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A Walrasian competitive equilibrium defines a set of linear and anonymous prices where no coalition of market

participants wants to deviate. Walrasian prices do not exist in non-convex markets in general, with electricity markets

as important real-world example. However, the availability of linear and anonymous prices is important for derivatives

markets and as a signal for scarcity. Prior literature on electricity markets assumed price-inelastic demand and introduced

numerous heuristics to compute linear and anonymous prices on electricity markets. At these prices market participants

often make a loss. As a result, market operators provide out-of-market side-payments (so-called make-whole payments)

to cover these losses. Make-whole payments dilute public price signals and are a significant concern in electricity markets.

Besides, demand-side flexibility becomes increasingly important with growing levels of renewable energy sources.

Demand response implies that different flexibility options come at different prices, and the proportion of price-sensitive

demand that actively bids on power exchanges will further increase. We show that with price-inelastic demand there

are simple pricing schemes that are individually rational (participants do not make a loss), clear the market, support the

efficient solution and do not require make-whole payments. With the advent of demand-side bids budget balanced prices

cannot exist anymore, and we propose a pricing rule that minimizes make-whole payments. We describe design desiderata

that different pricing schemes satisfy and report results of experiments that evaluate the level of subsidies required for

linear and anonymous prices on electricity spot markets with price-sensitive demand.
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1. Introduction
In many parts of the world, electricity markets have developed from monopolies to competitive wholesale

markets. For example, European countries and large parts of the U.S. liberalized their electricity markets

in the 1990s. Short-term electricity procurement is now carried out via power exchanges in these

jurisdictions. These power exchanges determine central price signals for over-the-counter trades and futures

markets (Shah and Chatterjee 2020). Typically, on day-ahead markets hourly products for the next day are

traded. After the day-ahead markets, the market operators use real-time markets in the U.S. (or intraday

markets in Europe) to deal with changes in supply and demand that are closer to the actual dispatch. We

will distinguish these types of electricity spot markets from futures markets where participants can hedge

against longer-term price risks.
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Spot markets are significant in size. In 2020, European coupled day-ahead markets alone cleared 1,530

TWh in 27 countries with average prices between 30 and 40 EUR/MWh (NEMO Committee 2021).

Similarly, the cost of serving load amounted to $8.9 billion the Californian market, covering 26,000 circuit

miles, roughly 1,000 power plants, a population of 30 million, and about 9,700 pricing nodes (California

ISO 2018, 2021).

With climate change and a transition to renewable energy sources (RES) such as wind and solar power,

we move to an economy with many thousands of small generators and a more price-sensitive demand side

that actively bids in electricity markets and offers flexibility to cope with variability in the supply (IRENA

2019, Hytowitz et al. 2020). Changes on electricity markets are not only relevant for market operators,

but they impact generators, industrial and retail consumers alike. These changes in the market have led

to renewed interest in the design of electricity markets. While many aspects of electricity market design

are similar to other markets, a few features stand out. First, demand and supply need to be balanced at

all times to guarantee a stable electricity grid. Second, electricity markets are characterized by non-convex

preferences. For example, electricity suppliers often incur fixed costs for starting up and running their

generators. On the demand side, industrial customers typically need a certain volume of electricity over

consecutive hours to finish production or maintain energy-intensive services. Such consumption profiles can

sometimes be shifted over time, but the profiles themselves must not be altered. These non-convexities in the

preferences typically lead to non-convex optimization problems that need to be solved in order to determine

the efficient or welfare-maximizing dispatch and prices. We will use the term non-convex markets in what

follows. Non-convexities have received some attention in electricity market design, but due to increasing

price-sensitive bid-in demand on spot markets, new approaches are required.

1.1. Competitive Equilibrium

Early in the research on markets, general equilibrium theory studied demand, supply, and prices for multiple

goods or objects on markets. The Arrow-Debreu model shows that under convex preferences, perfect

competition, and demand independence, there must be a set of competitive equilibrium prices (Arrow and

Debreu 1954, McKenzie 1959, Gale 1963, Kaneko 1976). The results derived from the Arrow-Debreu

model led to the well-known welfare theorems, representing important arguments for markets to be used

as efficient or welfare-maximizing means to allocate scarce resources such as electricity. The first theorem

states that any Walrasian equilibrium leads to a Pareto efficient allocation of resources. The second theorem

states that any efficient allocation can be attained by a Walrasian equilibrium under the Arrow-Debreu

model assumptions (Mas-Colell et al. 1995). Walrasian equilibrium prices are such that there is a single

price for each product (i.e., prices for a package are linear) and this is the same price for all participants

(i.e., anonymous prices with no price differentiation).
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However, standard general equilibrium theory assumes divisible goods and convex preferences. Most

real-world markets such as those for electricity, transportation, radio frequency spectrum, or environmental

access rights are traded as indivisible goods and participants have non-convex preferences and complex

constraints. Such markets have led to substantial interest in the question when Walrasian equilibria exist.

Unfortunately, in markets with indivisible goods, it is well-known that only very restricted types of

valuations (e.g., substitutes valuations) allow for convex allocation problems and Walrasian equilibria (Kim

1986, Bikhchandani and Mamer 1997, Leme 2017, Baldwin and Klemperer 2019).

This raises the question how prices can be computed in the presence of non-convex preferences

for indivisible goods and which properties we can hope to achieve compared to Walrasian equilibria.

Established market design desiderata are efficiency (i.e., maximization of welfare or gains from trade),

individual rationality (i.e., participants should not make a loss), budget balance (i.e., the market operator

should not make a loss or a gain), and envy-freeness (i.e., participants would not want a different allocation

at the prices). These axioms are not only central to economic theory (Mas-Colell et al. 1995), but are widely

adopted and natural design desiderata for practical market design. If the allocation problem is convex,

duality theory and dual prices in convex optimization provides a principled way to determine competitive

equilibrium prices that satisfy these desiderata (Bichler et al. 2020). In non-convex markets, it is well known

that competitive equilibrium prices might need to be non-linear and personalized and even such prices might

not exist (Bichler and Waldherr 2017). Thus, in a combinatorial auction or a combinatorial exchange that

allows for supply and demand bids on packages of items, each bidder might need to have a different price for

the same package (personalized prices), and each package price could differ from the sum of the item prices

in this package (non-linear prices). As a simple example, consider a single supplier with an (indivisible)

sell bid of 2 MWh for $30, while there is one buyer asking for 1 MWh for at most $10, and another buyer

asking for 1 MWh for $28. Linear and anonymous market prices could not be higher than $10/MWh and as

such there would be no trade and no gains from trade. With price differentiation, trade would be possible.

However, non-linear and personalized prices would convey little information other than that a bidder lost

or won. Besides, if prices should serve as a baseline for derivatives as is the case for options or futures,

this is hardly possible with non-linear prices that differ among participants. In other words, anonymity and

linearity are important requirements for prices on electricity markets but also other domains (Bichler et al.

2018).

1.2. Pricing on Electricity Spot Markets

Electricity spot markets are composed of varying levels of “demand” (load) and matching levels of “supply”

(generation). Market participants submit supply and demand bids according to a certain bid language that

determines the form of the allocation problem (which yields the efficient dispatch) and the pricing rule. As
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introduced earlier, generators on electricity markets often exhibit start-up or no-load costs, economies of

scale (often implemented via piecewise-linear cost functions), or minimum-generation requirements. Bid

languages are designed to incorporate these aspects, which necessarily translate into non-convex allocation

problems (Herrero et al. 2020). In 2005, the Pennsylvania, Jersey, Maryland Power Pool (PJM) introduced

mixed integer programming (MIP) in order to address these non-convexities and to determine the efficient

allocation or dispatch (O’Neill et al. 2020). Since 2018, all Independent System Operators (ISOs) in the

U.S, use MIPs to compute the efficient dispatch instead of the Lagrangian relaxation that was used before.

Dual prices as they are available for convex optimization problems are not available in such markets, which

led to a fundamental question: How can market prices per hour be computed in such non-convex markets?

One approach followed by European day-ahead markets is to sacrifice efficiency. The EUPHEMIA

algorithm that is used to clear European day-ahead markets first solves a welfare maximization allocation

problem as a mixed-integer program and then iteratively tries to find linear and anonymous prices that clear

the market. If such prices cannot be found, additional constraints are added to the welfare maximization

problem (Committee et al. 2020). However, it is unclear how much of the gains from trade are sacrificed

this way. Furthermore, this approach inevitably leads to paradoxically rejected bids (Meeus et al. 2009).

In particular, there are generators with an ask price that is less than the market price, yet they will not be

dispatched. Such prices are also not envy-free and hence not a Walrasian equilibrium. We will not further

discuss this approach in our paper and focus on market designs as in the U.S. that implement the efficient

outcome.

Over the years, several pricing rules have been suggested aiming to mimic competitive equilibrium prices

on such MIP-based electricity markets (Liberopoulos and Andrianesis 2016). Locational marginal pricing

(LMP) rules of many ISOs are based on IP pricing (aka. Integer Pricing), where the allocation problem is

solved to optimality, the integer variables are fixed, and the prices are then derived from the dual variables

of the demand-supply constraint of the resulting (convex) linear program (O’Neill et al. 2005). IP pricing

computes anonymous and linear prices, but these prices do not constitute competitive equilibrium prices.

Some generators might not maximize their individual profits and want to deviate, i.e., switch to a different

dispatch at those prices, and IP prices are thus not envy-free. The latter is central to the definition of a

competitive equilibrium and it leads to stability of the outcome. Importantly, besides a lack of stability, the

generators often make a loss at the IP prices, i.e., prices are not even individually rational. Pricing in U.S.

ISO markets has changed in an attempt to reduce the weight of uplift, and to internalize all operational

costs into market prices as far as possible (Herrero et al. 2020). Some ISOs switched from IP pricing to

Extended LMPs (ELMPs) in the recent years, which are based on the dual variables from the demand-supply

constraint in the LP relaxation of the underlying MIP. However, similar issues arise. As a consequence, U.S.
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ISOs continue to search for improvements via new formulations for ELMP.1

ISOs use personalized side-payments to address the fact that the public market prices from IP pricing

or ELMP are neither envy-free nor individually rational. This effectively differentiates the linear and

anonymous market prices from the payments of the market participants, which are then non-linear and

personalized. These external side-payments could be so high that no generator would want to change its

dispatch and envy-freeness is achieved (lost opportunity cost payments). Lost opportunity costs payments

may be very large if the market contains non-convexities, and these payments could even go to generators

that were not scheduled (Eldridge et al. 2019). Electricity markets are highly regulated markets and as such

there are alternative means to enforce stability other than high lost opportunity cost payments. Actually,

most ISOs only pay make-whole payments to ensure individual rationality of all generators and stipulate

penalties that a generator has to pay if it indeed deviates from the optimal dispatch. In other words,

they relax envy-freeness to only individual rationality requirements. We refer to such outcomes as having

penalty-based stability.

