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Auction theory is of central importance in the study of markets. Unfortunately, we do not know equilibrium
bidding strategies for most auction games. For realistic markets with multiple items and value interdependencies
the Bayes-Nash equilibria often turn out to be intractable systems of partial differential equations. Previous
work has relied either on solving such PDEs explicitly, calculating pointwise best-responses in strategy
space, or iteratively solving restricted subgames. We present a learning method that represents strategies
as neural networks and applies policy iteration based on gradient dynamics in self-play to provably learn
local equilibria. Our empirical results show that these approximated Bayes-Nash equilibria coincide with
the global equilibria whenever available. The method follows the simultaneous gradient of the game and
uses a smoothing technique to circumvent discontinuities in the ex-post utility functions of auction games.
Discontinuities arise at the bid value where an infinite small change would make the difference for winning or
not winning.
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1. Introduction
The literature on machine learning largely focuses on single-agent learning. Multi-agent learning has
become more popular recently due to the advent of Generative Adversarial Networks and applications
in complex competitive game-playing [1, 2, 3]. While complete-information games have seen some
progress, equilibrium learning for incomplete-information (aka. Bayesian) games with continuous
action spaces is in its infancy. For complete-information games, the worst-case complexity of finding
Nash equilibria is known [4], and a number of learning algorithms have been developed for finding
equilibria in specific normal-form games such as zero-sum games [5, 6, 7]. Auctions arguably form
the best-known and practically most relevant application of Bayesian games, central to modern
economic theory [8, 9] and with a multitude of applications in the field. The derivation of Bayes-Nash
equilibrium (BNE) strategies for the first-price and second-price sealed-bid auction in the independent
private values (IPV) model led to a comprehensive theoretical framework for the analysis of single-item
auctions, a landmark result of economic theory [10, 11].

While single-item auctions in this model are well understood, we only know equilibrium strategies
for very few multi-item auction environments. For example, no explicit characterization of BNE
strategies is known for first-price sealed-bid auctions of multiple homogeneous goods (multi-unit
auctions), nor for first-price sealed-bid combinatorial auctions where bidders can submit bids on
packages of goods [11]. Value interdependencies turn out to be even more challenging [12]. In fact,
very little is known about BNE strategies in standard auction formats with multiple objects for sale
and value interdependencies. Even for single-object auctions, the specification of equilibria can end
up in a system of partial differential equations and no closed-form solution is available [13]. However,
such environments are important to understand. In fact, the Nobel Memorial Prize in Economic
Sciences 2020 that was awarded to Paul Milgrom and Robert B. Wilson highlighted in particular
their contribution to auctions with interdependent values [14].

Numerical techniques to compute Bayes-Nash equilibria can be very valuable. Although there has
been significant recent work on imperfect-information finite-dimensional extensive-form games such
as Poker or other card games [15, 16, 17, 18], relatively few papers focus on continuous-type and
-action Bayesian games such as auctions. The few initial attempts make strong restrictions such as
finite action spaces, single-object auctions, or independent private values and quasi-linear utilities
[19, 20, 21, 20, 22, 23, 24]. The motivation for such restrictions is the computational hardness of
equilibrium computation.
For finite, complete-information games, we know of the existence of a mixed Nash equilibrium

and that the computation is PPAD-hard [4]. For Bayesian games with continuous types and actions,
we neither know whether (possibly mixed) Bayes-Nash equilibria exist in the general case, nor do
we know how hard they are to find if they exist. Cai and Papadimitriou [25] showed that finding a
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BNE in simultaneous auctions for individual items and bidders with independent private values is
already hard for PP, a complexity class above the polynomial hierarchy and close to PSPACE, and we
know little about the complexity of finding BNE in other multi-item auctions. Even approximating
equilibria in these auction games is NP-hard [25].
The theory of learning in games examines what kind of equilibrium arises as a consequence of a

process in which agents are trying to maximize their own payoff by adapting to the actions played
by other learning agents [26]. Research on equilibrium learning has largely focused on complete-
information normal-form games. So far, there is no comprehensive characterization of games that
are “learnable,” but there are some important results. For example, it is well-known that no-regret
dynamics converge to a coarse correlated equilibrium in arbitrary finite games [27, 28, 29, 30] in
their average history of play. Coarse correlated equilibria (CCE) encompass the set of correlated
equilibria (CE). The latter is a nonempty convex polytope which in turn contains the convex hull of
the game’s Nash equilibria such that we get NE⊂CE⊂CCE. In contrast to correlated equilibria,
coarse correlated equilibria may contain strictly dominated (pure) strategy profiles with positive
probability. This means that while coarse correlated equilibria are learnable via no-regret algorithms,
they are a rather weak solution concept [31]. Therefore, the question is when learning dynamics
converge to a Nash equilibrium. A different relaxation of NE is given by local equilibria [32] which
only require stability when allowing agents to make infinitesimal, rather than arbitrary, adjustments
to their strategies.

Bayesian auction games have received little attention in equilibrium learning until recently. Given
how hard it is to find Bayes-Nash equilibria even in simple simultaneous single-item auctions in the
worst case [25], it is far from obvious that no-regret dynamics can find a BNE in continuous-type and
-action Bayesian games. There has been a recent literature using deep learning for auction design
[33, 34, 35, 36] but this work does not attempt to find BNE in auctions. Challenges in computing
Nash equilibria in general-sum games have also led to alternative solution concepts [37]. Apart from
this, artificial intelligence and machine learning are increasingly used to predict strategic behavior of
humans [38] or outcomes of auctions in the field [39].
We introduce Neural Pseudogradient Ascent (NPGA) as a method to learn ex-ante equilibrium

bid functions in symmetric Bayesian auction games with continuous-type and action-spaces. The
method is generic in that it allows for different types of value interdependencies and utility functions
(e.g., accommodating risk aversion). Neural networks are used to represent the players’ bid functions,
and the agents learn via self-play. Unfortunately, using neural self-play in this environment is not
straightforward: While we assume players’ expected utility (over the distribution of other players’
types) are differentiable in the chosen action, a key challenge is that in auctions, their ex-post utilities,
which are based on specific realizations of types, have discontinuities. Only the latter, however, can
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be directly observed in the data generated from self-play. As a result, standard ways of gradient

computation (i. e., backpropagation from the observed data) fail and would result in constant-zero

bids by all bidders. We address this problem by deriving pseudo-gradients via evolutionary strategy

optimization rather than exact gradients via standard learning methods.

Given the computational hardness of BNE computations in general Bayesian auction games [25], it

is not obvious that gradient ascent schemes such as ours would converge to BNE. We leverage the

fact that the vast majority of auction games described in the literature assume symmetric bidders

and equilibrium bid functions [11]. This restricted version of the game leads to a potential game, and

gradient dynamics converge to local Nash equilibria in potential games. Whether we find global and

not only local approximate equilibria can then be checked empirically. Although there can also be

asymmetric equilibria, such equilibria are often unnatural and the symmetry assumption encompasses

a very large set of interesting auction environments. An example of such an asymmetric equilibrium

is given in a second-price auction when one player bids the upper bound of the distribution while all

the others bid constant zero, independent of their respective private valuations.

In our experiments in the main paper, we illustrate NPGA via a combinatorial auction in the local-

local-global (LLG) model [40], which has received significant attention due to the use of core-selecting

combinatorial auctions for spectrum sales world-wide [41]. In the LLG model, core-selecting auctions

with risk-neutral bidders are known to be economically inefficient. It is one of the few multi-object

auction models, where correlation among bidder valuations has been investigated analytically with

quasilinear utility functions, but this is not the case for risk aversion. Besides, such multi-object

environments with interdependencies and non-quasilinear utility functions have not been explored

in the scarce literature on equilibrium computation. Using NPGA, we can show that risk aversion

mitigates the inefficiencies that arise in the equilibrium of risk-neutral bidders, while correlation among

the bidders’ valuations has little impact. This result is of independent interest to policy makers. In the

supplementary information, we discuss further experiments in a number of additional environments

to demonstrate the versatility of the method.

To apply NPGA, we neither need to specify the equilibrium as a system of differential equations,

nor do we need to derive complex conditional type distributions in settings with interdependencies.

As a result, NPGA provides a convenient method to explore symmetric sealed-bid auction models

and study the BNE that arise with different types of interdependencies, distributional assumptions,

or different levels of risk aversion.

