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Abstract

Due to the lasting growth in air traffic, many international airports
have reached their capacity limits. Access to major airports is granted
through the assignment of airport time slots. Current practices of allo-
cating these time slots via grandfathering are widely regarded as inefficient
by experts. New market mechanisms need to take into account synergis-
tic valuations of airlines for departure and arrival time slots, as well as
financial constraints of the participating airlines for the many time slots
available. Unfortunately, computing core-stable outcomes in such envi-
ronments is Σp

2-hard. Such problems are typically considered intractable.
We introduce bilevel integer optimization models for airport time slot
trading and compute core-stable outcomes, i.e. allocations and prices
such that no coalition can beneficially deviate. Interestingly, despite the
computational hardness of the underlying problem numerical experiments
show that instances of practically relevant size can be solved in due time.
The proposed market design provides a solution that addresses the spe-
cific constraints of airport time slot markets, a precondition for adoption
in the field.

1 Introduction
Air traffic has grown dramatically in the past decades and is still expected
to rise in the future. In fact, the widely used commercial market outlook by
Boeing for the next twenty years predicts passenger flow by air travel in Europe
and North America to double and flow in China to more than triple (Boeing,5

2019). This continuing increase in traffic has made airport capacity a very scarce
resource at major airports. The lack of airport capacity is a constraint for the
development of air traffic because building of new runways is strongly limited
due to cost, land availability, or political reasons. Therefore, the efficient use of
scarce airport resources is important. We will refer to the “efficient” or “welfare-10

maximizing” allocation as the one that maximizes the gains from trade, i.e. the
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difference between what the buyers are willing to bid and the sellers are asking
for subject to allocation and budget constraints. This is a reasonable objective
as it treats all market participants equally.

The design of efficient trading mechanisms is challenging, however. It re-15

quires the consideration of preferences for packages of time slots, but also allo-
cation and budget constraints of airlines to achieve welfare-maximizing, stable
outcomes for all participants, as we will discuss below. Importantly, the bidding
language needs to be simple and allow bidders to express their preferences and
constraints in a parsimonious way. Unfortunately, the combination of these20

desiderata leads to a computationally very hard market design problem. Let
us first give an overview of the state-of-the-practice before we then introduce
market design challenges and our contribution.

1.1 Current Practice
Almost all European airports and three major US airports use slot allocation25

systems based on the IATA (International Air Transport Association) guidelines
(Ball et al., 2018). A slot at an airport is defined as a time interval available for
the arrival or departure of a flight. Airports declare their capacity in number
of available slots per hour, where the number of slots reflects the amount of
air traffic an airport can handle in the specified time frame. Then, slots are30

allocated in two steps.
In the primary allocation, which takes place twice a year, slots for the up-

coming summer or winter season are allocated from airports to airlines in Eu-
rope. Slots are first allocated according to grandfather rights. Airlines only
lose these rights in case slots are underutilized. Half of the underutilized slots35

are distributed to new entrants. The remaining slots are allocated to interested
airlines regardless of market position. Due to the limited number of slots, in-
cumbent airlines want to keep these slots. An example of inefficiency in the
allocation is the occasional practice of ”babysitting” slots, in which airlines only
use them for the minimum required amount in order to retain their grandfa-40

ther rights Ball et al. (2018). Actually, some airlines organize ghost flights
with empty seats just not to lose valuable airport time slots (Mirror, 2018).
Grandfather rights make it hard for newcomers to enter the market and com-
pete with major carriers. Currently only three airports in the U.S. (JFK, LGA,
DCA) are slot constrained, but this number can grow as air traffic increases.45

Under the current system, the slots at slot-controlled airports are allocated by
a central coordinator (or facilitator). In Europe, there is one coordinator per
country, responsible for this country’s slot allocation. Research on efficiently
allocating slots without implementing market-based mechanisms has put varied
emphasis on simultaneous allocation at several airports (Pellegrini et al., 2017),50

fast heuristics (Benlic, 2018), fairness (Fairbrother et al., 2020), or adherence
to IATA regulations (Fairbrother et al., 2020), we refer the interested reader to
the respective publication.

Secondary slot trading has been taking place at US airports since 1986 for
logistical reasons. Airlines often swap slots or lease them out, because they are55
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hard to re-acquire. The main difference between Europe and the United States
is that monetary exchange is not permitted in Europe. In spite of European
regulations, in 1999 the High Court of the United Kingdom authorized some
transactions of slots involving monetary compensations and opened the way to
a grey market operating at UK airports (Condorelli, 2007). However, partic-60

ipation in these secondary markets is low (De Wit et al., 2007). Currently,
secondary trading only occurs through bilateral bargaining. Bilateral bargain-
ing might enhance efficiency, but for a welfare-maximizing allocation all bids
and asks and all constraints need to be considered.

Ball et al. (2018) discuss primary markets and argue that “it [is] clear that65

current slot allocation policies do not encourage allocating slots to their highest
and best use, and in some respects actually discourage it.” There are similar
arguments for the use of market mechanisms for secondary trading (Dot Econ,
2001; Pellegrini et al., 2012). In fact, the secondary market is the only part of
the allocation process where market-based instruments are permissible under70

current EU regulations (Odoni, 2020).
Despite widespread support and arguments in favor for market mechanisms,

IATA has stated that it “would oppose any consideration of market-based pri-
mary slot allocation mechanisms” since there is no “no clear indications that
such mechanisms improve the utilization of already-congested airport capacity75

or provide benefits to improving customer experience and choice in connectivity
and fares” (IATA, 2016). Although one might or might not agree to this state-
ment, it does not include secondary trading which in the most recent IATA fact
sheet is considered “a better solution than primary auctions” as it “provides for
some flexibility in the system and allows slots to be traded which may allow new80

entrants or new routes to more in-demand destinations” (IATA, 2020). While
we focus on markets for secondary slot trading in this paper, we note that the
mechanisms can also be adapted for primary slot allocation if desired.

1.2 Market Design Challenges
Although it is widely accepted that “market mechanisms would improve al-85

locative efficiency” (Madas and Zografos, 2010), the design of such markets is
considered very challenging. This constitutes a major barrier to the adoption
of market-based solutions. Jones et al. (2004) write:

· · · auctions of 10% of slots, combined with secondary trading could,
in theory, achieve the most efficient allocation of slots possible. But90

in practice, many of the auctions are likely to be so complex, both
for auction organizers and for airlines bidding for slots, that it is
probably unlikely that an efficient allocation of slots will emerge
from this process.

An obvious source of complexity is the need for package bids: a takeoff95

slot at a flight originating airport is only valuable with a landing slot at the
flight destination airport. We will refer to such packages as slot pairs for a
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“connection” between two airports. As a consequence, combinatorial exchange
mechanisms have long been proposed for the primary allocation of airport time
slots (Rassenti et al., 1982; Cramton et al., 2002; Ball et al., 2006, 2007; Castelli100

et al., 2011; Pellegrini et al., 2012; Ball et al., 2018). Combinatorial exchanges
not only allow for the expression of package bids, but regulators can also enforce
various allocation and market share constraints. The latter are important if the
market is dominated by a few strong airlines and competition in the down-
stream market is at risk (De Wit and Burghouwt, 2008). Ball et al. (2018)105

provide an excellent summary of the advantages of combinatorial markets for
airport time slots over congestion pricing and administrative slot controls (e.g.,
grandfathering).