However, even the make-whole payments are a significant concern (Hytowitz et al. 2020). The U.S.

Federal Energy Regulatory Commission (FERC) regulates the U.S. wholesale power markets to promote

just competition. In 2018, the FERC found that the practices of several ISOs were unjust and ordered them

to change their pricing because prices did not accurately reflect the cost of serving load (O’Neill et al.

2019). Make-whole payments are not reflected in the public price signals, and they lead to biased investment

signals. This also constitutes a problem for futures markets, where spot market prices serve as the key

reference. In addition, the FERC has released several orders and notices about pricing, which argue that

“the use of side-payments can undermine the market’s ability to send actionable price signals.”2 Similarly,

O’Neill et al. (2019) state that “the make-whole payments are not transparent to other market participants

and are allocated too broadly to provide correct price incentives for market participants to make efficient

entry and exit decisions as well as efficient investments in facilities and equipment.” In summary, a challenge

in U.S. ISO markets is to reduce side-payments, which are a clear sign of inefficient pricing, while still

ensuring individual rationality of all market participants.

In a first contribution, we introduce an optimization model which always computes prices that are

individually rational, budget balanced, and clear the market at the efficient dispatch without make-whole

payments under the assumptions of price-inelastic demand and strict demand-supply equality. These

assumptions are standard in the electricity market literature (Liberopoulos and Andrianesis 2016).

1 https://www.misoenergy.org/stakeholder-engagement/stakeholder-feedback/msc-elmp-iii-whitepaper-20190117/

2 https://www.ferc.gov/industries-data/electric/electric-power-markets/energy-price-formation
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1.3. Price-Sensitive vs. Price-Inelastic Demand

While the academic literature on electricity market pricing almost exclusively relies on the assumption of

price-inelastic demand, this assumption is unlikely to hold in the future (Herrero et al. 2020). Power systems

are changing profoundly due to the introduction of large volumes of RES. The largest proportion of RES

capacity are Variable Energy Resources (VER) such as solar and wind power. The characteristic variability

and uncertainty of these VER require an integration of demand flexibility (Reihani et al. 2016). Demand

response is the most immediately available way of increasing demand flexibility and the cheaper option

compared to storage technologies (EU 2016). For example, industrial processes for the production of pulp

and paper are able to provide demand response with a duration of up to three hours without any notice time

(EU 2016). Still, this flexibility comes at a cost and bidders want lower prices if they provide more flexibility.

As indicated, it is expected that in the future we will see a much increased amount of price-responsive

demand (Hytowitz et al. 2020). The recent FERC order 2222 from 2020 also aims at an active demand

side to bid in wholesale markets. However, such price-sensitive bids for flexible demand make market

design more challenging. First, new bid formats lead to additional non-convexities which even increase the

make-whole payments needed with currently used pricing rules. Second, prices that are individually rational

and clear the market at the efficient dispatch cannot always be budget balanced anymore, as we will show.

In a second contribution, we introduce alternative pricing rules that minimize make-whole payments

while they still clear the market at the efficient dispatch with price-sensitive demand. The pricing rules

introduced in this paper are based on a mathematical program which differs significantly from IP pricing,

ELMP, or other proposals in the literature. Similar to existing pricing rules on ISO markets, it treats

efficiency and individual rationality as first-order goals (i.e., enforces these directly in the model), while

budget balance and envy-freeness are treated as second-order goals. However, in contrast to existing

literature, we prioritize budget balance over envy-freeness in a lexicographical way. The violation of budget

balance and the resulting side-payments have led to concerns by regulators and market participants, as we

discussed earlier. Envy-freeness should lead to stability of the outcome in markets as participants do not

have an incentive to deviate. In highly regulated and transparent electricity markets, stability can be achieved

by imposing penalties, which is already common on ISO markets today. Participants cannot easily deviate

from the efficient dispatch determined by the market operator, and the level of penalties (that generators

would only have to pay if they deviated from the efficient dispatch) is much less of a concern than high

personalized side-payments by the market operator that are not reflected in the market prices.

The new pricing rule (PE-A) that we propose can be computed in polynomial time and scales to

large problem sizes. Importantly, we show that the prices, on average, do not increase compared to

other established pricing rules in our experiments and the impact on the payments of individual market
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participants are small. However, PE-A avoids large make-whole payments as they occur with IP pricing,

even with price-sensitive demand. In Section 5.2 we analyze our proposed pricing schemes based on a

widely-used benchmark data set: the IEEE RTS benchmark market consisting of 24 nodes, 24 hours, 32

generators (with non-convex cost functions), and 17 consumers. The average make-whole payments for

PE-A pricing only amount to 0-0.15% of the total costs in all treatments. In contrast, for IP pricing or

ELMP the make-whole payments were 4-5% on average for all generators. Actually, for some generators

the make-whole payments could be more than 10% of their payment with IP pricing. Such high make-whole

payments can be avoided with PE-A and we achieve almost budget balanced outcomes in all experiments.

We also compare PE-A with a simple implementation of Average Incremental Cost (AIC) pricing, a pricing

rule that was recently proposed to address high side-payments on electricity spot markets. PE-A is not

restricted to specifics of the allocation problem on electricity markets and can also be applied to other types

of non-convex and two-sided markets.

1.4. Positioning in the Literature

This paper draws on different streams in the literature. The fundamental problem of pricing in multi-object

markets is central to micro-economic theory and the management sciences. The fact that non-convex

preferences lead to problems in equilibrium theory is known for a long time (see for example Farrell

(1959)). Several contributions such as the well-known Shapley-Folkman-Starr lemma (Starr 1969) suggest

that nearly competitive equilibria are possible if the market grows large. A number of more recent articles

suggest that Walrasian prices can be approximated in (very) large markets and that such markets are

approximately incentive-compatible (Azevedo et al. 2013, Azevedo and Budish 2019).

Electricity markets are already very large with hundreds of participants, but the non-convexities still

matter. The question how actual pricing rules for such non-convex electricity markets should be designed

has led to a number of heuristics such as IP pricing and ELMP in the operations research and power

engineering literature (O’Neill et al. 2005, 2016, Liberopoulos and Andrianesis 2016, Eldridge et al.

2019, O’Neill et al. 2019). We will revisit this literature in Section 4.4. These heuristics typically aim to

approximate a competitive equilibrium and relax budget balance and envy-freeness.

The Information Systems literature has made numerous contributions to market design in general and

to pricing in non-convex markets more specifically. Some of the work deals with pricing in combinatorial

auctions (Xia et al. 2004, Adomavicius and Gupta 2005, Adomavicius et al. 2012, Guo et al. 2012, Petrakis

et al. 2013, Bichler et al. 2013, Adomavicius et al. 2020), while other articles deal with combinatorial

exchanges (Guo et al. 2012, Bichler et al. 2018). The design of energy markets has also received attention

in Information Systems more recently (Ketter et al. 2016, Valogianni and Ketter 2016, Koolen et al. 2018).

This paper combines these two strands suggesting a new approach to pricing in electricity markets that
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substantially reduces or even eliminates the need for side-payments. Our approach can well be relevant to

other non-convex markets such as those used in transportation (Caplice and Sheffi 2003, Garrido 2007) or

for the trading fishery access rights (Bichler et al. 2019).

1.5. Organization of the Paper

The rest of the paper is structured as follows: in Section 2, we provide a short introduction to electricity

market design. In Section 3, we discuss competitive equilibrium theory and show when anonymous and

linear prices are possible on budget-balanced electricity markets. Section 4 introduces optimization models

to compute prices in environments with price-inelastic and price-sensitive demand. We briefly characterize

existing proposals for electricity prices before we provide results of experiments in Section 5. Section 6

provides a summary and conclusions.

2. Bid Languages and Demand-Side Flexibility
Let us provide a brief overview of electricity market design and the role of demand response for future

market designs. The pricing rules that can be employed on a market depend on the underlying allocation

problem, which again depends on the types of bids or the bid language available on a market. The bid

languages on electricity markets today are specific and aim at reflecting the underlying cost functions

of generators and – in part – valuation functions of the demand side. They allow the participants to

communicate their valuations or cost structures effectively. The market operator then solves the allocation

problem and determines a schedule of generation and prices (Cramton 2017). Day-ahead markets are

complemented by intraday (Europe) or real-time (U.S.) markets. These markets modify the day-ahead

schedule to determine the actual physical dispatch. Especially in European countries, the day-ahead market

is considered to be the main reference market, while in the U.S. it mostly possesses the notion of a forward

market for the real-time market that determines the dispatch (Antonopoulos et al. 2020).

Bid languages allow for the expression of the underlying costs in order to enable efficient outcomes

(Cramton 2003). For instance, generators typically incur certain fixed costs for starting up and running

a generator, as well as variable electricity production costs. Moreover, the operation is often subject to

technical conditions, e.g., referring to minimum runtimes or ramping constraints. On the demand side,

market participants might want to express certain flexibility options, and this will become much more of an

issue in the future with increasing levels of RES. Let us briefly summarize the state-of-the-practice.

In European markets, aside from regular bids for individual hours of the day, the bid language allows

for block bids. The latter represent a set of individual bids that can be executed only in total or not

at all (Committee et al. 2020). Cost structures are communicated as single-part offers, requiring market

participants to aggregate various cost components into a single parameter. It is explicitly refrained from the

communication of multiple cost components in order to promote decentralized decision-making on the part
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of the market participants (Herrero et al. 2020). Most European markets allow for price-sensitive bids on the

demand side, although between 2010 and 2015 an estimated 82-89% of the bids were not price-sensitive (EU

2016). In Europe, the market is cleared with (zonal) linear and anonymous prices without any side-payments

which leads to efficiency losses in the dispatch (Meeus et al. 2009). Overall, the bid language permits a less

detailed expression of cost functions than, for instance, bid languages used in the U.S.