2. The Algorithm
We will now introduce the necessary notation before stating the algorithm and discussing its properties.
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2.1. Notation
An incomplete-information or Bayesian game is given by a sextuplet G = (I,V ,O,A, f, u). Here
I = {1, . . . , n} denotes the set of agents participating in the game. The joint probability density
function f : V ×O→R≥0 describes an atomless prior distribution over agents’ types, given by tuples
(oi, vi) of observations and valuations. We make no further restrictions on f , thus allowing for arbitrary
correlations. f is assumed to be common knowledge and we will denote its marginals by fv, foi

, etc.; its
conditionals by fvi|oi

, etc.; and its associated probability measure by F . Agent i’s private observation
is then given as a realization oi ∈Oi, with O=O1× · · · ×On being the set of possible observation
profiles. Similarly, V denotes the set of “true” but possibly unobserved valuations. Crucially, we make
this distinction to model interdependencies in settings beyond purely private values or purely common
values. Based on the observation oi, the agent chooses an action, or bid, bi ∈Ai, and the set of possible
action profiles is given by A=A1×· · ·×An. For each possible action and valuation profile, the vector
u= (u1, . . . , un) of F -integrable, individual (ex-post) utility functions ui :A×Vi→R assigns the game
outcome to each player. Ex-ante, before the game, agents neither have observations nor valuations,
only knowledge about f . In the interim stage, agents additionally observe oi providing (possibly
partial or noisy) information about their own valuations vi. Full access to the outcomes u(v, b) is
given only after taking actions (ex-post). In our formulation, we do not assume explicit ex-post access
any values (e.g., vi, v−i, b−i) beyond the outcome u itself. An index −i denotes a partial profile of all
agents but agent i.

Taking an ex-ante view, players are tasked with finding strategies βi :Oi→Ai that map observations
to bids. We denote by Σi ≡AOi

i and by Σ≡
∏
iΣi, respectively, the resulting spaces of individual

and joint pure strategies. Note that even for pure strategies, the spaces Σi are infinite-dimensional
unless Oi are finite (in which case they are finite-dimensional but remain infinite for continuous Ai).
We will slightly restrict ourselves to square-integrable strategies and equip Σi with the inner product
〈·, ·〉Σi

: Σi×Σi→R, (α,β) 7→Eo∼fo [α(o)Tβ(o)] and the norm ‖β‖Σi
≡
√
〈β,β〉Σi

such that they form
Hilbert spaces [42].
The primary Bayesian games we will consider are sealed-bid auctions on m indivisible items. In

general combinatorial auctions we thus have a set K of possible bundles of items and the valuation-
and action-spaces are therefore of dimension |K|= 2m. In the private values setting, we always have
oi = vi; in the common values setting, there’s some unobserved constant vc = v1 = · · ·= vn and the oi
can be considered noisy measurements of vc. Mixed settings are likewise possible. In any case, based
on bid profile b, an auction mechanism will determine two things: An allocation x= x(b) = (x1, . . . xn)
which constitutes a partition of the m items, where bidder i is allocated the bundle xi; and a
price vector p(b)∈Rn, where pi is the monetary amount bidder i has to pay in order to receive xi.
Formally, one may consider the individual allocations to be one-hot-encoded vectors xi ∈ {0,1}|K|. In
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the standard risk-neutral model the utilities ui are then described by quasilinear payoff functions
uQLi (vi, b) = (xi(b) · vi− pi(b)), i.e. by how much a player values her allocated bundle minus the price
she has to pay. An extension to this basic setting includes risk-aversion. Here, we model risk-aversion
via utilities uRA = (uQL)ρ where ρ∈ (0,1] is the risk attitude; ρ= 1 describes risk-neutrality, smaller
values lead to strictly concave, risk-averse transformations of uQL. Risk aversion is an established
way to explain why in field studies of single-object first-price sealed-bid (FPSB) auctions, bidders bid
higher than their risk-neutral counterparts in analytical BNE [43].
For fixed strategy profiles β ∈Σ, we can extend the notion of utility to the interim and ex-ante

stages and use this to characterize the Nash equilibria of Bayesian games: While other agents follow
β, we define agent i’s interim utility as the expected utility of choosing an action bi conditioned on
the observation oi:

ui(o, bi, β−i) = Evi,o−i|oi
[ui(vi, bi, β−i(o−i))] . (1)

We will also introduce the interim utility loss ` that is incurred by not playing a best response:

`(o; bi, β−i) = sup
b′

i
∈Ai

ui(oi, b′i, β−i)−ui(oi, bi, β−i). (2)

Then, an (interim) ε-Bayes-Nash Equilibrium (ε-BNE) is a strategy profile β∗ = (β∗1 , . . . , β∗n)∈Σ
such that no agent can improve her own interim utility by more than ε≥ 0 by unilaterally deviating
from β∗. Thus, in an ε-BNE the following holds:

∀i∈ I, oi ∈Oi : `i
(
oi;β∗i (oi), β∗−i

)
≤ ε. (3)

For ε= 0, we will call the BNE exact, or simply drop the ε-prefix. Additionally, we will also need
the ex-ante utility, defined as ũi(βi, β−i) = Eoi∼foi

[ui(oi, βi(oi), β−i)], that can be interpreted as the
expected utility over all of f for a particular strategy βi against fixed opponents β−i. Similarly, we
will define ex-ante loss ˜̀

i(βi, β−i) and ex-ante ε-BNE analogously to equations 2 and 3. Note that now
we can interpret the ex-ante state of the Bayesian game as a complete-information game G̃= (I,Σ, ũ)
with an infinite-dimensional action space Σ that is identical to the strategy space of the Bayesian
game. Clearly, every exact (interim) BNE also constitutes an exact ex-ante BNE. The reverse holds
almost surely (a.s.), i.e. any ex-ante equilibrium fulfills equation 3, except possibly on a set O⊂O
with F (O) = 0. To see this, one may consider the equations 0 = ˜̀

i(β∗) = Eoi

[
`i(oi;β∗i (oi), β∗−i)

]
and

the fact that `i(oi, β)≥ 0 by definition. Importantly, this a.s. equivalence of ex-ante and (interim)
BNE holds for ε= 0 but not for strictly positive ε: Given an ex-ante κ-BNE, equation 3 with ε= κ> 0
must only hold in expectation but may be violated with strictly positive probability. To delineate this
difference between ex-ante and interim approximate equilibria, we will write κ and ε to denote their
respective approximation bounds.
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Due to the known computational hardness of computing NE and BNE, one is often interested
in relaxations of equilibria that may be easier to find in some circumstances. For example, in local
BNE, the loss requirement is relaxed to only consider best responses from a neighborhood of the
equilibrium strategy profile: We call a strategy profile β∗ a local ex-ante BNE, iff there exists an
open set ∅ 6=Wi ⊂Σi such that β∗i ∈Wi and ũi(β∗i , β∗−i)≥ ũi(β′i, β∗−i) for all agents and all alternative
strategies β′i ∈Wi. If all utility functions ui are strictly concave in i’s action, the game admits a
unique global BNE [44] and no other local BNE.

Smoothness of the (ex-post) utilities are a standard assumption in the analysis of Bayesian games
[44], but due to the discrete nature of allocations x this is commonly violated in auctions. Instead,
let us introduce a weaker notion of smoothness at the interim stage that lends itself for theoretical
analysis while being consistent with auction games:

Definition 1 (Interim-Smooth Bayesian game). We call a Bayesian game with continuous
types Vi × Oi and actions Ai ⊆ RK interim-smooth if (i) the interim utilities ūi(oi, bi, β−i) are
continuously differentiable with respect to their second argument for each i∈ I and any oi ∈Oi, β−i ∈
Σ−i; (ii) all partial derivatives are uniformly bounded by a finite constant Z <∞:

∀i, oi, β−i, bi, k ∈ [K] :
∥∥∥∥ ∂ūi∂bik

(oi, bi, β−i)
∥∥∥∥≤Z, (4)

and (iii) the ex-post utilities are F -square-integrable:

There exists S <∞, s.t. for all i∈ I, β ∈Σ : Evi,o

[
ui (vi, βi(oi), β−i(o−i))2

]
≤ S. (5)

To see why the assumption of interim differentiability is justified, consider that ex-post utilities in
auctions are generally piecewise-smooth. Nondifferentiability only occurs at the bid profiles where
the auctioneer is indifferent between multiple possible allocations x. In theory, one could therefore
interpret the interim expected utility as a lottery over many smooth ex-post utility functions that
each describe a particular allocation x. The choice probabilities for these are given by P (x|bi, oi, β−i),
bidder i’s Bayesian belief that x will be chosen if she bids bi. If the β−i are continuous and f is
atomless, these probabilities, and therefore the interim expected utilities as a whole, are smooth in bi.

In interim-smooth Bayesian games, we write ∇ūi(oi, bi, β−i)≡ (∂ūi(oi, bi, β−i)/∂bik)k and call it the
interim payoff gradient. Furthermore, when G is interim-smooth, the ex-ante gradients ∇βi

ũi(βi, β−i)∈
Σi are also guaranteed to exist and given by the Gateaux derivatives in the Hilbert spaces Σi.

