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Abstract

Recent empirical evidence suggests that delivery to retail warehouses suffers

from a lack of coordination. While carriers try to optimize their routes, they

often experience very long waiting times at loading docks, which renders

their individual planning useless. To reduce such inefficiencies, carriers need

to coordinate. This problem has received considerable attention in practice,

but the design of coordination mechanisms is challenging for several reasons:

First, the underlying package assignment problem is NP-hard. Second, effi-

ciency, incentive-compatibility, and fairness are important design desiderata,

but in most economic environments they are conflicting. Third, the market

for logistics services is competitive and price-based mechanisms where car-

riers might have to pay for time slots suffer from low acceptance. We draw

on recent advances in market design, more specifically randomized matching

mechanisms, which set incentives for carriers to share information truthfully

such that a central entity can coordinate their plans in a fair and approx-

imately efficient way. We use and adapt the existing maximizing cardinal

utilities (MAXCU) framework to a retail logistics problem, which yields a

new and powerful approach for coordination. We report numerical experi-

ments based on field data from a real-world logistics network to analyze the

average reduction in waiting times and the computation times required and

compare to first-come, first-served and an auction mechanism. Our results

show that randomized matching mechanisms provide an effective means to

reduce waiting times at warehouses without requiring monetary transfers by

the carriers. They run in polynomial time and provide a practical solution

to wide-spread coordination problems.
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1. Introduction

We focus on the loading dock problem in retail logistics that has re-

ceived much attention by practitioners in the recent years. According to a

survey among more than 500 transportation companies in Germany, 18% of

them have an average waiting time of more than two hours and 51% have

an average waiting time between one to two hours at each warehouse (Bun-

desverband Güterkraftverkehr Logistik und Entsorgung e.V., 2013). Such

waiting times are a significant problem for carriers and warehouse operators.

A recent study among 778 truck drivers by the German Federal Office for

Transportation reports that the waiting times even increased in the past

years (Bundesamt für Güterverkehr, 2018). In another study, the German

Federal Office for Transportation describes the uncoordinated arrivals of

trucks as the main reasons for waiting times (Bundesamt für Güterverkehr,

2011). Adding capacity with additional loading docks at warehouse sites

requires substantial investments and can also be infeasible in urban areas.

Overall, the lack of coordination causes substantial inefficiencies in re-

tail transportation logistics. The carriers decentrally solve vehicle routing

problems and compute optimal routes, but they do this in an uncoordinated

manner. The warehouses face capacity planning problems for their loading

docks because of the random carrier arrival. If all information about sup-

plier preferences for different routes and warehouse capacities was available,

then a central clearing house (potentially organized via a booking platform)

could select routes and allocate time slots to carriers such that waiting times

are minimized. However, coordination mechanisms to elicit this information

from carriers are challenging to design as we will discuss below.

Some retailers use simple first-come, first-served (FCFS) time slot man-

agement systems and charge a fixed price for each slot. However, the adop-

tion is low as margins for carriers are low and they are not willing to pay for

reservations. We learned in discussions, that charging payments for load-

ing docks reservations is very unpopular for carriers. Moreover, the simple

FCFS mechanism collects only little information about carrier preferences

(a single package of time slots on a route) such that one cannot expect an

efficient allocation of the available capacities at the warehouses. Depending
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on the random permutation of carriers arriving, the allocation can be arbi-

trarily bad and there will be many ways to Pareto-improve. In most cases,

however, there is not even an FCFS mechanism in place that would alle-

viate the long waiting times that arise (Bundesverband Güterkraftverkehr

Logistik und Entsorgung e.V., 2013). In a previous paper, we analyze var-

ious auction mechanisms (Karaenke et al., 2019), but the potentially high

payments of carriers for the reservations in auctions again constitute a sig-

nificant barrier to adoption in the field. So, the question we ask in this paper

is, whether efficient coordination can also be facilitated without payments

by the carriers.

1.1. Matching Mechanisms

In this paper, we explore new possibilities for the coordination without

monetary payments for the allocation of time slots to carriers. Three eco-

nomic properties of a coordination mechanism are desirable: (allocative)

efficiency, incentives for truthful revelation of the carriers’ preferences, and

envy-freeness.

• Allocative efficiency refers to the maximization of the sum of the car-

riers’ utilities. This describes a particular objective function that is

widely accepted in economics and also referred to as welfare maximiza-

tion.

• A mechanism is incentive-compatible, if participants reveal their pref-

erences truthfully in equilibrium. Incentives for truthful reporting of

preferences are important as strategic manipulation leads to high par-

ticipation costs, allocative inefficiencies, and it would jeopardize the

sustainability of a mechanism in the long run. Ideally, participants

should have a dominant equilibrium strategy to reveal their prefer-

ences, i.e., their cost savings for a route without waiting times, truth-

fully. In this case we say that the mechanism is strategy-proof.

• Envy-freeness means that every carrier prefers his allocation (of time

slots) to that of any other carrier. Envy-freeness can be seen as a strong

form of fairness. Envy-freeness takes into account the preferences of all

participants and ensures that none of the agents has justified envy and

would want to change his allocation with another participant. This

yields also stability of an allocation. Fairness is also considered central
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in other transportation problems (Lu and Quadrifoglio, 2019; Zhu and

Ukkusuri, 2017), and has received a lot of recent attention (Kleinberg

et al., 2018) in the context of algorithm design and automated decision

making.

Achieving such properties without allowing for monetary payments of

the participants and market prices is challenging. However, new develop-

ments in the theory of matching with preferences provide approaches to

coordination problems. Matching with preferences (but without money)

has become a popular subject after the Nobel Prize in Economic Sciences

was awarded jointly to Alvin E. Roth and Lloyd S. Shapley by the Swedish

Academy of Sciences for the theory of stable allocations and the practice

of market design in 2012. Most research assumes simple preferences with

unit demand as in school choice or the well-known stable marriage problem

(Gale and Shapley, 1962; Diebold and Bichler, 2017; Delorme et al., 2019).

Matching problems with preferences for bundles (or packages) of objects

have been addressed only recently and are sometimes referred to as combi-

natorial assignment problems (Budish, 2011). The coordination problem in

retail logistics is an excellent example: We need to assign bundles of time

slots at warehouse loading docks that constitute a tour for a carrier. Unfor-

tunately, incentive-compatibility, allocative efficiency, and envy-freeness are

already conflicting if one is restricted to agents with unit demand rather

than preferences for bundles and deterministic mechanisms (Roth, 1982;

Abdulkadiroğlu and Sönmez, 2003).

Randomization potentially allows to circumvent these negative results.