Most proposals for airport time slot auctions assume a fully enumerative
XOR bid language as it is also standard in spectrum auction design (Bichler and110

Goeree, 2017). In such a bid language, airlines can submit bids on all possible,
exponentially many, packages of slots, and at most one of these packages can
win. This bid language can express general valuations with substitutes and
complements. For example, in 2008 the U.S. Federal Aviation Administration
(FAA) proposed a single-round combinatorial auction for 10% of the slots at all115

three New York Airports (i.e., 32-34 slots per airport). The proposed market
design also used an XOR bidding language where bidders could only win one
out of 2000 bids that they could submit. Such limit on the number of bids
are used to guarantee computational tractability, because the resulting winner
determination problem is NP-hard (Lehmann et al., 2006).120

1.2.1 Bidder-Optimal Core-Selecting Payments

In addition prices in the FAA proposal should be computed as bidder-optimal
core-selecting prices (Day and Raghavan, 2007). The core is the most impor-
tant stability concept in game theory, and core-selecting prices are such that
no coalition of buyers and sellers (i.e., also an individual) has an incentive125

to deviate from the outcome of the auction. The well-known Vickrey-Clarke-
Groves mechanism is incentive-compatible for purely payoff-maximizing bidders,
but not always in the core, which can lead to very low revenue and outcomes
that are considered unfair by participants (Ausubel and Milgrom, 2006). In
other words, it can easily happen that a winning buyer for a set of slots has130

to pay less than what one or more losing buyers were willing to pay for these
slots. This is the reason, why bidder-optimal core-selecting payment rules are
nowadays the de facto standard for combinatorial auctions used by governments
world-wide to sell spectrum licenses (Bichler and Goeree, 2017). Bidder-optimal
core-selecting payments are arguably the most promising rule for airport time135

slots and other large combinatorial auction applications (Goetzendorff et al.,
2015), and they extends the traditional concept of a competitive equilibrium
to combinatorial markets (Bikhchandani and Mamer, 1997). Importantly, the
Vickrey-Clarke-Groves mechanism loses its properties in multi-object auctions
with budget constraints (Dobzinski et al., 2008) that we analyze, while we can140

still compute core-selecting outcomes as we will show. Just, the computation is
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computationally very hard.
The planned 2008 auction by the FAA was not implemented1 due to resis-

tance of airlines against slot trading in general,2 but the design highlights the
importance of package bids and core stability in markets for airport time slots.145

1.2.2 Bid Languages and Budget Constraints

While the XOR bid language might be an option for small markets with three
airports only as in the FAA design, it quickly becomes impractical for larger
markets. The first reason is related to communication complexity (Nisan and
Segal, 2006). With 6 airports and 30 slots per airport an airline could already150

bid on 887 million packages of slots. Those packages for which a bidder does
not submit a bid are treated as if the bidder had no value for them. This is also
referred to as the ’missing bids’ problem, which can lead to enormous welfare
losses (Bichler et al., 2014). Second, if bidders bid on many thousand packages,
then the allocation problem easily becomes intractable.155

A simple either-or (OR) bid language allows bidders to specify their pref-
erences for many connections one-by-one and it reduces the number of bids
substantially compared to an XOR language where only one package can win.
Airlines can now win more than one package bid. Some of these bids might be
substitutes, such as multiple slot pairs for the same connection. Simple exten-160

sions of the bid language can make sure that only one of these substitutes slot
pairs can win (Nisan, 2006). However, given the many possible connections,
the consideration of budget constraints becomes essential for airlines. In par-
ticular smaller airlines might not be able to pay up to their net present value
for all packages they can win in an OR language, but they can only pay up165

to a budget constraint as is highlighted by several authors.3 Actually, given
the many package bids that airlines need to submit for individual connections
between airports it is very hard to submit them in a way that their budget is
not exceeded as the market prices are not known a priori. Note that if bidders
only submitted budget-capped valuations, then the auctioneer does not know170

the true valuations and will not be able to maximize total welfare and achieve
stability. Let us illustrate the problems that can arise in an example.

Consider three airlines A,B, and C. Let (NY1, CH) be a possible connection
using a starting time slot NY1 and landing time slot CH and let (NY2, LA) be
another possible connection using starting time slot NY2 and a landing time slot175

LA. The valuation of the airlines over these slots and the budget of airlines are
given as in Table 1. In reality, airlines bid for a much larger number of possible
connections in order to maximize their expected payoff considering their budget

1https://www.gao.gov/products/B-316796, accessed: 2020-03-30
2https://www.nytimes.com/2007/02/18/nyregion/18laguardia.html, accessed: 2020-03-

30
3Harsha (2009) writes that “an aspect of airport slot market environments, which we argue

must be considered in auction design, is the fact that the participating airlines are budget-
constrained.” Also, Cramton et al. (2002) motivate the importance of budget constraints in
their proposal for a combinatorial airport time slot auction.
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and capacity constraints (e.g., the number of planes available). Airline A has
high value for both connections but is constrained by its budget.180

Airline (NY1, CH) (NY2, LA) Budget
A 5 5 7
B 4 0 4
C 0 4 4

Table 1: Example for three airlines and two possible connections where one
airline is constrained by its budget. Numbers describe net present values in
millions of dollars.

Suppose the airlines bid truthfully on the individual connections, but they
cannot express their budget constraints. A market clearing price considering
only the bids would require airline A to make a payment of at least 8 for both
connections. Since this is above A’s budget, the airline incurs a loss. If, on
the other hand, airline A only submits bids up to 7 in total, it needs to decide185

how to shade its bids for each of the connections. If A shades its bids equally
to 3.5, then it will not win any of the connections. This leads to an inefficient
allocation of slots with a welfare of 8 whereas any allocation where A gets
one of the connections and a competitor gets the other one has a welfare of
9. Airlines do not have complete information about the bids of others as in190

our complete information example. Shading bids appropriately would require
an unreasonable amount of information about the valuations of others, and it
makes bidding strategically challenging. Note that an airline with multiple bids
might not want to bid beyond its net present value of a connection. For example,
if airline A bids 10 for the connection (NY1, CH) rather than its true net present195

value of 5, it could win this connection at 7 and make an effective loss of 2.
The simple example illustrates that even in such a small stylized market,

bidding is strategically hard without the possibility to communicate budget
constraints, and it can easily lead to outcomes that are neither individually
rational (such that airlines make a loss) nor allocatively efficient (i.e., they do200

not maximize welfare). These effects illustrated in this example are amplified
in larger markets, as we show in our paper.

Ideally, the auctioneer takes budget constraints into account and computes
an allocation and prices such that no coalition of airlines could deviate, but that
the gains from trade (i.e., welfare) are maximized subject to these constraints.205

This makes bidding simple for airlines and maximizes welfare subject to all rel-
evant constraints. Unfortunately, the computation of welfare-maximizing out-
comes in a combinatorial market with budget-constrained bidders is a Σp

2-hard
optimization problem in general (Bichler and Waldherr, 2019). Σp

2 problems are
significantly harder to solve than NP-hard problems. Roughly, even if we had210

access to an efficient procedure that solves NP-hard subproblems, it would still
not be possible to design a polynomial-time algorithm that solves a Σp

2-hard un-
less P=NP. While NP-hard problems are widely studied and there are effective
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computational techniques to solve them, Σp
2-hard problems are rarely analyzed

and there are no general-purpose solvers as there are for integer programs.215

1.3 Contributions
The fact that computing market equilibria can be computationally so hard is an
important insight and relevant to the design of markets for airport time slots.
One would think that even with today’s computing power we cannot expect to
solve real-world problems in this complexity class. This paper demonstrates that220

we can hope for market designs that are core-stable, respect budget constraints
and maximize welfare. The OR bid language in combination with allocation
and budget constraints limits the number of bids that airlines need to submit
and effectively addresses the communication complexity and the missing bids
problem for bidders.225

We contribute appropriate optimization models for primary and secondary
airport time slot markets and effective column- and constraint-generation algo-
rithms that leverage the specifics of the airport time-slot problem. Extensive
experimental evaluation based on the widely used and publicly available CATS
instance generator (Leyton-Brown et al., 2000) provide evidence that in spite of230

the fundamental computational hardness of these problems, we can solve prob-
lem sizes that are relevant for the field. This provides a new market design for
airport time slots with design desiderata that were so far considered impossible
to achieve. The fact that it is possible to consider these complex constraints in
a market-based allocation of airport time slots can be a central argument for235

the adoption of airport time slot auctions in practice.
The paper is structured as follows. In Section 1.4, we discuss related lit-

erature on airport congestion management. In Section 2.2, the mathematical
model is presented and the mechanism to allocate airport time slots and derive
prices is introduced in Section 3. We evaluate our mechanism in Section 4 before240

drawing conclusions in Section 5.