Finally, symmetric models are prevalent in auction theory [11]. We will call a Bayesian game
symmetric, if all players’ i, j ∈ I marginal prior type distributions are identical, i. e. fvi,oi

= fvj ,oj

(but not necessarily independent), as are their individual utilities (almost surely, up to tie-braking):
ui(βi, β−i) = uj(βi;β−i) with probability 1. The literature primarily discusses equilibria which are
likewise symmetric, i.e. β∗ = (β∗1 , β∗1 , . . . β∗1) [11, Chapter 2.1]. We will refer to auctions that are booth
symmetric and interim-smooth as symmetric and smooth auction games.
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2.2. Neural Pseudogradient Ascent
Our numerical technique to learn Bayes-Nash equilibria called Neural Pseudogradient Ascent (NPGA)
is based on neural networks and repeated self-play in which players continually update strategies in
response to observed game outcomes, that is, all agents follow the game dynamics. By the dynamics
of the game, we mean the vector field of the simultaneous gradients of the ex-ante utility functions
of all players. The goal will be to find an ex-ante Bayes-Nash equilibrium β∗ for a continuum of
observations o that bidders can draw. In other words, we search for a profile of equilibrium bid
functions in infinite-dimensional spaces.

We start by taking the infinite-dimensional, complete information game interpretation G̃= (I,Σ, ũ)
mentioned in the previous section. To implement gradient ascent in the Hilbert space Σ, we replace the
bid functions by neural networks, called policy networks, that are parametrized by finite-dimensional
parameter vectors θi ∈Θi ⊆Rdi . This let’s us define a finite-dimensional approximation of G̃, which
we will call the proxy game:

Definition 2 (Proxy game). LetG= (I,V ,O,A, f, u) be a Bayesian game with ex-ante utilities
ũi and let its strategy functions be implemented by neural networks: βi(oi)≡ πi(oi; θi) with parameters
from finite-dimensional vector spaces Θi ⊆Rdi . Set Θ≡

∏
iΘi, and (with slight abuse of notation)

write ũi(θi, θ−i) ≡ ũi (πi( · ; θi), π−i( · ; θ−i)). We then call the resulting finite-dimensional complete-
information game on parameters, Γ = (I,Θ, ũ), the proxy game of G.

Common neural network architectures have been shown to be able to approximate any sufficiently
regular function arbitrarily well [45], so this choice of function approximation enables the learning of a
wide variety of bid functions with minimal structural constraints. Neural networks also demonstrably
achieve good performance in machine learning settings with very high-dimensional input vectors, as
is the case in larger auctions with many items. Using neural networks, we thus effectively reduce
the problem from finding an infinite-dimensional vector in Σ to finding finitely many (di) weights
and biases of the neural networks, and we can now perform gradient ascent in the finite-dimensional
parameter spaces.

Each agent aims to maximize the objective function of their network which is given by the utility ũi
and estimated via the empirical sample-mean of ex-post utilities from a large number H of auctions:
After playing a batch of games, agents observe their utility, estimate its gradient with respect to θi,
and apply an update to their policy network parameters θi that is expected to lead to an increase in
utility.
Traditionally, gradient estimates in neural networks are computed via backpropagation. However,

training neural networks in auction games is challenging as the ex-post utility functions of individual
auctions are discontinuous, leading to a failure to back-propagate gradients through the empirical
objective. We solve this problem by leveraging an evolutionary strategy (ES) optimization technique
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that effectively smoothes the objective [46, 47]. This allows us to derive an adequate estimate of the

ex-ante payoff gradients even under ex-post non-smoothness.

Algorithm 1: Neural Pseudogradient Ascent using Evolutionary Strategy gradients
Input: agents i∈ I with initial policies β0

i := πi( · ; θ0
i ) induced by initial parameters θ0

i ; ES
population size P ; ES noise standard deviation σ; learning rate η; batch size H

for t := 1,2, . . . do
Sample a batch (vh, oh)h=1,...,H of valuation and obseravtion profiles from the prior f
Calculate joint utility in current strategy profile:

ũt−1 := 1
H

∑
h

ũ
(
vh, β

t−1(oh)
)

for each agent i∈ I do
Sample P perturbations of agent i’s current policy:

πi;p := πi( · ; θp)

with θp := θt−1
i + εp where εp ∼N (0, σ2I) i.i.d. for all p∈ {1, . . . , P}

For each p, evaluate the fitness of θp by playing against current opponents:

ϕp := 1
H

∑
h

ui
(
vh,i, πi;p(oh,i), βt−1

−i (oh,−i)
)
− ũt−1

i︸︷︷︸
baseline

Calculate ES pseudogradient as fitness-weighted perturbation noise:

∇ES := 1
σ2P

∑
p

ϕpεp

Perform a gradient update step on the current policy:

∆θti := ηt∇ESũt−1
i (βt−1(o)), θti := θt−1

i + ∆θti , βti := πi( · ; θti)

end
end

We provide the pseudo-code of NPGA in Algorithm 1. At each time-step t, every agent i ∈ I

receives a noisy estimate ∇̂ũi of her individual (ex-ante) payoff gradient at the current strategy

profile. The noise is an artifact of limited-precision Monte-Carlo sampling over V and O. The agents

simultaneously take a step along this gradient estimate to determine the strategies for the next stage,

and continue playing.
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2.3. Convergence

In our experimental results below and in the supplementary material, we find that NPGA always
converges very close to the global ε-BNE, which, at first, is surprising given the known results about
non-convergence of gradient play to Nash equilibria in general [48] and the locality of gradient based
learning. Non-convergence can be due to conflicting utility functions of players. For example, even in
simple two-player zero-sum games with one-dimensional actions, the simultaneous gradient may cycle
around the Nash equilibrium [49].

A few observations help explain why NPGA converges to an approximate BNE in a wide range of
auction games. First, the vast majority of models studied in the literature are symmetric auction
games with symmetric equilibria (see Section 2.1). As a result, we no longer need to learn multiple
bid functions for each bidder in NPGA, but merely a single, symmetric bid function β1 ∈Σ1 that
optimizes the single ex-ante utility function ũ1(β1, . . . , β1), which serves as a potential function of the
game. Any maximum β∗1 of this potential function directly yields a symmetric pure strategy ex-ante
BNE β∗ = (β∗1 , . . . , β∗1) in the restricted game, limited to symmetric strategies.

Definition 3 (potential game [50]). A complete information game Γ = (I,Θ, ũ) is an (exact)

potential game if there exists a potential function φ : Θ→R, s. t. for all i∈ I, θi, θ′i ∈Θi and θ−i ∈Θ−i,
it holds that

ũi(θi, θ−i)− ũi(θ′i, θ−i) = φ(θi, θ−i)−φ(θ′i, θ−i). (6)

When the auction game is symmetric and we additionally enforce symmetric strategies by sharing

a common neural network architecture π( · ) and common parameter vector θi ≡ θ1 among all players
(“symmetric NPGA”), it’s easy to see that with φ≡ ũ1, the proxy game is an exact potential game.
Gradient play provably converges to a pure local Nash equilibria in finite-dimensional, continuous
potential games [32]. This leads us to the following proposition:

Proposition 1. In any symmetric and smooth auction game, symmetric NPGA with appropriate

gradient update step sizes almost surely converges to a local ex-ante κ-BNE of the restricted game.

A formal proof can be found in the Methods Section. If NPGA converges to a global approximate
equilibrium o the game can be checked empirically, as we discuss in the next section.

3. Empirical Evaluation
We illustrate the versatility of NPGA in the context of combinatorial auctions in the well-known
local-local-global (LLG) environment, which has been an important model for the discussion about
spectrum auction formats [41, 51]. NPGA allows us to analyze how correlation and risk aversion
impact the outcome in equilibrium. There are many other interesting environments one can explore. In
the supplementary information we present additional results for single-object auctions with different
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types of value interdependencies (including common values models), small and larger multi-unit
auctions, and a larger combinatorial auction setting with eight items and six bidders. Note that even
for a multi-unit auction with three items and bidders no analytical solutions are known anymore.
For single-object, multi-unit, and combinatorial auctions with only a few bidders as reported below,
NPGA computes equilibria within hundreds of iterations, each taking a few seconds or less. Larger
settings such as multi-unit first-price sealed-bid auctions with four units and bidders or combinatorial
auctions with five items and six bidders reported in the supplementary information converged to an
approximate BNE with estimated relative utility loss of less than 1% within 15 minutes. However, the
runtime depends on the specific model analyzed (e.g., the prior distribution, the number of bidders,
and the auction format).

