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Abstract Deferred acceptance auctions can be seen as heuristic algorithms
to solve NP-hard allocation problems. Such auctions have been used in the
context of the Incentive Auction by the US Federal Communications Com-
mission in 2017 and they have remarkable incentive properties. Besides being
strategyproof they also prevent collusion among participants. Unfortunately,
the worst-case approximation ratio of these algorithms is very low in general,
but it was observed that they lead to near-optimal solutions in experiments on
the specific allocation problem of the Incentive Auction. In this work, which is
inspired by the telecommunications industry, we focus on a strategic version
of the minimum Steiner tree problem, where the edges are owned by bidders
with private costs. We design several deferred acceptance auctions (DAA) and
compare their performance to the Vickrey-Clarke-Groves (VCG) mechanism
as well as several other approximation mechanisms. We observe that, even for
medium-sized inputs, the VCG mechanisms experiences impractical runtimes
and that the DAAs match the approximation ratios of even the best strategy-
proof mechanisms in the average case. We thus provide another example of
an important practical mechanism design problem, where empirics suggest
that carefully designed deferred-acceptance auctions with their superior in-
centive properties need not come at a cost in terms of allocative efficiency.Our
experiments provide insights into the trade-off between solution quality and
runtime, and into the additional premium to be paid in DAAs to gain weak
group-strategyproofness rather than just strategyproofness.
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1 Introduction

There is a significant literature in the design of approximation algorithms for
computationally hard problems (Vazirani, 2013). Algorithmic mechanism de-
sign extends this literature in an important way (Nisan and Ronen, 1999). The
goal of approximation mechanisms is the design of computationally efficient
algorithms which take into account the incentives of participants as well. These
mechanisms should run in polynomial time and satisfy strong game-theoretical
equilibrium solution concepts such that bidders have incentives to reveal their
valuations truthfully and the auctioneer can determine the optimal allocation
or one that approximates the optimal solution. This has led to a rich literature
studying approximation mechanisms for different types of NP-hard resource
allocation problems. Typically, designers of approximation mechanisms aim for
dominant-strategy incentive-compatibility or strategyproofness. Such mecha-
nisms are prior-free and truthful bidding is a dominant strategy for individual
bidders.

Network procurement is a prime application where auction mechanisms
play an important role in business practice. A telecom is interested in connect-
ing several sites or terminals via a cost-minimal set of edges connecting vertices
in a network. The terminals constitute a subset of all vertices in the network
and suppliers can provide individual edges in the network at a certain cost.
The minimum Steiner tree problem is a well known model of this network pro-
curement problem and even with complete information about suppliers’ costs,
finding a cost-minimal solution is NP-hard. The minimum Steiner tree prob-
lem on graphs is one of the most well-known NP-complete problems (Karp,
1972), and central in various types of network design problems, which have re-
ceived significant attention in operations research (Contreras and Fernández,
2012, Öncan et al, 2008, Xu et al, 1995).

In the procurement environment, the costs of establishing a link is the pri-
vate information of its supplier. Each supplier wants to maximize her payoff,
i.e. her bids minus their private costs for setting up the connection. In such an
auction, the auctioneer wants to set incentives for bidders to reveal their costs
truthfully. It is well-known that the Vickrey-Clarke-Groves (VCG) (Clarke,
1971, Groves, 1973, Vickrey, 1961) mechanism is the only quasi-linear mecha-
nism which maximizes social welfare and is strategyproof (Green and Laffont,
1977). Still, the resulting discounts can be manipulable by coalitions of sup-
pliers, a property which can well be a problem in procurement. This means,
the VCG mechanism is not group-strategyproof. In addition, the VCG mech-
anism is no longer strategyproof if the allocation does not maximize social
welfare, i.e. if the allocation cannot be solved exactly. Since the minimum
Steiner tree problem is NP-complete, its optimal solution, which corresponds
to the maximally achievable social welfare, cannot be expected to be obtained
in reasonable time.

If the allocation cannot be computed optimally, but only approxi-
mately, then the VCG mechanism loses this strong game-theoretical property
(Lehmann et al, 2002). This paper analyzes several well known approximation
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algorithms for the minimum Steiner tree problem with respect to their im-
plementability in settings where the edges of the graph are strategic agents.
Based on well known theory from mechanism design, we verify that some of
these approximation algorithms can be extended to strategyproof mechanisms,
while others are not.

Motivated by the Incentive Auction of the US Federal Communications
Commission (FCC), Milgrom and Segal (2019) and Leyton-Brown et al (2017)
recently proposed deferred-acceptance auctions (DAAs), a class of greedy
algorithms which are weakly group-strategyproof for bidders with single-
dimensional types. This means, even a coalition of bidders cannot manipu-
late profitably via deviations from truthful bidding, which makes them robust
against collusive bidding strategies. This is a very desirable property in many
applications. Also, a deferred-acceptance auction can be implemented both as
a sealed-bid and as a clock auction.

An important question is, whether these strong incentive properties are at
the expense of solution quality, i.e. they might lead to low allocative efficiency.
Dütting et al (2017) derived worst-case approximation ratios for two important
problem classes. Still, for most problems no worst-case approximation ratios
have been proven. Interestingly, experimental analysis of the specific allocation
problem in the US FCC Incentive Auction showed very high solution quality
on average (Newman et al, 2017). In their simulations, which focused on the
efficiency of the reverse auction, the reverse clock auction achieved highly effi-
cient solutions. The specific scoring rule by the FCC played an important role
in the solution quality and the payments computed. The allocation problem in
the Incentive Auction is special and it is not clear whether one could achieve
high average efficiency with a DAA also for other problems.

We perform a thorough computational study in which we compare DAA
variants to more sophisticated approximation mechanisms for the Steiner min-
imum tree problem. The results show that in general, the DAA (with an ad-
equately chosen scoring function) results in high solution quality, but that in
environments with a very sparse network and few terminals primal-dual al-
gorithms or Mehlhorn’s algorithm are better. All approximation algorithms
and heuristics were computed within only two minutes on average, while the
computation times for exact solutions with a Vickrey-Clarke-Groves payment
rule are extensive and took more than 18 hours on average for the larger in-
stances. The revenue is lowest in the Vickrey-Clarke-Groves mechanism. The
DAA variants led to higher payments for the buyer, which can be seen as a
premium paid for group-strategyproofness, i.e. its robustness to collusion. Our
empirical results illustrate the order of magnitude of these trade-offs.

In Section 2 we introduce related literature, before we introduce the mini-
mum Steiner tree and relevant definitions in Section 3. In Section 4 we analyze
the implementability of well-known approximation algorithms for the mini-
mum Steiner tree problem, and a critical payment scheme, before we intro-
duce deferred acceptance auctions. Then, in Section 6 the results of numerical
experiments based on the Steinerlib are presented.
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2 Related Literature

The minimum Steiner tree problem has many important applications in a
variety of fields. Examples include biology (phylogenetic trees), the design of
integrated circuits, and it occurs as a special case or subproblem in many other
problems in the field of network design (single-sink rent-or-buy, prize-collecting
Steiner tree, single-sink buy-at-bulk). Due to its relevance the problem received
a lot of attention and different classes of algorithms emerged.

Approximation algorithms based on distance networks were proposed by
Takahashi and Matsuyama (1980) and Kou et al (1981). Mehlhorn (1988)
developed a faster variant of the latter algorithm. All algorithms in this
class achieve an approximation ratio of 2, which is also achievable by means
of primal-dual algorithms, see e.g. Goemans and Williamson (1997). Loss-
contracting approximations are another class of algorithms studied in the con-
text of the minimum Steiner tree problem. This approach has been improved
in a series of papers. The algorithm due to Robins and Zelikovsky (2005)
currently reaches the best approximation ratio of 1.55. Byrka et al (2010)
proposed a randomized technique that achieves an approximation ratio of
ln(4) + ϵ, i.e. 1.39 in the limit. While the algorithm can be derandomized
to obtain a deterministic approximation algorithm with polynomial time com-
plexity, the polynomial and constants required to reach the approximation
factor of 1.39 result in a runtime which is not feasible in practice. In our anal-
ysis, we start with the best known approximation algorithm by Robins and
Zelikovsky (2005), before we analyze the approach by Mehlhorn (1988), and
primal-dual algorithms (Goemans and Williamson, 1997). These are arguably
the most prominent approaches to the minimum Steiner tree problem in the
literature.