Market participants in the U.S. are generally permitted to indicate their costs in a more granular way

than in European markets (Madani et al. 2018). Cost structures can be communicated with multi-part bids,

usually consisting of start-up costs, no-load costs as well as an offer curve. Furthermore, generators can

express technical constraints such as minimum up and down times, minimum and maximum output levels,

ramp rates, or start-up times. This allows generators to express their cost characteristics very effectively

(Cramton 2017). So-called self-schedules are pure quantity bids specifying an amount of energy that needs

to be dispatched regardless of price levels or cost structures. Demand-side bids comprise price-inelastic

self-scheduling as well as price-sensitive bid curves (Cramton 2017).

As an example of an ISO bid language, PJM allows for fixed-demand bids and price-sensitive bids on

the demand side. A fixed-demand bid or self-schedule is price-inelastic and defines a level of energy to

be purchased at any price over a particular hour at a location or node. In contrast, price-sensitive bids

specify a defined level of energy, a location and a price, above which the demand bid is zero. More than

90% of the bids in the PJM market were fixed-demand bids in 2019, and only a very small proportion

is price-sensitive at this point (Monitoring Analytics 2019). This explains why most proposals for pricing

rules in the literature assume only price-inelastic demand. However, this will change with increasing levels

of demand response, which specifies flexible bids to be executed but only up to a certain price.

U.S. ISO markets aim to find a welfare-maximizing dispatch based on bids, yet in contrast to European

markets, they first determine the efficient dispatch before they compute prices. While European markets

compute prices for large price zones, the prices on U.S. electricity markets are computed per node in

the electricity grid. The nodal system aims to consider physical grid constraints in the optimization. In

nodal markets, bids and offers, resource constraints, network constraints, transmission losses and certain

ancillary service requirements are co-optimized (Cramton 2017). As a result, the electricity price reflects the

marginal cost of supplying electricity at a specific node in the network (assuming the underlying problem

was convex). Locational marginal prices have also been suggested for European markets (Purchala 2018,

Ashour Novirdoust et al. 2021). For the remainder of this paper, we discuss markets as they are operated by

ISOs in the United States, in Australia, in South American markets, and many other parts of the world.

As indicated, demand-side bidding is central to accommodate the volatile nature of VER in the future.

ISOs in the U.S. have already taken steps to accommodate demand-side flexibility and price-sensitive bids.
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For example, MISO is undergoing reforms3 to better incorporate Demand Responsive Resources (DRRs)

into the price formation (in both day-ahead and real-time markets). The above mentioned FERC Order

2222 promotes participation of the demand side, in particular distributed energy resources, and storage in

wholesale electricity markets. There is significant potential for industrial demand flexibility, but industry

will only invest in flexibility options if it comes with lower electricity prices (EU 2016). Therefore, the

increase of price-sensitive bids in wholesale electricity markets is to be expected in the future.

A number of proposals have been made for the demand side to express flexibility (Liu et al. 2015, Ottesen

and Tomasgard 2015, Ottesen et al. 2016). Flexibility extensions of a bid language on the demand side

can include shiftable volumes (asking to meet a certain volume within a certain time frame), shiftable

profiles (allowing to shift a pre-determined demand profile over time), or adjustable demand (involving

extensible or curtailable demand). Such flexibility options in the bid language would be a powerful way to

address the intermittent nature of VER, but they lead to substantial non-convexities due to additional integer

variables in the allocation problem. For example, thermal power plants have ramping constraints that make

the production available in one period dependent on the production in the preceding and following periods.

The introduction of renewable energy sources leads to an increased use of the of thermal units, and ramping

constraints are expected to be binding more frequently (Herrero et al. 2020). Ignoring such constraints in

the day-ahead schedule can significantly degrade the efficiency of the dispatch. Thus, one cannot expect the

non-convexities on electricity markets to vanish, especially in a future with large proportions of renewable

energy sources. Such demand flexibility and price-sensitive demand have ample consequences on the

properties of prices that we can compute, as we will show.

3. Competitive Equilibrium
In this section, we introduce necessary notation, summarize existing theory on pricing in non-convex

markets, and discuss design desiderata for electricity markets.

3.1. Notation and Economic Environment

In the auction market, there are K types of items (goods; hours and locations in a day-ahead market),

denoted by k ∈ K = {1, . . . ,K}, buyers i ∈ I = {1, . . . , I} and sellers j ∈ J = {1, . . . , J}. In the multi-unit case,

we have multiple homogeneous units (e.g., the minimum bid increment) for each of the heterogeneous K

items k ∈K . A bundle of interest to buyer i (seller j) is described by a vector xi ∈ X (y j ∈Y) where X (Y) is

a compact subset of ZK
≥0. Each buyer i (seller j) has a monotonously increasing (decreasing) value function

vi: X→R≥0 (v j: Y→R≥0) over bundles of items or objects xi (y j).

An auctioneer wants to find an allocation of items to bidders. The auctioneer aims for allocative

efficiency. This means the auctioneer wants to maximize social welfare which is the gains from trade for

3 https://www.misoenergy.org/stakeholder-engagement/issue-tracking/update-to-demand-response-deployment-tools/
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all participants (the buyers and sellers). The goal of the auctioneer is to find an efficient allocation (x,y) =

(x1, . . . , xI , y1, . . . , yJ) and linear and anonymous market clearing prices λ = {λ(k)}k∈K ∈ RK
≥0. The linearity of

prices refers to the property that individual prices are set for each item k ∈K ; the price for a bundle xi is then

simply the sum of the prices of its components, i.e., it is given by the dot product λ′xi. Anonymity means

that the resulting prices λ are the same for all bidders and there is no price differentiation. Competitive

equilibrium prices might also be non-linear and personalized, but linearity and anonymity are crucial on

electricity and other real-world markets as we discussed earlier. We assume, buyer i’s (direct) utility from

bundle xi is given by πi(xi, λ) = vi(xi) − λ′xi, and seller j’s utility from bundle y j is given by π j(y j, λ) =

λ′y j − v j(y j). Such utility functions are linear in price and referred to as quasilinear utility functions. All

market participants are assumed to be price-takers, meaning that they cannot influence the market prices

on their own. The social welfare can now be defined as
∑

i∈I vi(xi)−
∑

j∈J v j(y j), as prices cancel when the

utilities of market participants are added.

With linear and anonymous prices λ = (λ(1), . . . , λ(k), . . . , λ(K)), the indirect utility function is defined as

ui(λ) =max
x∈X
{vi(x)− λ′x} and u j(λ) =max

y∈Y
{λ′y− v j(y)}.

The indirect utility function is widely used in economics and returns the maximal utility that bidder i

can obtain at prices λ. The demand correspondence Di(λ) and D j(λ), resp. describe the set of bundles that

maximize the indirect utility function at prices λ, i.e.,

Di(λ) = arg max
x∈X

{vi(x)− λ′x} and D j(λ) = arg max
y∈Y

{λ′y− v j(y)}.

3.2. Competitive Equilibrium

If in an outcome (consisting of an allocation and prices) all bidders are allocated a bundle from their demand

correspondence, then the outcome is envy-free (EV). No bidder would want to get another bundle, as a

bidder cannot increase her utility at these prices. If we have EV and the market is budget-balanced (BB),

we have a competitive equilibrium (CE). If competitive equilibrium prices are linear and anonymous (LA),

we also refer to this as a Walrasian equilibrium.

Definition 1 (Walrasian (competitive) equilibrium, (WE)). A price vector λ∗ and a feasible allocation

(x,y) form a Walrasian equilibrium if
∑

i∈I xi =
∑

j∈J y j, xi ∈ Di(λ∗) for every buyer i ∈ I, y j ∈ D j(λ∗) for

every seller j ∈J , and budget is balanced with
∑

i∈I λ
∗′ xi =

∑
j∈J λ

∗′y j.

The BB condition implies that an unallocated item has a price of zero. Note that getting a bundle from

the demand correspondence implies individual rationality (IR), because if bidders would make a loss with a

bundle it would never be in their demand correspondence. However, EV is a much stronger condition than

IR. In summary, a Walrasian equilibrium (WE) has the properties BB∧ EV ∧ LA. Later we will distinguish
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between linear and anonymous (LA) prices and linear and anonymous payments (LAP). For now, we assume

that prices coincide with the payments.

The question is now under which conditions Walrasian equilibria exist and whether they support efficient

(welfare-maximizing) outcomes (EF). To study these questions in a market with quasilinear utilities

and independent private values, we use the following mathematical optimization problem describing a

(combinatorial) exchange, which allows for arbitrary package bids. This bid language does not impose

any restrictions on the types of valuations or cost functions and can be seen as the most general form of

non-convex markets. As a matter of fact, the most prominent element of bid languages used in European

day-ahead markets are block bids, i.e., package bids on adjacent time slots, and they can be easily captured

in the following optimization problem. Electricity markets in the USA stipulate different bid languages

to reduce the number of bids that participants need to submit, but they can be seen as a specific type of

combinatorial exchange.

Let Xi ⊆ Z
K
≥0 denote all bundles for which buyer i submitted a bid, and Y j ⊆ Z

K
≥0 denote all bundles for

which seller j submitted an ask. For simplicity, we make the natural assumption that every bidder submits

a bid with value 0 for the empty bundle. Let zi(x) ∈ {0,1} be a binary decision variable denoting whether

buyer i wins bundle x ∈ Xi, and z j(y) ∈ {0,1} be a binary decision variable denoting whether seller j wins

bundle y ∈ Y j. The parameters x(k) and y(k) describe how many units a buyer wants or a seller provides of

item k in a bundle. The allocation or winner determination problem (WDP) can then be written as an integer

program as follows:

max
∑
i∈I

∑
x∈Xi

vi(x)zi(x)−
∑
j∈J

∑
y∈Y j

v j(y)z j(y) (WDP)

s.t.∑
x∈Xi

zi(x) ≤ 1 ∀i ∈ I (πi)∑
y∈Y j

z j(y) ≤ 1 ∀ j ∈J (π j)∑
i∈I

∑
x∈Xi

x(k) zi(x) ≤
∑
j∈J

∑
y∈Y j

y(k)z j(y) ∀k ∈K (λ(k))

zi(x) ∈ {0,1} ∀i ∈ I,∀x ∈ Xi

z j(y) ∈ {0,1} ∀ j ∈J ,∀y ∈Y j

The WDP determines an allocation of bundles maximizing gains from trade, i.e., an efficient outcome. It

assumes that participants specify a package bid for each possible package of interest, but they can only win

at most one. This is also referred to as an XOR bid language. While such a bid language is fully expressive,

it requires exponentially many bids and is impractical for most applications. This is why electricity markets
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specify compact bid languages assuming some knowledge of the cost functions of generators. Bikhchandani

and Mamer (1997) describe a multi-item, single-unit market. Their central theorem shows that there exist

clearing prices for the indivisible single-unit problem if and only if the LP relaxation of WDP has an integer

solution. In this case, the dual variables λ(k) constitute Walrasian equilibrium (WE) prices, and the dual

variables πi and π j determine the surplus of buyer i and seller j, respectively. The result can be proven

via the strong duality theorem and the complementary slackness conditions in linear programming. As was

already noted by Bikhchandani and Mamer (1997), the result for multi-item, multi-unit markets also directly

follows from their result, by considering each of the multiple units as separate items. As a result, the welfare

theorems hold in the quasilinear model:

Theorem 1 (First and second welfare theorem). Let (x,y) be an equilibrium allocation induced by a

Walrasian equilibrium price vector λ, then (x,y) yields the optimal social welfare. Conversely, if (x,y) is a

Pareto efficient allocation, then it can be supported by a Walrasian price vector λ so that (λ,x,y) forms a

Walrasian equilibrium.