3.1. The Local-Local-Global Model

The LLG model consists of two objects {1,2}, two local bidders i ∈ {1,2} and one global bidder
i= 3, each being only interested in one specific bundle (of the single object i (locals) or both objects
(global)) [40], and we will simply denote the valuation of each bidder’s single bundle by vi ∈R. We
consider a private values (but not independent private values) setting with oi = vi which allows for
correlation. The situation is akin to spectrum sales in countries with regional spectrum licenses such
as Australia or Canada, where local telecoms compete against operators who provide their services
nation-wide, and governments have used core-selecting combinatorial auctions. The core of an auction
game describes the set of outcomes such that no coalition of bidders (and possibly the auctioneer)
can profitably deviate. Core-selecting auction mechanisms enforce this notion of stability by their
choice of prices. While there are hardly any game-theoretical analyses of combinatorial auctions, this
model is simple enough to allow for the derivation of analytical results [52]. It was shown that with
independent private values and risk-neutral bidders, core-selecting payment rules lead to significant
inefficiencies in equilibrium [40] in combinatorial auctions. Essentially, the two local bidders attempt
to free-ride on each other. If one bidder bids less, the other has to bid more to overbid the global
bidder. Due to incomplete information, it can happen that both local bidders bid too low in total and
they fail to outbid the global bidder, even if their combined valuations are higher than the global
bidder’s. This results in an inefficient outcome. This fact has been used as an argument against
core-selecting combinatorial auctions [41].
Now, it is interesting to understand equilibria with different assumptions. For example, it is

reasonable to believe that bidder valuations in spectrum auctions are correlated, because telecoms face
the same downstream market. Recently, the model was analyzed with different types of correlation
[52]. However, with standard core-selecting payment rules, it turns out that correlation alone cannot
mitigate the efficiency and revenue loss encountered with independent private values. Risk aversion
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has not yet been analyzed, although it plays a role in the revenue ranking of single-object auctions.

In contrast to single-object auctions, it has been unclear how risk-aversion plays out in equilibrium. If

one local bidder knows that the other is risk averse and might thus bid higher, he might bid even

lower as a result of this knowledge. The environment is not symmetric as there are two local and a

global bidder. However, the global bidder has a simple dominant strategy to bid truthful and the two

local bidders can indeed be considered symmetric whenever fv1 = fv2 .

Ausubel and Baranov [52] investigate two models of correlation among local bidders’ private values

and derive analytical BNE, which we will use as a baseline in our experiments. Let’s define the joint

prior f to be the five-dimensional uniform distribution of a latent random variable ω∼U [0,1]5. Then

let v3 = 2ω3 be the valuation of the global bidder and

v1(ω) =wω4 + (1−w)ω1, v2(ω) =wω4 + (1−w)ω2 (7)

be the valuations of the local bidders where the weight w is a random variable depending on ω5 only.

The valuations of the local bidders can be thought of a as a linear combination of an individual

component ωi and a common component ω4. Now given an exogenous correlation parameter γ ∈ [0,1],

Ausubel and Bananov [52] propose two different ways to choose w such that corr(v1, v2) = γ: the

Bernoulli weights model:

w(ω) =
{

1 if ω5 < γ,

0 else,
(8)

and the constant weights model (which does not require w5):

w(ω) =

γ−
√
γ(1−γ)

2γ−1 if γ 6= 1/2,
1/2 else.

(9)

They analytically derive the unique symmetric BNE strategies for multiple bidder-optimal core-

selecting payment rules including the nearest-zero (NZ), nearest-VCG (NVCG), and nearest-bid (NB)

rule in the Bernoulli weights model. These rules all choose the efficient allocation x (according to

the submitted bids) but select different price vectors p from the set of core-stable outcomes. For

example, the nearest-VCG rule picks the point in the core that minimizes the Euclidean distance to

the (unique) Vickrey-Clarke-Groves payments. Similarly, the nearest-zero point takes the origin of

the coordinate system as a reference point, while the nearest-bid rule minimizes the distance to the

vector of submitted bids b. Only the nearest-VCG rule has been used in spectrum sales so far. Apart

from these core-selecting payment rules, we will also report the results in first-price sealed-bid (FPSB)

auctions, for which no analytical BNE are known, as these are used in some spectrum sales [41], and

in the VCG mechanism, which is not core-stable but always prescribes truthful bidding as a BNE.
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3.2. Evaluation Criteria

Let us discuss how we will evaluate any learned strategy profile β to certify that it indeed constitutes

an (approximate) equilibrium. This evaluation is entirely independent of the learning process of

NPGA and tries to answer the question of how good a given strategy is. Whenever we encounter a

setting where an analytical equilibrium β∗ is known, we draw on it for direct comparison. In this case,

we sample the BNE-utility of each player, ûi(β∗)≈ ũi(β∗), as well as the utility βi played against the

BNE, ûi(βi, β∗−i)≈ ũi(βi, β∗−i), with a batch size of 222. We then report the resulting relative utility

loss:

Li(βi) = 1−
ûi(βi, β∗−i)
ûi(β∗i , β∗−i)

. (10)

Additionally, we report the probability-weighted root mean squared error of βi and β∗i in the action

space, which approximates the L2 distance ‖βi− β∗i ‖Σi
of these two functions:

L2(βi) =
(

1
nbatch

∑
oi

(βi(oi)− β∗i (oi))2
) 1

2

. (11)

This metric circumvents the drawback of Li that even a strategy with a loss very close to zero could

be arbitrarily far from the actual BNE in strategy space.

When no analytical BNE is available for certification of the learned bid function, we aim to compute

the ex-ante utility loss ˜̀
i(βi, β−i) = supβ′

i
∈Σi

ũi(β′i, β−i)− ũi(βi, β−i). Evaluating this supremum in

function space Σi exactly is not tractable, and approximations are computationally expensive. Our

estimator ˆ̀
i of ˜̀

i relies on finding approximate interim best responses. To do so, we place an equidistant

grid indexed with w= 1, . . . , ngrid over the action space Ai ranging from zero to the maximum valuation

for all dimensions. For an observation oi and each of the alternative bids bw we evaluate the interim

utility, ūi(oi, bw, β−i), against the current opponent strategy profile. This is challenging as it requires

access to the distribution of i’s true valuation and the opponents’ observations, both conditioned on

oi, see equation (1). For nbatch samples of oi and nbatch samples of vi, o−i|oi for each of the oi’s, we

then have
ˆ̀
i(β) = 1

nbatch

∑
oi

max
w

λi(oi, bw, β) (12)

with λi being the estimated expected utility gain by deviating from playing according to βi to playing

action b′:

λi(oi, b′, β) = 1
nbatch

∑
vi,o−i|oi

(ui (vi, b′, β−i(o−i))−ui (vi, βi(oi), β−i(o−i))) . (13)

For an increasing number of samples and alternative actions, this estimate converges to ˜̀
i. Our

estimate for ε in an ex-ante ε-BNE is then ε≡maxi ˆ̀
i.
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The conditional distribution vi, o−i|oi is rarely available upfront. For simple cases one can derive
the analytical distributions and draw samples. However, in most programming environments, one is
only able to sample from very basic (pseudo-)random numbers like the uniform or normal distribution.
For more complicated multivariate conditional distributions, we use the conditional distribution
method (for details, see the supplementary information, Section S.3). Based on these estimates, we
can compute a relative ex-ante utility loss without access to the analytical BNE:

L̂i(βi) = 1− ûi(β)
ûi(β) + ˆ̀

i(β)
. (14)

This metric is the average loss incurred by not playing a best response but instead playing the
strategy learned via NPGA. Note that we do not need to make any assumption about the utility
function or independence of valuations for this estimator.
Due to the multiple levels of Monte-Carlo sampling, the estimator L̂i has a higher variance than

those that rely on an analytical BNE β∗, even when the performance of NPGA itself is not affected.
Our reported estimates are based on ngrid = 210 possible bids for each sampled interim-state using a
batch size of nbatch = 212, thus each estimate of L̂ is based on ngrid ·n2

batch = 234 simulated auctions. To
sample that many games efficiently, both NPGA and our evaluation procedures leverage parallelization
on GPU hardware. Certification of BNE is a challenge in all computational approaches to equilibrium
computation. A thorough discussion for environments with standard quasilinear utility functions and
independent private values is provided by [23].

3.3. Results
Let us first provide the aggregate convergence results in Table 1, which almost perfectly reproduce
the BNE found in [52]. The utility loss is small in all environments, and so is the L2 difference to the
analytical BNE wherever it is known. Figure 1 shows the analytical BNE bid function and the NPGA
result for a specific setting as an illustrative example.

Next we look at risk aversion. Figure 2 shows that with higher risk aversion, the market efficiency
denoted by E increases for both correlation models in a similar way. Correlation of the local bidders
does not influence the efficiency with the wide-spread VCG-nearest payment rule at a precision of
±1% of E . For the highest level of risk aversion of ρ= 0.1, the efficiency rose to about 98%, from
about 84% under risk neutrality. So, while higher correlation of valuations does not lead to higher
efficiency, risk aversion mitigates the efficiency loss, which is important to know for spectrum sales by
governments. A similar result has previously been found for an ascending core-selecting auction with
a specific tie-breaking rule [53], but the analysis could not yet be extended to the general sealed-bid
case.

Similarly, the approximate revenue of the seller can be analyzed. In Figure 3, we observe a strong,
steady increase of the revenue R with increasing risk aversion and a slight increase with decreasing
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correlation between the local bidders. Different levels of risk attitudes ρ and varying strengths of

correlations γ are plotted in the Bernoulli correlation model in the LLG setting with the nearest-VCG

payment rule. Results are similar for the constant weights correlation model. Increasing risk aversion

has significant positive impact on revenue, which is important to know for policy makers.

4. Discussion
Auction theory, and game theory in general, is often very sensitive to model assumptions. While the

results of early studies on auctions in the symmetric independent private values model with quasilinear

bidders provided important insights, the assumptions are very restrictive [54]. Value interdependencies

and changes in the utility function can have substantial impact on the resulting equilibrium bidding

strategies. While simple single-object auctions in the independent private values model are relatively

well understood, we do not know equilibrium bidding strategies for most environments involving

multiple objects, interdependencies, and different levels of risk aversion to this day.

With NPGA we introduce a numerical technique to compute approximate equilibria in these

Bayesian games and show that we converge to a local equilibrium quickly and with high precision.

The method can provide a convenient tool for analysts to explore new environments or perform

sensitivity analysis with various behavioral assumptions, different priors, and value interdependencies.

The supplementary information provides additional experiments to illustrate the versatility of the

method.

It is all but clear that gradient dynamics as in NPGA can find global or even local Bayes-Nash

equilibria in auction games. For much simpler min-max games that play an important role in machine

learning techniques such as Generative Adversarial Networks, we cannot expect gradient dynamics to

find an equilibrium [55]. When gradient dynamics as implemented with NPGA converge to a global

Bayes Nash equilibrium is an interesting open research question. Beyond the study of equilibria in

games, our techniques can possibly contribute to automated and empirical mechanism design [56, 57].
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Figure 1 Bid functions in the LLG auction with a nearest-zero core payment rule, where bidders are assumed
independent and risk-neutral.
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culated via NPGA with the nearest-VCG
payment rule in the LLG auction game.

Tables

Table 1 Convergence results of NPGA in risk-neutral combinatorial LLG auctions with a correlation of γ = 0.5
among local bidders’ valuations. We report mean and standard deviation of experiments over ten runs.

Auction game L2 L L̂
LLG Bernoulli NZ 0.011 (0.005) -0.000 (0.000) 0.007 (0.007)
LLG Bernoulli VCG 0.008 (0.003) 0.001 (0.000) 0.007 (0.005)
LLG Bernoulli NVCG 0.016 (0.016) 0.000 (0.000) 0.008 (0.007)
LLG Bernoulli NB 0.021 (0.021) 0.001 (0.000) 0.009 (0.008)
LLG Bernoulli FPSB – – 0.010 (0.008)
LLG constant NZ – – 0.011 (0.010)
LLG constant VCG – – 0.008 (0.007)
LLG constant NVCG – – 0.011 (0.012)
LLG constant NB – – 0.013 (0.015)
LLG constant FPSB – – 0.009 (0.006)

Methods
Proof of Proposition 1

Proof: Let G be a symmetric and smooth Bayesian auction game. Per definition, all players in
such games have the same marginal type distributions and individual utility functions. Additionally,
assume the auction mechanism to be anonymous: the identity and order of bidders almost surely
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have no influence on the allocation and payments (tie-braking on a nullset notwithstanding). Assume

all players play the same strategy βi. Then, the symmetric ex-ante utility function ũi(βi, . . . , βi) is

a potential function and G̃ is a potential game in this restricted environment. The same holds for

the finite-dimensional proxy game Γ. To use this symmetry, we restrict all players to use the same

neural network π(·, θ) with a shared parameter vector θ ∈Rd. Let’s first remark that the restriction

to symmetric strategies does not alter the gradient vector field in any way, as symmetric strategy

profiles also have symmetric gradients.

We draw on a known result that gradient-play with appropriate (summable but not square-summable)

step sizes converges almost surely to a local Nash equilibrium in finite-dimensional continuous potential

games [32, Corollary 4.2]. It thus remains to be shown that (a) NPGA implements gradient-play

in the proxy game Γ and thus finds a local Nash equilibrium θ∗ of the proxy game, and (b) that

this Nash equilibrium of the proxy game Γ—which restricts the strategy space to neural networks

expressible by Θ— is also a BNE of the game G restricted to symmetric strategies. To show (a) and

(b) below, we will rely on some auxiliary lemmata. The proofs of these lemmata are of a technical

nature and can be found in Section S.2 of the supplementary information. In the following, for a

given neural network π(·, θ), we denote its utility and loss in G by ũ(θ), ˜̀(θ), and in Γ by ũΓ(θ), ˜̀Γ(θ),

respectively.

To prove (a), one would need to show that the gradient estimates computed by NPGA have finite

variance and at most a small bias with regard to the true gradients of the proxy game Γ. This is

not necessarily the case, but let’s set ũσi (θi, θ−i)≡Eε∼N (0,σ2I)[ũi(θi + ε, θ−i)] call Γσ = (I,Θ, ũσ) the

smoothed proxy game, and define ˜̀σ analogously. Then Γσ is likewise a symmetric potential game,

and we get the following lemmata:

Lemma 1. The gradient estimates ∇ES in NPGA are unbiased and have finite mean squared error

with respect to the smoothed utilities ũσi of the game Γσ.

Lemma 2. For any θ ∈Θ, the loss in Γ is bounded by that in Γσ: ˜̀Γ(θ) ≤ ˜̀σ(θ) + 2ZL
√
dσ,

where Z is the partial derivative bound from Definition 1, d is the number of parameters in the neural

network, σ is the standard deviation of the ES perturbations, and the constant L is a property of

the neural network architecture π, describing its regularity. By Lemma 1, NPGA implements exact

gradient play in Γσ and thus finds a local Nash equilibrium θ∗ of that game via the result by [32]. By

Lemma 2, any Nash equilibrium of Γσ is an approximate Nash equilibrium of Γ.

For the latter (b), the universal approximation theorem [45] guarantees that a sufficiently large

neural network architecture can approximate every βi ∈Σi with arbitrary precision δ. This yields

another error bound:
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Lemma 3. Let the neural network π be sufficiently expressive, i.e. for any βi ∈Σi one can find
θ ∈Θ such that ‖βi−π(·, θ)‖Σi

≤ δ. Then the loss of θ in G is bounded by that in Γ: ˜̀(θ)≤ ˜̀Γ(θ) +Zδ.

In summary, NPGA almost surely converges to an (approximate) local Nash equilibrium θ∗ of Γσ

which, by application of local versions of Lemma 2 and Lemma 3, retains a (local) ex-ante loss of
at most κ= Z(δ+ 2L

√
dσ), thus constituting a κ-BNE of G restricted to symmetric strategies. In

practice, one may choose the parameters δ (via the NN architecture and size d) and σ sufficiently
small such that the error vanishes.

Neural Network Architecture and Hyper-Parameters
In our implementation, we use fully connected policy networks with two hidden layers of ten nodes
each, using SeLU activation in the hidden layers and a ReLU activation function in the output layer.
These simple networks are sufficient for the settings here, but even single-layer nets work with a
slight decrease in performance. Instead of standard gradient ascent, we apply the Adam optimization
algorithm [58] with standard parameters. In each iteration we generate 64 perturbations of the
network πi for ES gradient estimation, using zero-mean Gaussian noise with a standard deviation
of σ = 1/di (as suggested by [47]). We use batch sizes of 217 chosen such that the largest settings
would fit into available GPU memory. In the presence of asymmetries or multiple items, degenerate
initializations (e. g., when some players never win) can impede convergence. To alleviate this and
improve comparability, we force close-to-truthful initializations by pre-training the networks towards
the truthful strategy using supervised learning (RMSE-loss, 500 steps of vanilla stochastic gradient
descent). We did not perform setting-specific hyperparameter tuning to allow for comparable results.
There are possibilities to improve the performance of our results when tuning the hyperparameters
for a specific environment.

We implemented the auctions using the PyTorch framework [59] with a focus on computing many
auctions in parallel. Unless noted otherwise, all experiments were performed on a single consumer-
grade Nvidia GeForce RTX 2080Ti GPU with 1,000 iterations for the single-item auctions and 2,000
iterations for the large setting with correlated values (n= 10) and the multi-unit auctions, where each
experiment was run ten times.

Data availability
All data analyses in this study are based exclusively on data generated by our custom simulation
framework (see Code Availability). The raw simulation artifacts underlying any figures and tables in
the study will be made available on request.

Code availability
The source code of our simulation framework, including instructions to reproduce all models and
datasets referenced in this study, is freely available at https://github.com/heidekrueger/bnelearn,
licensed under GNU-GPLv3.
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This supplementary material includes (a) the description and discussion of further experimental
results to further substantiate the empirical claims made in the main paper, (b) formal statements
and proofs of two auxiliary technical lemmata that are used in the proof of Proposition 1 of the main
paper, and (c) mathematical derivations of the conditional distributions oj|oi of type signals that are
required for evaluation of candidate strategies in the settings where players’ types are correlated.

S.1. Additional Experiments
In this section, we illustrate selected auction models to demonstrate the versatility of NPGA and
its performance in larger auction models. A comprehensive analysis of the scalability of NPGA is
challenging, because the runtime depends very much on the specifics of a model, the prior distribution,
the number of bidders, their utility functions, the auction format and whether symmetry is itself
learned or enforced a-priori. However, the following results of different auction games provide a better
understanding of this question.

The independent private values model is the standard model and has been analyzed extensively in
the literature [4]. More challenging environments are auctions with value interdependencies where
known BNE strategies are rare. We first discuss standard single-item auction models in the independent
private values model, but increase the number of bidders to study runtime and solution quality with
different priors. Next, we investigate single-object auctions with value interdependencies, before we
discuss multi-unit auctions, and a larger version of the combinatorial LLG model with more items
and bidders. The notation follows the main paper. Note that in all our experiments we ended up in
the same BNE even if NPGA was run repeatedly with different initialization, which suggests that the
equilibria found are global and not local BNE. This is consistent with the well-known observation
that in optimization of neural networks one is often able to find global optima even though theoretical
guarantees only extend to local optimality.
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Table S.1 Results of NPGA learning in single-item first-price auctions with symmetric bidders.
We show average and standard deviation over ten runs.

Auction game Bidders L sec/iter

Uniform risk-neutral
U(0,10)
ρ= 1

2 0.0001 (0.0009) 0.31
3 0.0017 (0.0006) 0.40
5 0.0034 (0.0020) 0.46
10 0.0084 (0.0110) 0.73

Uniform risk-averse
U(0,10)
ρ= 0.5

2 0.0011 (0.0004) 0.46
3 0.0006 (0.0003) 0.52
5 0.0012 (0.0011) 0.63
10 0.0100 (0.0068) 0.92

Gaussian risk-neutral
N (15,100)
ρ= 1

2 0.0015 (0.0011) 0.31
3 0.0037 (0.0043) 0.39
5 0.0129 (0.0135) 0.44
10 0.0314 (0.0212) 0.68

S.1.1. Single-Object Auctions with Independent Private Values
We first ran experiments on single-object auctions with analytically known BNE, i. e. with uniform
and Gaussian distributed valuations for 2, 3, 5 and 10 bidders each. In the uniform-prior case, we
consider risk-neutral ρ = 1 and risk-averse ρ = 0.5 bidders, for Gaussian priors we only consider
risk-neutral bidders. Table S.1 presents the utility loss incurred when playing a learned strategy
against the analytical BNE after 20,000 iterations. In order to assess runtime, we report the time per
iteration, because it varies depending on the number of bidders and the prior distribution. Although
we ran all settings for the same total number of iterations regardless ob difficulty, we observe fast
convergence for uniformly distributed valuations within a few hundreds of iterations. For normal
distributed valuations, learning is slower, as illustrated in Figure S.1, yet the utility loss is low and
stable after 18,000 iterations. It is harder to get high precision in the tails of the value distribution
which are rarely sampled.

S.1.2. Single-Item Auctions with Interdependencies
Next, we report the performance of NPGA in single-object auctions with different types of interde-
pendencies. The most well-known examples of interdependencies are the common value model (with
conditionally independent observations oi|v) and the affiliated value model for single-item auctions by
the 2020 Nobel laureates Robert B. Wilson [8] and Paul Milgrom [5].

The common value model is also known as the “mineral rights” model [4, Example 6.1]. We explore
the second-price auction in an environment where there is one pure common value v that is the same
for all agents. Three bidders i ∈ {1,2,3} share a common U [0,1]-distributed value for the item of
interest. Conditioned on this value, the observations oi are uniformly, and independently, distributed
on the interval from zero to two-times the common value. Formally, we can define the joint prior
probability density function f as the four-dimensional uniform distribution over Ω = [0,1]4. For a draw
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Figure S.1 Learning curve of NPGA in a 10 player Gaussian first-price auction. Utility of learning opponents
against each other (solid red line) and NPGA utility of learning opponents individually evaluated
against the analytical BNE strategy (dashed blue line). Line and shaded area indicate mean, minimum,
maximum of 10 runs.

ω∼U(Ω) we set each player’s valuation to vi(ω) = ω4 and each observation to be oi(ω) = 2 ·ωi ·ω4.

Notice, all agents have the same value (or type), but they only learn their value if they win the

auction. In this model, the symmetric BNE strategy profile can be stated in closed form as

β∗i (oi) = 2oi
2 + oi

. (S.1)

For this setting, all functions required for the calculation of the utility loss from equation (10) of the

main paper can be derived analytically, thus allowing for precise sampling.

In the affiliated values model the individual observations are correlated. In the model [4, Example 6.2]

with two bidders i∈ {1,2}, we can set Ω = [0,1]3 and again with ω∼U(Ω) the observations are given

by

oi(ω) = ωi +ω3 (S.2)

where both bidders have a common value of v(ω) = 1
2(ω1 +ω2) +ω3. The symmetric BNE strategy

is to bid truthfully under the second-price payment rule, and to follow β∗i (oi) = 2
3oi for first-price

payments.

Table S.2 shows that for single-item auctions with affiliated or common values, NPGA closely

approximates the BNE. The true utility loss L is very low, and so is the L2 norm of the bid function

learned via NPGA compared to the analytical BNE bid function. The more conservative values of

L̂ of 11% compared to L in the common values settings are due to numerical instabilities in the

calculated actual utility to estimated BNE utility ratio: The agents have a near-zero utility in these

specific games and the values are estimated on a smaller sample size thus having a higher variance.
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Table S.2 Single-item auctions. Mean and standard deviation of experiments over ten runs each. Missing entries
are due to a lack of an analytical BNE strategy.

Auction game L2 L L̂
Affiliated values 0.018 (0.009) 0.002 (0.001) 0.013 (0.004)
Common value 0.009 (0.002) 0.000 (0.000) 0.025 (0.013)
Common value n= 10 – – 0.068 (0.063)

Note that L is even negative sometimes, which is an artefact of limited measurement accuracy at the
batch size of 222 games played against equilibrium opponents.
The numbers in Table S.2 assume risk neutrality. We do not report further details on different

risk attitudes, because they lead to similar level of efficiency and revenue: Efficiency is always close
to 100% and revenue is approximately 0.35 and 0.80 in the common value setting and the affiliated
values setting, respectively. Overall, NPGA achieved high precision in a large number of single-item
auction environments analyzed with different prior distributions, beyond the ones reported here.

S.1.3. Multi-Unit Auctions with and without Interdependencies
Multi-unit auctions in which bidders compete for m > 1 homogeneous units are wide-spread in
practice. The standard payment rules for selling multiple units include “pay-your-bid” (first-price),
Vickrey-pricing, and uniform-pricing (all items are sold at the same price). In each of the auctions, the
items are awarded to the bidders corresponding to the p-highest bids. Each bid-component corresponds
to the bidders’ willingness to pay for one additional unit.

Even for the IPV model, equilibria are only known for small and stylized settings [4]. For example,
there is no closed-form solution for the first-price or uniform pricing rule, except for the independent
private values model and n,m≤ 2. Before we discuss interdependencies, we analyze the standard
symmetric multi-unit auctions with independent private valuations and larger number of items and
bidders. We will follow the common practice to draw the valuations vi ∈ [0,1]m for all units uniformly
from the unit interval and sort them in decreasing order, to account for marginally decreasing
valuations in the number of units. A detailed introduction to these standard multi-unit auctions can
be found in [4, Chapter 13].

Table S.3 provides the results for multi-unit auctions with risk-neutral bidders, independent private
values, and different auction formats. We provide the results with independent private values as a
baseline, before we look at interdependent values. Again, missing entries in the table are due to a lack
of an analytical BNE strategy for the respective environments. The estimated relative utility loss L̂,
consistently decreases to about 1% within 15 minutes. For the VCG m= n= 4 auction we observe a
higher L2 but low L and L̂ values. This is due to the Monte Carlo estimation of the estimated utility:
Agents never win all four items during the learning phase, and therefore do not bid for the last item,
even though they should just bid truthful in theory.
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Table S.3 Multi-unit auctions. Mean and standard deviation of experiments over ten runs each.

Auction game L2 L L̂
FPSB m= n= 2 0.077 (0.009) 0.021 (0.005) 0.033 (0.005)
Uniform m= n= 2 – – 0.000 (0.000)
VCG m= n= 2 0.029 (0.002) -0.000 (0.000) 0.006 (0.003)
FPSB m= n= 4 – – 0.072 (0.011)
Uniform m= n= 4 – – 0.000 (0.000)
VCG m= n= 4 0.143 (0.037) 0.006 (0.002) 0.015 (0.012)

Interdependencies have received little attention in the literature on multi-unit auctions. Several
incentive-compatible mechanisms were proposed for the multi-unit case with interdependencies [2, 6],
but BNE strategies for wide-spread first-price auctions are unknown. Here, we report the results of a
specific environment where valuations are equal to the observations, but there is correlation among
the valuations. The correlation then comes from a shared component that is weighted with a private
component in the following way:

vi = oi = γωn+1 + (1− γ)ωi. (S.3)

Here, γ ∈ [0,1] is the correlation strength and ωi, ωn+1 ∈ [0,1]m are the private and a public component,
respectively, that are once again uniform random variables as in the IPV model.
Similar to the analysis of combinatorial auctions in the LLG model, it is interesting to look at

comparative statics wrt. risk aversion and correlation of bidder valuations. Let us first look at the
revenue R that the seller can expect for different levels of risk aversion of the bidders and payment
rules (first-price, VCG, uniform) in multi-unit auctions with independent private values. Risk is
modeled by the risk parameter ρ > 0, where ρ= 1 corresponds to risk neutrality. NPGA can handle risk
aversion without modifications to the algorithm, just by changing the utility functions appropriately.
Figure S.2 shows the revenue for the common payment rules with different levels of risk aversion. The
zero revenue for the uniform pricing scheme is to be expected for risk-neutral bidders, because of
tacit collusion and demand reduction in equilibrium [1].

In Figure S.3 we analyze the impact of correlation on the multi-unit FPSB auction with risk-neutral
bidders. Bars mark the standard deviation over four runs. An interesting phenomenon occurs at high
levels of correlation. For γ < 0.8 the bidders roughly bid half the value for both units. For γ larger
than this threshold, the bidders collude and only bid a small amount on winning one unit and zero on
the additional unit. Thus the revenue drops to very small amounts for the seller. This phenomenon
can also be seen in slightly different correlation models, even if less pronounced. For example, if we
draw two valuations and then use a linear combination depending on the correlation strength, we
get a similar result. The extreme case of a perfect correlation gives an intuitive explanation. If two
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Figure S.3 Impact of correlation on revenue and
efficiency in a n=m= 2 correlated
multi-unit FPSB auction.

bidders have exactly the same value they win only half of the time with random tie breaking. In this
extreme case, they fare better if they tacitly collude and bid only a low price on one of the items
and zero on the other. Both bidders are symmetric and any higher bid price would only reduce their
revenue at a 50% chance of winning. The phenomenon illustrates the value of comparative statics in
game-theoretical analysis and how NPGA can help analysts study different auction institutions and
model assumptions.

S.1.4. Larger Combinatorial Auctions
Finally, we used the well-known LLG model for combinatorial auctions in the main paper, but we
also expanded this environment to more items and more local bidders to understand the impact on
runtime. Again, for the local bidders to win, the total sum of all their bids must thus exceed the
amount of the global bid. For a fair competition in the experiments, we increased the valuation of
the global bidder such that in expectation she has the same valuation as the local bidders combined.
The bidding strategies are in line with those observed for the LLG model with two items and three
bidders only. Figure S.4 depicts that the market efficiency slightly decreases with more local bidders
from about 97% in the original LLG setting with two local bidders, to about 95% in the setting with
five local bidders and a correlation of γ = 0.5. When increasing the number of bidders to a total of
n= 6 (one global and five local bidders) NPGA is still able to learn in these larger markets as fast as
the model with only three bidders.

S.2. Auxiliary Lemmata
For our formal analysis in the proofs below, we assume that any neural network architecture is (a)
sufficiently regular and (b) achieves universal approximation:
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Figure S.4 Efficiency in combinatorial auctions with increasing numbers of items and bidders. For the two
correlated models, i. e. the constant weights model and the Bernoulli weights model, a correlation
strength of γ = 0.5 is assumed and the selected pricing rule for all settings is nearest-VCG.

Definition 1 (NPGA policy network). An NPGA policy network πi : Oi × Θi →Ai is a
neural network, with the following properties:
1. Lipschitz-continuous dependence of the network on its parameters: The network πi depends

Lipschitz-continuously on the parameters θi in the following sense: There exists some L> 0, such that
for all i∈ I and θi, θ′i we have

Eoi
[‖πi(oi, θi)− πi(oi, θ′i)‖] ≤ L‖θi− θ′i‖. (S.4)

2. Approximability of Σi by Θi: There exists some δ > 0, such that for all i∈ I and βi ∈Σi there
exist parameters θi ∈Θi, such that

Eoi
[‖βi(oi)− πi(oi, θi)‖] ≤ δ. (S.5)

Let us now prove the three auxiliary lemmata from the main text.

Lemma 1. The gradient estimates ∇ES in NPGA are unbiased and have finite mean squared error
with respect to the smoothed utilities ũσi of the game Γσ.

Proof: We consider the smoothed ex-ante utility ũσi . For fixed σ > 0, we have

ũσi (θi, θ−i) := Eε∼N (0,σ2I)[ũi(θi + ε, θ−i)].

This is equal to the convolution of ũi with a Gaussian kernel in the i-th coordinate. As was noted by
[7], its (exact) gradient with respect to θi is thus given by

∇θi
ũσi (θi, θ−i) = 1

σ
Eε∼N (0,I)[ε(ũi(θi +σε, θ−i)− ũi(θi, θ−i))].
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By the substitution ε′ = σε, we see by the transformation formula that

∇θi
ũσi (θi, θ−i) = 1

σ2 Eε∼N (0,σ2I)[ε(ũi(θi + ε, θ−i)− ũi(θi, θ−i))].

If we approximate this term by taking P independent samples εp ∼N (0, σ2I), we get

∇θi
ũσi (θi, θ−i)≈

1
Pσ2

∑
p

εp(ũi(θi +σεp, θ−i)− ũi(θi, θ−i)).

In the same way, we can approximate ũi by sampling H observation and valuation profiles vh with
respect to the distribution the valuations are drawn from:

ũi(θi +σεp, θ−i)≈
1
H

∑
h

ui(vh,i, πi(oh,i, θi +σεp), π−i(oh,−i, θ−i)).

The combination of these approximations is exactly how ∇ES is computed in Algorithm 1:

∇ESũi(θi, θ−i) = 1
PHσ2

∑
p

εp
∑
h

(
ui (vh,i, πi(oh,i, θi +σεp), π−i(oh,−i, θ−i))

−ui (vh,i, πi(oh,i, θi), π−i(oh,−i, θ−i))
)
.

Since we sample independently and with respect to the original distributions, the approximation is
in expectation equal to the true gradient. Thus, the approximation is unbiased with respect to the
smoothed utilities ũσi . ∇ES also has finite mean squared error: Define

Xp,h = εp (ui(vh,i, πi(oh,i, θi + εp), π−i(oh,−i, θ−i))−ui(vh,i, πi(oh,i, θi), π−i(oh,−i, θ−i))) .

Because of equation (5) in Definition 1 in the paper (smooth Bayesian game), we have

Ev[ui(vh,i, πi(oh,i, θi + εp), π−i(oh,−i, θ−i))2]≤ S

and

Ev[ui(vh,i, πi(oh,i, θi), π−i(oh,−i, θ−i))2]≤ S.

This implies E[X2
p,h]≤ 4SE[‖ε‖2] = 4Sdiσ2, where we used the inequality (a− b)2 ≤ 2a2 + 2b2. Since

∇ESũi(θi, θ−i) = 1
PHσ2

∑
p,hXp,h, we have that

E
[
∇ESũi(θi, θ−i)2]= 1

P 2H2σ2 E


∑
p,h

Xp,h

2
= 1

σ2 E


∑
p,h

Xp,h

PH

2


≤ 1
PHσ2 E

∑
p,h

X2
p,h

≤ 1
PHσ2 4PHdiσ2S = 4Sdi <∞.

Consequently, our gradient estimate has finite mean squared error.
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Lemma 2. Consider the utility loss ˜̀Γ
i (θi, θ−i) of agent i with respect to the utility function ũi in

the finite-dimensional game Γ, and the utility loss ˜̀σ
i (θi, θ−i) with respect to the smoothed utility ũσi in

the game Γσ. Then
˜̀Γ
i (θi, θ−i) ≤ ˜̀σ

i (θi, θ−i) + 2ZL
√
diσ.

Proof: We start by bounding the difference between the utilities of the game Γ and the game Γσ.
To be precise, we prove the following bound for arbitrary strategies θ:

|ũi(θi, θ−i)− ũσi (θi, θ−i)| ≤ZL
√
diσ (S.6)

By definition, ũσi (θi, θ−i) = Eε∼N (0,σ2I)[ũi(θi + ε, θ−i)]. Since ũi(θi, θ−i) = Eε∼N (0,σ2I)[ũi(θi, θ−i)], we
have the inequality

|ũi(θi, θ−i)− ũσi (θi, θ−i)| ≤Eε∼N (0,σ2I)[|ũi(θi + ε, θ−i)− ũi(θi, θ−i)|]. (S.7)

Next, we show that for fixed ε, |ũi(θi + ε, θ−i)− ũi(θi, θ−i)| ≤ZL‖ε‖. We compute

|ũi(θi + ε, θ−i)− ũi(θi, θ−i)| ≤Evi,oi
[|ūi(vi, πi(oi, θi + ε), θ−i)− ūi(vi, πi(oi, θi), θ−i)|] .

Since by assumption, ūi is differentiable with respect to bi and the differential is uniformly bounded
by Z (equation (4) in Definition 1 of the main paper, we have for every ε

|ūi(vi, πi(oi, θi + ε), θ−i)− ūi(vi, πi(oi, θi), θ−i)|

≤
∥∥∥∥∂ūi∂bi

∥∥∥∥
∞
‖πi(oi, θi + ε)− πi(oi, θi)‖

≤Z‖πi(oi, θi + ε)− πi(oi, θi)‖.

Consequently, by Assumption S.4 in Definition 1 of an NPGA policy network,

|ũi(θi + ε, θ−i)− ũi(θi, θ−i)| ≤Z Evi,oi
[‖πi(oi, θi + ε)− πi(oi, θi)‖]≤ZL‖ε‖,

which implies by equation (S.7)

|ũi(θi + ε, θ−i)− ũσi (θi, θ−i)| ≤ZLEε∼N (0,σ2I)[‖ε‖]≤ZL
√
diσ.

This proves equation (S.6). Now let θ∗i be a best response to θ−i in the game Γ. Then

˜̀Γ
i (θi, θ−i) = ũi(θ∗i , θ−i)− ũi(θi, θ−i)

= (ũi(θ∗i , θ−i)− ũσi (θ∗i , θ−i)) + (ũσi (θ∗i , θ−i)− ũσi (θi, θ−i)) + (ũσi (θi, θ−i)− ũi(θi, θ−i))

≤ZL
√
diσ+ ˜̀σ

i (θi, θ−i) +ZL
√
diσ

= ˜̀σ
i (θi, θ−i) + 2ZL

√
diσ.
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Lemma 3. Let the neural net π be sufficiently expressive, i.e. for any βi ∈Σi one can find θ such
that ‖βi− π(·, θ)‖Σi

≤ δ. Then the loss of in G is bounded by that in Γ: ˜̀(θ)≤ ˜̀Γ(θ) +Zδ.

Proof: The proof relies on boundedness of partial derivatives in the definition of interim smooth
Bayesian games. With this regularity condition and universal approximation of the neural network,
the derivation is straightforward. Let θ−i ∈Θ−i be an opponent strategy profile, θ∗i be a best response
to θ−i in Γ, and β∗i be a best response to π−i(·, θ−i) in G, and θi an arbitrary parameter vector for
player i. Then

˜̀
i(θ; θ−i) = ũi(β∗i , θ−i)− ũi(θi, θ−i)

= ũi(β∗i , θ−i)− ũi(θ∗i , θ−i) + ũi(θ∗i , θ−i)− ũi(θi, θ−i)

= (ũi(β∗i , θ−i)− ũi(θ∗i , θ−i)) +
(
ũΓ
i (θ∗i , θ−i)− ũΓ

i (θi, θ−i)
)

= Eoi
[ui(oi, β∗i (oi), θ−i)−ui(vi;πi(oi, θ∗i ), θ−i)] + ˜̀Γ

i (θ)

≤Z ·Eoi
[‖β∗i (oi)− πi(oi, θ∗i )‖] + ˜̀Γ

i (θ)

≤Zδ+ ˜̀Γ
i (θ). (S.8)

S.3. Sampling from Conditional Distributions
When faced with a one-dimensional distribution, sampling is easily done by evaluating the inverse
CDF at uniformly sampled points. In the multivariate case, however, there exists no inverse CDF.
The following procedure, called conditional distribution method [3, Chapter 11], effectively reduces
the problem of sampling from multivariate distributions to multiple one-dimensional sampling tasks.
Conditioned on the observation of agent i, we
1. sample the first opponent’s observation conditioned on i’s observation, f(o−i,1|oi), by using

u0 ∼U [0,1] and setting
o−i,1 = F inv

o−i,1|oi
(u0),

2. sample the second opponent’s observation conditioned on all observations sampled so far,
f(o−i,2|oi, o−i,1), by using u1 ∼U(0,1) and setting

o−i,2 = F inv
o−i,2|oi,o−i,1

(u1),

3. continue in this manner for all opposing agents −i and agent i’s own type f(vi|o).
Then the samples satisfy (o−i, vi) ∼ f(o−i, vi|oi) by definition. For most settings in this work, all
required functions are analytically known, making a precise sampling possible.

In the general case, it’s not possible to state the conditional distribution explicitly, either because
there is no access to the true distributions or because the integrals or inverse cumulative density
functions are inaccessible.
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Subsequently, all required distributions for sampling will be calculated. We will use f , F , and

F inv as the probability density function (PDF), the cumulative distribution function (CDF), and the

inverse CDF (iCDF), respectively.

S.3.1. Derivation of Conditional Distributions in the Common Values Setting

Let us denote by the random variable V ∼ U [0,1] the common type and by Oi = V ·Xi agent i’s

observation with her unobserved private factor Xi ∼U [0,2]. As Xj is conditionally independent of

Oi, we observe that (Oj|Oi=oi) = (V |Oi=oi) ·Xj . Thus, access to samples of V |Oi=oi is sufficient to

sample from Oj|Oi = oi. In the following, we will derive the inverse cumulative distribution function

(icdf) F inv
V |oi

which we can then use to transform samples from the standard uniform distribution into

samples of V |oi. We will rely on Bayes’ theorem. To do so, let’s first observe that the conditional

Oi|v is uniformly distributed on [0,2v] with pdf f(oi|v) = 1
2v on that interval. The marginal pdf of Oi

is then given by

f(oi) =
∫
v

f(o|v)f(v)dv =
∫ 1

o/2

1
2v ·

1
1dv =

− log
(
o
2

)
2

on the interval (0,2] and 0 elsewhere. Given a realized observation oi, we can then use Bayes’ theorem

to calculate the conditional pdf of V |oi on the interval ( o2 ,1] via

f(v|oi) = f(oi|v)f(v) 1
f(oi)

= 1
2v · 1 ·

−2
log
( oi

2

) = −1
v log

( oi
2

)
Integrating over v then yields the conditional cumulative distribution function

F (v|oi) =


0 v < 1

2oi,

1− log(v)
log( oi

2 )
1
2oi ≤ v < 1,

1 1< v.

Identifying the output with u and inverting, we then arrive at the icdf

F inv
V |oi

(u|oi) =
(
oi
2

)(1−u)

Given a standard uniform RV U ∼U [0,1], when then have V |oi ∼ F inv
V |oi

(U |oi).

S.3.2. Derivation of Conditional Distributions in the Affiliated Values Setting

For this game setting, we have (Oj|Oi = oi) = (Uj|Oi = oi) + (T |Oi = oi), where (Uj|Oi = oi) =Uj is

independent of Oi. Using Bayes theorem, one has

(T |Oi = oi) = oi−Ui ∼U(max{0, oi− 1},min{1, oi})

and thus the observation of the opponent is the sum of the two uniform random variables Uj and

(T |Oi = oi).
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Figure S.5 The probability functions in the common values setting for an example conditional value of oi = 1
2 .

S.3.3. Derivation of Conditional Distributions in the LLG Settings

In these settings, there are two groups of correlations: On one side, there is the global bidder whose
prior is independent from all other bidders, and on the other side there are local bidders whose values
depend on one another. In the Bernoulli weights model, the density of the local bidder j conditional
on vi is simply given as a uniform distribution on [0,1] with the addition that with a probability of γ
the value will not be uniform but vj = vi.
In the constant weights model, the approach is similar to the one used for affiliated

values above. We can directly derive the conditionals of player 1’s individual component
ω1|v1 ∼U{max(0, v1−w

1−w },min{1, v1
1−w}], and ω2 is conditionally independent of v1. Observe that wω4 =

v1− (1−w)ω1. We can thus sample ω1|v1 and ω2 and then calculate v2|v1 = (1−w)ω2|v1 +w ·ω4|v1 =
v1 + (1−w)(ω2−ω1|v1), and vice versa for player 2.
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