We focus on the design of approximation mechanisms, i.e. approximation
algorithms that can be implemented in dominant strategies. The field of algo-
rithmic mechanism design has made substantial progress in the past years and
there are general frameworks to achieve truthfulness with randomized approx-
imation mechanisms, and deterministic approximation mechanisms for specific
problems. For example, a well-known black-box method to convert approxima-
tion algorithms for any packing problem into strategyproof mechanisms is the
framework by Lavi and Swamy (2011), which is a randomized approximation
algorithm.

Yet randomized approximation algorithms are often not acceptable in in-
dustrial procurement. Unfortunately, as of now there is no general framework
to transform deterministic approximation algorithms into strategyproof mech-
anisms. However, there exist quite general approaches when additional con-
ditions on bidders’ valuations are met. Single-mindedness has received most
attention in the literature on combinatorial auctions (Lehmann et al, 2002).
It means that bidders are only interested in one specific subset of items (pack-
age). This can be a reasonable assumption for many real-world markets and it
is a very good starting point for our analysis of strategyproof approximation
mechanism for the minimum Steiner tree problem on graphs. In the context
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of network procurement we talk about bidders with single-dimensional types,
which means each supplier only having access to a single link which she can
sell.

Mu’alem and Nisan (2008) extended the framework of Lehmann et al (2002)
and presented conditions for approximately efficient and strategyproof mech-
anisms and single-minded bidders. Apart from this, numerous approximation
mechanisms have been developed for specific algorithmic problems such as
parallel scheduling and maximum flow problems (Archer and Tardos, 2001),
or graph traversal problems (Bilò et al, 2007). Interestingly, in spite of the
importance of the minimum Steiner tree problem, it has received very lit-
tle attention in the literature on algorithmic mechanism design so far, with
the only prior work being due to Gualà and Proietti (2005). They present a
distance-network-based approximation mechanism which draws on the ideas
of Takahashi and Matsuyama (1980).

We are particularly interested in the new class of deferred-acceptance auc-
tions, which were introduced by Milgrom and Segal (2019) in the context of
the Incentive Auction design for the US Federal Communications Commis-
sion (Leyton-Brown et al, 2017). Little is known so far about the solution
quality deferred-acceptance auctions as compared to other deterministic and
strategyproof approximation mechanisms in general. Dütting et al (2017) is
an exception, and they discuss approximation ratios of deferred-acceptance
auctions for knapsack auctions as well as general combinatorial auctions with
single-minded bidders. Recently, deferred-acceptance auctions where general-
ized by Gkatzelis et al (2017) for non-binary settings in which bidders do not
simply win or lose but receive some level of service (e.g. a number of items
awarded in a multi-item auction).

3 Notation and Definitions

Let G = (V,E, c) be a weighted, connected graph, where ce is the cost of each
edge e ∈ E. For a subset of edges F ⊆ E, the cost of the edge-induced subgraph
is defined by c(F ) =

∑
e∈F ce. A spanning tree of G is a subset of edges of

E such that the resulting edge-induced subgraph is connected, cycle-free and
contains all vertices V . The minimum spanning tree, denoted by MST (G) is a
spanning tree where the sum of the costs of its edges is minimal in comparison
to all other spanning trees.

The minimum Steiner tree problem on a connected graph G = (V,E, c) is
defined as follows. For a subset of vertices K ⊆ V called terminals, any tree
spanning K is called a Steiner tree. Any vertex in a Steiner tree which is not
a terminal is called a Steiner point. We refer to the set of all Steiner trees over
G as StT (V,E). The objective then is to find a minimum cost Steiner tree.

Let GV be the complete graph induced by the vertex set V , i.e., a complete
weighted graph GV = (V,EV , cV ), where each edge cost equals the cost of the
shortest path in G between the two adjacent vertices of that edge. GV is
then a metric graph satisfying the triangle inequality. We call GV the distance
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network of the graph G. Likewise, GK denotes the distance network induced
by the terminal set K, GK = (K,EK , cK). Note that GK ⊆ GV , as K ⊆ V .

In the following, we describe the design of mechanisms for the minimum
Steiner tree problem. We consider a set of bidders N , where bidders i ∈ N
have single-dimensional types, i.e. each bidder i only provides one specific
single edge ei. With slight abuse of notation, we denote with ci the true cost
of bidder i while c refers to the corresponding tuple (ci)i∈N taken over all
bidders. Denote with Bi the domain of bids, i can report as her cost for edge
ei, e.g. Bi = R≥0. B is defined as the Cartesian product

∏
i∈N Bi. For a

single-dimensional bidder i there is a unique and publicly known edge ei ∈ E
such that her true private cost is ci only for edge ei, while for all other edges
ej ̸= ei her true private cost is ∞. Given a vector of reported bids b ∈ B
with b = (bi), the expression b−i denotes the bid tuple without the i-th entry,
b−i = (bj)j∈E\{i}, and (ci, b−i) denotes the bid tuple where the i-th entry of b
is replaced by ci, i.e., bidder i reports her true cost.

A deterministic mechanismM = (f, p) for the minimum Steiner tree prob-
lem over vertices V and edges E is defined by a deterministic allocation func-
tion f : B → StT (V,E) and a payment scheme pi : B×StT (V,E) → R for each
bidder i. Given the bidders’ reported bids b ∈ C, the mechanism M = (f, p)
computes a Steiner tree f(b) and pays each bidder i a payment of pi(b, f(b)).
In an approximation mechanism, the allocation function f is implemented via
a deterministic approximation allocation algorithm A. A mechanism with an
approximation allocation algorithm A achieves an approximation ratio of r for
minimum Steiner tree if

max
b∈B

c(OPT (b))

c(A(b))
≤ r

where OPT (b) denotes a welfare-maximizing allocation (i.e. an optimal
minimum Steiner tree given costs b), c(OPT (b)) the corresponding social
welfare (i.e. cost of the Steiner tree), and c(A(b)) the welfare achieved with
the approximation algorithm A.

Since bidders are self-interested, their reported bids b do not necessarily
reflect their true costs c. Instead, bidders try to maximize their quasilinear
utilities ui, i.e., payment received minus true cost: ui(b) = pi(b, f(b)) − ci.
As a result, a strategyproof mechanism must offer bidders some incentives to
reveal their true costs.

Definition 1 (Strategyproofness) A mechanism M = (f, p) is strate-
gyproof if for all bidders i ∈ E and all reported bid tuples b ∈ B it holds
that bidder i has a weakly higher payoff by telling the truth:

ui(ci, b−i) ≥ ui(b)

Then, a bidder cannot make herself better off by not telling the truth
about her costs. We also consider the stronger criterion of weak group-
strategyproofness, where groups of bidders cannot make themselves better
off by colluding.
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Definition 2 (Weak Group-Strategyproofness) A mechanism M =
(f, p) is weakly group-strategyproof if for every set of bidders I ⊆ E and
all reported bid tuples b ∈ B it holds that at least one bidder i ∈ E has a
weakly higher payoff by telling the truth:

ui(cI , b−I) ≥ ui(b)

In other words, in a weakly group-strategyproof mechanism it is impossible
for a group of bidders to find alternative (non-truthful) bids that make all
members of the group strictly better off.