Unfortunately, the LP relaxation of WDP does not yield integer solutions in general, and thus we cannot

expect WE to exist in general. In fact, it is well-known that WE only exist for restricted types of valuations

for which the LP relaxation actually yields a feasible integer solution. For example, if all bidders’ valuations

are strong substitutes, this is a sufficient condition for WE to exist (Bikhchandani and Mamer 1997, Leme

2017, Baldwin and Klemperer 2019, Bichler et al. 2020). In practice, these conditions are rarely satisfied.

In particular, non-convex cost functions on electricity markets lead to non-convex allocation problems that

do not satisfy conditions for WE.

Competitive equilibrium prices do not need to be linear and anonymous. Bikhchandani and Ostroy (2002)

show that for combinatorial auctions with arbitrary valuations, competitive equilibrium prices need to be

personalized and non-linear. Such prices convey little information other than a particular package was

winning or losing. In fact, for combinatorial exchanges with multiple buyers and sellers, there can even be

situations where no competitive equilibrium exists (Bichler and Waldherr 2017). As discussed earlier, linear

and anonymous prices on day-ahead electricity markets are an important baseline for forward markets and

they serve as investment signals. Therefore, we need to relax some of the design desiderata of Walrasian

equilibria.

3.3. Penalty-Based Stability

We discussed that prices should be linear and anonymous (LA), they should support the efficient allocation

(EF), and neither the participants (IR) nor the auctioneer (BB) should make a loss. If envy-freeness (EV)

was additionally satisfied, prices would support a Walrasian equilibrium. The welfare theorems (Theorem
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1) suggest that all of these axioms are satisfied in convex markets. With general preferences in non-convex

markets, however, this is impossible to achieve (Bikhchandani and Ostroy 2002, Bichler and Waldherr

2017). Market operators might not want to relax EF and IR as welfare should be maximized and no

participants should incur losses from submitting bids. Current pricing schemes such as IP pricing and ELMP

sacrifice BB and EV, but the side-payments that arise from the violation of BB have led to controversy as

outlined in the introduction.

EV describes price-based stability where at the prices no participant would want to deviate. In highly

regulated and transparent markets such as electricity markets, stability can also be enforced without prices.

As a matter of fact, U.S. ISOs such as ERCOT, MISO, NYISO, or CAISO enforce stability of the outcome

via penalties in case a generator deviates from the efficient dispatch (O’Neill et al. 2020). As compared to

WE, they relax the EV condition and only ask for IR. In what follows, we will show that with price-inelastic

demand and a strict demand-supply equivalence, we can always find prices that satisfy IR ∧ BB ∧ LA ∧

EF. While we focus on an electricity market example, the insights are relevant to all types of non-convex

markets. Let us introduce a simplified example of a single hour traded on an electricity market to illustrate

which properties we can hope to achieve with linear and anonymous prices. From now on, we require strict

demand-supply equivalence.

Example 1. Suppose we have three generators G1, G2, and G3 (the sellers on electricity markets). G1

produces 10 MWh and asks for $500 ($50/MWh). G2 produces 20 MWh and asks for $300 ($15/MWh).

Finally, G3 produces 30 MWh and asks for $700 ($23.3/MWh). A buyer needs exactly 30 MWh in this hour

and can either purchase from G1 and G2 or from G3, where buying from G3 is the efficient dispatch. Bids

are indivisible. There are several options for the ISO:

1. The ISO could select the efficient dispatch, but set the price just below $15/MWh, the ask of G2. The

efficient dispatch with G3 is selected, but G3 makes a loss. In order to achieve IR, the market maker

can pay G3 $700 − 30MWh ∗ $15/MWh = $250 as a make whole payment. These side-payments are

commonly used in U.S. electricity markets, but they violate BB.4

2. The ISO could select the efficient dispatch and set the price at the ask of G3, i.e., $23.3/MWh. At this

price it would be attractive for G2 to produce, and her ask is “paradoxically rejected.” It is common

on U.S. electricity markets to define a penalty for G2 in case she does. This penalty would be at the

difference of her ask and the market price. In our example, this penalty for G2 would be 20MWh ∗

$23.3/MWh − $300 = $166.67. The market satisfies EF, IR, and BB, but not EV, as G2 does not

maximize her payoff at the prices. As such, it is efficient but not a WE.

4 Much of the literature on pricing in electricity markets and their current implementations suggests that the results are a CE. As introduced earlier,
a CE requires envy-freeness and budget balance, but budget balance is not satisfied here.
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3. The ISO could pick the inefficient dispatch with generators G1 and G2 and set the price at $50/MWh. No

side-payments by an ISO are needed, but there is a welfare loss of $100. This alternative is implemented

on European day-ahead markets. G3 is paradoxically rejected.

If we use penalties to enforce stability of the outcome, we can define new design desiderata for pricing

on non-convex markets.

Definition 2 (Penalty-based stable, budget-balanced, and efficient outcome (PBE)). A linear and

anonymous price vector λ∗ and an efficient allocation (x,y) form a penalty-based stable and efficient

outcome if πi(λ) ≥ 0, π j(λ) ≥ 0 for every buyer i ∈ I and every seller j ∈J , if the market is budget balanced

with
∑

i∈I λ
∗′ xi =

∑
j∈J λ

∗′y j.

Note that budget balance and linear and anonymous prices in non-convex markets imply a strict

demand-supply equivalence. If buyers and sellers have the very same anonymous and linear price vector (λ)

and buyers buy less than what the sellers sell, then make-whole payments are required and BB is violated.

To see this, assume that a seller sells a package of 2 MWh and a buyer is interested in only 1 MWh. We have

a non-convexity arising from the indivisible package bid of the seller which does not allow us to price one

of the two MWh in the seller’s package at zero. Even if the buyer has a higher value for 1 MWh than what

the seller asks for the package, we cannot achieve budget balance with a single price λ. Thus, the auctioneer

needs to compensate the seller for the second MWh. But even if we have strict demand-supply equivalence,

a PBE might not be possible as the following example shows.

Example 2. Suppose there are generators G1 and G2 both asking for $30 for 3 MWh. Buyer B1 wants to

buy 4 MWh for $20 in total, and buyer B2 is price-inelastic with a demand of 2 MWh. With an ask price

of $10/MWh, the two generators ask for $60 in total. However, as the market price cannot be higher than

$5/MWh, which is what B1 is willing to pay, the buyers will only pay $30 for the 6 MWh in total. The ISO

would need to pay a total of $30 of make-whole payments to the two generators to facilitate the efficient

trade at a price of $5/MWh. The ISO could also set a different market price, but at any price it is inevitable

to compensate the losses of some of the market participants.

The efficient trade would only be possible if the bids of the demand-side are all higher than the average

ask price or all buyers are price-inelastic. As indicated, the latter is the standard assumption in the literature

on electricity market design.

Definition 3. Buyer i ∈ I is price-inelastic if for any bundle x ∈ X, vi(x)− λ′x ≥ 0 for all λ ∈RK
≥0. Such a

condition implies that for any price vector λ, πi(λ) ≥ 0.

Proposition 1. A combinatorial exchange can implement a PBE, if the demand is price-inelastic and

demand equals supply.
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Proof: We assume that we can solve the WDP to optimality, providing an efficient allocation (EF),

(x,y) = ((xi)i∈I, (y j) j∈J ) such that
∑

i∈I xi =
∑

j∈J y j. Furthermore, if we assume that all the buyers are

price-inelastic (thus for any price λ, πi(λ) ≥ 0 for all buyers i), we can choose a linear and anonymous

price vector λ∗ = (λ∗(1), . . . , λ∗(K)) large enough such that π j(λ∗) ≥ 0 for all j ∈ J . For example, one can

set λ∗(k) as the highest average cost for item k, such that IR is satisfied for all generators. Finally the

condition
∑

i∈I λ
∗′ xi =

∑
j∈J λ

∗′y j gives us budget balance (BB). As a result, this combinatorial exchange can

implement a PBE. Q.E.D.

With price-inelastic demand and strict demand-supply equivalence, we can increase the linear and

anonymous price until we obtain IR for the generators. The same would hold true if some buyers are

price-sensitive but all their bids are higher than the average cost of the sellers. Since these conditions

are rarely met on electricity markets, it is common to deviate from budget balance (BB) by providing

make-whole payments that ensure individual rationality of the generators. We want these make-whole

payments to be minimal, because such personalized payments are not reflected in the public market prices.

Let us now define a penalty-based stable and efficient outcome (PE):

Definition 4 (Penalty-based stable and efficient outcome (PE)). A linear and anonymous market price

vector λ∗, personalized make-whole payments δi, δ j, and an efficient allocation (x,y) form a penalty-based

stable and efficient outcome if πi(λ∗) + δi ≥ 0, π j(λ∗) + δ j ≥ 0 for every buyer i ∈ I and every seller j ∈ J .

For PE prices, we demand the total of the personalized make-whole payments to be minimal.

Here the make-whole payments compensate (aggregate) losses that result from the allocated bundle.