1.4 Airport Congestion Management
The past few decades have have led to significant research on airport congestion
management (Churchill et al., 2012; Vaze and Barnhart, 2012; Pyrgiotis and
Odoni, 2015; Gillen et al., 2016). In what follows, we provide a brief discussion of245

alternative streams in the literature. Methods to distribute slots effectively can
roughly be divided into groups of non-monetary mechanisms and mechanisms
with monetary transfer.

Adhering to current practices, researcher from the first group argue for cen-
tralised mechanisms to further optimise the allocation of slots while keeping250

changes to service levels and passenger demand minimal (Le et al., 2008; Vaze
and Barnhart, 2012). In these approaches airlines state their preferred time
for take-off/landing and specify a time interval within which displacement is
acceptable. Subsequently an optimization method is applied to find a fea-
sible allocation that minimizes some displacement metric (e.g., total sum of255
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displacements, number of refused requests, average displacement per airline).
Differences within this group can be found in regard to scope (single or mul-
tiple airports), modelling of airport capacity (deterministic or stochastic), and
methods applied (linear programming or heuristics) (Koesters, 2007; Castelli
et al., 2011; Corolli et al., 2014; Zografos et al., 2012). Recent contributions260

include fair distribution of shifted flights (Jacquillat and Vaze, 2018) and the
use of meta-heuristics (Castelli et al., 2011; Ribeiro et al., 2019). Zografos et al.
(2017) provide an extensive study on the latest results.

The second group argues in favour of market mechanisms where monetary
transfers are used to elicit preferences or promote desirable behaviour. We265

need to distinguish between congestion pricing and auctions or exchanges, both
of which are market mechanisms, but different in how prices are determined.
Congestion pricing aims to price the marginal social cost of delays, i.e. making
an airline pay the cost of the delays it caused. Carlin and Park (1970) provided
one of the earliest articles on congestion pricing in the airport time slot context270

albeit on a very simple setting with only one runway and constant demand.
The main difference to road congestion pricing lies in the nature of the user.
Drivers can be considered truly atomistic users, but the same is not true for
airlines which typically operate several flights on the same airport resulting in
a greater internalization of social costs. However, recent empirical evidence is275

mixed (Ater, 2012; Morrison and Winston, 2007; Daniel and Harback, 2008).
The main question is how to elicit cost internalization (Daniel, 1995).

Market mechanisms such as auctions and exchanges are a way to elicit pref-
erences of airlines systematically. Various proposals for combinatorial trading
of airport time slots have already been discussed in the introduction. An up-to-280

date discussion of auctions and alternative means of allocating airport time slots
can be found in Ball et al. (2018). They introduce basics of the market design
for airport time slot markets including the product definition, the need for pack-
age bids, allocation and market share constraints, auction frequency, and the
consideration of grandfather rights. Our paper draws on these considerations285

and earlier research on market design for airport time slot auctions (Rassenti
et al., 1982; Cramton et al., 2002; Ball et al., 2006, 2007; Castelli et al., 2011;
Pellegrini et al., 2012; Ball et al., 2018). For example, Pellegrini et al. (2012)
provide an interesting design for a combinatorial secondary market with an
XOR bid language, while Ball et al. (2007) propose an ascending clock-proxy290

auction, similar to what is nowadays being used in spectrum auctions (Bichler
and Goeree, 2017). Such designs with an XOR bid language suffer from the
missing bids problem and are limited to small applications with a few airports
only. Besides, even with an XOR language an auctioneer cannot guarantee
welfare maximization if he does not know the values and budget constraints.295

We propose a simple OR bidding language that allows airlines to express
additional (exclusive-or) allocation constraints, their budget limits and values
for individual connections and win several of these slot packages. Substitutes
connections can easily be excluded with the exclusive-or constraints, and budget
constraints make sure that bidders do not have to pay more than they can afford.300

This makes bidding simple for airlines also in larger applications, but it leads

8



to a Σp
2-hard optimization problem for the auctioneer. We provide a market

design and algorithms and show that realistic problem sizes can be solved.
A note on strategic manipulation is in order. There is a large literature on

incentive-compatibility in auction markets. It is well-known that the Vickrey-305

Clarke-Groves (VCG) mechanism is the unique design that is incentive-compatible
in dominant strategies (Green and Laffont, 1979). However, the VCG mecha-
nism assumes pure quasi-linear preferences where participants maximize payoff
and they do not have budget constraints. Unfortunately, it was shown that the
addition of budget constraints does not allow for incentive-compatible mech-310

anisms (Dobzinski et al., 2008). Even if we assume that there are no bud-
get constraints, the VCG mechanism is no option in exchanges, because it is
not budget-balanced. Actually, Myerson and Satterthwaite (1983) showed that
there is no efficient way for two parties and in two-sided markets to trade when
they each have private and probabilistically varying valuations, without the risk315

of forcing one party to trade at a loss. These results are important for smaller
markets with only a few participants. In large markets (with many items and
bidders) the power of participants to manipulate prices is small (Roberts and
Postlewaite, 1976). Therefore, complete information models where participants
are price takers are standard in competitive equilibrium theory (Bikhchandani320

and Mamer, 1997; Bikhchandani and Ostroy, 2002; Baldwin and Klemperer,
2019). This is also a stantard assumption in the study of large markets such
as electricity or financial markets where individuals can be assumed to be price
takers.

2 Model325

Let us now introduce a bilevel integer optimization problem for the computa-
tion of welfare-maximizing and core-stable allocations and prices that respect
allocation and budget constraints. We draw on basic results by Bichler and
Waldherr (2019) but leverage the specific conditions in secondary markets for
airport slot trading.330

To reach an outcome which is core-stable, we need to ensure that no coali-
tion of bidders (buyers and sellers) could reach a more efficient outcome for
themselves by only trading among each other. If that was the case, bidders
would prefer the outcome of a decentralized mechanism over participating in
the centralized market. To ensure core-stability, the allocation and prices must335

be chosen in a way such that no such coalition of bidders exists. This can be
modeled through bilevel programming which we will introduce in Section 2.1.
In the bilevel program, the allocation problem is solved in the upper level, while
potential coalitions of bidders are modeled within the lower level. In Sections 2.2
and 2.3 we will show how bilevel programming can be used to model secondary340

markets for airport slot trading, while in Section 2.4, we describe how the model
needs to be adjusted for primary markets. To reach an outcome which is core-
stable, we need to ensure that no coalition of bidders (buyers and sellers) could
reach a more efficient outcome for themselves by only trading among each other.
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If that was the case, bidders would prefer the outcome of a decentralized mech-345

anism over participating in the centralized market. To ensure core-stability, the
allocation and prices must be chosen in a way such that no such coalition of
bidders exists. This can be modeled through bilevel programming which we will
introduce in Section 2.1. In the bilevel program, the allocation problem is solved
in the upper level, while potential coalitions of bidders are modeled within the350

lower level. In Sections 2.2 and 2.3 we will show how bilevel programming can
be used to model secondary markets for airport slot trading, while in Section
2.4, we describe how the model needs to be adjusted for primary markets.

2.1 Bilevel Programming
Bilevel linear programs are frequently used to model sequential distributed de-
cision making. In these situations, typically a leader makes the first decision
and a follower reacts after observing the leader’s decision. The follower’s action
is important to the leader as it might interfere with the leader’s objective. The
challenge of the leader is to predict the follower’s reaction and take action in
such a way that after the follower’s reaction the leader’s objective is reached to
the highest possible degree. More technically, a bilevel linear program is a linear
program that is constrained by another linear optimization problem. Usually
the first optimization problem is called the upper level problem (leader) while
the constraining problem is referred to as the lower level problem (follower).
Given an upper level solution, the lower level computes an optimal solution un-
der consideration of its respective constraints. This in turn affects the upper
level by altering the value of the objective function or violating constraints, pos-
sibly making the overall solution infeasible. Let X be the set of variables in the
upper level problem and Y be the set of variables in the lower level problem.
The general form of this problem is

max
x∈X

F (x, y) (1a)

s.t. G(x, y) ≤ 0 (1b)
min
y∈Y

f(x, y) (1c)

s.t. g(x, y) ≤ 0 (1d)

where F, f : Rn × Rm → R1, G : Rn × Rm → Rp, g : Rn × Rm → Rq are355

continuous, twice differentiable functions. Note that in MIBLP, F and f are
represented by linear objective functions of the upper and lower level, while G
and g are the respective linear constraints. X, and Y include continuous as well
as integer variables.

A bilevel program can be applied to obtain stable outcomes in combinatorial360

exchanges of goods. In this case, x is the vector of allocation and payments
that are derived by the mechanism in the upper level (the outcome of the upper
level). F (x, y) is the social welfare function that needs to be maximized (e.g.,
gains from trade) and G(x, y) contains all allocation and pricing constraints
such that the resulting outcome determined in the upper level is feasible.365
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In order to model core-stability as a constraint, possible blocking coalitions
are modeled in the lower level. The lower level constraints g(x, y) define a
feasible allocation for a possible blocking coalition which leads to a minimal
improvement d that a member of the coalition can achieve in comparison to the
upper level outcome. The lower level objective function maximizes the minimal370

improvement d.
If a coalition exists such that they could improve upon the upper level out-

come, the upper level outcome is instable. Hence, by adding the constraint
’d ≤ 0’ to the upper level, the MIBLP becomes infeasible whenever a blocking
coalition exits. If d cannot be maximized beyond 0 in the lower level, the upper375

level outcome is stable since there exists no coalition that can deviate from its
outcome such that all members in the coalition can make a profit by doing so.

In the following, we describe a bilevel program to model airport time slot
trading such that the outcome respects budget constraints and maximizes gains
from trade among all stable outcomes. We first describe the secondary slot380

market in which bidders consist only of airlines that trade endowed slots. The
primary slot market in which airlines only attend as buyers will be introduced
thereafter as a special case of this market.

2.2 Bilevel Programming for Slot Trading
Let I be the set of bidders (airlines) and K be the set of slots available in the385

exchange. A subset S ⊆ K defines a package of slots that can contain a slot
pair for single or multiple connections. For instance, a package can consist of a
sequence of slot pairs at a given time slot during the whole season.

For each S ⊆ K, vi(S) defines the true value of bidder i for package S.
For each bidder i, Bi denotes i’s budget and the set Gi defines a set of different390

flight groups i is interested in. Flight groups are comprised of similar packages of
slots for one or more connections (e.g., having the same origin and destination)
which only differ slightly in the arrival and departure slots in order to allow
for flexibility in assigning these slots. For each flight group g ∈ Gi several
bids may be placed by i, but he/she is only interested in obtaining one of the395

connections within the group. Flight groups can be used to model whether
packages of slots are substitutes for each other and allow for some flexibility
in bidding. Note that our model does not allow for any complementarities and
synergies between packages outside of flight groups. While it is possible to
incorporate these notions by additional constraints and larger packages, this400

would also lead to a significantly more complicated (and computationally more
demanding) model. However, synergies between packages are not a big issue in
primary markets: The overall operational strategy of the airline is defined by the
primary allocation and the secondary market served to make small adjustments
in order to increase the efficiency of the primary allocation. Therefore, synergies405

in relation to slots available to the airline (which are not traded in the secondary
market) can easily be reflected in the valuations for the packages that are up
for trade in the secondary market.

For all i ∈ I, S ⊆ K, let xi(S) ∈ {0, 1} define a binary variable whether i
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buys S in the upper level and let yi(S) ∈ {0, 1} define whether i sells package410

S in the upper level. For each bidder i, yi(S) are only defined for packages S
that are owned by i. Let pi ∈ R be the corresponding payment for i in the
upper level. In case pi is positive, i receives this payment in the exchange,
while he/she pays |pi| in case pi is negative. The model differs from two-sided
markets (Bichler and Waldherr, 2019) where the set of buyers and sellers are415

disjoint (i.e., bidders could not buy and sell at the same time) and implements
the (OR) bid language and constraints of the airport time slot market.

Let d ∈ R be the minimal profit of a member of a blocking coalition that
is determined in the lower level. Further, let χi(S) ∈ {0, 1} describe whether i
is assigned S in the lower level, γi(S) ∈ {0, 1} describe whether i sells S in the420

lower level and ρi ∈ R describe the payment of i in the lower level. For each
bidder we also introduce an auxiliary variable ai to keep track of whether i is
a member of the coalition blocking the upper level outcome. Then, the MIBLP
can be written as follows.

max
x,y

∑
S⊆K

∑
i∈I

vi(S) · (xi(S)− yi(S)) (CEx)

s.t.
∑
i∈I

pi = 0 (2a)∑
S:k⊆K

∑
i∈I

xi(S) ≤
∑
S⊆K

yi(S) ∀k ∈ K (2b)

pi ≥
∑
S⊆K

∑
i∈I

vi(S) · (yi(S)− xi(S)) ∀i ∈ I (2c)

− pi ≤ Bi ∀i ∈ I (2d)∑
S∈g

xi(S) ≤ 1 ∀g ∈ Gi, i ∈ I (2e)

d ≤ 0 (2f)
d = max d (Lower Level)

s.t.
∑
i∈I

∑
S⊆K

ρi(S) = 0 (2g)

∑
S:k⊆K

∑
i∈I

χi(S) ≤
∑
S⊆K

γi(S) ∀k ∈ K (2h)

ρi ≥
∑
S⊆K

∑
i∈I

vi(S) · (γi(S)− χi(S)) ∀i ∈ I (2i)

− ρi(S) ≤ Bi ∀i ∈ I (2j)
ai ≥ χi(S) ∀S ⊆ K, i ∈ I (2k)
ai ≥ γi(S) ∀S ⊆ K, i ∈ I (2l)

d ≤ M · (1− ai) +
∑
S⊆K

vi(S) (χi(S)− γi(S))+
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ρi −

∑
S⊆K

vi(S) (xi(S)− yi(S)) + pi

 ∀i ∈ I (2m)

∑
i∈I

ai ≥ 1 (2n)

χi(S), γi(S) ∈ {0, 1} ∀S ⊆ K, i ∈ I (2o)∑
S∈g

χi(S) ≤ 1 ∀g ∈ Gi, i ∈ I (2p)

ai ∈ {0, 1} ∀i ∈ I (2q)
ρi(S) ∈ R ∀S ⊆ K, i ∈ I (2r)
d ∈ R (2s)

xi(S), yi(S) ∈ {0, 1} ∀S ⊆ K, i ∈ I (2t)
pi(S) ∈ R ∀S ⊆ K, i ∈ I (2u)

(CEx) determines an outcome that maximizes the gains from trade under all425

feasible and stable outcomes. The upper level constraints include economic pric-
ing and allocation constraints such as budget balance (2a), balance of supply and
demand (2b), individual rationality (2c), and respects the budget constraints
of all bidders (2d). Buyers are allowed to state that they are not interested in
simultaneously winning more than one bid out of a group of bids Gi and specify430

multiple such groups (2e). Constraint (2f) states that the solution is infeasible
(unstable) if the lower level finds a coalition with positive deviation value d.

Given the upper level solution, the lower level problem tries to find a coalition
that can deviate in a beneficial way from the upper level. This is modeled as a
maximization problem similar to the upper level. Trades in the lower level also435

have to fulfill all economic pricing and allocation constraints (2g)-(2j).
Constraints (2k) and (2l) set ai = 1 if bidder i performs a trade in the

lower level. In this case, i is member of a blocking coalition. Constraints
(2m) models the gains from deviation for each individual bidder, comparing her
outcomes (and hence her payoff) in the upper and the lower level. Only if i ∈ I440

actually participates in a blocking coalition (i.e., when ai = 1), her difference
in payoffs should be considered. We define a very large number M such that
d is not affected by bidders that are not members of the blocking coalition.
To avoid empty coalitions with only trivial bounds on the d value a constraint
(2n) ensures that at least one participant makes a trade in the lower level. The445

corresponding domains of the upper and lower level variables are defined in (2o) -
(2u). Large coalitions are difficult for participants to form, and the computation
of the coalitional value of these small coalitions is NP-hard in general. A way to
reduce the computational burden is to limit attention to coalitions of a particular
size. Such a restriction on the coalitions reduces computational costs for the450

lower-level programs, and consequently the computation times, as we will show.

13



2.3 Discussion of Bid Language and Extensions
The MIBLP program introduced above draws on an either-or (OR) bid language
in which bidders can specify their preferences over many connections while lim-
iting the number of bids that would be necessary in XOR bid languages. In455

order to allow expressing substitutes of slots, bidders are also able to indicate
flight groups. By incorporating the additional XOR constraint (2e) in the bilevel
program, it is ensured that bidders cannot be assigned multiple conflicting slots
within the same flight group.

The bid language can easily be extended by additional features. Instead of460

modeling unique slots and requiring bidders to compose large packages if they
are interested in obtaining the same slot for a sequence of weeks, the elements
k ∈ K could directly model these sequences. This may lead to a significant
reduction in the size of the model. However, it also requires some additional
constraints in the allocation problem to assure that overlapping sequences are465

not traded (e.g. to ensure that a slot cannot be sold for the first 60% and the last
50% of the season at the same time). From an operational point of view, airlines
are particularly interested in obtaining slots that minimize their turnaround
time at airports in order to allow for time-efficient round trips between airports.
Instead of submitting bids on connections that only consist of a single departure470

and landing slot, airlines can also bid on larger packages comprised of multiple
slots that constitute such round trips. One can also allow for additional either-or
constraints among packages similar to that for flight groups or other allocation
constraints such as to enforce banking. The latter can either be introduced as
an extension to the bidding language or as a (soft) allocation constraint at hub475

airports. Introducing additional allocation constraints for the airports does not
impact the fundamental hardness of the problem, that we discuss in this paper.

2.4 Bilevel Programming for Primary Slot Trading
The MIBLP can also easily be adapted for primary slot allocation. In the
primary market, bidders no longer can buy and sell slots at the same time, but480

each bidder is either a buyer (airline) or a seller (airport). In this case, we only
define variables xi and χi for bidders i ∈ I that are buyers and only define
variables yi and γi for those bidders in I that are sellers. Otherwise, the MILP
that models the primary market is identical to (CEx). Additional constraints
that may be relevant in primary slot allocation markets (grandfather rights,485

limitation of market shares, etc.) can easily be incorporated in the model’s
upper and lower levels.

3 Algorithmic Solution
Bard and Moore (1990) initiated research on algorithmic solutions to MIBLPs.
Their algorithm converges if either all leader variables are integer, or when the490

follower subproblem is an LP. Until recently, general MIBLPs were considered
”still unsolved by the operations research community” (Delgadillo et al., 2010).
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Only two years ago, two general purpose branch-and-cut MIBLP algorithms
have been proposed by Fischetti et al. (2017) and Tahernejad et al. (2020).
Fischetti et al. (2017) extend their earlier algorithm for MIBLPs with binary495

first-level variables to general MIBLPs where the linking variables (i.e., those
variables that appear in both, the upper and lower level) are discrete. Tah-
ernejad et al. (2020) also propose another general-purpose MIBLP solver based
on branch-and-cut which is available open source in the MibS solver. However,
MibS also requires the linking variables to be integer. In our case, the linking500

variables consist of the upper level allocation and prices, the latter not being
integer in general.

If the lower level problem does not contain integer variables and is an LP,
bilevel programs can be reformulated as single-level problem by replacing the
lower level with its optimality conditions (e.g., Karush-Kuhn-Tucker (KKT))505

and then solving the resulting problem using standard integer programming
techniques (Bard and Moore, 1990). For general mixed-integer bilevel prob-
lems, in which linking variables can be both, integer and continuous, Zeng and
An (2014) proposed a column-and-constraint generation framework that fixes
integer variables in the lower level (thereby transforming it into an LP) and510

then adds optimality conditions for these solutions to the upper level problem.
Bichler and Waldherr (2019) extend this framework for problems in which the
lower level is always feasible regardless of the upper level and the objective of the
lower level is to make the upper level (and hence the whole MIBLP) infeasible.
This is the case in (CEx) since simply making the same trades as in the upper515

level is always feasible for the lower level and the upper level is feasible if and
only if an objective value of d < 0 is obtained in the lower level.

In the following, we give a short outline of the algorithm. First, the upper
level U of the bilevel program is solved, ignoring all lower level variables and
constraints, resulting in optimal allocations x∗, y∗ and prices p∗. Afterwards,520

the lower level is solved for the optimal upper level outcome. If for the optimal
solution d∗ of the lower level, it holds that d∗ < 0, the upper level outcome
is stable. Otherwise, a blocking coalition can be read from the lower level
variables χ∗, γ∗, ρ∗. In this case, the KKT conditions for the fixed variables χ∗

and γ∗ are added to the upper level U and the upper level is solved again. The525

KKT conditions assure that in this iteration the upper level U will return an
outcome that is stable against a coalition with assignments χ∗, γ∗. The process
is repeated iteratively until either no more blocking coalition can be determined
in the lower level (in which case the last upper level outcome is the one that
maximizes welfare among all stable outcomes) or U is no longer feasible itself (in530

which case there is no stable outcome). In the worst case, this requires adding
KKT conditions for all possible blocking coalitions and their allocations, but in
practice the algorithm converges much faster.

Iteratively adding KKT conditions to the upper level adds substantially to
an already large integer program as in each iteration we have to add a large535

number of lower level primal and dual constraints and variables, as well as the
complementary slackness conditions. The latter, especially, complicate the pro-
gram since they either require quadratic constraints or linearization by using

15



even more big M constraints. In the following, we describe an alternative to
adding KKT conditions that vastly reduces the number of necessary constraints540

and variables while ensuring stability against the same blocking coalitions in
each iteration. In comparison to KKT conditions, we refer to this set of con-
strains as the blocking coalition elimination (BCE) constraints. This approach
enables us to solve realistic problem sizes as we will show.

The BCE constraints can be applied to general MIBLP for finding stable out-545

comes in combinatorial exchanges. Since the key idea behind these constraints
is that we can compute the amount a buyer is willing to pay in a blocking
coalition C and what payment sellers demand in order to deviate, we will first
describe the constraints for markets in which each bidder is either a buyer or a
seller, as is the case in primary markets for airport time slots.550

For all bidders we know their utility πi in the upper level solution. Let
vCi denote a bidder i’s true valuation for the allocation determined within a
possible blocking coalition C. Let C(I) be the buyers that participate in C and
C(J) be the the sellers that participate in C. Within this coalition, a buyer
i ∈ C(I) is willing to pay the difference of vCi (her utility given the lower level555

allocation) and π (her utility given the current upper level allocation and prices)
in combination with a small ϵ he/she wants to gain by deviating. We define this
amount as her willingness to pay wC

i . Then, the BCE constraints are as follows:

πi =
∑
S⊆K

vi(S) (xi(S))− pi ∀i ∈ C(I) (UB)

πj =
∑
S⊆K

− (xj(Z) · vi(Z)) + pj ∀j ∈ C(J) (US)

wC
i = min{Bi, v

C
i − πi − ϵ} ∀i ∈ C(I) (WtP)∑

i∈C(I)

wC
i ≤

∑
j∈C(J)

(πj + ϵ) + ϵ (Ex)

wC
i ∈ R ∀i ∈ C (Real)

Constraints (UB) and (US) define the utility of all bidders in the upper level.
For a buyer this is her valuation for the allocated package minus the price he/she560

has to pay. Similarly, a seller’s utility is the payment he/she receives minus her
valuation for the package he/she sold. Constraint (WtP) defines the willingness
of a buyer within the blocking coalition. Note that this willingness to pay wC

i

is still constrained by her budget. Then, if the sum of wC
i is negative sellers in

the coalition demand more money for selling their items than the participating565

buyers are willing to pay for these items and the coalition will not deviate (Ex).
Note that while the minimization function in constraint (WtP) also results in
either quadratic constraints or the necessity of linearization, the overhead is way
lower than for KKT conditions.

The constraints differ only slightly when considering secondary markets. If570

a participant is both buying and selling, her upper level utility is the difference
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of valuations for obtained and sold items plus her payment (which might take
on negative values if her expenses exceed her revenues) (UB). The constraint
for wC

i remains unchanged (WtP), but has a slightly different interpretation if a
participant by the allocation alone has negative utility vCi < 0 in the coalition.575

In this case, he/she will demand a payment of amount wC
i instead of offering to

contribute to the coalition by paying.

πi =
∑
S⊆K

vi(S) (xi(S)− vi(S)) + pi ∀i ∈ C (UB)

wC
i = min{Bi, v

C
i − πi − ϵ} ∀i ∈ C (WtP)∑

i∈C

wC
i ≤ ϵ (Ex)

wC
i ∈ R ∀i ∈ C (Real)

The careful reader might wonder whether a coalition would deviate when a
participant that only has the role of a buyer demands a payment in the coalition
(because the upper level allocation and prices are preferable to her). One could580

argue that this coalition would not form and that since we are not accounting
for this case we restrict the upper level in inadmissible ways. However, if (Ex)
is still violated, i.e. the coalition collectively is willing to pay enough money
to cover for the demanding buyer, a smaller coalition could form by excluding
the buyer in question. The constraints in this sense not only ensure stability585

against coalitions with known allocations but also some similar coalitions whose
formation is predictable. After these constraints have been added to the upper
level based on a lower level allocation, all solutions that satisfy these constraints
are resistant to deviations with the given or very similar allocations. Iteratively
adding BCE constraints either leads to an outcome for which there exists no590

more blocking coalition (a stable outcome) or to infeasibility in the upper level
(proving non-existence of a stable outcome).

4 Experimental Results
In the following, we provide evidence that our algorithm can compute realistic
problem instances and improves the welfare in slot trading markets as opposed to595

mechanisms that ignore budget constraints. We limit our reports to secondary
slot markets in which participants act as both, buyers and sellers. The primary
slot allocation is a special case of our MIBLP for the secondary market and the
results with regards to scaleability and the negative effects of ignoring budget
constraints presented in this section are in line with those that we found for600

primary markets.
First, we describe the data set that we used to evaluate our mechanism in

Section 4.1. Next, we analyse the benefits of using the new BCE constraints
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in comparison to the classical KKT conditions in Section 4.2 before showing
that with the help of these new constraints our mechanism is capable of solving605

instances of practically relevant size in Section 4.3. Finally, we demonstrate
the necessity of a mechanism that elicits budget constraints by demonstrating
that other standard markets without considering budget constraints lead to
very undesirable results. In Section 4.4 we discuss the risks of bidding true
valuation without considering the budget, in Section 4.5 we show that shading610

strategies lead to significant welfare losses and instabilities. All algorithms were
implemented in Java. The experiments were executed on a laptop with Intel
core i5-6600k (4 cores, 3.5 GHz) and 8GB RAM. Gurobi 7.5.2 was used for
solving linear programs.

4.1 Data615

To model the valuations of slots, we use the widely used combinatorial auction
test suite (CATS) (Leyton-Brown et al., 2000), which allows for replication of our
results. In the original version, participants are interested in buying slot pairs
on two of four coordinated U.S. airports. Participants place bids on packages
of slots in two airports where takeoff/landing times deviate by a small margin620

from their preferred time slots. This requires an evaluation of the network value
of a slot pair(s) to each potential acquirer. In practice, time of day and logistics
play a big role. For example, prime slots for the Trans Atlantic and Asian
or intra-Europe markets are very different and use different aircraft types that
produce different revenue and cost profiles. In our experiments, the valuation625

of the most preferred connection is based on common valuations of the slots
and a private random deviation. For substitute slot pairs within a flight group
g ∈ Gi, the valuations are based on the valuation of the preferred slot pair and
a deviation. The duration of flights and the selection of corresponding slots are
based on the coordinates of the respective airports. We incorporate a larger630

number of airports, using up to 20 coordinated European airports and their
real-world location. For each bidder, we generate several flight groups, each
containing 4 to 6 connections. An overview of the treatment variables is given
in Table 2.

Treatment variable min max
#Airlines 10 20
#Airports 10 20
#Slots (total) 1400 2800
#Flight groups |Gi| (per airline) 12 25
Budget β 0.2 0.8

Table 2: Treatment variables

CATS only generates valuations for airport time slots, but does not consider635

buyers’ budgets. For each airline i ∈ I let Mi =
∑

g∈Gi
maxS∈g vi(S) be the

sum of valuations of the most valuable packages for each of i’s flight groups. In
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order to take into account financial constraints of airlines, we simulate budgets
by specifying the level β ∈ [0, 1] of how severely airlines are constrained from
bidding up to their true valuations. Each airline i is only allowed to spend a640

maximum of βMi Dollars.
On the sellers’ side, CATS assumes a single seller without ask prices. In

order to simulate secondary markets, we endow participants with slots and
compute ask prices based on the procedure proposed by CATS. We randomly
distribute these endowments among the participants. Ask prices for these slots645

are calculated as the common valuation for this slot scaled down by a factor of
0.3 to reflect the seller’s intention to sell this slot. All problem instances are
available upon request.