We assume w.l.o.g. that for any two bidders i, j with i ̸= j, it is ei ̸= ej .
If there are multiple bidders providing the same edge, we only consider the
lowest reported bid for the allocation algorithm (though, of course, we consider
all bids for the payment scheme). So from now on, we assume i=̂ei. To avoid
monopoly, we restrict G to be 2-edge-connected, i.e., G remains connected
even if any single edge is removed.

With this, we can now formulate the minimum Steiner tree problem as
a mechanism design problem: Let G = (V,E, b) be a 2-edge-connected graph.
|V | is the number of vertices, |E| is the number of edges/bidders, and b is
the vector of reported bid prices. Let K ⊆ V be the set of terminals. Then
the objective is to design a polynomial time approximation mechanism which
computes an approximately efficient allocation A, and a payment scheme p
which makes truthful bidding a dominant strategy, such that p and A form a
strategyproof mechanism.

Definition 3 (Monotonic allocation rule) An allocation rule f of a mech-
anismM = (f, p) is monotonic if a bidder i who wins with bid bi keeps winning
for any lower bid b′i < bi (for any fixed settings of the other bids).

Definition 4 (Critical payment scheme) A payment scheme p of a mech-
anism M = (f, p) is critical if a winning bidder i receives payment p∗i , which
is her maximum bid allowed for winning: p∗i := sup{b′i ∈ Bi : i ∈ A(b′i, b−i)},
where A(b′i, b−i) denotes the set of bidders that would have won if the reported
bids were (b′i, b−i)

Intuitively, a monotonic allocation ensures that a winner remains winning
with any better bid, while the critical payment for a winning bidder is the
highest cost that she may declare and still win. In his seminal paper, Myerson
(1981) showed that an allocation rule f is implementable (i.e., there exists a
payment vector p such that M = (f, p) is strategyproof) if and only if the
allocation rule is monotonic. Moreover, if the allocation rule is monotonic and
losing bidders pay 0, a critical payment scheme is the unique payment rule p
such that M = (f, p) is strategyproof. Hence, with single-dimensional types
and monotonic approximation algorithms, we can implement an outcome in
dominant strategies, if we compute critical payments.
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4 Approximation Mechanisms for Single-Dimensional Bidders

In this section we briefly introduce important approximation algorithms for
the minimum Steiner tree problem. A more extensive discussion can be found
in appendix A. For the algorithms which can be extended to approximation
mechanisms, we provide a corresponding critical payment scheme in Section
4.2, which then yields a strategyproof approximation mechanism. Finally, in
Section 5 we design a deferred-acceptance auction for the minimum Steiner
tree problem and discuss the worst-case approximation ratio of the deferred-
acceptance auction and general greedy algorithms.

4.1 Approximation Algorithms for the Steiner Minimum Tree

Table 1 lists the approximation algorithms for the minimum Steiner tree that
we compare to the greedy approximation algorithms used in in the deferred-
acceptance auctions. These algorithms are representatives of very different
approaches to approximation. While two of them are monotonic, the one by
Robins and Zelikovsky (2005) with the best approximation ratio so far, is not.

Year Approx. Ratio Authors Monotonic? Paradigm
1988 2.00 Mehlhorn yes distance network
1997 2.00 Goemans, Williamson yes primal-dual
2005 1.55 Robins, Zelikovsky no loss-contracting

Table 1: Selected approximation algorithms for the minimum Steiner tree
problem on graphs

We only provide an overview with a classification of whether these algo-
rithms are monotonic or not. While this is fairly straightforward to answer
for most approximation algorithms in the literature, the currently best class
of algorithms for the minimum Steiner tree problem, the loss-contraction al-
gorithms are challenging to analyze. In Appendix A, we provide a detailed
description of these algorithms and proofs of their monotonicity.

4.1.1 Loss-Contracting Algorithms

Loss-contracting algorithms have been the most successful approach to the de-
sign of approximation algorithms for the minimum Steiner tree on graphs so
far. Any Steiner tree S(G,K) of G is either a full Steiner tree, i.e., all its termi-
nals are leaves, or can be decomposed into a forest of full Steiner subtrees (full
components) by splitting all the non-leaf terminals (splitting a terminal results
in two copies of the same terminal). The algorithm by Robins and Zelikovsky
(2005) builds an MST on the subgraph GK induced by the terminal set K and
repeatedly adds full components to improve the temporary solution. In each
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iteration, full components are ranked according to their gain (by how much
the component improves the current temporary solution) divided by their loss
(i.e., the cost committed by adding a component or more precisely its Steiner
points). After a full component is added, the temporary solution is improved.
This step also involves loss-contracting, a method to make components which
are in conflict with added ones less appealing. By these means, the algorithm
by Robins and Zelikovsky (2005) achieves an approximation ratio of 1.55 if
k → ∞ and it is computable in O(|K|k · |V −K|k−2 + k · |K|2k+1 log |K|).
This is the best approximation algorithm so far, but unfortunately it is not
monotonic.

Proposition 1 Allocation algorithm ARZ is not monotonic.

4.1.2 Distance-Network-based Approximations

Similarly to the loss-contracting approximation, the general idea of distance-
network-based approximation algorithms is to build a MST on a complete
subgraph GK in the first phase. In the second phase, edges in MST (G) are
re-transformed back to edges in G, and an MST is computed on the resulting
graph to remove possible cycles. Finally, in the third phase, non-terminal leaves
are deleted. This algorithm was proposed by Kou et al and runs in O(|K||V |2).
However, due to the cycles that can occur in the first phase, this standard
variant is not monotonic. Mehlhorn (1988) designed an algorithm which differs
in phase 1. Here, the algorithm first partitions G into Voronoi regions, which
are then utilized to construct a subgraph ofGK , calledG. It then proceeds with
phase 2 and phase 3. This leads to a worst case run time of O(|V | log |V |+ |E|)
and achieves an approximation ratio of 2(1−1/l) where l is the minimal number
of leaves in any minimum Steiner tree (which is naturally bounded above by
the number of terminals). This algorithm is monotonic.

Proposition 2 The allocation algorithm AMH by Mehlhorn is monotonic.

4.1.3 Primal-Dual Approximation Algorithms

The approximation algorithm for the minimum Steiner tree problem by Goe-
mans and Williamson (1997) follows a primal-dual approach in which the
minimum Steiner tree problem is transformed into a hitting set problem and
modeled as an integer linear program (IP). By relaxing the IP and considering
its dual, Goemans and Williamson (1997) where able to propose an approx-
imation algorithm that requires a runtime of O(|V |2 log |V |) and also has an
approximation ratio of 2.

Proposition 3 The allocation of the primal-dual-based minimum Steiner tree
approximation APD is monotonic.
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4.2 Payment Schemes

Since the allocations of the algorithms AMH by Mehlhorn (1988) and the
primal-dual algorithm APD by Goemans and Williamson (1997) are mono-
tonic, they meet the first requirement to be extendable to a strategyproof
approximation mechanism. For the second requirement, the payment scheme
p needs to find the critical payment p∗i for any winner i, such that every re-
ported bid bi with bi ≤ p∗i is guaranteed to win, while every reported bid bi
with bi > b∗i is guaranteed to lose.

We first discuss a payment scheme for distance-network based approxima-
tion algorithms initially introduced by Gualà and Proietti (2005) which can
be computed in O((|V |+ |K|2)|E| · log α(|E|, |V |)). For this, consider the basic
structure of an algorithm based on the distance network. Each winning edge e
lies on at least one path connecting two terminals (v1, v2). If we now increase
the cost of e there are two possible causes that lead to e getting excluded from
the solution. Either, there might be a shorter path between v1 and v2 that e
is not part of. Apart from this, even if e is still on the shortest path between
v1 and v2, the edge (v1, v2) might be replaced by some other edge (v′1, v

′
2) in

the MST of distance network for which e is not on the resulting shortest path.
The critical payment for e is then calculated by adding the difference between
the original cost of the shortest path including e and the minimum cost of one
of these alternatives without e.