Nguyen et al. (2016) proposed the maximizing cardinal utilities (MAXCU)

framework for randomized matching mechanisms. They showed that mech-

anisms in this framework are allocatively efficient, envy-free, and asymp-

totically strategy-proof. This is at the expense of feasibility, and some of

the supply constraints on warehouse capacity might be violated. However,

these constraint violations are small and limited by the level of complemen-

tarity in the preferences, i.e., the size of the packages. In the context of our

problem, this means that more carriers are assigned to some loading docks

in some time slots, but the level of overbooking is small as we show and

can easily be accommodated by warehouse providers. Apart from economic

aspects, one of the most important properties of the framework is the com-

putational complexity of the mechanism, however. While the deterministic

4



problem of optimally allocating packages of time slots is NP-hard, the ran-

domized mechanism can be computed in polynomial time. This is of central

importance for our problem where problems tend to be large.

While there is some literature on auction mechanisms used in transporta-

tion and logistics (Elmaghraby and Keskinocak, 2004; Caplice, 2007; Agrali

et al., 2008; Huang and Xu, 2013; Xu and Huang, 2014; Triki et al., 2014;

Gansterer et al., 2019) mechanisms without money have received little at-

tention in this literature. MAXCU provides a general framework, but it has

never been applied to logistics coordination problems and therefore requires

context-specific adjustment and empirical testing.

1.2. Contributions

There are multiple warehouses operated by one or more companies (e.g.,

retailers). On behalf of the companies’ suppliers, carriers need to visit sev-

eral warehouses and deliver goods. They have preferences for time slots to

unload goods based on their routing. Carriers compute tours to visit all

warehouses and they are interested in a package of time slots at different

warehouses such that they can unload their goods without waiting times on

their tour. Similar to the FCFS time slot management systems currently

in use, an intermediary provides a platform for coordinating the carriers.

Nowadays, this role is assumed by large retailers or third-parties special-

izing in time-slot management in logistics. Instead of a FCFS time slot

management system with fixed reservation prices that is used nowadays, we

aim for an economic mechanism in which carriers have simple strategies to

reveal their opportunity costs for tours and respective time slots truthfully.

This coordination should not lead to extra costs for the carriers.

We introduce a randomized matching mechanism for the assignment of

time slots to trucks of a carrier, which draws on the general framework

proposed by Nguyen et al. (2016). This randomized mechanism does not

require payments by the carriers, but provides incentives for truthful reve-

lation of preferences for the carriers and it yields an approximately efficient

and envy-free outcome in expectation. The framework is quite general, but

needs to be adapted for a particular allocation problem. More importantly,

theory is silent about the efficiency gains (i.e., the waiting time reductions)

one can expect for specific problems compared to no coordination, and how

severe the capacity violations due to randomized mechanisms are on aver-

5



age. We provide an extensive set of numerical experiments based on data

from a retail transportation network in the field to study the efficiency gains

one can expect. In particular, we estimate these efficiency gains compared

to situations without coordination as well as core-selecting auctions with

near-optimal solutions.

We find that the randomized mechanism is very fast to compute, while

the optimal deterministic solution typically cannot be computed for realistic

problem sizes. Even large problem sizes can be computed in a few seconds

or minutes using the randomized mechanism. The violations of the capacity

constraints at warehouses are low such that the mechanism can be seen as a

viable approach to combat the lack of coordination in retail logistics, while

still taking into account preferences of carriers for various routes.

We compared the waiting time reductions to an auction mechanism.

Given the hardness of the allocation problem, it is not even clear, which type

of auction mechanism could be used. More importantly, the VCG mecha-

nism is not incentive compatible anymore, if the allocation problem cannot

be computed exactly (Leyton-Brown et al., 2006). We implemented a com-

binatorial auction with a core-selecting payment rule based on near-optimal

solutions to the allocation problem (Goetzendorff et al., 2015). Interest-

ingly, the waiting time reductions we got from the randomized matching

mechanism were close to the ones we achieved with the auction mechanism,

although the matching mechanism does not lead to additional costs or mon-

etary transfers for the carriers.

The remainder of this paper is structured as follows. In Section 2,

we present the matching mechanisms along with basic assumptions of the

model. We present the experimental design and results in Section 3 and dis-

cuss our findings, implications for practice, as well as limitations and future

research in Section 4.

2. Coordination via Matching Mechanisms

We describe the design problem by first introducing the basic assump-

tions and the fundamental allocation problem if complete information about

the carriers’ preferences was available. Then we introduce the matching

mechanism that satisfies a number of desirable economic properties, and a

core-selecting auction mechanism that we compare against.
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2.1. Economic Environment

A matching or assignment describes the allocation of time slots at ware-

house loading docks to carriers. Preferences are provided for routes, i.e. bids

on packages (bundles) of time slots at different warehouses. Carriers consti-

tute the agents in the mechanism. Carriers are allowed to submit preferences

on alternative routes on a daily basis, the package preferences on bundles of

time slots. The value for a shorter route is proportional to the time saved

compared to long routes and the time freed up for truck drivers considering

the usual waiting times. We assume that a coordinator is organizing the

matching market on behalf of the warehouses. This coordinator might just

provide an information system, which computes allocations once per day for

allocations on the next day upon preferences entered by the carriers.

2.2. The Time Slot Allocation Problem in Retail Logistics

We consider a time slot allocation problem with K warehouses, I carri-

ers (agents), and T intra-day time slots. The locations of warehouses and

carriers are given within the transportation network with known (average)

travel distances and travel times. The service capacity of warehouses (load-

ing docks) is modeled as a multidimensional knapsack problem. In each

time slot t ∈ T = {1, 2, . . . , T }, each warehouse k ∈ K = {1, 2, . . . ,K} has a

capacity of ck = (ck1, . . . , ckT ). That is, warehouse k can service up to ckt

trucks in time slot t. We call a pair o = (k, t) of a warehouse and a time

slot an object with capacity c(o), and define O as the set of all objects.

Carriers have to deliver freight to a warehouse, pick it up there, or both.

We assume that each carrier has a truck with sufficient capacity to fulfill the

orders. The truck starts at the depot and returns to the depot again after

(un)loading its freight at the retailers’ warehouses. Within the reserved time

slots a carrier can (un)load his freight. In our simulations, we compute a

route to visit all warehouses on the tour solving a TSP for each truck inde-

pendently. Note that every individual truck that can be processed without

long waiting times leads to time savings and is beneficial for carriers, i.e.,

the savings per tour matter primarily. Thus, we consider trucks individ-

ually, which also keeps the experimental design simpler. In a design with

multiple trucks per carrier we need a number of additional assumptions and

treatment variables (e.g., numbers of trucks, costs for using one or multiple

trucks). In trial experiments with multiple trucks, we did not see changes
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in the ranking of coordination formats. Hence, we only report the setting

with one truck per carrier. Whether the routes (package bids) are based on

the results of a VRP or TSP is not important for the evaluation of waiting

times. We only need reasonable tours as input.