4.2 Comparison of KKT to BCE conditions
First, we evaluate the benefits of the BCE introduced in Section 3 as opposed650

to using the KKT conditions. For this, we consider two scenarios with 5 partici-
pants trading 700 slots and 10 participants trading 1400 slots, respectively. We
apply three settings with β1 = 0.2, β2 = 0.5 and β3 = 0.8 to both scenarios. We
solved 30 instances for each parameter combination, one time using standard
KKT conditions, the other time using our BCE constraints. The results are655

summarized in Tables 3 and 4.

Result 1 The BCE approach to the MIBLP for the airport time slot trading
problem is computationally more effective than the use of KKT conditions.

Both approaches can solve all instances in the first scenario where only 5
participants trade (Table 3). It is evident however that the KKT conditions660

lead to longer solving times due to the more complex constraints added to
the upper level. Even for these smaller instances where typically less than 10
iterations are needed to find a stable solution this led to longer solving times
for all parameter combinations.

#Bidders #Flight Budget Method solved <1000s avg. time (s)
groups

5 25 0.2 KKT 30 9.15
5 25 0.2 BCE 30 6.05
5 25 0.5 KKT 30 14.29
5 25 0.5 BCE 30 10.16
5 25 0.8 KKT 30 40.91
5 25 0.8 BCE 30 11.68

Table 3: Comparison of KKT and BCE constraints (1/2)

The performance of the KKT approach further declines substantially after665

a small number of iterations. We observed that typically the computation of
the upper level solution with KKT conditions takes several minutes after 12
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iterations while the BCE approach still solves in less than 1s even after 40
iterations of adding constraints. Neither for low nor high budgets can the KKT
approach solve a single instance within a time limit of 1000s in the 10 bidder670

scenario (Table 4). Using BCE all instances can be computed in less than 375s
on average.

#Bidders #Flight Budget Method solved <1000s
groups

10 25 0.2 KKT 0
10 25 0.2 BCE 30
10 25 0.5 KKT 0
10 25 0.5 BCE 30
10 25 0.8 KKT 0
10 25 0.8 BCE 30

Table 4: Comparison of KKT and BCE constraints (2/2)

Using a paired Wilcoxon rank-sum test, pairwise differences in solution time
for all parameter combinations are significant at the level of p < 0.001. Based
on these results, we report all remaining experiments in this section using BCE675

constraints only.

4.3 Scaleability
In this section, we show that despite the computational hardness of the under-
lying optimization problem, we are able to solve instances of practical relevance
with our approach. We first discuss problem sizes that one can expect in slot680

trading markets. For most airports, no public records exist how many takeoff
and landing slots are available for each hour. In an analysis of airport slot control
at EU airports requested by the European Parliament’s Committee on Trans-
portation and Tourism, 70-80 slots per hour where mentioned. If we assume 20
hours of operations for major airports in Europe, this adds up to approximately685

1,400 distinct time slots per day and airport. In the same report, the authors
advised that annually 10% of these slots should be made available in an auction.

In order to simulate the full trade volume of time slots for one day, we gen-
erated 140 slots for each airport to be traded among participants. We consider
10 to 20 different airports with 1400 to 2800 total slots. This scenario matches690

the number of coordinated airports in three of the major regions (The Ameri-
cas, Middle East and Africa or North Asia). For our experiments we generated
instances for 10, 15 and 20 bidders (airlines), which can be considered a realistic
number of bidders even for larger airports. We generated 10 instances for each
parameter configuration.695

Result 2 Problem instances with 10 participants on the secondary market with
up to 1400 time slots can be computed to optimality in less than one hour. The
number of time slots has little impact on the runtime, the number of partici-
pants has a strong impact. With more participants the problem instances were
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intractable and needed to be terminated after 3 hours. If we restrict ourselves700

to smaller 5-core or 7-core-stable outcomes, also problem sizes with 20 buyers
and sellers can be solved to optimality.

We report the aggregated results for 10 instances each in Table 5. For 10
to 20 bidders, we report how many of the 10 instances we are able to solve (i.e.
obtain a welfare-maximal stable outcome or proof that no such outcome exists)705

within a time limit of 3 hours. We also report the average computation time (in
seconds) of the solved instances. It can be seen that all of the smaller instances
can be solved in very short time.

In practice, blocking coalitions of arbitrary large size may not form since
coordinating towards blocking an outcome may be hard for large groups of710

(self-interested) airlines. Hence, we also determined welfare-optimal outcomes
that are only stable against blocking coalitions of size at most 5 (5-stable) or 7
(7-stable). We could solve all problem instances in a matter of minutes. While
solving instances of increasing size becomes computationally more challenging,
these results show that 5- and 7-stable outcomes can be computed even for large715

numbers of bidders.

#Bidders Stable Outcome 5-Stable Outcome 7-Stable Outcome
#Solved Time (s) #Solved Time (s) #Solved Time(s)

10 10 234 10 86 10 147
15 10 9916 10 84 10 1613
20 0 n.a. 10 323 10 1121

Table 5: Computation times

4.4 Outcomes without the Possibility to State Budget Con-
straints

In most markets, bidders cannot communicate their budgets and can either
choose to submit truthful bids (i.e., bidding the true valuations for each of de-720

sired connections) or shade their bids heuristically. In the following, we demon-
strate that the truthful bidding puts airlines at a significant risk of making a
loss by having to pay more than they can afford according to their budgets. We
analyse secondary slot trading markets with 10 buyers, 10 sellers and 1400 slots
traded. We use the number of flight groups per buyer (12 or 25) and budget725

factor (0.2, 0.5 or 0.8) as treatments. For each combination of number of flight
groups and budgets, we report the average results over 10 instances.

Result 3 If bidders cannot communicate their budgets and bid their true valu-
ations, up to 30% of participants face payments that exceed their budgets. Even
with high budgets, 4% of bidders make a loss. The required payments exceed730

participants’ budgets by more than 200% in the worst case.
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For our tests, we determine core-stable solutions in the standard combina-
torial auction setting where all bidders submit their true valuations as bids.
Finding core prices for allocation problems without budget constraints does not
require solving a Σp

2-complete optimization problem, but ’only’ a NP -complete735

problem (Lehmann et al., 2006). We say that a participant overpays in this
auction if he is required to pay more than their budgets would allow them if
they were constrained by the stated budget factor. In Table 6 we report which
fraction of participants that win at least one package overpay, how large this
overpayment is on average and how large the largest overpayment is on average.740

Bidding truthfully without taking budgets into consideration exposes airlines to
overpaying in all scenarios. For small budgets around 30% of the participants
overpay. These buyers exceed their budget by around 200% on average and
around 300% in the worst cases. Higher budgets (β = 0.5) lead to smaller yet
substantial overpayment of 40% on average for 1 in 5 participants. Even for745

the highest budget class there are still overpaying buyers and albeit their over-
payment is lower than in the other scenarios participants are still at a risk of
exceeding their budgets. Bidding truthfully is thus potentially harmful to the
solvency of an airline that is constraint by budgets.

#Flight Budget % Overpaying Avg. Overpayment Avg. Maximum
groups Participants (% of Bi) Overp. (% of Bi)
12 0.2 29 221 314
12 0.5 21 46 64
12 0.8 4 8 8
25 0.2 31 202 293
25 0.5 22 41 56
25 0.8 4 5 5

Table 6: Overpayment with truthful bids

4.5 Inefficiencies due to Bid Shading750

The preceding results show that bidders risk making significant losses when they
cannot communicate their budget constraints and bid their true valuations. In
order to avoid these risks, bidders have to bid strategically and shade their bids
in order to avoid overpaying. Obviously, optimal bid shading is challenging. We
analyse the effect of strategies where participants report bids in such a way that755

the sum of their submitted bids does not exceed their budgets. In the following,
we refer to the classical auction scenario in which bidders only submit their
capped bids as the capped market, and to the scenario where bidders are allowed
to communicate their true valuations and budgets as the uncapped market.

We consider two strategies for the airlines in capped markets: In the first760

strategy, BS (bid shading), airlines submit bids in such a way that they shade
all bids by their budget factor β, but continue to bid on all of their desired
packages. In the second strategy, BR (bid reduction), airlines no longer bid on
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all of their desired flight groups. Instead, we greedily determine a subset g̃i ⊆ gi
of flight groups such that

∑
g̃i
maxS∈gi vi(S) ≤ βMi.765

We first discuss potential welfare losses that occur because of these bid shad-
ing strategies. The BR strategy leads to less welfare because as participants
report bids for fewer connections, fewer connections are traded in the resulting
allocation. First, we only consider the BS strategy in estimating the welfare loss.
Then, we show that the resulting outcomes, while stable for the reported shaded770

bids, lead to instabilities when the real valuations and budgets of participants
are taken into account.

Result 4 The average welfare loss in secondary markets where bidders shade
bids (BS) are between 6 and 34 percent. The worst-case efficiency loss is 40
percent.775

We use the set of instances introduced in Section 4.4, determining a welfare-
maximal stable outcome for both the capped and uncapped market for each
instance. We calculate the loss in welfare by comparing the sum of true (un-
capped) payoffs achieved by the winners in the capped market to the sum of
payoffs achieved by winners in the uncapped market. Table 7 summarizes the780

results, showing for each combination of treatment variables the percentage of
the uncapped market’s welfare that is achieved in the capped market. We report
the average welfare over the ten instances as well as the worst and best welfare
achieved in the capped market for these ten instances. The average welfare loss
ranged from 6% to 34%. Lower budgets lead to higher welfare loss as buyers are785

more restricted in what valuations they can communicate. The number of flight
groups did not influence the average welfare loss significantly. Note that the
capped market never led to a fully efficient outcome. Even in the best instances
the welfare loss was at least 4% and even around 30% in some cases.

#Flight Budget Avg Worst Best std.
groups Welfare Instance Instance dev.
12 0.2 0.66 0.60 0.71 0.04
12 0.5 0.82 0.78 0.84 0.02
12 0.8 0.94 0.93 0.95 0.01
25 0.2 0.64 0.61 0.70 0.03
25 0.5 0.81 0.78 0.84 0.02
25 0.8 0.94 0.93 0.95 0.01

Table 7: Welfare losses due to capped bidding (BS)

In addition to these substantial losses in welfare, the inability to commu-790

nicate budgets can also lead to instabilities. An outcome that is stable in the
capped market may not be stable when the true valuations of bidders are con-
sidered. To analyse this effect, we determined a welfare-maximal stable outcome
in the capped market and then tested whether a blocking coalition forms when
true valuations are considered. We consider the BS as well as the BR strategy795
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for this analysis. We report for how many of the instances, a blocking coalition
would form against the outcome of the capped market given the true valuations
as well as how often reasonable small coalitions (of size up to 7 or 5) block the
capped market’s outcome. While it may be unrealistic for larger coalitions to
form, these small coalitions constitute a significant risk to stability.800

Result 5 Outcomes assumed to be stable based on non-truthful bids (BS or BR)
were always unstable considering the true valuations in our experiments. While
they are mostly stable against small coalitions of size 5, outcomes are unstable
most of the time in the presence of tight financial constraints.

Table 8 summarizes the results for the same instances as in the experiments805

outlined above. The amount of budget is crucial when it comes to the stability of
capped markets with a BS strategy. When budgets are low even small coalitions
of size 5 can block almost all outcomes in the uncapped market. Regardless of
the budget amount all computed solutions are unstable when considering real
valuations, even for smaller instances with only 12 flight groups. Determin-810

ing allocations and prices based on capped valuations thus seem impractical in
general as bidders almost always have an incentive to deviate from the outcome.

#Flight groups Budget Instances with blocking coalitions
in general of size up to 7 of size up to 5

12 0.2 10 10 10
12 0.5 10 10 0
12 0.8 10 8 0
25 0.2 10 10 8
25 0.5 10 10 0
25 0.8 10 4 0

Table 8: Instability due to capped bidding with (BS) strategy

In Table 9 we report results for secondary markets where buyers implement
a BR strategy. Evidently, low budgets lead to solutions that are unstable even
when considering only small coalitions. This is especially true for instances with815

low budgets and 12 flight groups which are unstable against coalitions of size 5
in all cases, but also instances with a higher budget (|Gi| = 12, β = 0.5) or more
flight groups (|Gi| = 25, β = 0.2) can suffer from deviation by small coalitions.
Again, no overall stable solution was found.

5 Conclusion820

Airport time slots are a widely adapted legislative answer to growing air traffic
and congested airports. Primary markets are not taking place as of now and
while secondary trading of time slots is already in place its current implemen-
tation is limited to bilateral trades. The large number of connections requires
an adequate bid language. Capacity constraints need to be taken into account,825
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#Flight groups Budget Instances with blocking coalitions
in general of size up to 7 of size up to 5

12 0.2 10 10 10
12 0.5 10 10 7
12 0.8 10 7 0
25 0.2 10 10 9
25 0.5 10 10 0
25 0.8 10 10 0

Table 9: Instability due to capped bidding with (BR) strategy

but also package bids, and budget constraints of airlines. The latter incurs
significant computational complexity and the resulting allocation and pricing
problem is Σp

2-hard. If airlines are not allowed to express budget constraints ad-
equately, this leads to significant strategic complexities, because airlines need
to submit bids such that their budgets are not exceeded without knowing the830

market prices. Unfortunately, Σp
2-hard computational problems were considered

intractable until recently, even for small problem instances. Algorithms to solve
bilevel mixed-integer programs are in their infancy.

In this paper, we introduced a model and algorithms for the trading of airport
time slots in primary and secondary markets. The market design maximizes835

welfare subject to core-constraints and budget constraints. We introduce new
computational techniques to solve the resulting bilevel integer programs, and
report results of experiments.

Our experiments show that ignoring budgets leads to substantial welfare
losses. Besides, outcomes determined with capped bids lead to substantial in-840

stabilities and airlines could form blocking coalitions considering their true valu-
ations. Overall, a mechanism that considers budget and core-constraints makes
bidding for airlines simple and achieves significantly higher revenue. Interest-
ingly, we can solve small but realistic problem sizes with 10 buyers and sellers
and up to 2000 time slots. If we limit our attention to deviating coalitions of845

restricted size, we can even solve problem sizes with many more participants.
For real-world airport time slot auctions, it might be unrealistic to assume very
large deviating coalitions, and n-core stability could provide a sufficient level
of stability. With further algorithmic advances, this technology can provide a
solution to a notoriously challenging market design problem.850
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