The corresponding values can be calculated similar to (Gualà and Proietti,
2005): First, the all-to-all distances problem is solved. Then, for every winning
edge e on a shortest path between terminals v1, v2, an alternative shortest path
between v1 and v2 that does not contain e can efficiently be computed using
several tweaks (Buchsbaum et al, 1998, Gualà and Proietti, 2005, Pettie and
Ramachandran, 2002). Computation of an alternative path in the distance
network between two different terminals v′1, v′2 can also be done efficiently by
standard sensitivity analysis (Tarjan, 1982).

While the previous approach can be used for distance-network based ap-
proximation, there is no efficient scheme for calculating the payments for the
primal-dual approach and the loss-contraction algorithm by Robins and Ze-
likovsky (2005). In this case, another possibility to obtain critical payments is
to find them through binary search. For a winning bidder i, a starting inter-
val [bi, sp(b−i)], and first provisional payment pi0 :=

⌊
bi+sp(b−i)

2

⌋
, the binary

search recursively computes a sequence of payments (pij):

pij =

{⌊
1
2p

i
j−1

⌋
if ei /∈ A(Gpi

j−1
,K)⌈

3
2p

i
j−1

⌉
if ei ∈ A(Gpi

j−1
,K)

where Gpi
j−1

= (V,E, (pij−1, b−i)) is the original graph G with the only
change being that the reported bid price of bidder i for his edge ei has now
become pij−1 instead of bi, and A is the corresponding approximation algo-
rithm. So ei ∈ A(Gpi

j−1
,K) means that reporting pij−1, bidder i still wins with
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all other bids fixed. This means that each computed payment pij is tested by
the respective allocation algorithm.

Since the payments described above are critical, they can be used in combi-
nation with their corresponding approximation algorithm to yield a strategy-
proof approximation mechanism for single-dimensional bidders due to the re-
sults of Nisan et al.

5 Deferred-Acceptance Auctions

Greedy algorithms are an important class of approximation algorithms. A
greedy-in algorithm iteratively chooses the best available option based on the
current state (i.e., the previous iterations) and adds it to the solution. Con-
trarily, in the deferred-acceptance auction (DAA), a greedy-out algorithm is
used which removes the least favourable alternative from the solution in every
iteration. A greedy-in procedure which greedily accepts edges is not suitable
for constructing a Steiner tree, since greedily accepting edges leads to being
forced to ’correct’ the structure afterwards (e.g.. assuring that Steiner points
do not end up as leaves) while within a greedy-out procedure one only needs to
assure that it is still possible to construct a Steiner tree based on the remain-
ing edges (i.e. all terminals are still connected). Thus this section describes a
greedy-out approximation for the Steiner tree problem implemented as a DAA
(Milgrom and Segal, 2019). The DAA is not only strategyproof but also weakly
group-strategyproof and therefore provides a form of protection against bidder
collusion.

The DAA greedily excludes the least desirable option from the solution
until further removal would lead to an infeasible solution. To decide which
option should be excluded in each iteration a scoring function is used. A scor-
ing function assigns a value of at least 0 to an option i based on the cost of
i and the remaining options. It is important to note that only the presence
of remaining options, not their cost, may be considered in the scoring func-
tion as otherwise the mechanism might lose its incentive properties. Also, a
scoring function needs to be non-decreasing in the first argument (cost of i).
In each iteration, the option with the highest assigned score is removed from
the allocation, options that cannot be removed without making the resulting
solution infeasible receive a score of 0. All remaining edges with a score of 0
are accepted in the end. Hence, the algorithm always returns a feasible Steiner
tree at the end. A representation of the algorithm is given below (Algorithm
1).
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Data: 2-connected graph G = (V,E, b), terminal set K ⊆ V , a scoring
function s

Result: A Steiner tree in G spanning K.
1 while true do
2 for each edge e do
3 assign score s(e) to e
4 if s(e) = 0 then
5 compute payment p(e)
6 end
7 end
8 if highest score equals 0 then
9 return remaining edges (Steiner tree)

10 end
11 remove e with highest score
12 end

Algorithm 1: Deferred-acceptance auction (DAA)
The payment p(e) for an alternative e is calculated the moment we cannot

exclude e from the solution any more, i.e. the moment we assign a score of 0
to it. The payment is equal to the bid e could have stated such that her score
would have been equal to the one removed in the last iteration.

In a network procurement context, the set of options is the set of edges
E. An edge cannot be excluded from the solution if its removal would lead G
to decay into two connected components each of which contains at least one
terminal. To account for the specific requirements of the network procurement
context, we analyze three scoring functions in our experimental analysis:
1. the weight of the edge
2. the weight of the edge divided by the number of adjacent edges
3. the weight of the edge divided by the betweenness centrality of the edge,

where the betweenness centrality for each edge is defined by the number
of shortest paths within the graph that use this edge

We calculate betweenness centrality by using the algorithm by Kourtellis et
al. (Kourtellis et al, 2015) on a variant Gu of G where all edges have weight 1,
i.e. Gu is the unweighted version of G. This is necessary, since due to incentive
reasons a scoring function may only take the respective bid and the underlying
graph structure into account, not the bids of other active bidders. Since in our
environment bids are the cost of edges, when calculating the score of an edge
e, we must ignore the costs of all other edges e′ ̸= e in our calculations. In the
following, let DAAw (DAAa;DAAc) denote the DAA with scoring by weight
(divided by adjacent edges; betweenness centrality).
Proposition 4 The DAA for the minimum Steiner tree problem runs in
O(|E|2+|E||V |+t) including payment calculation where t is the time necessary
to update the scores.
Proof In each iteration, at most |E| scores need to be updated. This takes
|E|+ |V | operations once to check for connectivity by Tarjan’s bridge finding
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algorithm (Tarjan, 1974) and constant time to update the score. Since there are
at most |E| iterations this leads to a total runtime ofO(|E|2+|E|·(|E|+|V |)) ⊆
O(|E|2+ |E||V |) for DAAw and DAAa. For DAAc betweenness centrality has
to be calculated. This can be done in O(|E||V |) for each removal, i.e. in each
iteration, using Kourtellis’ algorithm (Kourtellis et al, 2015). Hence, the total
runtime for DAAc is O(|E|2 + |E||V |+ |E|2|V |) ⊆ O(|E|2|V |). In all variants,
payments need to be calculated for at most |E| edges in constant time each.
Thus, the runtime complexity is dominated by score updates. �

Greedy algorithms are usually fast, but can lead to arbitrarily bad results
compared to an optimal solution for some problems.For instance, consider the
three weight functions discussed above and a network as given in Figure 1. The
network consists of n nodes v1, . . . , vn, two of which (v1 and vn) are terminals.
The optimal Steiner Tree consists of only keeping edge (v1, vn), but under DAA
this edge is rejected first under all weight functions, forcing the algorithm to
accept all other n − 1 edges in order to remain connected. This leads to an
approximation ratio of (n−1)/2 proving the impossibility of a constant-factor
approximation ratio. It remains an open question whether there exists a weight
function that allows for such an approximation ratio.

v1 vn

v2 v3 vn−2 vn−1

2

1

1 1 1 1

1

Fig. 1: An example where DAA leads to an approximation ratio of (n− 1)/2

6 Experimental Evaluation

In the following, we present a thorough analysis of the different mechanisms
discussed in this paper. For the approximation mechanism based on Mehlhorn
(1988) and the primal-dual algorithm of Goemans and Williamson (1997),
we computed the payments as described in Section 4.2. For the former, we
employed the payment scheme for distance-network based approximation al-
gorithms by Gualà and Proietti and for the latter we calculated the payments
based on binary search. For the DAA we use the threshold payments which
are dynamically updated throughout the run of the algorithm as described in
Section 5. Finally, we also included the Vickrey-Clarke-Groves mechanism as a
baseline. We used the Dreyfus-Wagner algorithm (Dreyfus and Wagner, 1971)
as implemented by Thejaswi to determine optimal solutions. All algorithms
were implemented in Java. The experiments were executed on a laptop with
Intel core i5-6600k (4 cores, 3.5 GHz) and 8GB RAM. We first describe the
data set in Section 6.1 before we presenting our results in Section 6.2.
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6.1 Data