The carriers i ∈ I = {1, 2, . . . , I} have valuations (cardinal preferences)

viS for bundles S ∈ {0, 1}|O| of objects represented as vectors where So = 1

if object o is in the bundle. We define the size of a bundle S as the number

of nonzero entries in S, size(S) =
∑
o∈O

1{So>0}. A bundle S encodes the

sequence of visited warehouses and the respective time slots. Carriers are

allowed to submit preferences for as many bundles they want, i.e., they can

express preferences for alternative routes and corresponding time slots.

Let xiS denote binary decision variables indicating whether carrier i

gets bundle S or not. The winner determination problem (WDP) of the

coordinator can be formulated as follows.

w(I) = max
∑
i,S

viSxiS (WDP)

s.t.
∑

i,S:o∈S
xiS ≤ c(o) ∀o ∈ O (supply)

∑
S

xiS ≤ 1 ∀i ∈ I (demand)

xiS ∈ {0, 1} ∀i ∈ I, S ∈ {0, 1}|O| (binary)

The objective is to maximize the sum of valuations of the accepted bun-

dles in WDP, i.e., to maximize the social welfare. The (supply) constraint

ensures that the warehouse capacities are not exceeded for allocated bun-

dles for each time slot. Constraint (demand) ensures that each carrier wins

at most one bundle. Carriers who won one of their submitted tours have

reservations for the respective time slots at the loading docks, while losing

carriers have to queue for service with lower priority. This is a weighted

set packing problem, which is known to be NP-hard (Garey and Johnson,

1979).

2.3. The Randomized Matching Mechanism

Let us now describe a randomized matching mechanism that solves WDP

and yields an approximately efficient and envy-free solution in polynomial
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time. The mechanism is based on the MAXCU (maximizing cardinal util-

ities) framework introduced by Nguyen et al. (2016). MAXCU is a gen-

eral approach for solving allocation problems with cardinal preferences over

bundles of objects without monetary transfers. First, MAXCU computes

an optimal (fractional) solution for the LP-relaxation of WDP with addi-

tional envy-constraints. In a second step, MAXCU creates a lottery over

approximately feasible integral solutions of WDP, such that the expected

solution of this lottery equals the fractional solution. As a consequence, also

the economic properties envy-freeness and efficiency are in expectation. Ap-

proximate feasibility refers to integer solutions that might in some instances

violate supply constraints as we will discuss next.

Let us discuss the implementation of this mechanism in the context of our

retail logistics domain. To achieve envy-freeness in expectation in MAXCU,

we need to introduce additional constraints for the computation of the frac-

tional optimum of WDP. An agent i ∈ I envies another agent j ∈ I if i

prefers the assignment of j over his own assignment. We formalize this as a

linear inequality: agent i envies agent j iff

∑
S

viSxiS <
∑
S

viSxjS . (envy)

With this we can introduce the no-envy-constraint for every pair of

agents i, j ∈ I, i 6= j:

∑
S

viS(xiS − xjS) ≥ 0 ∀i, j ∈ I. (no-envy)

The first step of MAXCU is to solve the problem

x∗ = argmax

∑
i,S

viSxiS | supply, demand, no− envy, xiS ∈ [0, 1]

 .

Since every variable xiS is in [0, 1] and the sum over all variables referring

to the same agent is not greater than 1, we can interpret the single variables

as probabilities and the fractional solution x∗ as a random matching. That

is, for every agent we do not have an assignment, we only have a probability

distribution over assignments. Next, we have to decompose this random

matching into a lottery over deterministic matchings.
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2.3.1. The Lottery Algorithm

Unfortunately, in general it is not possible to decompose x∗ into a lottery

of integral solutions satisfying (supply) and (demand) if the bundle size

size(S) is larger than one. To circumvent this, one can either scale x∗ by a

factor α ∈ (0, 1) such that the decomposition becomes possible, or one allows

for the relaxation of some constraints. Here, we use the second approach.

It is possible to decompose x∗ into a lottery of integral solutions satisfying

(demand) and (relaxed supply), where∑
i,S:o∈S

xiS ≤ c(o) + L− 1 ∀o ∈ O. (relaxed supply)

Here, L = max{size(S) | x∗i,S > 0} is the size of the largest bundle that

has a nonzero entry in the solution to (WDP). For creating such a lottery,

Nguyen et al. (2016) propose Algorithm 1. Let dim denote the dimension

of (WDP). With this polynomial time lottery algorithm, we find at most

dim + 1 integral points, the convex hull of which is arbitrarily close to

the fractional solution x∗. The algorithm then returns a lottery over these

dim + 1 integral solutions, which is close to x∗ in expectation. In this

lottery algorithm, we use a subroutine to return an integer point x̄ such

that utx̄ ≥ utx∗, while u is arbitrary. This subroutine is called iterative

rounding algorithm (IRA) described in the next subsection.

Algorithm 1: Lottery algorithm.

1. Set S = {IRA(x∗)}, i.e., find an integer solution via IRA.

2. y = argmin{|x∗ − y| | y ∈ conv(S)}; if(|x∗ − y| < ε) END

3. Choose S ′ ⊆ S of size |S ′| ≤ dim, y ∈ conv(S ′) : z = x∗ + δ x∗−y
|x∗−y|

4. Find integral z′ s.t. (Demand),(relaxed Supply) and
(Z) : (x∗ − y)tz′ ≥ (x∗ − y)tz via IRA

5. S = S ′ ∪ {z′} and goto 2.

Output: Convex combination of final y

Figure 1 shows a graphical representation of one algorithm iteration.

The algorithm tries to get x∗ covered by the convex hull of S (conv(S)).

In each iteration the algorithm decreases the distance between y and x∗ by

adding a new integral solution to the solution set S and terminates when the

distance between y and x∗ is smaller than ε. That is, we consider y as a good
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Figure 1: Graphical representation of one iteration of the lottery algorithm.

approximation for x∗ and return the support of y. All solutions in S that

are not part of the support of y, calculated in the quadratic optimization

problem (QOP) in step 2, are deleted (step 3). Thus, although we add

a new integral solution to S in each iteration, the size of S never grows

above dim + 1, since as long as y 6= x∗, y always has to be on a face of

conv(S). Hence, the support of y consists of at most dim solutions. Step 4

ensures that we search in the right direction for new integral solutions. As

a side product, the QOP also calculates the coefficients λ(j) for the convex

combination and we have x∗ ≈ y =
∑|S|

j=1 λ
(j)x(j), for x(j) ∈ S.

We still have to show how we receive the integral solution satisfying

(demand) and (relaxed supply) from a given fractional solution and a given

additional constraint (Z) in step 4 of Algorithm 1. We use the iterative

rounding algorithm IRA(x, Z) with a (fractional) point x and an additional

constraint Z as input.