As we will see, there can be different notions of make-whole payments on electricity markets, such as

compensating item-level losses. Next, we will introduce optimization problems to compute PBE whenever

it exists or PE otherwise.

4. Pricing Rules
For price computation, we want prices to be linear and anonymous and we enforce efficiency, while other

design goals can be relaxed. We treat BB as first-order design goal and price-based stability as second-order

goal. This means, we first aim for linear and anonymous prices eliminating or minimizing the make-whole

payments that the ISO needs to pay such that prices better reflect the value of electricity as compared

to pricing schemes where the price signal is significantly distorted due to large private and personalized

make-whole payments.

PBE (and also PE) prices are not unique. Therefore, we select those prices that minimize incentives to

deviate. Unfortunately, these are computationally intractable problems if we want to compute them exactly,

as we will show. In lieu thereof, we choose the price vector that is closest to the dual variables of the LP

relaxation of the allocation problem in a second step. If the allocation problem was a convex optimization
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problem, such dual prices would constitute a competitive equilibrium, i.e., a stable solution that satisfies

EV.

Before we get to price computation, let us introduce an abstract version of the central allocation

problem on electricity markets. Then, we introduce optimization models to compute prices on markets

with price-inelastic and such with price-sensitive demand to compute PBE or PE prices, resp. Finally, we

compare these pricing rules with other approaches in the literature.

4.1. Allocation Problem

In the last section, we have discussed combinatorial exchanges with package bidding as they do not restrict

the types of preferences that a participant might have. Combinatorial exchanges with package bids are

impractical for electricity markets because they would require bidders to submit an exponential set of bids.

Rather, electricity markets use compact bid languages (Goetzendorff et al. 2015) that only require generators

to specify a small number of parameters describing their underlying cost functions and technical constraints

as well as buyers to specify their bid curves.

Unit commitment (UC) problems represent our starting point. Operational constraints on thermal

generation units such as ramping limits and minimum up/down times require those units to be committed

in advance of when they are needed, typically via day-ahead unit commitment. Unit commitment models

determine the optimal scheduling of a given set of power suppliers in order to meet electricity demand.

Such models minimize total system costs subject to market clearing conditions (supply meets demand) and

technical power plant constraints (Stott et al. 2009). Unit commitment models are generation scheduling

models, determining the output of each generator. We use the term security constrained unit commitment

model (SCUC) if it additionally includes network characteristics and constraints (van den Bergh et al. 2014).

The SCUC problem can be formulated as a mixed-integer non-linear problem. The non-linearity comes

from the fact that transmission lines are typically high-voltage alternating current (AC). An AC optimal

power-flow model (ACOPF) provides a non-linear system which describes the energy flow through each

transmission line accurately, and is theoretically the best approach to solve the SCUC (Carpentier 1985).

The ACOPF is non-linear, non-convex and an NP-hard mixed-integer optimization problem (Zohrizadeh

et al. 2020). Although there are various approaches to global optimization, an exact solution to the ACOPF

can be considered intractable for realistic networks (Watson et al. 2015). This led to significant research

into convex relaxations of the problem (Zohrizadeh et al. 2020). The linear relaxation is also referred to as

the direct current (DC) optimal power-flow model (DCOPF), and versions of this are widely used among

U.S. ISOs to compute the efficient dispatch and prices (Eldridge et al. 2017).

In our paper, we focus on pricing and thus assume a generic DCOPF model that is modeled as a

mixed-integer linear program (MIP). Appendix A provides an overview of the notation. In the abstract
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formulation, buyers and generators / sellers are again denoted by the sets I and J , respectively. The set of

traded goodsK can now be described as the Cartesian productN ×T , whereN represents a set of network

nodes and T a set of time periods. Nodes are connected through a set of transmission lines L. The objective

of DCOPF aims at maximizing welfare, taking into account buyers’ valuations (v) and generators’ variable

and fixed costs (c and h, respectively). Both buyers (2) and generators (1) can specify constraint matrices A,

G and Q, R, respectively, in order to communicate their preferences and feasible bundles. DC power flows

are determined in (3) (with P as inverse matrix of the power transfer distribution factors and W and Z as

mappings of buyers and sellers to their respective nodes), with a requirement of aggregate balance (4) and

a consideration of line flow limits (5). The decision variables include buying (x) and selling (y) quantities,

the associated binary variables (d and u), as well as power flows ( f ). As indicated by the integer multipliers

r and s, the binary variables d and u can account for several categories such as start-up and commitment

variables for generators.

max
x,y,u,d, f

v′x− c′y− h′u (DCOPF)

s.t.

Ay+Gu ≥ b (1)

Qx+Rd ≤ e (2)

P f =Wy−Zx (3)

Wy−Zx = 0 (4)

F ≤ f ≤ F (5)

x ≥ 0 (6)

y ≥ 0 (7)

u ∈ {0,1}sJT (8)

d ∈ {0,1}rIT (9)

f ∈RLT (10)

For convenience, we define vector xi to include only the buying quantities of buyer i ∈ I as non-zero

components, i.e.,
∑

i∈I xi = x. Similarly, we define the vectors di, y j, and u j for buyers i ∈ I and generators

j ∈ J , respectively. The utility of buyer i is then defined as πi(xi, λ) = v′xi − λ
′Zxi with λ being the

market price vector. The utility of generator j is π j(y j, λ) = λ′Wy j − c′y j − h′u j. Similarly, xt and yt are the

vectors containing the buying and selling quantities of all buyers and generators resp. in period t ∈ T as

non-zero components. The vectors xit and y jt consequently only include one non-zero component, namely

the particular quantity of buyer i and generator j resp. in period t.

The DCOPF model does not allow for non-linear costs or non-linear AC power flows. We also abstract

from transmission network elements such as transformers, shunts, or auxiliary services. However, the
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DCOPF formulation provides the overall structure of a MIP used for unit commitment problems, that allows

us to perform a meaningful analysis of different pricing rules in our experiments in Section 5.

4.2. PBE Pricing with Price-Inelastic Demand

We first focus on the case of price-inelastic demand. This complies with the traditional notion of electricity

as a basic and indispensable necessity. If demand x has no attached valuations, v′x can be removed from

the objective function of DCOPF, and the generators’ cost shall be minimized. Demand flexibility can be

taken into account (by constraint 2), as long as buyers are price-inelastic. Let x∗, u∗, y∗, d∗, and f ∗ denote

the optimal solution to this modified problem, which is efficient with demand-supply equivalence. As the

buyers are price-inelastic, there will always be a price profile λPBE ∈ RNT
≥0 over locations and time periods

such that no generator incurs losses (see Proposition 1).

The following bilevel integer program PBE-P computes prices such that at the efficient dispatch no

generator makes a loss at any time (first constraint), and that there are no negative congestion revenues

(second constraint). The latter prevents that nodal prices are set low at demand-intensive nodes and high

at supply-intensive nodes, implying missing money only due to nodal price discrepancies. In the first

constraint, individual rationality is based on hourly losses incurred by the respective market participant.

Even if a loss in a certain hour is offset by a higher gain in the subsequent hour, the loss is compensated by

a make-whole payment. The third constraint makes sure that incentives for generators to deviate from the

efficient solution are minimal. π j describes the payoff that a generator j ∈ J would have at the prices λ, if

she could choose her dispatch such that it maximizes her payoff. The latter is computed in the lower level

optimization (fourth constraint). This model would lead to prices that are IR and BB and it would minimize

the gains by deviating from the efficient solution by an individual. In a Walrasian equilibrium of a convex

economy, also coalitions of market participates cannot deviate. We do not consider such blocking coalitions

in this model.

min
λ,π,γ

∑
j∈J

γ j (PBE-P)

s.t.

λ′Wy∗jt − c′y∗jt − h′u∗jt ≥ 0 ∀ j ∈J , t ∈ T

λ′Zx∗ − λ′Wy∗ ≥ 0

π j − (λ′Wy∗j − c′y∗j − h′u∗j) ≤ γ j ∀ j ∈J

π j =max
y,u

(λ′Wy j − c′y j − h′u j) s.t. (1), (7), (8) ∀ j ∈J

λ ∈RNT
≥0 , π ∈R

J
≥0, γ ∈R

J

Solving bilevel mixed integer programming problems is Σp
2-hard (Jeroslow 1985), a complexity class that

is clearly intractable. While this is no proof that the specific problem PBE-P is in this complexity class,
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realistic problem sizes of PBE-P are very large and the problems need to be solved in due time. For example,

the time to compute allocation and pricing in European day-ahead markets is only 17 minutes (NEMO

Committee 2021).5

Given the associated practical complexity of solving PBE-P in the required time frames, we suggest an

alternative based on Extended Locational Marginal Pricing (ELMP), which will be described in Section

4.4.2 in greater detail. In essence, ELMP is a tractable heuristic where binary variables of the DCOPF

(constraints 8 and 9) are relaxed to continuous variables and prices are retrieved from the duals of the

nodal demand-supply constraints. ELMP aims at minimizing lost opportunity costs, and if a market is

convex it actually does. Therefore, instead of PBE-P we solve PBE-A. The latter omits the lower-level

optimization and instead minimizes the difference between the price vector that satisfies the individual

rationality constraints (λ) and the ELMP prices (λELMP). Note that computing ELMP is a linear program, and

therefore λELMP can be computed effectively with state-of-the-art linear programming solvers (see numerical

results in Section 5.2).

min
λ
∥λ− λELMP∥1 (PBE-A)

s.t.

λ′Wy∗jt − c′y∗jt − h′u∗jt ≥ 0 ∀ j ∈J , t ∈ T

λ′Zx∗ − λ′Wy∗ ≥ 0

λ ∈RNT
≥0

Here we use ∥λ − λELMP∥1 in an attempt to minimize incentives to deviate from the efficient dispatch.

With an L1 norm in the objective, PBE-A can also be modeled as a linear program which can be solved in

polynomial time. One can also minimize the squared Euclidean norm, which makes this a quadratic problem

which might lead to less variation in the components of the price vector. Wolfe’s combinatorial algorithm

is widely used to solve such problems. Even though this algorithm does not run in polynomial time in the

worst case (De Loera et al. 2020), it is very effective in practice and can serve as an alternative.

4.3. PE Pricing with Price-Sensitive Demand

We now assume price-sensitive demand, i.e., some or all of the buyers submit valuations v, as represented

by the DCOPF. As we have shown, a PBE does not always exist for DCOPF. We can sacrifice budget

balance (BB) but still ensure EF and IR. As a result, market prices are still linear and anonymous (LA), but

individual payments are not (no LAP). Let x∗, y∗,u∗,d∗ f ∗ be the optimal solution to DCOPF. We define the

following problem to compute the minimal make-whole payments associated to a price vector λ.

min
λ,δI,δJ

∥δI∥1 + ∥δ
J∥1 (PE-α)

5 Prior to 08/07/2021, the allowed computation time was only 12 minutes.
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s.t.

v′x∗it − λ
′Zx∗it + δ

I
it ≥ 0 ∀i ∈ I, t ∈ T

λ′Wy∗jt − c′y∗jt − h′u∗jt + δ
J

jt ≥ 0 ∀ j ∈J , t ∈ T

λ′Zx∗ − λ′Wy∗ ≥ 0

λ ∈RNT
≥0 , δ

I ∈RIT
≥0, δ

J ∈RJT
≥0

The variables δI and δJ represent the required make-whole payments to buyers I and generatorsJ . Note

that we again consider hourly losses for the calculation of make-whole payments which slightly extends the

requirements for make-whole payments compared to Definition 4 (which only asks for no aggregate losses

over all hours). The optimal make-whole payments from PE-α are given as δI∗ and δJ∗. Again, the resulting

price vectors are not unique, and we could formulate a bilevel integer program aiming to satisfy individual

rationality, and to minimize incentives to deviate to another dispatch at these prices.

min
λ,π,γ,δI,δJ

∑
i∈I

γi +
∑
j∈J

γ j (PE-P)

s.t.

v′x∗it − λ
′Zx∗it + δ

I
it ≥ 0 ∀i ∈ I, t ∈ T

λ′Wy∗jt − c′y∗jt − h′u∗jt + δ
J

jt ≥ 0 ∀ j ∈J , t ∈ T

λ′Zx∗ − λ′Wy∗ ≥ 0

δI = δI∗

δJ = δJ∗

πi − (v′x∗i − λ
′Zx∗i ) ≤ γi ∀i ∈ I

πi =max
x,d

(v′xi − λ
′Zxi) s.t. (2), (6), (9) ∀i ∈ I

π j − (λ′Wy∗j − c′y∗j − h′u∗j) ≤ γ j ∀ j ∈J

π j =max
y,u

(λ′Wy j − c′y j − h′u j) s.t. (1), (7), (8) ∀ j ∈J

λ ∈RNT
≥0 , π ∈R

I+J
≥0 , γ ∈R

I+J , δI ∈RIT
≥0, δ

J ∈RJT
≥0

Similar to our discussion on the case with price-inelastic demand, we replace the bilevel integer program

by a tractable linear program that minimizes the distance to ELMP prices, subject to having the minimal

make-whole payments given by PE-α.

min
λ,δI,δJ

∥λ− λELMP∥1 (PE-A)

s.t.

v′x∗it − λ
′Zx∗it + δ

I
it ≥ 0 ∀i ∈ I, t ∈ T

λ′Wy∗jt − c′y∗jt − h′u∗jt ≥ 0 ∀ j ∈J , t ∈ T

λ′Zx∗ − λ′Wy∗ ≥ 0

δI = δI∗
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δJ = δJ∗

λ ∈RNT
≥0 , δ

I ∈RIT
≥0, δ

J ∈RJT
≥0

4.4. Comparison to Existing Pricing Rules

There is a significant literature on pricing rules for electricity spot markets, and a detailed discussion of all

proposals is beyond the scope of this paper. An excellent and up-to-date overview of pricing in electricity

markets is provided by Liberopoulos and Andrianesis (2016). Note that the literature in their paper is entirely

based on the assumption of price-inelastic demand.

In our discussion, we focus on Integer Programming (IP) pricing and Extended Locational Marginal

Pricing (ELMP) since they are used by U.S. ISOs in practice. Furthermore, we consider Average

Incremental Cost (AIC) pricing, a recent proposal that also addresses the problem of significant make-whole

payments. As introduced earlier, relevant criteria are efficiency (EF), individual rationality (IR), budget

balance (BB), linear and anonymous prices (LA), and linear and anonymous payments (LAP). Note that IP

pricing, ELMP and AIC satisfy EF and IR, which are widely considered essential on electricity markets.

With price inelastic demand, PBE-A provides a straightforward way to guarantee BB and LAP. In case of

price-sensitive demand, PE-A is the only pricing rule that minimizes make-whole payments under linear and

anonymous prices. Let us now provide a brief description of IP, ELMP, and AIC pricing.

4.4.1. IP Pricing IP pricing (O’Neill et al. 2005) was an early and widely adopted proposal for pricing

on electricity markets. First, the efficient dispatch is computed via DCOPF. Then the integer variables

are fixed to their optimal values resulting in a linear program. The duals of the nodal balance constraints

eventually provide linear and anonymous market prices, while the duals associated to constraints with

integer variables determine individual uplift payments. O’Neill et al. (2005) originally describe a problem

with price-inelastic demand. IP pricing can, however, also be adapted to settings with price-sensitive

demand (Madani et al. 2018). It was also extended to multi-period, multi-nodal markets in many U.S.

ISOs, including CAISO, PJM, or SPP. In practice, the uplift payments are restricted to be non-negative

make-whole payments. Thus, market participants can retain their profits, and only individual losses are

compensated by make-whole payments to ensure individual rationality. Budget balance is violated due to

the make-whole payments, and the prices do not constitute a competitive equilibrium.

4.4.2. ELMP Pricing ELMP relaxes binary variables of the DCOPF to continuous variables and takes

the duals of the relaxed problem as market prices. MISO introduced ELMP in 2011, but similar approaches

were implemented by ISO-NE (O’Neill et al. 2019). Similar to IP pricing, there are individual make-whole

payments, and stability of the solution is enforced via penalties. Lost opportunity costs (LOCs) describe the

forgone profit from the most profitable alternative level of electricity production at the prices. In total, the
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make-whole payments and the required penalties yield the LOCs of a generator. ELMP pricing represents an

approximation of Convex Hull Pricing (CHP), as introduced by Gribik et al. (2007). CHP computes prices

that indeed minimize LOCs, but it is computationally expensive and thus it has not been implemented in the

field (Schiro et al. 2016). However, for simple problem formulations ELMP and CHP prices are equivalent

(Hua and Baldick 2017). Evidence by MISO suggests that lost opportunity costs can be reduced by ELMP

pricing compared to IP pricing, yet the general economic properties of ELMP remain unclear (Schiro et al.

2016).

4.4.3. AIC Pricing In a series of essays, O’Neill et al. (2019) challenge established pricing rules

on electricity markets and criticize that the resulting make-whole payments lead to biased market prices.

They suggest AIC pricing, which implements IP pricing as a first stage. In a second step, the AIC price

computation relaxes the integer variables of generators that make a loss for the actual AIC pricing run and

adjusts their objective function coefficients to reflect the average costs, i.e., it distributes the fixed costs of

a generator over the quantity allocated to the generator. In a stylized market with only a single period this

would eliminate the make-whole payments of the generators. In a market with multiple periods, O’Neill

et al. (2020) suggests an iterative process comprising several pricing runs to achieve budget balance. The

approach does not consider make-whole payments for the demand side, but proposes price differentiation

among buyers via Ramsey-Boiteux-like pricing.

AIC pricing provides an innovative new approach to electricity market pricing. Similar to PBE-A or

PE-A, the goal is to eliminate or minimize make-whole payments. But there are also differences. First, PE-A

minimizes make-whole payments for both sides of the market in a single optimization. Second, unlike AIC

pricing, PE-A does not involve price differentiation on the demand side, but sticks to linear and anonymous

prices. Price-differentiation among buyers can be a very useful tool to deal with the non-convexities in a

market. However, it is also challenging. First, personalized prices lead to some level of intransparency in

the market compared to an anonymous linear price for all market participants. Again, not all information

is contained in the public price signal. Second, there is a difference between differential and anonymous

prices in terms of manipulability. Uniform multi-unit auctions and the Walrasian mechanism are known to

be strategy-proof in the large (Azevedo and Budish 2019). This means, with many participants truth-telling

is approximately optimal and the impact of a single participant on the price becomes negligible with many

participants. This is no longer the case if the payments of a participant are personalized. A pay-as-bid

pricing scheme is manipulable and bidders will not reveal their true preferences. The only exception

is the Vickrey-Clarke-Groves payment rule which is the unique payment rule that is dominant-strategy

incentive-compatible (Green and Laffont 1979).

In our experiments we show that the make-whole payments necessary to achieve linear and anonymous

prices are negligible even with price-sensitive demand. We argue that if make-whole payments are so low,
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there is no need to restrict to discriminatory prices for each buyer or many anonymous but non-linear

prices (say for different volumes of electricity demanded), because the market price includes “almost” all

information about supply and demand.

For our experiments in Section 5, we will ignore price differentiation in AIC, but instead compute

make-whole payments to allow for a comparison to other pricing rules. Besides, we only consider a single

AIC pricing run, and not multiple iterations.

4.4.4. Alternative Proposals Various other pricing rules have been suggested in the past two decades.

Some, such as Direct Minimum Uplift (DMU) pricing, refrain from linear and anonymous prices and are

thus beyond the focus of this paper. Others, such as the Equilibrium-Constrained (EC) pricing framework

by Azizan et al. (2020) are restricted to price-inelastic demand. Moreover, many rules have only been

investigated under very specific assumption (e.g., Generalized Uplift pricing, Semi-Lagrangean pricing).

Toczyłowski and Zoltowska (2009) introduce the DMU approach, which postulates a bid-ask-spread

between the market prices for buyers and generators. DMU pricing aims at finding a spread that allows

for minimal side-payments and that compensates lost opportunity costs. The side-payments are designed

as uniform per-unit payments for buyers and sellers. However, the ISO has to give up a single linear price

vector. DMU pricing has been proposed for multi-period power flow problems with price-sensitive demand.

More recently, Azizan et al. (2020) proposed the EC pricing scheme that is applicable to general

non-convex settings with price-inelastic demand. Dispatch and payments are determined simultaneously

to achieve EF and IR, as well as to ensure no incentives to deviate, rendering penalties unnecessary.