Experiments are conducted on set I080 of the SteinLib Testdata Library (Koch
et al, 2000).1 Instances which are not 2-edge-connected are not considered since
a monopoly edge would be worth infinite amounts of money. Thus, instances
with names ending on 0x or 3x are not included. The remaining instances
covered graphs with 4, 8, 16, and 20 terminals and densities of 11, 20, and
100 percent (very sparse as well as complete graphs). For each combination of
terminal and density, the SteinLib test set contained 5 instances, i.e. a total
of 60 instances. In order to investigate the effect of a graph’s density on the
performance of algorithms, we created additional instances with more diverse
density values. Based on complete instances in I080, we created instances with
densities between 0.3 and 0.9 (in increments of 0.1) by deleting edges randomly.
For each combination of number of terminals and density, we generated 5
instances, for a total of 140 additional instances. Overall, we have an extensive
set of 200 instances and 6 algorithms, resulting in 1200 experiments.

6.2 Results

Let us now summarize the results with respect to allocative efficiency, runtime,
and revenue. We conclude this section with a short discussion of the results,
comparing the different mechanisms.

6.2.1 Allocative Efficiency

In Figure 2, we illustrate the efficiency of the five algorithms considered in our
experimental evaluation for different levels of density. For each level of den-
sity, we show the mean efficiency of the algorithm for 20 instances (5 instances
each for 6, 8, 16, and 20 terminals). While the approximation algorithm by
Robins and Zelikovsky (2005) is not monotonic and thus cannot be extended to
an approximation mechanism, it is still interesting to compare its allocation
efficiency to the other algorithms in a complete information setting. Over-
all, DAAc and DAAa were the best performing algorithms and the scoring
function based on the betweenness centrality came out to be the best scoring
function for DAAs.

With a paired Wilcoxon rank sum test the differences in efficiency between
MH and PD (p = 0.059) was not significant at p < 0.0001, while all other
pairwise comparisons were significant at this level. We also analyse differences
in efficiency using a linear regression with efficiency as dependent variable, the
algorithm, the number of edges and terminals as covariates. With the DAAc as
baseline, the differences to this greedy algorithm were positive and significant
at the following levels: DAAw (p < 0.0001), MH (p < 0.0001), PD (p <
0.0001), RZ (p < 0.0001), and DAAa (p < 0.01). The estimated coefficients

1 http://steinlib.zib.de/showset.php?I080
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further allow us to order the algorithm with respect to efficiency. Since we used
the DAAc as the baseline and all estimated coefficients are positive we see
that this approach provides the best results. The DAAa (coefficient: 0.04) and
the algorithm by Robins and Zelikovsky (coefficient: 0.14) follow closely while
both Mehlhorn’s algorithm and the primal-dual approach exhibit a coefficient
of 0.22. Finally, the DAAw has the highest coefficient of 0.92.

Fig. 2: Average efficiency over all instances

Let us now report averages for different subgroups of the experiments in
more detail. The algorithm by Robins and Zelikovsky performs best for sparse
instances, on average finding a solution only 25% worse than the optimum and
even solutions as good as 1.01 times the optimum (instance I080−015 of Stein-
Lib). Moreover, it performs well for complete graphs, too (1.3 approximation
ratio). Mehlhorn’s algorithm and the primal-dual algorithm achieve similar re-
sults (130%−140% of the optimum). The performance of these approximation
algorithms gets slightly worse the denser the graph is.

The performance of the DAA heavily depends on the scoring function. Us-
ing only the weight of an edge ce as a score, allocative efficiency is never better
than 1.48 times of the optimum, usually worse than 1.6 times of the optimum.
It seems clear that without taking into account the structure of the graph,
the greedy algorithm employed in DAAw can not compete with more sophis-
ticated methods. Even in later stages of the DAA, edges are only selected
based on their individual cost without considering the possible paths this edge
is a part of. DAAc (and especially, for smaller densities, DAAa) generally
provides better results on average than the more sophisticated approximation
mechanisms. Only on very sparse instances, the algorithm by Robins and Ze-
likovsky can keep up with the performance of the DAA variants DAAa and
DAAc. If we use edge weight divided by number of adjacent edges as scoring
function, DAAa performs better than the primal-dual algorithm for most sets
of instances and even achieves results that are better than the results of the
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algorithm by Robins and Zelikovsky, except for the instances with 100 percent
density.

The performance ofDAAa decreases significantly between a 90 percent and
100 percent density. We generated further instances, increasing the density by
a single percentage point between 90 and 100 percent. The efficiency ratio
steadily increases between 90 and 100 percent. While DAAa is equivalent to
DAAw in the first stages in very dense graphs (since every edge has the same
number of adjacent edges), this effect does not come into play except for very
dense graphs. Overall, DAAa performs significantly better than DAAw (on a
significance level of 0.1%). Moreover, it can be seen that efficiency of DAAa

and DAAc is nearly identical for sparse graphs and even up to a density level
of 90 percent. In sparse graph, the number of possible paths between two nodes
is more limited. Since an edge e with a lot of adjacent edges naturally allows
for more paths (and hence also more shortest paths) to pass through e, the
betweenness centrality of e is very dependent on its adjacent edges. Therefore,
the DAAs with the corresponding scoring functions perform very similarly.

Figure 3 shows the average performance of the algorithms depending on the
number of terminals (averaged over all densities, i.e. 50 instances per number
of terminals). It can be seen that performance of all DAA variants improves
as the number of terminals grows. This is to be expected since a greedy-
out procedure actually solves MST optimally and the Steiner minimum tree
problem becomes more like the MST problem for an increasing number of
terminals (in the limit, when all vertices are terminal, they are identical). In
contrast, all other approximation algorithms perform worse the more terminals
are present in the graph.

Fig. 3: Average efficiency depending on number of terminals

In the following, we discuss the efficiency of the algorithms for fixed number
of terminals. Since results for 6 and 8 as well as for 16 and 20 terminals,
respectively, are very similar we consider instances with a small number (6)
and large number (20) of terminals. To improve readability, in the following
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we excluded DAAw from the graphs and discussion as it was performing worse
than all other mechanisms, in general. For 6 terminals the density appears not
to have a significant impact for MH, the primal-dual approach, and DAAa

(Figure 4). This can easily be seen by means of linear regression where the
p-value of density is > 0.1 for all of them. The algorithm by Robins and
Zelikovsky performs worse the denser the graph is (p < 0.001), an effect easily
observable in Figure 4. In contrast, the DAAc reveals favorable behavior if the
graph is denser (p < 0.01). We can clearly see that independent of the number
of terminals, DAAa performs well for density levels up to 90 percent and then
becomes significantly worse for very dense graphs.

Fig. 4: Efficiency for 6 terminals

This is in line with the results for 20 terminals where the density leads to
better efficiency of the DAAa for density values in [0.11, 0.9] (p < 0.001).

Fig. 5: Efficiency for 20 terminals
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Figures 4 and 5 show that the MH and PD find very similar solutions that
are below 1.4 times the optimal solution. The denser the graph the worse the
solutions these algorithms find. The algorithm by Robins and Zelikovsky finds
even better solutions, but its performance decreases not only with increasing
density but also as the number of terminals grows. Only for sparse instances
with few terminals it finds more efficient solutions than the more sophisticated
DAA variants.DAAa and theDAAc find similarly efficient solutions for sparse
graphs, where no significant difference was observed. The solutions found by
the DAAc are never worse than 1.09 times the optimum and in eight out of
ten instances at most 6% worse than the optimal value for complete graphs
with 16 or 20 terminals.