In step 1a of Algorithm 2, we fix components of x to 0 or 1 if they

already have this value, that is, we exclude these components from further

optimization steps and consider them as constants. The rounding happens

indirectly in step 1b and 2 due to reoptimizing the WDP after deleting

constraints. To detect such a constraint, we look at the worst case in each

iteration: If we would round up all currently fractional components, would

we still fulfill the relaxed supply constraint? If this is the case, we can delete

this supply constraint in step 1b, since it cannot happen that we violate its

relaxed version in the remaining iterations.
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Algorithm 2: Iterative rounding algorithm.

1a. Delete all xi = 0, xi = 1, update the constraints and go to 1b.

1b. If there is no xi ∈ {1, 0}, one can find at least one supply-constraint
with: ∑

i∈I

∑
S:o∈S

dxiSe ≤ c(o) + L− 1.

Delete those constraints and goto 2.

2. Solve WDP with (Z); if(all xi ∈ {0, 1}) return x; else goto 1a.

2.3.2. Economic Properties

In the MAXCU mechanism, the LP-relaxation with no envy constraints

is solved and the fractional solution is decomposed into a lottery over in-

tegral solutions using Algorithm 1 and 2. This yields an efficient outcome

in expectation that is envy-free in expectation and violates the supply con-

straints only by at most L− 1 (Nguyen et al., 2016). The mechanism is also

asymptotically strategy-proof. A mechanism is ε-strategy-proof if it is an

“almost” dominant strategy to report truthfully given any vector of reports

by the other carriers. That is, a carrier can gain at most ε by reporting

untruthfully. Intuitively, a mechanism is asymptotically strategy-proof if

for any ε > 0 the mechanism is ε-strategy-proof when the number of par-

ticipants is large enough. So, for large markets truth-telling is almost a

dominant strategy (up to ε).

2.4. Core-Selecting Combinatorial Auctions

In our experimental analysis, we want to understand the waiting time

savings to be expected from of a randomized matching mechanism and com-

pare with an auction mechanism. Payments are a significant barrier to the

adoption of a mechanism in this domain, but if an auction mechanism was

much more efficient, then this might be justified. Much as in single-item

auctions, one can use implement a Vickrey–Clarke–Groves (VCG) mecha-

nism, which is sometimes referred to as a generalized Vickrey auction. This

auction format exhibits a dominant-strategy equilibrium, but it faces a few

problems which do not appear in single-item auctions. Most notably, the

outcome of a VCG auction might not be in the core, and losing bidders

could make themselves better off together with the auctioneer. Vickrey–
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Clarke–Groves solutions outside the core are often seen as undesirable. Core-

selecting payment rules avoid such outcomes. While such payment rules are

not strategy-proof, it has been argued that, with the uncertainties in large

multi-object markets, bidders have sufficient incentives to bid truthfully

(Azevedo and Budish, 2019). In particular, one can try to find a vector of

core prices which is closest to the VCG payments. This means that such

payments are minimal for the bidders, i.e., bidder-optimal. The idea is that

bidder-optimal core (BOC) payments minimize the incentive to deviate from

truthful bidding (Day and Cramton, 2012). The computation of such core

payments is non-trivial. One could add a constraint for each possible losing

coalition of carriers to the optimization problem which minimizes payments.

The payments must not be less than what a losing coalition is willing to pay.

However, the number of constraints grows exponentially with the number

of bidders. However, such core constraints can be generated dynamically,

which leads to an effective computation of such payments; this has also been

used in spectrum auctions. In the computational approach discussed in the

literature (Day and Raghavan, 2007) core prices are found by iteratively

creating new price vectors pt and then checking at each iteration t whether

there is an alternative outcome which generates strictly more revenue for

the seller and which every bidder in this new outcome weakly prefers to the

current outcome. This approach has been adopted for spectrum auctions

world-wide (Bichler and Goeree, 2017). Non-core outcomes are one issue

with the VCG mechanism. More importantly, however, if the allocation

problem cannot be computed exactly, as is the case in our logistics problem,

then the VCG mechanism is not incentive-compatible anymore and it can

lead to payments higher than the stated bids (Bichler, 2017). In our ex-

periments, we leverage a relatively new approach to compute core-selecting

payments with near-optimal solutions to the allocation problem (Goetzen-

dorff et al., 2015). This approach avoids negative payments of payments that

are higher than the stated bids. We refer the interested reader to related

literature for details (Bichler, 2017).

3. Experiments

We use experiments to analyze the average case solution quality of our

mechanism. We first describe the treatments of our numerical experiments,

our simulation system, and the parameters used. Then we present the results
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including the reductions in waiting times, computation times, the numbers

of reported preferences and winning carriers, and the constraint violations

resulting from the MAXCU mechanism. Note that real-world applications

can differ in various parameters, but we aim for a representative model that

provides an estimate of the efficiency gains one can expect. In particular,

we want to understand whether we can expect significant reductions in the

waiting time with a randomized matching mechanism, and how these savings

compare to those achieved with FCFS and a core-selecting auction.

3.1. Transportation Network

We draw on data about the distribution network of a German retailer.

The transportation network also provides the distances and respective travel

times between the locations and is representative for networks in many other

metropolitan areas. Overall, we have 65 locations of retail warehouses with

distances and average travel times between all the sites in an adjacency

matrix.

The locations of 10 warehouses and the depots of the carriers are deter-

mined randomly in each simulation by drawing from the set of 65 locations.

Each carrier or truck has 4, 5, or 6 warehouses that he has to visit on a

tour. The set of warehouses on a tour is randomly selected from the set of

10 warehouses by sampling without replacement.

3.2. Carriers

We assume that carriers do their own planning independently and then

start processing their plans every morning. While we do not consider due

dates in our model, goods in retail logistics need to be with the warehouses

until a certain time of the day. If carriers start later in the day, this also

jeopardizes their due dates in case of congestion or other unforeseen events.

Each carrier determines all potential routes without waiting time through

the warehouses and reports preferences (i.e., package bids) on those that do

not take longer than 110% of the optimal round trip time (RTT). This has

several reasons: First, if carriers already have a detour of 10% then they

could also go with the shortest route and accept waiting times of that size.

Second, with this cutoff carriers submit approximately 5-8 tours on average

(see Table 6). We cannot expect carriers to submit hundreds of bids and

want to understand the waiting time reduction of the mechanisms with a

reasonable number of bids submitted.
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After the routes for each carrier have been determined, they compute

a valuation (cardinal preference) for each route, which is a valuation for a

package in the allocation. The valuation (viS) is proportional to the time

saved per day. We compute the difference between the full day and the time

needed for the optimal route. For example, if there are 8 hours on a working

day and the optimal route takes 6 hours without waiting times, then we use

a valuation of 120 minutes for reservations on this route. For an alternative

route that takes 7 hours, we use a valuation of 60 minutes, since the time

saved by this route is half of the optimal saving.

We compute the bid prices for the auction treatments similarly; the

bids are proportional to the time saved per day. We assume a willingness

to pay of 3 monetary units per warehouse reservation for the ideal route.

This number for the willingness to pay is based on empirical observations

(Bundesamt für Güterverkehr, 2011, p. 25). If the time savings are less than

for the ideal route, a carrier is also willing to pay less per reservation. For

example, for an alternative route that takes 7 hours (i.e., half of the time

savings in the optimal route), the willingness-to-pay is only 1.5 monetary

units per reservation.

Of course, carriers might determine valuations differently in the field,

but we do not attach meaning to the absolute numbers, only to the relative

differences of the mechanisms analyzed.

We assume that in all mechanisms, carriers report their opportunity

costs to the mechanism and the mechanism then determines an assignment

of carriers to time slots on a given day. That is, carriers base their reported

preferences on estimated time savings, because they can use their resources

for further tasks if waiting time is reduced.

3.3. Simulation System

Our numerical experiments are conducted as a deterministic discrete

event simulation with six types of events. In each simulation, the location

of the warehouses and carriers is selected randomly. For the purpose of our

simulation we assume one carrier has one truck. In the field, a carrier has

multiple trucks. However, the waiting time savings can be evaluated on the

level of single truck such that the assignment of multiple trucks to a single

carrier would not lead to qualitatively different results.

The first event is the departure event which takes place when a carrier
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leaves his depot. It results in a travel event describing the carrier’s travel

from the current location to the next one. The travel event is succeeded by an

arrival event. It represents the carrier arriving at a warehouse and queuing

up in order to be loaded or unloaded respectively. Carriers who won one

of their routes and respective reservations are serviced with higher priority

at loading docks if they arrive during the time slots, while losing carriers

have to queue for service with lower priority (FCFS among carriers without

reservations). Thus, the arrival event is either followed by a wait event, or a

reservation event. The latter is directly triggered only if the truck arrives at

the time when the reservation is valid. If the truck arrives early or does not

have a reservation, the wait event is triggered. Travel times are estimated

from the field data. While this simplifies the environment compared to the

field, it makes the comparison between the relative solution quality of the

mechanisms easier.

The service event is triggered by the warehouse, whenever the load-

ing/unloading process is started for a carrier. Having completed the service

process, a carrier drives to the next warehouse or his depot if he already

completed his tour. The simulation ends when every carrier has reached his

depot again.

3.4. Treatment Variables and Parameters

The main treatment variable is the coordination mechanism used. In

our baseline treatment without coordination (“no coord.”), there is no in-

formation available to the carriers. In addition, we analyze the results of

the MAXCU mechanism described earlier and, where possible, the results

of an optimal allocation (OPT) assuming complete information as well as

near-optimal allocations computed up to a 20% duality gap (Core0.2). It

turns out, that this precision can be achieved quickly, even for large problem

sizes. These allocations are used in the core-selecting auctions.

We also compare MAXCU to a simulation of an FCFS system where

bidders start making reservations for their favorite route. It can happen

that later warehouses on the route are already booked in the meantime,

such that the carrier cannot make reservations for the entire route. That is,

these carriers may be able to receive reservations for the first parts of their

routes only. Therefore, we select a priority order of carriers 100 times per

treatment uniform at random and reserve carriers’ (partial) routes following
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a uniform distribution between one reservation and the whole routes’ length.

This provides a reasonable comparison with real-world practices beyond the

case with no coordination.

The values for each parameter and treatment variable are summarized

in Table 1. Based on information about problem sizes, we assume different

numbers of trucks (|I| ∈ {50, 100, 200, 300, 400, 500}) in the experiments.

A time slot in our simulation is 15 minutes and we consider 60 time slots

per day (|T |). The warehouse capacity ranges from 1 to 15 loading docks

depending on the number of trucks. In settings with a lower number of

trucks, we also assume lower warehouse capacities to get an environment

with significant waiting times as they can be observed in the field (warehouse

capacities for the different numbers of trucks are are given in Table 2 in

section 3.5).

The unloading time is drawn from a distribution based on data about

reservations and unloading times from a time slot management system. We

assume a “typical” service time of 30 minutes per warehouse and travel

times based the historical field data available. We use expected service and

travel times for route planning and valuations, but vary these times in the

event simulation described. We assume service times and travel times to be

normally distributed with a standard deviation of 7.5 minutes for service

times and 10% for travel times (see Jenelius and Koutsopoulos (2013) for

travel time distributions). The Normal distributions are truncated to ±25%

of the mean, in order to avoid extremely short or long service and travel

times. We randomly draw locations for warehouses and carriers 5 times each

to create different simulation scenarios for each treatment. Subsequently, we

draw travel and service times for these scenarios 5 times each resulting in

25 simulations for each treatment.

Apart from this experimental design, we performed sensitivity analyses

on our results. To investigate the effect of the distributional assumptions,

we conducted additional experiments with a uniform distribution, and we

ran the experiments for 100 and 400 carriers each with 8 and 12 warehouses.

This explores low- and high-supply scenarios. The additional treatments did

not change the overall ranking of mechanisms and the differences in waiting

and computational times as well as constraint violations are robust. The

results of the experiments for these additional treatments are provided in

Appendix A; detailed results per treatment combination are provided in
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name values

Parameters number of locations 65
number of warehouses (|K|) 10
travel time distribution from field data
unloading time distribution from field data
time slot length 15 min
number of time slots per day (|T |) 60
planning horizon 900 min (15 min · 60 slots)
number of simulations / treatment 25

Treatment variables warehouse capacity [1, 15] (depending on the number of trucks)
warehouses per truck {4, 5, 6}
number of trucks (|I|) {50, 100, 200, 300, 400, 500}
matching mechanisms {no coord., FCFS, MAXCU, OPT, Core0.2}

Table 1: Parameters and treatment variables

Appendix C (supplementary material).

The simulation was implemented in the Java programming language and

the commercial mathematical programming solver Gurobi Optimizer v6.5

was used for all optimization problems. Experiments were executed on com-

puting nodes with two 14-core CPUs (Intel Xeon E5-2697 v3) and 64GB of

memory (RAM) each.

3.5. Results

In what follows, we report the savings in the waiting times of trucks due

to the use of a coordination mechanisms and the computation times they

incur.

Result 1. The MAXCU allocation of tours led to a significant reduction of
truck waiting times between 11.54% and 23.86% depending on the number
of trucks and warehouse capacities. This reduction was significantly larger
than with FCFS reservations, which reduced truck waiting times by 4.52%
to 9.4%. Waiting time savings in MAXCU were also close to those with a
core-selecting auction, which ranged from 17.44% to 27.08%.

While the waiting time reduction with the auction mechanism was high-

est, it is surprising that a polynomial-time randomized mechanism (MAXCU)

without payments is almost as efficient. Table 2 shows the average waiting

time for the FCFS, MAXCU, and Core0.2 mechanisms as well as the dif-

ferences to the treatments with no coordination. We analyze competitive

situations with low and high waiting times within a 900 minutes (60 slots · 15

min) planning horizon. Waiting times of several hours have been observed in

the field (Bundesverband Güterkraftverkehr Logistik und Entsorgung e.V.,

2013). The differences in the waiting times increase with larger problem sizes
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and the coordination turns out to be particularly beneficial for situations

where some loading docks are in high demand.

number of
trucks

warehouses
per truck

warehouse
capacity

mechanism
avg.
waiting
time

avg. diff.
no coord.

50 {4, 5, 6} {1, 2, 3} no coord. 229.41
50 {4, 5, 6} {1, 2, 3} FCFS 219.04 10.37 (4.52%)
50 {4, 5, 6} {1, 2, 3} MAXCU 202.93 26.48 (11.54%)
50 {4, 5, 6} {1, 2, 3} Core0.2 189.41 40.00 (17.44%)

100 {4, 5, 6} {2, 3, 4} no coord. 271.80
100 {4, 5, 6} {2, 3, 4} FCFS 255.37 16.43 (6.04%)
100 {4, 5, 6} {2, 3, 4} MAXCU 229.67 42.13 (15.50%)
100 {4, 5, 6} {2, 3, 4} Core0.2 219.38 52.42 (19.29%)
200 {4, 5, 6} {3, 4, 5} no coord. 490.55
200 {4, 5, 6} {3, 4, 5} FCFS 456.57 33.98 (6.93%)
200 {4, 5, 6} {3, 4, 5} MAXCU 395.63 94.92 (19.35%)
200 {4, 5, 6} {3, 4, 5} Core0.2 389.77 100.78 (20.54%)
300 {4, 5, 6} {5, 7, 9} no coord. 389.31
300 {4, 5, 6} {5, 7, 9} FCFS 357.88 31.43 (8.07%)
300 {4, 5, 6} {5, 7, 9} MAXCU 307.31 82.00 (21.06%)
300 {4, 5, 6} {5, 7, 9} Core0.2 296.45 92.86 (23.85%)
400 {4, 5, 6} {6, 8, 10} no coord. 484.70
400 {4, 5, 6} {6, 8, 10} FCFS 443.54 41.16 (8.49%)
400 {4, 5, 6} {6, 8, 10} MAXCU 375.68 109.02 (22.49%)
400 {4, 5, 6} {6, 8, 10} Core0.2 365.39 119.31 (24.62%)
500 {4, 5, 6} {9, 12, 15} no coord. 359.42
500 {4, 5, 6} {9, 12, 15} FCFS 325.65 33.77 (9.40%)
500 {4, 5, 6} {9, 12, 15} MAXCU 273.67 85.75 (23.86%)
500 {4, 5, 6} {9, 12, 15} Core0.2 262.09 97.33 (27.08%)

Table 2: Waiting times (in minutes) per tour and average saving in times compared to no
coordination for all carriers.

The differences in waiting times between the matching mechanism, the

auction mechanism, the experiments without coordination, and FCFS were

all significant at p < 0.001 using Wilcoxon signed rank tests. We also use

a linear regression to compare treatments and control for the number of

trucks, the warehouses visited per truck, and the warehouse capacity. The

differences are also significant (adjusted R2 = 0.77, p < 0.001). Table B.1 in

Appendix B (supplementary material) provides average waiting times per

loading ramp for all treatment combinations. Note that in our simulations

we analyze very broad set of demand scenarios, some with very low waiting

times, but also some extreme cases with waiting times up to a working day.
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We want to study the waiting time savings in all these different scenarios.

Note that the waiting time reductions reported are based on averages

for all carriers across scenarios. Winners in the allocation, i.e., carriers

who receive one of the bundles of time slots at warehouse loading docks,

would ideally have no waiting time at all. Due the fact that there are

stochastic travel and service times also winners have some waiting time in

the simulation. For example, if the carrier with a reservation has not yet

arrived, but another carrier without a reservation is at the loading dock,

then the one without reservation would be processed. If the carrier with

reservation arrives later, he needs to wait until the one without reservation

is finished (no preemption). These waiting times of winners were very low,

however.

Result 2. Computing an optimal solution to the deterministic WDP is in-
tractable for larger problem sizes (with more than 200 trucks and 4 ware-
houses per truck in our experiments). In contrast, MAXCU and the near-
optimal solutions for Core0.2 could be computed in less than two minutes on
average even for more than 500 trucks and 6 warehouses per truck.

The computation of optimal solutions assuming complete information

via a mixed integer programming approach is time consuming and requires

large amounts of RAM. We computed optimal allocations (OPT) only for

the environments with 200 trucks and 4 warehouses. While the average

computation times were around 45 seconds, some instances took several

minutes even for these instances with small size. In contrast, MAXCU and

Core0.2 could be computed in less than 10 seconds for these instances (see

Table 3). Overall, MAXCU was remarkably fast for the instances used in

our experiments.

mechanism avg. max.

MAXCU 5.79 7.33
Core0.2 5.39 7.33
OPT 45.51 260.85

Table 3: Computation times (in seconds) for 200 trucks and 4 warehouses per truck.

Table B.2 in Appendix B (supplementary material) provides average and

maximum computation times per number of trucks and warehouse capacity.

There are some small problem sizes, where even the computation of near-

optimal solutions (Core0.2) takes much longer than the polynomial time
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algorithm MAXCU, which is due to the fact that the underlying optimization

problem is NP-hard and we use a branch-and-cut algorithm. Even for a

duality gap of 20%, the computation times can vary a lot.

For larger problem instances with 300 trucks as well as 200 trucks and

5–6 warehouses per truck, we were not able to compute all optimal solu-

tions and got out-of-memory exceptions, while we could always compute

the MAXCU and Core0.2 solutions within about two and five minutes re-

spectively (see Table 4), which is a considerable advantage over an exact

optimization approach. On computing nodes with less computational per-

formance (two 10-core CPUs Intel Xeon E5-2660 v2) but 240GB of RAM,

we were able to solve some (but not all) of the scenarios for 200 trucks and

5 warehouses per truck to optimality, which took more than 13 hours to

compute. That is, from the 5 scenarios with randomly drawn locations for

warehouses and carriers, we were able to solve a single one for the optimal

allocation mechanism in about 13.25 hours, while others failed due to limited

RAM of our computing nodes (240GB).

number of
trucks

warehouses
per truck

warehouse
capacity

mechanism avg. max.

50 {4,5,6} {1,2,3} MAXCU 1.58 3.36
50 {4,5,6} {1,2,3} Core0.2 25.58 226.60

100 {4,5,6} {2,3,4} MAXCU 3.99 8.48
100 {4,5,6} {2,3,4} Core0.2 4.34 28.30
200 {4,5,6} {3,4,5} MAXCU 11.18 25.40
200 {4,5,6} {3,4,5} Core0.2 12.54 36.00
300 {4,5,6} {5,7,9} MAXCU 20.59 42.47
300 {4,5,6} {5,7,9} Core0.2 34.82 98.02
400 {4,5,6} {6,8,10} MAXCU 31.45 62.75
400 {4,5,6} {6,8,10} Core0.2 58.01 144.41
500 {4,5,6} {9,12,15} MAXCU 47.59 92.24
500 {4,5,6} {9,12,15} Core0.2 116.95 299.85

Table 4: Computation times (in seconds) for MAXCU and Core0.2 mechanisms.

At the same time the waiting time savings of MAXCU were almost as

high as those computing an optimal allocation. In Table 5 we compared the

waiting time savings for those experiments with 200 trucks and 4 warehouses

per truck. The average savings for MAXCU were 65.36 minutes (17.48%)

per tour, while those for the optimal allocation were 79.64 minutes (21.30%)
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with the “no coordination” as a baseline.

mechanism
avg.
waiting
time

avg. diff.
no coord.

no coord. 373.89
FCFS 349.12 24.77 (6.62%)
MAXCU 308.53 65.36 (17.48%)
Core0.2 300.69 73.20 (19.58%)
OPT 294.25 79.64 (21.30%)

Table 5: Waiting times (in minutes) per tour for 200 trucks and 4 warehouses per truck
and average saving in times compared to no coordination.

To better understand the average problem sizes solved, Table 6 provides

the average total number of reported preferences and the average number

of preferences per truck in the experiments. We also report the average

number of winning carriers across all treatments. Table B.3 (Appendix B,

supplementary material) provides details on reported preferences for tours

and winning carriers per number of trucks and warehouse capacity.

number of
trucks

warehouses
per truck

mechanism
avg. no.
pref.

avg. no.
winners

avg. no.
pref. p. truck

avg. no.
win. p. truck

50–500 {4, 5, 6} MAXCU 2117.31 120.70 8.19 0.50
50–500 {4, 5, 6} Core0.2 2117.31 111.31 8.19 0.45

200 {4} MAXCU 1045.67 81.67 5.23 0.41
200 {4} Core0.2 1045.67 74.87 5.23 0.37
200 {4} OPT 1045.67 89.20 5.23 0.45

Table 6: Average numbers of reported preferences for tours and winning carriers.

Result 3. The percentage of time slots with capacity violations in MAXCU
ranges from averages of 6.00 to 10.28% depending on the size of the scenario.
However, these violations were small relative to the capacity available, rang-
ing from average values of 1.23 to 4.60% for different sizes of scenarios.

While computable in polynomial time, one of the downsides of MAXCU

is that some of the capacity constraints can be violated. Table 7 shows the

average number of capacity violations in absolute numbers and relative to

the number of time slots available overall. The column “avg. sum viol.”

takes into account not only the number of time slots where the capacity was

violated, but also how much it was violated and sums up these violations.
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This column is expressed relative to the total capacity available in column

“% of capacity”. Overall, the level of violations is small and a planner

could take such levels into account when setting the capacity levels in the

optimization.

number of
trucks

warehouses
per truck

warehouse
capacity

avg.
no. viol.

% of
time slots

avg.
sum viol.

% of
capacity

50 {4, 5, 6} {1, 2, 3} 35.99 6.00 42.08 4.60
100 {4, 5, 6} {2, 3, 4} 45.74 7.62 56.77 3.55
200 {4, 5, 6} {3, 4, 5} 59.37 9.89 79.66 3.50
300 {4, 5, 6} {5, 7, 9} 57.53 9.59 79.45 2.05
400 {4, 5, 6} {6, 8, 10} 61.67 10.28 86.60 1.90
500 {4, 5, 6} {9, 12, 15} 59.10 9.85 83.42 1.23

Table 7: Overview of supply constraint violations.

Result 4. Payments by carriers in a VCG auction are very low. In core-
selecting auctions (Core0.2) the payments are almost as high as if carriers
had to pay their bid.

The randomized matching mechanism MAXCU does not incure pay-

ments by the carriers. Payments by carriers for reservations can be a sig-

nificant barrier to adoption in a low-margin business. Table 8 provides an

overview of the average auctioneer revenue and the average payments per

carrier assuming different payment rules. The pay-as-bid values in the first

line in the table denote the sum of the values in the optimal allocation for

a pay-as-bid pricing rule using near-optimal allocations. Obviously, there

is no reason to believe that carriers would bid truthful in such an auction,

but it is a good baseline to compare other payment rules against. We also

computed VCG payments, but adapted the payments such that they could

not be negative or above the bid. The average VCG revenue and payments

are very low, but they show a high standard deviation in comparison to

other payment rules. The revenue raised via the core-selecting payment rule

is much higher than that in the VCG mechanism and close to the pay-as-bid

payments. The competition in our scenarios led to many core constraints

and core violations of the VCG mechanism.

4. Conclusions

Congestion at loading docks of retail warehouses is a substantial problem

in retail transportation logistics and an example of coordination problems as

23



revenue payment
mechanism avg. std. dev. avg. std. dev.

Pay-as-bid (Core0.2) 1024.02 621.85 11.67 1.29
VCG (Core0.2) 55.09 142.70 0.63 2.63
Core (Core0.2) 885.65 532.60 10.16 3.88

Table 8: Auctioneer revenue and payments by carriers (in monetary units).

they often arise in logistics and beyond. The problem is due to the fact that

carriers optimize locally, but there is no coordination among the carriers

leading to globally suboptimal allocations of warehouse capacities and long

waiting times for carriers at loading docks.

Incentive-compatible mechanisms for hard allocation problems of this

sort were long considered illusive. However, recent research has shown a

way how randomization can be used to effectively address incentives of

carriers to report truthfully, computational costs of the mechanism, and

feasibility of the resulting assignment. We draw on a framework for ran-

domized matching mechanisms, MAXCU, recently introduced by Nguyen

et al. (2016), which strikes a balance between these design desiderata and

adapt it to our retail logistics problem. MAXCU provides a significant con-

tribution to mechanism design theory, but the theoretical results on asymp-

totic incentive-compatibility and feasibility reveal little about the average

case waiting time reduction, capacity violations, and actual computation

times we can expect in a realistic environment such as our logistics problem.

Therefore, we report the results of numerical experiments in which we draw

on data from a real-world logistics network. We analyze environments with

several hundred trucks and show that the efficiency gains (waiting time sav-

ings) can be substantial. In our results we compare the randomized matching

mechanism to an auction mechanism with a core-selecting payment rule that

was adapted for near-optimal computations of the assignment problem, and

to a first-come, first-served rule. There is a trade-off between the capac-

ity violations incurred by MAXCU and possibly high payments resulting

from an auction mechanism. It turns out that the capacity violation with

MAXCU are low and the waiting time reductions close to those achieved

with the auction mechanism. In contrast, the first-come, first-served policy

only leads to a small improvement in waiting times. If the platform provider

allows for a large enough duality gap when computing the assignment prob-
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lem with a branch-and-cut algorithm, the computation times for the auction

mechanism in our scenario are as fast as those of MAXCU. In summary, if

payments by the carriers were not a concern, then a near-optimal auction

provides an alternative. However, in a low-margin logistics business the ran-

domized MAXCU mechanism provides a compelling alternative to auctions,

which runs in polynomial time and has surprisingly high time savings and

at no cost to the participants. As any experimental research, also this

paper has limitations. We analyze characteristic environments with various

parameter settings, but for specific applications there will always be differ-

ences to the underlying network and in various assumptions and parameters

of our simulation. In addition, the behavior of carriers in logistics networks

without coordination can differ in the field. For example, carriers often have

historical information about waiting times, which they can factor into their

tour planning. This is difficult to simulate and the problem that carriers

have is akin to that of the Kolkata Paise Restaurant problem (Chakrabarti

et al., 2009). If every carrier responds to historical information, waiting

times can be at the same level as if no carrier responded with congestion

at different nodes, and it is far from obvious which and how many carriers

should consider this information without a central coordination mechanism.

Overall, our analysis illustrates that for a realistic environment and a

large number of parameter settings the average gains in waiting time by the

randomized MAXCU mechanism are substantial, that it achieves high com-

putational and allocative efficiency, is incentive-compatible and envy-free,

and does not even require payments by the participants, which is important

for the adoption in practice.
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Appendix A. Additional Treatments

Appendix A.1. Uniformly distributed travel times

To investigate the effect of the distributional assumptions, we conducted

additional experiments with a uniform distribution and ran the experiments

for 100 and 400 carriers. Note that for different travel time distributions,

preference and computation times did not change in our experiments, be-

cause carriers use expected values that did remained constant across exper-

iments with different distributions. Hence, we only report the waiting times

in Table A.9.
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number of
trucks

warehouses
per truck

warehouse
capacity

mechanism
avg.
waiting
time

avg. diff.
no coord.

100 {4,5,6} {2,3,4} no coord. 265.97
100 {4,5,6} {2,3,4} FCFS 250.45 15.52 (5.84%)
100 {4,5,6} {2,3,4} MAXCU 226.51 39.46 (14.84%)
100 {4,5,6} {2,3,4} Core0.2 215.06 50.91 (19.14%)
400 {4,5,6} {6,8,10} no coord. 477.53
400 {4,5,6} {6,8,10} FCFS 437.51 40.02 (8.38%)
400 {4,5,6} {6,8,10} MAXCU 371.15 106.38 (22.28%)
400 {4,5,6} {6,8,10} Core0.2 361.74 115.79 (24.25%)

Table A.9: Waiting times (in minutes) per tour and average saving in times compared to
no coordination for all carriers with uniformly distributed travel times.

Appendix A.2. 8 and 12 warehouses

To explore low- and high-supply scenarios, we conducted additional ex-

periments for 100 and 400 carriers each with 8 and 12 warehouses. Table

A.10 shows the average waiting time for the FCFS, MAXCU, and Core0.2

mechanisms as well as the differences to the treatments with no coordination

for these additional experiments. In contrast to the additional treatments re-

garding the distributional assumptions, computation times and supply con-

straint violations are different from our initial experiments; they are shown

in Tables A.11 and A.12.

number of
trucks

number of
warehouses

warehouses
per truck

warehouse
capacity

mechanism
avg.
waiting
time

avg. diff.
no coord.

100 8 {4, 5, 6} {2, 3, 4} no coord. 391.56
100 8 {4, 5, 6} {2, 3, 4} FCFS 368.84 22.72 (5.8%)
100 8 {4, 5, 6} {2, 3, 4} MAXCU 324.81 66.75 (17.05%)
100 8 {4, 5, 6} {2, 3, 4} Core0.2 319.31 72.25 (18.45%)
100 12 {4, 5, 6} {2, 3, 4} no coord. 204.72
100 12 {4, 5, 6} {2, 3, 4} FCFS 192.89 11.83 (5.78%)
100 12 {4, 5, 6} {2, 3, 4} MAXCU 176.50 28.22 (13.78%)
100 12 {4, 5, 6} {2, 3, 4} Core0.2 163.29 41.43 (20.24%)
400 8 {4, 5, 6} {6, 8, 10} no coord. 671.82
400 8 {4, 5, 6} {6, 8, 10} FCFS 620.93 50.89 (7.57%)
400 8 {4, 5, 6} {6, 8, 10} MAXCU 533.60 138.22 (20.57%)
400 8 {4, 5, 6} {6, 8, 10} Core0.2 525.14 146.68 (21.83%)
400 12 {4, 5, 6} {6, 8, 10} no coord. 362.94
400 12 {4, 5, 6} {6, 8, 10} FCFS 330.09 32.85 (9.05%)
400 12 {4, 5, 6} {6, 8, 10} MAXCU 278.98 83.96 (23.13%)
400 12 {4, 5, 6} {6, 8, 10} Core0.2 269.54 93.4 (25.73%)

Table A.10: Waiting times (in minutes) per tour and average saving in times compared
to no coordination for all carriers with 8 and 12 warehouses.
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number of
trucks

number of
warehouses

warehouses
per truck

warehouse
capacity

mechanism avg. max.

100 8 {4,5,6} {2,3,4} MAXCU 2.85 5.54
100 8 {4,5,6} {2,3,4} Core0.2 3.00 12.06
100 12 {4,5,6} {2,3,4} MAXCU 5.39 15.21
100 12 {4,5,6} {2,3,4} Core0.2 7.43 52.63
400 8 {4,5,6} {6,8,10} MAXCU 29.23 63.63
400 8 {4,5,6} {6,8,10} Core0.2 38.30 91.52
400 12 {4,5,6} {6,8,10} MAXCU 38.46 75.78
400 12 {4,5,6} {6,8,10} Core0.2 72.82 181.32

Table A.11: Computation times (in seconds) for MAXCU and Core0.2 mechanisms with
8 and 12 warehouses.

number of
trucks

number of
warehouses

warehouses
per truck

warehouse
capacity

avg.
no. viol.

% of
time slots

avg.
sum viol.

% of
capacity

100 8 {4,5,6} {2,3,4} 41.89 8.73 53.17 4.11
100 12 {4,5,6} {2,3,4} 50.32 6.99 62.32 3.26
400 8 {4,5,6} {6,8,10} 53.71 11.19 77.39 2.11
400 12 {4,5,6} {6,8,10} 68.36 9.50 94.09 1.74

Table A.12: Overview of supply constraint violations with 8 and 12 warehouses.
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