Consequently, the price and payment functions must be general enough and hence allow for non-linear and

personalized components. One upside is the broad applicability of their pricing framework to established

price and payment functions. Moreover, the authors provide a polynomial-time approximation algorithm

for general non-convex cost functions. The authors do not account for price-sensitive demand. Therefore,

their settings are restricted to those where a PBE is feasible. In contrast to PBE-A, equilibrium-constrained

pricing gives up budget balance and linear and anonymous payment functions to ensure stability without

further penalties. Similar to O’Neill et al. (2019), we instead argue for maintaining budget balance with

linear and anonymous payments and treat lost opportunity costs as secondary objective. In regulated

electricity markets penalties are an accepted means to achieve stability.

Generalized Uplift pricing, introduced by Motto and Galiana (2002) and Galiana et al. (2003), has been

proposed for a single-period problem with price-inelastic demand and seeks to find minimum zero-sum

uplift payments that ensure stability. Minimum Zero-Sum Uplift Pricing by Liberopoulos and Andrianesis

(2016) seeks the minimum prices that ensure a PBE. In contrast to PBE-A, Minimum Zero-Sum Uplift

pricing allows for uplift charges for profitable generators. Starting at marginal cost, it increases prices and
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redistributes the additional gains of profitable generators to the loss-making generators. It terminates as soon

as individual rationality is ensured for every generator. The Semi-Lagrangean pricing scheme by Araoz

and Jörnsten (2011) also achieves a PBE, but their formulation is restricted to price-inelastic demand. The

Primal-Dual pricing rule by Ruiz et al. (2012) aims at uniform IR prices with price-inelastic demand by

relaxing efficiency. Finally, O’Neill et al. (2016) introduce the Dual Pricing algorithm which starts with the

dual of the IP pricing problem and adds restrictions to ensure individual rationality and budget balance. By

employing Ramsey-Boiteux pricing, it results in personalized prices for buyers. In Section 5 we will focus

only on IP pricing, ELMP and AIC pricing for the reasons mentioned above.

5. Numerical Experiments
In what follows, we compare the different pricing rules experimentally. We start with small illustrative

examples, before we report aggregate results for the IEEE RTS System, which is frequently used as a

benchmark.

5.1. Illustrative Examples

In our illustrative examples we go from simple to more complex environments. We start with a simple

convex setting, consisting of two generators G1 and G2 and two buyers B1 and B2 at a single node and over

three time periods (i.e., hours). We will gradually extend this example to reflect non-convexities, as well

as price-sensitive and flexible demand-side bids. We will benchmark IP and ELMP pricing as established

rules used by ISOs and further include AIC pricing as a promising rule that has not yet been employed in

practice. These existing rules are compared to PBE-A and PE-A, respectively.

5.1.1. Base case: convex supply, price-inelastic demand G1 offers up to 15 MW for $5/MWh, and

G2 offers up to 20 MW for $3/MWh. B1 and B2 schedule price-inelastic demand according to the following

table:

[MWh] B1 B2
t=1 4 3
t=2 6 6
t=3 10 12

G1 G2
Max Load [MW] 15 20
Offer Price [$/MWh] 5 3

Table 1 Base Case: Price-inelastic Demand Table 2 Base Case: Convex Supply

The optimal solution is obviously to let G2 satisfy the entire demand in the first two periods, while G1

satisfies only the residual demand of 2 MWh in excess of the maximum load of G2 in the third period. IP,

ELMP, AIC, and PBE-A prices are identically set and constitute a WE, PBE, and PE.
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[$/MWh] IP ELMP AIC PBE-A
t=1 3.00 3.00 3.00 3.00
t=2 3.00 3.00 3.00 3.00
t=3 5.00 5.00 5.00 5.00
MWP 0.00 0.00 0.00 0.00

[MWh] G1 G2 B1 B2
t=1 0 7 4 3
t=2 0 12 6 6
t=3 2 20 10 12

Table 3 Base Case: Prices Table 4 Base Case: Dispatch

5.1.2. Non-convexities Next, we introduce non-convexities for the generators, i.e., G1 has a minimum

load of 2 MW per period as well as no-load costs of $8 that occur as fixed costs when G1 is committed. G2

has a minimum load of 10 MW and no-load costs of $10. Therefore, G2 can no longer satisfy the demand

in the first period and is replaced by G1. It is also assumed that G1 requires a minimum runtime of three

periods. That is, if G1 is committed, it must sell at least its minimum load in every period. Consequently,

the optimal dispatch now involves G1 satisfying the entire demand in t = 1 and running at a minimum load

in the remaining periods, while G2 satisfies the residual demand.

[$/MWh] IP ELMP AIC PBE-A
t=1 5.00 3.50 6.14 6.14
t=2 3.00 3.50 3.00 9.00
t=3 5.00 6.10 9.00 9.00
MWP 38.00 40.29 22.00 0.00

[MWh] G1 G2 B1 B2
t=1 7 0 4 3
t=2 2 10 6 6
t=3 2 20 10 12

Table 5 Non-convexities: Prices Table 6 Non-convexities: Dispatch

Neither pricing rule yields a WE. IP, ELMP, and AIC result in individual losses, at least for some of the

hours, and thus fail to produce a PBE. PBE-A avoids any make-whole payments and yields a PBE. Even

if the aggregate profits were considered, AIC pricing cannot ensure individual rationality, at least after a

single pricing run.

5.1.3. Price-sensitive demand We now introduce price-sensitive demand. We assume that half of the

price-inelastic demand is retained as price-inelastic. For the remaining half, B1 bids $10/MWh and B2 bids

$2/MWh in each period, respectively. The dispatch thus changes as it is not welfare-optimal to satisfy the

entire demand. Due to the price-sensitive demand, we now use PE-A instead of PBE-A.

[$/MWh] IP ELMP AIC PE-A
t=1 5.00 3.50 6.45 6.45
t=2 2.00 3.50 4.00 4.17
t=3 3.00 3.50 3.71 8.58
MWP 64.00 50.75 26.57 17.00

[MWh] G1 G2 B1 B2
t=1 5.5 0 4 1.5
t=2 2 10 6 6
t=3 2 14 10 6

Table 7 Price-Sensitive Demand: Prices Table 8 Price-Sensitive Demand: Dispatch

Under the welfare-optimal dispatch, no PBE is possible. In order to satisfy the price-inelastic fraction of

demand, both generators need to produce at least at their minimum loads, and make-whole payments thus

become inevitable. PE-A achieves the lowest aggregate make-whole payments ($10.50 to G1, $6.50 to B2),

which are as close to budget balance as possible.
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5.1.4. Flexible demand We now additionally convert some of the inflexible demand into flexible

demand. B1 has converted 2 MWh from t = 1 and 1 MWh from t = 2 into a shiftable volume of 3 MWh that

can be satisfied in an arbitrary pattern over the considered time frame.

[$/MWh] IP ELMP AIC PE-A
t=1 5.00 3.50 7.29 7.29
t=2 2.00 3.50 4.00 9.00
t=3 3.00 3.50 3.71 9.00
MWP 64.00 44.75 22.57 7.00

[MWh] G1 G2 B1 B2
t=1 3.5 0 2 1.5
t=2 2 10 8 4
t=3 2 14 10 6

Table 9 Flexible Demand I: Prices Table 10 Flexible Demand I: Dispatch

The shiftable volume of B1 is completely served in t = 2 and replaces some of the price-sensitive demand

of B2. This allows to reduce make-whole payments significantly for PE-A. Assume now that B1 adds an

additional 1 MWh from t = 2 to the shiftable volume. Making use of this flexibility allows for PBE prices.

[$/MWh] IP ELMP AIC PE-A
t=1 5.00 3.50 7.29 7.29
t=2 5.00 3.50 6.14 6.14
t=3 3.00 3.50 3.56 9.00
MWP 38.00 43.75 10.89 0.00

[MWh] G1 G2 B1 B2
t=1 3.5 0 2 1.5
t=2 7 0 4 3
t=3 2 18 14 6

Table 11 Flexible Demand II: Prices Table 12 Flexible Demand II: Dispatch

This example also illustrates the advantages of demand-side bidding and bid languages that permit the

expression of flexibility dimensions.

5.2. Experiments based on the IEEE RTS System

Finally, we report results of numerical experiments based on the IEEE RTS System introduced by Grigg

et al. (1999), in order to better understand prices in a larger and realistic test system. This system has been

used in a variety of contributions on electricity markets (Garcia-Bertrand et al. 2006, Morales et al. 2009,

Zoltowska 2016, Hytowitz et al. 2020, Zocca and Zwart 2021) and includes non-convexities (no-load costs,

minimum loads, minimum runtimes), price-sensitive demand, as well as several nodes and time periods.

Therefore, it is well suited to study prices and make-whole payments under different pricing schemes.

Grigg et al. (1999) provide a stylized system topology, transmission network parameters, hourly (nodal)

demand data as well as characteristics of generating units. In accordance with Zoltowska (2016), we select

the single area, 24-node topology by Grigg et al. (1999) for a representative 24-hour winter day with 32

generators (total capacity: 6.81 GW) and 17 consumers (average hourly demand: 2.60 GWh). For data on

(non-convex) generation costs or demand valuations we rely on the bid and offer curves provided by the

cases studies of Garcia-Bertrand et al. (2006) and Zoltowska (2016) on this system. The experiments were

conducted on an Intel(R) Core(TM) i7-8565U CPU with 16 GB RAM.
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Our base setting includes 32 generators with minimum and maximum loads, minimum runtimes, as

well as no-load costs and an offer curve representing variable costs. The demand of the 17 consumers is

assumed to be price-inelastic at first, and later extended to price-sensitive and flexible demand. Generators

and consumers are embedded in a DC power flow model with 24 nodes. Appendix C provides heatmaps of

the hourly nodal prices and Table 13 reports statistics on prices, make-whole payments (MWP) as well as

the magnitude of penalties necessary to avoid generators to deviate from the efficient dispatch. Note that

instead of penalties an ISO could also just prohibit deviations from the efficient dispatch. In all scenarios

we will see that the make-whole payments for PBE-A (in case of price-inelastic demand) or PE-A (in case

of price-sensitive demand) are zero or very low compared to other pricing rules. Also, the make-whole

payments for AIC prices are reduced compared to IP pricing, but remain significant after a single pricing

run and with hourly loss compensation. Make-whole payments per generator can be found in Appendix B.

Price Price MWP MWP Penalty Penalty MWP / Computation
Mean Std. Dev. Sell Buy Sell Buy Total Cost Time

IP 22.32 8.81 35,749.28 0.00 0.00 0.00 4.63% 1.39s
ELMP 22.62 6.40 6,193.37 0.00 2,460.20 0.00 0.80% 1.39s
AIC 29.62 16.92 26,114.72 0.00 46,095.51 0.00 3.38% 2.68s
PBE-A 23.35 7.53 0.00 0.00 17,966.49 0.00 0.00% 1.46s

Table 13 IEEE RTS Statistics with Price-Inelastic Demand

Under price-inelastic demand, a PBE (Definition 2) is only achieved by PBE-A. All other pricing

rules require make-whole payments to ensure individual rationality. Classical IP pricing requires high

make-whole payments to the generators, resulting in a violation of budget balance for the market operator.

AIC prices are high on average, especially in the peak periods t = 18 and t = 19 (see Figure 5 in Appendix

C), contributing to a large standard deviation of the prices at the same time. The price peaks allow for overall

profitability for the generators, but as discussed before, individual periodic losses are still compensated,

resulting in make-whole payments during low-price periods. In contrast, ELMP produces a smooth price

profile with little volatility and low lost opportunity costs (as reflected by the sum of make-whole payments

and penalties). PBE-A adjusts this price profile only slightly in order to ensure a PBE, mainly by increasing

prices at the nodes 101 and 115, where most of the otherwise unprofitable generators are situated. As a

consequence, the price average and standard deviation are slightly increased, but no make-whole payments

are required outside the market price. Penalties are necessary but are still lower than the lost opportunity

costs required under IP or AIC pricing.

Next, we consider price-sensitive demand, taking into account the bid curves as described by

Garcia-Bertrand et al. (2006). In particular, each buyer submits some minimum price-inelastic demand and a
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Price Price MWP MWP Penalty Penalty MWP / Computation
Mean Std. Dev. Sell Buy Sell Buy Total Cost Time

IP 19.63 5.03 14,272.57 0.33 0.00 0.42 2.52% 1.57s
ELMP 21.02 5.35 490.39 781.43 257.43 803.04 0.22% 1.55s
AIC 21.27 6.36 11,048.85 945.38 0.00 0.00 2.12% 2.96s
PE-A 20.85 5.23 0.00 112.43 929.52 804.66 0.02% 1.66s

Table 14 IEEE RTS Statistics with Price-Sensitive Demand

piecewise-constant demand curve on top of that. Accounting for buyer valuations naturally decreases prices

compared to the price-inelastic case, which is also evident from Table 14 and Figure 6 in Appendix C.

It is not possible to achieve a PBE in this environment. IP prices produce the lowest average price

and standard deviation. Similar to the price-inelastic case, it diverges most from budget balance, with

make-whole payments amounting to 2.5% of the total incurred generation costs. ELMP prices are higher on

average, resulting in less make-whole payments for the generators. However, these prices do not minimize

total make-whole payments. PE-A requires make-whole payments of only $112.41. Only IP prices are on

average lower than PE-A prices, and the total lost opportunity costs of PE-A (as reflected by the sum of

make-whole payments and penalties) are minimal among the pricing rules under consideration. PE-A prices

are minimal in make-whole payments, closest to stability, and imply low and smooth price profiles.

Finally, we introduce demand flexibility. The following Tables 15 and 16 reflect prices where 10% of the

previously price-inelastic demand is converted to either shiftable profiles or shiftable volumes. Here, each

shiftable demand is a randomly sampled 5-hour interval of inelastic demand that can either be shifted as a

profile by 4 hours (shiftable profile) or the aggregate volume can be satisfied within the original 5 hours in

an arbitrary fashion (shiftable volume).

Price Price MWP MWP Penalty Penalty MWP / Computation
Mean Std. Dev. Sell Buy Sell Buy Total Cost Time

IP 19.63 5.03 14,275.82 9,116.75 0.00 0.00 4.14% 1.76s
ELMP 20.74 5.14 1,034.49 21,420.72 257.43 0.00 3.97% 1.71s
AIC 20.51 5.76 11,882.69 20,773.64 0.00 0.00 5.78% 3.27s
PE-A 20.42 4.92 188.54 322.96 929.52 538.11 0.09% 1.84s

Table 15 IEEE RTS Statistics with 20% Shiftable Profiles

In both cases, welfare gains can be realized by using the demand-side flexibility in a welfare-maximizing

fashion. The increase in make-whole payments for the buyers is a result of the modeling decision to assign

the highest valuation in the bid curve to the – formerly price-inelastic and now price-sensitive and flexible –

demand. As the flexible demand needs to be satisfied within the boundaries set by the flexibility parameters,

this can create a loss on part of the buyer if her highest valuation is still below the generation cost. This

results in the significantly higher make-whole payments for buyers. Again PE-A has by far the lowest

make-whole payments and little price volatility, etc.
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Price Price MWP MWP Penalty Penalty MWP / Computation
Mean Std. Dev. Sell Buy Sell Buy Total Cost Time

IP 19.98 5.29 12,725.92 10,491.12 0.00 0.00 4.18% 1.83s
ELMP 21.04 5.36 436.60 22,686.77 257.43 0.00 4.16% 1.74s
AIC 21.66 6.65 10,888.60 35,141.68 0.00 0.00 8.29% 3.34s
PE-A 20.74 5.17 564.35 198.47 741.80 687.45 0.14% 1.84s

Table 16 IEEE RTS Statistics with 20% Shiftable Volumes

The numerical tests indicate that PBE-A and PE-A can substantially reduce or even eliminate make-whole

payments compared to conventional pricing schemes. As a result, there are no or only very low

side-payments that are not reflected in the public market price anymore. Approaching budget balance comes

at the expense of higher penalties to ensure a stable market outcome. As discussed in the previous sections,

we argue that penalties are less of a concern, since they are already established and enforced in highly

regulated electricity markets (O’Neill et al. 2020).

6. Conclusions
Electricity markets have seen significant change among U.S. ISOs recently. While all ISOs moved to

mixed-integer programming in order to determine the efficient dispatch, there is still a significant discussion

about out-of-market make-whole payments paid by the ISOs to some of the generators. These payments

can be significant and they distort the market price signals as has been pointed out by the U.S. FERC and

domain experts. We show that with the standard assumption of price-inelastic demand and demand-supply

equivalence no make-whole payments are necessary.

With the advent of variable energy sources, demand response becomes increasingly important. To

adequately reflect flexibility on the demand side, ISOs need new bid formats that likely lead to additional

non-convexities and price-sensitive demand. We prove that in such markets zero make-whole payments are

impossible in general. Based on this insight, we introduce the PE-A pricing rule that minimizes make-whole

payments, and compare it to existing payment rules used by ISOs and the AIC pricing rule. Rather than

trying to mimic competitive equilibrium prices based on linear relaxations of the underlying non-convex

allocation problem, we treat envy-freeness as second-order design goal and optimize these objectives

directly. The results show that high side-payments on electricity markets as they are challenged by regulators

can either be avoided or reduced substantially.

The experiments provide evidence that prices under PE-A do not increase on average compared to

established pricing rules, and the changes in the overall payments of market participants are very small.

Moreover, make-whole payments are avoided or they are negligible in all experiments that we ran. The new

pricing rules are based on optimization problems that can be solved in polynomial time and whose principles

are easy to understand and communicate. The new pricing rule is also general without dependencies on the

specifics of the underlying allocation problem and can be applied to other non-convex markets as well.
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Appendix A: Notation for DCOPF

Sets

•I = {1, ..., I}: Buyers (index i)

•J = {1, ..., J}: Generators (index j)

•T = {1, ...,T }: Time periods (index t)

•N = {1, ...,N}: Nodes (index n)

•L = {1, ...,L}: Lines (index l)

Parameters

•v ∈RIT : Buyer valuations

•c ∈RJT : Generator variable cost

•h ∈RsJT : Generator fixed costs

•A ∈Rm×JT : Generator constraint matrix I

•G ∈Rm×sJT : Generator constraint matrix II

•b ∈Rm: Generator constraint right-hand side

•Q ∈Rk×IT : Buyer constraint matrix I

•R ∈Rk×rIT : Buyer constraint matrix II

•e ∈Rk: Buyer right-hand side

•P ∈ RNT×LT : Inverse PTDF matrix (calculated from susceptance and network incidence matrix; also includes

reference node)

•W ∈RNT×JT : Generator to node and period mapping matrix

•Z ∈RNT×IT : Buyer to node and period mapping matrix

•W ∈RT×JT : Generator to period mapping matrix

•Z ∈RT×IT : Buyer to period mapping matrix

•F ∈RLT : Upper flow limits

•F ∈RLT : Lower flow limits

Decision Variables

•x ∈RIT : Buying quantities

•d ∈ {0,1}rIT : Buy-side binary variables (r as integer multiplier to account for several binaries [different dimensions

of flexibility, etc.])

•y ∈RJT : Selling quantities

•u ∈ {0,1}sJT : Generator commitment and other binaries (s as integer multiplier to account for several binaries

[commitment, start-up, etc.])

• f ∈RLT : Line flows
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Appendix B: Make-Whole Payments

The following figures provide histograms of make-whole payments per generator (in $) in the different environments

with price-inelastic, price-sensitive, and flexible demand (shiftable profiles and shiftable volumes) for the IEEE RTS

system. With IP pricing, ELMP, and AIC some generators receive very high make-whole payments that are not

reflected in the public prices. With PBE-A / PE-A such make-whole payments are negligible.

Figure 1 Make-Whole Payments with

Price-Inelastic Demand

Figure 2 Make-Whole Payments with

Price-Sensitive Demand

Figure 3 Make-Whole Payments with

20% Shiftable Profiles

Figure 4 Make-Whole Payments with

20% Shiftable Volumes

Appendix C: Heatmaps of Prices

The following heatmaps describe hourly nodal prices (in $/MWh) for different nodes across the day for the IEEE

RTS system. Darker colors describe higher prices. Each panel describes the outcome of one pricing rule (IP, ELMP,

AIC, and PBE-A or PE-A) for the environments with price-inelastic demand, price-sensitive demand, 20% shiftable

profiles or 20% shiftable volumes. In general, the prices with price-sensitive and flexible demand tend to be higher.

Interestingly, the prices of PBE-A / PE-A and ELMP tend to be similar in spite of significantly lower make-whole

payments with PBE-A / PE-A.