6.2.2 Runtime

In the following, we discuss the combined runtime required for the approxi-
mation mechanism to obtain both, allocation and payments. Since the relative
runtimes between mechanisms show a continuous patter when incrementing
the number of terminals and density, we only discuss extreme cases. Table 2
depicts the runtimes for the smallest and highest densities, as well as the small-
est and largest number of terminals. Over all instances and densities, pairwise
differences between two algorithms are significant at a level of p < 0.0001 using
a Wilcoxon rank sum test with the difference between the mechanism based
on Mehlhorn’s algorithm and the DAAw being the only exception (p = 0.026).
All mechanisms are significantly different from V CG (p < 0.0001). Our ex-
periments show that MH, DAAw, and DAAA are the fastest group with PD
following closely for instances with 6 or 8 terminals. Runtimes observed for
the fastest group are lower than 4s on average on the set of instances with
high numbers of both terminals and edges. Performance for lower numbers of
terminals or edges is even better. Within the fastest group, the mechanism by
Mehlhorn takes less time on complete graphs but is usually outperformed by
the faster DAA variants for sparse graphs with more than 6 terminals.

Arguably, the more advanced payment computation used within MH leads
to faster completion than calculating prices for PD, although we observed
higher allocation runtime of the primal dual algorithm when prices were not
considered. The runtime required by all DAA variants is very dependent on
the density of the graph while it scales very well with the number of termi-
nals. In our test instances, the computation time even slightly decreases with
an increasing number of terminals; in contrast to all other mechanisms. VCG
in particular is very sensitive to higher number of terminals. Calculating ex-
act solutions for minimum Steiner tree problems in the case of 20 terminals
proved to be computationally inefficient, requiring a factor of up to 370.000 of
the runtime as compared to the best performing DAA variants. Differences be-
tween the simpler scoring functions DAAw and DAAa are very small while the
calculation of betweenness centrality leads to higher runtimes for the DAAc.
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6 Terminals 20 Terminals
Density 11 % 100 % 11 % 100 %
MH 0.24 0.46 0.33 1.26
PD 0.28 3.14 1.93 12.97
DAAw 0.33 2.55 0.14 2.52
DAAa 0.71 3.03 0.28 3.25
DAAc 5.82 109.11 4.50 95.14
VCG 2.05 1.80 67544.54 58556.20

Table 2: Runtime combined means (in seconds)

6.2.3 Revenue

Table 3 shows the extreme cases with lowest and highest density as well as
the lowest and largest number of terminals. We have decided on this type of
report, because again the developments between the extremes is smooth. In
general, the payment increases with the number of terminals (since more edges
need to be bought) and decreases with the density (since more competition
between bidders allows for selecting cheaper options). The only exception is
DAAa with 100 percent density due to the bad (and hence more expensive)
outcome that is obtained by the algorithm. Overall, the payments are lowest
for VCG and the more sophisticated approximation algorithms yield a lower
payment than the DAA variants (except for DAAa for very sparse graphs).

The differences between DAAw and DAAc, MH and DAAw, MH and
DAAc, PD and DAAw, PD and DAAc and V CG and all other algorithms
are significant at a p < 0.0001 level using a Wilcoxon rank sum test. The other
pairs were not significantly different at this level and their revenues are close. A
regression with the sum of payments as the dependent variable and the number
of edges, the number of terminals, and the algorithm as predictor variables
shows that there are significant differences in revenue among most mechanisms.
With PD as a baseline, we find that this approach yields lower payments
than DAAw (p < 0.0001), DAAa (p < 0.0001), and DAAa (p < 0.0001). No
significant difference to the payments computed for the mechanism based on
Mehlhorn’s algorithm was found at this level. Using the V CG mechanism as a
baseline, all other algorithms yield significantly higher payments (p < 0.0001).

6 Terminals 20 Terminals
Density 11 % 100 % 11 % 100 %
MH 2004.40 1496.00 6569.80 5580.00
PD 1920.40 1493.40 6654.80 5578.20
DAAw 3376.60 2703.00 7393.60 6822.80
DAAa 2152.27 2937.95 6133.26 9561.76
DAAc 2735.85 2708.28 7404.98 6904.70
VCG 1644.80 1191.60 5078.80 4170.20

Table 3: Revenue combined means (in arbitrary bid’s currency)
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We also report results on the mean total utility calculated as the difference
of total cost and total payments as percentage of total cost in Table 4. For
MH and PD, the payments offered to winners of complete instances are low
compared to their costs leading to low payoffs. For theDAAa andDAAc sellers
get a much higher payoff in all settings. The costs using the VCG mechanism
are lowest.

Overall, we observe that the DAA mechanisms require significantly higher
payments than VCG or the two approximation algorithms. While all of the
mechanisms are strategy-proof, the allocation and payments are computed
very differently. To see this, consider the example in Figure 6 with two nodes
A and B connected via a direct edge whose cost is $10. There is another path
between these two nodes with 9 edges with a cost of $1 each. With threshold
payments in a DAA, each of the winning edges gets $10 when the direct edge is
removed, and the overall revenue of the bidders on the 9 winning edges is $90.
With critical payments as they were used for MH and PD the payments on
each edge would be the maximum bid that would have still made the specific
bidder winning (i.e., 2− ε), and the resulting revenue would be less than $18.

A B

v1

v2 v3 v4 v5 v6 v7

v8

$10

$1

$1

$1 $1 $1 $1 $1

$1

$1

Fig. 6: An example where DAA leads to high payments

6 Terminals 20 Terminals
Density 11 % 100 % 11 % 100 %

MH 19.87 1.33 11.55 1.05
PD 15.15 1.25 12.64 1.02

DAAw 2.65 1.69 2.71 1.45
DAAa 22.46 70.41 22.01 106.54
DAAc 46.22 103.66 48.08 65.70

VCG 13.65 1.85 12.51 6.00

Table 4: Average seller utility (in % of their cost)

7 Conclusions

In this paper, we showed which approximation algorithms can be extended to
approximation mechanisms for the Steiner minimum tree problem with single-
minded bidders. We proved that the best known algorithm by Robins and
Zelikovsky violates monotonicity, a necessary condition for implementability.
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However, the algorithms by Mehlhorn (1988) and the primal-dual algorithm
by Goemans and Williamson (1997) are monotonic and could be extended
to strategyproof approximation mechanisms. Further, we designed a deferred-
acceptance auction for the minimum Steiner tree problem and analyzed several
scoring functions.

While the worst-case approximation ratio of deferred-acceptance auctions
can be very low, the average-case solution quality is remarkably high, as shown
in our numerical experiments. The results show that the group-strategyproof
DAA with a scoring function based on betweenness centrality (DAAc) yields
very high allocative efficiency at low computation times in most environments
(characterized by density and the number of terminals). DAAa with a scoring
function based on the number of adjacent edges performs similarly well (and
even better for graphs with a higher number of terminals). Only for very dense
graphs, the algorithm’s solution quality declines.

Obviously, in terms of allocative efficiency, the exact V CG mechanism
is best, but runtime can be prohibitive as the number of terminals grows.
The runtime of all other algorithms is less than two minutes even for the
large instances. MH exhibits a very low runtime over all instances and lower
payments than DAA variants. Its allocative efficiency is significantly worse
than that ofDAAa andDAAc except for very sparse graphs with a low number
of terminals. Overall, DAAa has the best solution quality for density levels
between 20 and 90 percent.

A number of questions are left for future research. The group-
strategyproofness and the high average solution quality of the DAA variants
come at the cost of higher payments for the buyer and higher profit for the
sellers. This interesting trade-off for procurement managers requires further
analysis to better understand which conditions justify the additional payment.

