold by Sψ1 and Sγ,φ. It can be seen that the

bundles intersect with each other in such a way, that if for any i∈ {1, . . . , n}, a bundle Fψli is purchased by a

buyer, no bundle T ψ,φli′ can be purchased for any i′ ∈ {1, . . . , n} and vice versa. Similarly, bundles Fψ,φl and

T φli intersect with all other bundles.

Next, we define the buyers with their preferences and budgets. Let T < 1
n

, U >nL, V > 4U and W > 7nV .

First, we define buyers of type BK and type BM whose assignments will directly correspond to the logical

values of the literals x

� For i= 1, . . . , n let BKi be a buyer with a budget of V + T and a value of W for each of the following

bundles:
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Figure 2 Illustration of buyers’ interests, only concerning items of type ψ
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— For l= 1, . . . ,L, bundle Kl := {χi}∪T ψ,φli

— For l= 1, . . . ,L, bundle Kl := {χi}∪T
ψ,φ
li

He is interested in obtaining exactly one of these bundles and his value for obtaining one or more of

the bundles is equal to the maximal value of his obtained bundles.

� For i= 1, . . . , n let BMi be a buyer with a budget of 2V and a value of 2V for the bundles

—Mi := {χi, λ1
i , λ

2
i }∪

⋃
xi∈Cl

Fψli
—Mi

{
χi, λ

1

i , λ
2

i

}
∪
⋃
xi∈Cl

Fψli
He is interested in exactly one of these bundles.

Buyers BK and BM are designed in such a way that for all i ∈ {1, . . . , n}, buyer BKi will obtain one of

the items {χi, χi}, while buyer BMi obtains the other item. Whenever BKi buys χi, this corresponds to an

assignment of true to the corresponding xi and whenever BKi buys χi it corresponds to an assignment of

false. Buyers BMi obtains the opposite item (corresponding to its negation) as well as the bundles Fψli for

all l which evaluate to false due to the assignment of BMi . The budgets and valuations are chosen in such

a way, that none of the buyers described below can outbid buyers of type BMi at seller Sψl , i.e. no bundles

containing any item of T ψl can be sold when BMi desires Fψli for some i∈ {1, . . . , n}. In the following, we say

that BMi blocks the bundle T ψl (and therefore the bundles T ψ,φli for all i as well as bundle Fψ,φl ). We will see

in the proof that in this case buyers of types BG and BK can only compete for unblocked bundles.

Additionally, we introduce the following auxiliary bidders who drive up prices in order to deplete the

budgets of buyers BK and BM.

� For i= 1, . . . , n, identical buyers Bχ,1
i and Bχ,2

i who are interested in one of χi or χi, have a valuation

of V for both, as well as a budget of V

� For i= 1, . . . , n one buyer Bλ,1
i who has a budget of U and a value of V for bundle λ1

i and a value of

V −L for λ
1

i

� For i= 1, . . . , n one buyer Bλ,2
i who has a budget of U and a value of V −L for bundle λ2

i and a value

of V for λ
2

i

The reason for including these auxiliary buyers and items is to bind an amount of V of the budget of

buyer BKi to purchase items from seller Sλ such that he only has a budget of T left to purchase his remaining



Bichler, Waldherr: Combinatorial exchanges with financially constrained buyers
42

Bidder type Value Budget
BK W V +T
BM 2V 2V
BG 1 L
Bχ,1,Bχ,2 V V

Bλ,1 V for λ1 and V −L for λ
1
U

Bλ,2 V −L for λ1 and V for λ
1
U

Table 12 Values and budgets of key buyer types.

items from sellers of type Sψ and from seller Sγ,φ. In the following, we define the final set of buyers which

compete with buyers BM for these items.

� For j = 1, . . . ,m one buyer BGj who has a budget of L and a value of 1 for each bundle:

—Gjl = {γj}∪Fψ,φl for each l= 1, . . . ,L with Y j ∈Cl
—Glj =

{
γj
}
∪Fψ,φl for each l= 1, . . . ,L with Yj ∈Cl

Define as |Gj | the number of bundles of type G a buyer BGj obtains and with |Gj | the number of bundles

of type G a buyer BGj obtains. Then, his valuation for obtaining a larger bundle containing one or more

of the bundles defined above is equal to
max{|Gj |,|Gj |}−1

n(n+1)
, i.e. the maximum number of bundles of type

G and type G he obtains. Thus, each buyer BGj is only interested in obtaining bundles which do not

include both items, γj and γj . We refer to a bundle which includes only one of these items with a

valuation of k as a clean bundle of size k.

These buyers are designed in a way such that they compete for all bundles Fψ,φl which are not blocked by

a buyer of type BMi (buying bundle Fψli ) since the latter has a larger budget and higher valuation and thus

can always outbid buyers of type BG. Whenever a buyer of type BG obtains such a bundle, it corresponds

to the corresponding clause to evaluate to false. Buyers of type BG maximize their welfare by purchasing as

many of these packages as possible, corresponding to causing as many clauses to evaluate to false as possible

which are not do not already evaluate to false due to buyers of type BM. Only if buyers of type BG can not

buy all of these bundles, buyers of type BK can be assigned their bundles. Similarly to above, we say that a

buyer of type BG blocks bundle T ψ,φl for buyers of type BK if he purchases a bundle which contains Fψ,φl .

A.4. Reduction

In the following, we prove that there exists a core solution in CExϕ(x,y) with a social welfare of at least nW

if and only if ∃x∀yϕ(x, y) is true. We refer to such a core solution as an nW -equilibrium.

First, we will prove these auxiliary results:

Lemma 1: In an nW -equilibrium, for each i= 1, . . . , n, buyer BKi obtains one of the bundles he values

at W .

Lemma 2: In an nW -equilibrium, for each i = 1, . . . , n, buyer BKi obtains one of the items χ1
i or χ1

i ,

buyer BMi obtains the complementary item and both pay V to Sχi .

Lemma 3: In an nW -equilibrium, for i= 1, . . . , n buyer BMi obtains all his required items from sellers

Sψ and Sλ.
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Lemma 4: In any core allocation, buyers of type BG maximize the combined size of their clean bundles

among the ones not blocked by buyers of type BM.

Lemma 5: There is a nW -equilibrium if and only if for j = 1, . . . ,m, buyers BGj are not able to block

all the remaining bundles for buyers of type BK.

Using these auxiliary results, we will be able to prove the main result.

Lemma 1. In an nW -equilibrium, for each i= 1, . . . , n, buyer BKi obtains one of the bundles he values at

W .

Proof: Assume that a buyerBKi does not obtain his preferred bundle (and thus, the total welfare generated

by the other buyers BKi for i′ 6= i is at most (n− 1)W ). Then, there is no way to achieve a social welfare of

at least nW since

W > 7nV > 2nV︸︷︷︸
BuyersBM

+ 2nV︸︷︷︸
BuyersBχ

+ 2nV︸︷︷︸
BuyersBλ

+ nL︸︷︷︸
BuyersBG

which is an upper bound on the welfare achievable by all other buyers. Q.E.D.

Thus, in an nW -equilibrium, all buyers of type BK obtain one of their desired bundles. As we described in

the transformation, this is only possible, if there exists at least one l ∈ {1, . . . ,L}, for which neither buyers

of type BM nor of type BG block the bundle T ψl .

The following lemma is a simple observation how auxiliary buyers of type Bχ are used to deplete the

budget of buyers of type BK.

Lemma 2. In an nW -equilibrium, for each i= 1, . . . , n, buyer BKi obtains one of the items χ1
i or χ1

i , buyer

BMi obtains the other item and both pay V to Sχi .

Proof: If either BKi or BMi would pay less than V , then either Bχ,1
i or Bχ,2

i could outbid them and obtain

the respective items: In this case, seller Sχi , all buyers which obtain items from Sχi (and in consequence all

further buyers and sellers) can form a coalition and share the additional payment of the buyer of type Bχ

such that all members of this coalitions improve their payoffs. Thus, an assignment where BKi obtains an

item from Sχi but pays less than V can not be in the core. Since all buyers of type BK need to obtain one

of these items in order to reach an nW -equilibrium, the Lemma holds. Q.E.D.

Lemma 3. In an nW -equilibrium, for i= 1, . . . , n buyer BMi obtains all his required items from sellers Sψ

and Sλ.

Proof: Because of Lemma 2, in an nW -equilibrium, BMi needs to pay V for the item he obtains from

seller Sχi . Then, he has a budget of V left to obtain the missing items from seller Sλ and sellers Sψl in order

to complete his desired bundle. He needs to purchase items of the form Fψli from Sψl as well as either {λ1
i , λ

2
i }

or
{
λ

1

i , λ
2

i

}
. No other buyer BMj with j 6= i is interested in obtaining any of these items since they appear in

no bundles with positive valuation for them. The only buyers interested in a subset these items are buyers

BKi′ for i′ = 1, . . . , n (who only have a budget of T left due to Lemma 2), buyers of type BG (who have a

budget of at most L each) and buyers Bλ,1
i and Bλ,2

i (with a budget of U each). Since

V > 4U > T︸︷︷︸
BuyersBM

+ nL︸︷︷︸
BuyersBG

+ 2U︸︷︷︸
BuyersBλ

,
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buyer BMi can pay sellers Sψ and Sλ enough to obtain his required items and there is no combination of

buyers that can outbid BMi in order to form a coalition with the sellers such that all improve. Q.E.D.

The previous Lemma 3 showed that for any i = 1, . . . , n, buyer BMi gets all the items he requires from

sellers Sψ and Sλ and in particular all his required bundles of the form Fψli . Thus, he blocks the bundle Tl
and therefore also all bundles Fψ,φl for sellers of type BG.

Lemma 4. In any core allocation, buyers of type BG maximize the combined size of their clean bundles

among the ones not blocked by buyers of type BM.

Proof: Assume that the maximum combined size of non-blocked clean bundles which can be obtained

by buyers BG is K but that in the core solution buyers only buy clean bundles with a combined size of

κ≤K − 1. There are no other buyers except for those of type BK which are interested in any of the items

offered by sellers Sλ or sellers Sψl for those l for which Tl is not blocked. Since 1>nT , there can be a coalition

of those sellers and buyers BG which can generate a value of K >κ and distribute the welfare such that all

participants are better off. This is a contradiction to the allocation being in the core. Then, if all buyers BG

pay the valuation of their obtained bundle to seller Sλ, there is no coalition among these sellers and buyers

which want to deviate since Sλ can never improve upon his payoff. Q.E.D.

Lemma 5. There is a nW -equilibrium if and only if for j = 1, . . . ,m, buyers BGj are not able to block all

the remaining bundles for buyers of type BK.

Proof: For any i, l, buyer BKi is only able to obtain one of the sets T ψ,φli if it is neither blocked by a buyer

BM or BG. Thus, there is some l for which all buyers can obtain these items if and only if buyers BG do not

block all of these bundles and as of Lemma 1 there is an nW -equilibrium if and only if all buyers BK obtain

one of their bundles’ values at W Q.E.D.

Theorem 2. There exists an nW -equilibrium if and only if ∃x∀yϕ(x, y) is true.

Proof: Consider an nW -equilibrium and set xi to true if buyer BKi obtains item χi and set xi to false if

he obtains χi. Then, buyer BMi obtains the negated item and bundles Fψli for all clauses Cl which evaluate

to false due to the assignment of xi. This is equivalent to blocking the bundles Tl for buyers BG who thus

compete for the non-blocked bundles. Each combination of bundles obtained by buyer BGj resembles a number

of clauses which can be made false by a truth assignment of yj . If BGi obtains γi this corresponds to an

assignment of yi to true and if he obtains γi it corresponds to an assignment of yi to false. As of Lemma

3 and 4, in any core allocation (and hence, especially in an nW -equilibrium) buyers BG try to maximize

their combined number of bundles not blocked by buyers of type BM which is equivalent to blocking as

many bundles as possible for buyers of type BK. This corresponds to assigning truth values to y so that as

many clauses as possible evaluate to false in ϕ. However, since by assumption the assignment results in an

nW -equilibrium, buyers BG are not successful in blocking all bundles because of Lemma 5. Therefore, there

is no assignment of variables y such that ϕ(x, y) can be set to false for this assignment of x.

Conversely, let x be a truth assignment such that ∀yϕ(x, y) is true. Then, consider the following trades in

the combinatorial exchange: Trades for seller Sχi for i= 1, . . . , n:
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� For i= 1, . . . , n, if xi is true, assign to buyer BKi items χi for a price of V .

� For i= 1, . . . , n, if xi is false, assign to buyer BKi items χi for a price of V .

� For i= 1, . . . , n, assign to buyer BMi the item not allocated to BKi for a price of V .

Trades for seller Sλ:

� For i= 1, . . . , n, if xi is true, assign to buyer BMi the items λ
1

i , λ
2

i for a price of 2U , as well as item λ1
i

to Bλ,1
i and λ2

i to Bλ,2
i for a price of U each.

� For i= 1, . . . , n, if xi is false, assign to buyer BMi the items λ1
i , λ

2
i for a price of 2U , as well as item λ

1

i

to Bλ,1
i and λ

2

i to Bλ,2
i for a price of U each.

Further, assign to buyers BMi his remaining required items from sellers Sψ, paying a price of 1 to each seller

he purchases from. Then, there is a nW -equilibrium which extends these assignments. Similar to the first

part of the proof, a buyer which blocks a bundle Tl for the other buyers corresponds to a truth assignment of

the corresponding variable which results in the clause l to evaluate to false. Since 6 ∃y :¬ϕ(x, y) for the truth

assignment of x, buyers BM and BG can not block all bundles for buyers BK, so each of them can obtain

a bundle which he values at W . There is no coalition of buyers and sellers which want to deviate from this

equilibrium:

� Buyers BG, sellers Sψ and Sγ,φ can’t form a coalition exclusively among themselves because of Lemma

5.

� For all i= 1, . . . , n, there exists no coalition including buyers BMi in which all participants can be made

better off: Since BMi needs to pay sellers Sχi and Sλ more money in order for them to join the coalition,

he needs to pay less to the sellers Sψ he switches to. Those sellers are disjoint from the sellers Sψ he

purchased from earlier. Thus, he can save at most L
2

units from switching which he needs to redistribute

to Sχi and Sλ. However, since buyers Bλ,1
i and Bλ,2

i are affected by these trades as well, they need to be

in the coalition as well and purchase items such that Sλ can be made better off (since L
2
< 2D, buyer

Sλ can not deviate only with BMi ). However, since for one of the two buyers, his new payoff is reduced

by L, he will not agree to this coalition unless his payment is also reduced by at least L. However, since

the second of these two buyers can not pay more as he is already capped by his budget, this is not

possible.

� All other buyers and sellers can not deviate from the grand coalition on their own but need at least one

buyer BM in order for all members to achieve a higher payoff. As by the above, there is no coalition

including a buyer BM that can achieve this.

Thus, for a given truth assignment, there is a nW -equilibrium and the proof is complete. Q.E.D.