Another extension is to consider cases where bidders not only provide single
edges, but packages of multiple edges. Unfortunately, this extension towards
multi-dimensional mechanism design is far from trivial. One of the main prob-
lems is that bidders might not only lie about the cost of their edges but also
about which edges they possess. This considerably complicates the construc-
tion of truthful mechanisms, such that we cannot rely on critical payments and
monotonicity any more. In general, the design of deterministic approximation
mechanisms for hard computational problems with multi-minded bidders re-
mains a challenge.
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A Appendix: Approximation Algorithms for the minimum Steiner
tree

In A.1 we discuss loss-contraction algorithms on the basis of the algorithm by Robins and
Zelikovsky (2005), in Section A.2 we consider distance-network based approaches, and in
Section A.3 the approximation by a primal-dual algorithm.

A.1 Loss-Contracting Approximation: The Algorithm by Robins and
Zelikovsky

Any Steiner tree S(G,K) of G is either a full Steiner tree, i.e., all its terminals are leaves,
or can be decomposed into a forest of full Steiner subtrees (full components) by splitting all
the non-leaf terminals (splitting a terminal results in two copies of the same terminal). The
algorithm builds a MST on the subgraph GK induced by the terminal set K and repeatedly
adds full components to the temporary solution. In each iteration, full components are
ranked according to their gain (by how much the component improves the current temporary
solution) divided by their loss (i.e. the cost committed by accepting a component or more
precisely its Steiner points). After a full component is chosen, it is added to GK . The full
component is also added to the temporary solution in loss-contracted form. This ensures
that components which are in conflict with accepted ones are less appealing subsequent
iterations. Finally, a MST is built on the union of GK and all chosen full components.
By these means, the algorithm achieves an approximation ratio of 1.55 if k → ∞ and is
computable in O(|K|k · |V −K|k−2 + k · |K|2k+1 log |K|) (Robins and Zelikovsky, 2005).

A k-restricted full component F is a full component with k ≥ 3 terminals. By Cl[F ]
we denote the loss-contracted full component of F . We define the gain and loss of a full
component F formally and then describe the execution of Algorithm 2 below.

Definition 5 (Gain and Loss of a Full Component (Robins and Zelikovsky, 2005))
Let T be a tree spanning K and F be an arbitrary full component of G given K.
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Let T [F ] be a minimum cost graph in F ∪ T which contains F completely and spans all
terminals in K. This means T [F ] is the result of replacing a part of the tree T with the full
component F .
Then the Gain of F w.r.t. T is the cost difference between T and T [F ]:

gainT (F ) = cost(T )− cost(T [F ])

The Loss of F is a minimum-cost subforest of F containing a path from each Steiner point
in F to one of its terminals: Loss(Ft) = MST

(
Ft ∪ E0(Ft)

)
\E0(Ft), where E0(F ) denotes

a complete graph containing all terminals of F , with all edge costs being 0. It follows that

loss(F ) = cost
(

MST
(
F ∪ E0(F )

)
\E0(F )

)
Data: 2-connected graph G = (V,E, b), terminal set K ⊆ V , an integer k with

3 ≤ k ≤ |K|
Result: A k-restricted Steiner tree S(G) in G spanning K.

1 Compute GV and GK

2 T = MST(GK)
3 repeat
4 Find a k-restricted full component F maximizing
5 r = gainT (F )/loss(F )
6 GK = GK ∪ F
7 T = MST(T ∪ Cl[F ])

8 until r ≤ 0;
9 S(G,K) = MST(GK)

10 Replace artificial edges in S(G,K)
11 Cut Steiner point leaves of S(G,K)
12 return S(G,K)

Algorithm 2: Approximation Allocation Algorithm ARZ

The algorithm starts by computing GV , its subgraph GK (Line 1) and the MST on
GK (Line 2). Afterwards, the gain-over-loss ratios for all k-restricted full components are
computed. It is sufficient to consider k-restricted full components consisting of k terminals
and between 1 and k − 2 Steiner points since every component is uniquely identified by its
Steiner points of degree larger than 2 (Figure 7a). Note that the gain of a full component F
is dependent on T , while the loss is not. After choosing the full component with the highest
gain-over-loss ratio, the selected component is added to GK (Line 6). The component is also
added to T in loss-contracted form Cl[F ] (Line 7).

To contract the loss of a full component F , we merge every connected tree of the forest
Loss(F ) into a single vertex, the respective terminal of the component. Two terminals are
connected in Cl[F ] if their respective components in Loss(F ) have an adjacent edge in F
(Figure 7a) and the cost of the edge in Cl[F ] is equal to the cost of the respective edge in
F (Figure 7c).

After Cl[F ] was added to T , an MST is built on T ∪ Cl[F ]. By improving T the gain-
over-loss ratio for the remaining full components is decreasing. Eventually, all components
will have a gain-over-loss ratio of at most zero. At this point, the algorithm computes the
MST (GK) (Line 9), transforms all its artificial edges back into original edges, i.e. replaces
artificial edges by the respective shortest path, and cuts leaves which are Steiner points
(Line 11).

Proposition 5 Allocation algorithm ARZ is not monotonic.

Proof The proof is by counter example. Consider graph G (Figure 8) with terminal set
K = {v1, v2, v4, v5, v6, v7, v9, v11} (round nodes) and the non-terminals {v3, v8, v10, v12, v13}
(rectangular nodes). The owner of e = {v4, v13} bids 3.15.

The computed solution of cost 22.85 can be seen in Figure 9a. Note that e = {v4, v13}
is part of the solution.
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However, if the owner of e reduces her bid to 3.11 the solution does not include e any more
(Figure 9b). Thus, monotonicity is violated and we cannot hope to achieve strategyproofness
by using a critical payment scheme. �

So, the algorithm by Robins and Zelikovsky (2005) based on loss-contraction cannot eas-
ily be extended to a strategyproof mechanism. Let us next analyze approximation algorithms
based on the distance network.
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A.2 Distance-Network-based Approximations

Similarly to the loss-contracting approximation, the general idea of distance-network-based
approximation algorithms is to build a MST on a complete subgraph GK in the first phase.
In the second phase, edges (shortest paths) in the MST are decomposed into edges in E,
and a MST is computed on the resulting graph to remove possible cycles. Finally, in the
third phase, non-terminal leaves are deleted. This algorithm was proposed by Kou et al
and runs in O(|K||V |2). However, due to the cycles that can occur in the first phase, this
standard variant is not monotonic. To see this, consider the graph G in Figure 10 with its
relevant edges of the respective distance network GK . If the bid for e = {v9, v10} is 4, e is
part of the solution (Figure 11a). However, if the bid was only 3, e might be removed from
the solution (Figure 11b). Hence, monotonicity is violated.
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Gualà and Proietti (2005) change the algorithm in its second phase when the MST on
the subgraph GK is replaced by the corresponding shortest paths. Instead of adding all
shortest paths and afterwards calculating the MST on the resulting graph to remove the
cycles, in the extended algorithm the shortest paths are inserted iteratively in a way such
that no cycles are introduced. The authors show that such an acyclic expansion is always
possible. The resulting algorithm requires a run time of O((|V |+ |K|2)|E| · log α(|E|, |V |))
where α(., .) is the classic inverse of the Ackermann’s function as defined in (Tarjan, 1982)
and yields a 2(1− 1/|K|)-approximation.

Mehlhorn (1988) designed an algorithm which differs in phase 1. Here, the algorithm first
partitions G into Voronoi regions, which are then utilized to construct a subgraph of GK ,
called G. It then proceeds with phase 2 and phase 3 as described above. This leads to a worst
case run time of O(|V | log |V |+ |E|) and achieves an approximation ratio of 2(1−1/l) where
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l is the minimal number of leaves in any minimum Steiner tree (which is naturally bounded
above by the number of terminals). In the following, we discuss Mehlhorn’s algorithm and
show that the allocation is monotonic. Hence, the algorithm is also suitable to be extended
to an approximation mechanism with a slightly better run time and approximation ratio
than other algorithms based on distance-network-based approximation algorithms.

Definition 6 (Voronoi Regions V(s)) Given a general graph G = (V,E, b) and the set
of terminals K ⊆ V , the Voronoi region V(s) of a terminal s ∈ K contains all vertices v ∈ V
for which the shortest path sp(s, v) ≤ sp(t, v) for all t ∈ K. We break ties randomly, such
that each vertex v uniquely belongs to one such region.

Definition 7 (Distance Network based on V) Let Ḡ = (K,EḠ, bḠ) be the distance
network with edges and weights as follows:

(s, t) ∈ EḠ ⇔ ∃ (u, v) ∈ E such that u ∈ V(s) and v ∈ V(t)
bḠ(s, t) = min{sp(s, u) + b(u, v) + sp(v, t) : u ∈ V(s), v ∈ V(t), (u, v) ∈ E}

Data: 2-connected graph G = (V,E, b), terminal set K ⊆ V
Result: A Steiner tree S(G,K) in G spanning K

1 Compute Voronoi regions of G and generate Ḡ;
2 S(G,K) = MST(Ḡ)
3 Replace artificial edges in S(G,K)
4 Cut non-terminal leaves of S(G,K)

return S(G,K)

Algorithm 3: Approximation Allocation Algorithm AMH

Similar to the algorithm by Gualà and Proietti (2005), the algorithm by Mehlhorn is
also monotonic.

Proposition 6 The allocation of Mehlhorn’s algorithm is monotonic.

Proof Suppose there is a graph G, an allocation A computed by Mehlhorn’s algorithm and
an edge e ∈ A. Further assume that the owner of e lowers her bid. Reducing a bid for an
edge e can only mean that e is now part of at least as many shortest paths as before. In
general, this may change the allocation. However, only shortest paths which contain e are
cheaper after the changed bid. Hence, e will remain part of the solution even though it might
be chosen in another path. It remains to be shown that a changed allocation cannot lead to
cycles in the solution and thus to the possible exclusion of e.
Suppose there is a cycle between two Voronoi regions. This would mean that two paths
between the respective regions have been chosen. Since an MST is built on the subgraph
induced by the Voronoi regions, this can never happen during Mehlhorn’s algorithm. A
similar argument holds for cycles in more than two Voronoi regions. Finally, there can be
no cycles inside a single Voronoi region (by definition). Since no cycle can occur, no edge
that has been added to the solution will be removed from the solution at a later point and
therefore e is in the final solution. Thus, the allocation computed by Mehlhorn’s algorithm
is monotonic. �

A.3 Primal-Dual Approximation Algorithms

This section describes the general approach for primal-dual approximations and the ap-
proximation algorithm for the minimum Steiner tree problem by Goemans and Williamson
(1997) which requires a runtime of O(|V |2 log |V |) and also has an approximation ratio of 2.

Many problems in graph theory can be reduced to the hitting set problem. For a ground-
set E with cost ce ≥ 0 for every element e ∈ E and subsets T1, T2 . . . Tn ⊆ E, the hitting
set problem is to find a subset A ⊆ E of minimal cost such that A ∩ Ti ̸= ∅ for all subsets



Strategyproof Auction Mechanisms for Network Procurement 29

i = {1, . . . n}. The primal integer program for the hitting set problem can be formulated as
follows:

Min
∑
e∈E

cexe

subject to
∑
e∈Ti

xe ≥ 1, ∀i

xe ∈ {0, 1}.

To obtain the relaxation, simply the constraint xe ∈ {0, 1} needs to be relaxed to xe ≥ 0.
The corresponding dual program is stated below:

Max
∑
i

yi

subject to
∑

i:e∈Ti

yi ≤ ce, ∀e ∈ E

yi ≥ 0, ∀i.

To obtain an α-approximation we compute a solution x to the primal integer program and
a solution y to the dual of the relaxed primal program such that

∑
e∈E

cexe ≤ α
n∑

i=1
yi.

Data: ground-set E, subsets T1, T2, . . . Tn ⊆ E
Result: allocation A

1 y = 0 ∀y
2 A = ∅
3 while A not feasible do
4 Find violated Tk (Tk ∩A = ∅)
5 Increase yk until ∃e ∈ Tk s.t.

∑
i:e∈Ti

yi = ce

6 A = A ∪ {e}
7 end
8 return A

Algorithm 4: Approximation Algorithm for the hitting set problem

Algorithm 4 describes the necessary steps to compute A. During the initialization, A is
empty and all dual variables y are set to 0. In each iteration, a violated set Tk is chosen.
Afterwards, the corresponding dual variable yk is increased (loaded) until one of the con-
straints holds with equality (it goes ”tight”, Line 5). The corresponding element e is then
added to the solution. If the allocation A is feasible, the algorithm stops and returns A.

Mapping the hitting set problem to the minimum Steiner tree problem is straightfor-
ward: the ground-set is given by the edges E of the graph and ce is the cost of the respective
edge e ∈ E. Let Si be a subset of vertices that contains at least one, but not all terminals,
i.e. a cut. When all cuts are crossed, the solution is a feasible allocation for the minimum
Steiner tree problem. By definition, the edges adjacent to exactly one vertex v ∈ Si are
the edges crossing the cut Si. Let δ(Si) denote the set of these edges. Let Ti = δ(Si). The
adapted algorithm can be seen below (Algorithm 5). It achieves an approximation ratio of
2 (Goemans and Williamson, 1997).

Two modifications can be seen in Algorithm 5 in comparison to the basic primal dual
algorithm (Algorithm 4). Firstly, load is not increased on one, but multiple (minimal) un-
satisfied components Tk ∈ U . U contains all Tk that are unsatisfied and minimal, i.e. there
is no unsatisfied set Tj with Tj ⊂ Tk. Secondly, after computing the allocation A a reverse
deletion is conducted. In this phase, edges are assessed in regard to their necessity in reversed
order (LIFO). Unnecessary edges either connect a Steiner point as a leaf or close a cycle. In
either case, the edge is not contributing to the solution (apart from inflicting costs).
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Data: 2-connected graph G = (V,E, b), terminal set K ⊆ V
Result: A Steiner tree S(G) in G spanning K

1 y = 0 ∀y
2 A0 = ∅
3 i = 0
4 while Ai not feasible do
5 Choose violated sets U
6 Increase yk uniformly for all Tk ∈ U until ∃ei ̸∈ Ai s.t.

∑
i:ei∈Ti

yi = cei

7 Ai = Ai ∪ {ei}
8 i = i+ 1

9 end
10 A′ = Ai−1

11 for i; i ≥ 0; i = i− 1 do
12 if A′ \ {eti} still feasible then
13 A′ = A′ \ {eti}
14 end
15 end

Algorithm 5: Approximation Allocation Algorithm APD

Proposition 7 The allocation of the primal-dual based minimum Steiner tree approxima-
tion is monotonic.

Proof Suppose there is a graph G, an allocation A computed by the primal-dual approxi-
mation algorithm for Steiner trees and an edge e ∈ A whose cost have been truthfully stated
by its owner. Further assume that the owner of e lowers her bid to c′e. Due to the lower cost,
e can go tight only sooner. Since e was part of the first allocation we know that conflicting
edges have been removed before e was candidate for removal. Since e is now cheaper and
was thus added to the solution earlier or at the same point, it still is considered for removal
later than the conflicting edges. Hence, when e is assessed for necessity the conflicting edges
have already been removed. The allocation computed by the primal-dual approximation
algorithm for Steiner trees is thus monotonic. �


