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Abstract. Principal-agent relationships between the supervisory board and the management of bidding firms are 

widespread in spectrum auctions, but they can also be observed in other multi-object markets. The management aims at 

winning the highest valued licenses whereas the board wants to maximize profit and limits exposure in the auction.  In 

environments in which it is efficient for firms to coordinate on allocations with multiple winners, we show that the 

principals would coordinate on smaller sets of objects while the agents would not and inflate their demand to larger sets. 

We first analyze multi-unit markets in which principal and agent have complete information about the valuations, and show 

that it can be impossible for the principal to implement her equilibrium strategy with only budget constraints in a first-price 

sealed-bid package auction. With hidden information about the valuations a principal would need to determine contingent 

budgets and transfers to compensate the agent, which can be impossible with value-maximizing motives of the agent. 

Contrary, in an ascending package auction this is straightforward even without knowledge of valuations as long as the 

principals know the efficiency environment.  The second-price payment rule of the ascending auction enables the principal 

to overcome the agency problem more easily and the dynamic mechanism further facilitates coordination for the principals. 
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1 Introduction 

Agency problems in bidding teams are pervasive in many auction markets. For example, it is well-known 

that the relationship between the supervisory board (principal) and the management (agent) of a telecom 

play an important role in determining the firm’s bidding strategy in spectrum auctions (Chakravorti et al. 

1995; Shapiro et al. 2013).Such principal-agent relationships have been put forward as one possible cause 

of allocative inefficiencies in spectrum auctions (Schmidt 2005). In this paper, we introduce a principal-

agent model of a bidding firm in which the principal provides the agent with an upper limit on the amount 

to be spent in an auction (budget constraint). This model helps explain inefficient outcomes in multi-

object auctions that are characterized by bidders inflating their demand to larger sets of objects (demand 

inflation) instead of efficiently coordinating on smaller sets. One of our central results is that principals 

might be more likely to overcome the agency problem if second-price auction formats are adopted, in 

particular ascending mechanisms.  

Our motivation is a wide-spread hidden information problem in auctions in which the agent knows the 

valuation of different objects or packages, but the principal does not. The agent has limited liability and 

the principal determines upper limits on exposure in the auction. Any residual money is re-invested in the 

firm and the agent is unlikely to be induced to maximize profit. In this environment the agent tries to 

maximize the value of objects won given the budget constraint. Let us motivate our model by looking at 

spectrum auctions that are an important economic activity (generating billions of dollars 

worldwide) and that have been a catalyst for theoretical research in auctions.  For example, 

principal-agent relationships arise between the management of a multinational telecom and the 

management of a national subsidiary bidding in the auction. In spectrum auctions, firms have preferences 

over different packages of spectrum licenses. Each of these packages can be assigned a business case with 

a net present value. The management knows the market best, it knows the technology, the competition, 

and the end consumer market, and so they can compute business cases that allow for a good estimate of 
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the net present value of each package. The board of directors does not have this information, and the 

management has no incentive to reveal it truthfully. Principals often need to rely on analyst estimates that 

typically have an enormous variance.
2
 The principal will also not learn the true valuations of the licenses 

after the auction, as the future profits of the firm depend on many other decisions. 

The payments made by telecommunication firms in spectrum auctions are often billions of dollars, and 

thus the management cannot cover the cost of the auction. This means, the agent in these markets has 

limited liability and the principal has to pay in the auction. The budgets that need to be reserved for such 

an auction by the board are also such that they cannot just be transferred in total to the agent in order to 

induce a profit-maximizing motive. The residual budget after the auction might be in the billions, and 

there can be much more efficient investments elsewhere. The different incentives of principal and agent 

are nicely summarized in a report by a consulting firm in this field (Friend 2015): 

“The amount of money spent by mobile operators at auction is often staggering. The money needed 

to pay for spectrum cannot usually be funded from the agreed capital expenditure budget of the 

business. As a result, spectrum payments are usually treated as a separate amount that does not 

impact the Key Performance Indicators of the business upon which the management team’s 

bonuses are often based. However, the management team of a mobile business usually prefer to 

have more spectrum rather than less. The Chief Marketing Officer prefers more spectrum than his 

competitors as it allows him to advertise a bigger, faster and better network which helps him 

achieve his sales target. The Chief Technical Officer prefers more spectrum as it means he needs to 

build fewer sites to provide the same capacity and helps him achieve his capex to sales targets. The 

CEO is happy because the business is hitting its targets. So the management team will typically 

prefer to win more rather than less spectrum at auction.” 

Empire-building motives are a widespread reason for such value-maximizing behavior of agents in the 

principal-agent literature (Jensen 1986). Note that spectrum auctions are only one example of value 

maximizing agents. Engelbrecht-Wiggans (1987) writes “… in bidding for mineral leases, a firm may 

wish to maximize expected profits while its bidder feels it should maximize the firm's proven reserves.'' In 

addition, he discusses auctions for defense systems and construction contracts. Payoff maximization is 



4 

 

hard to defend for an agent in such relationships, and agents typically try to “win within budget.” In 

contrast, value maximization is a good approximation of such agent motives. In this setting it is important 

to understand the impact of the agent’s bias on the firm’s bidding behavior and means for the principal to 

implement on optimal strategy.    

1.1 Contributions and Outline  

We introduce a principal-agent model of firms participating in a multi-unit auction. In each firm an agent 

bids on behalf of the principal. The agent has hidden information about the valuations of the goods and 

wants to win his value-maximizing allocation whereas the uninformed principal aims at maximizing profit 

and determines budget constraints to restrict the agent’s bids.  

This principal-agent problem can be seen as a form of optimal delegation in which an uninformed 

principal delegates decision rights to an informed but biased agent. Holmström (1977) and Alonso and 

Matouschek (2008) showed that the optimal mechanism for the principal when utility is not transferable 

consists of choosing a subset of actions, from among which the agent is allowed to pick the most desired 

one. A budget constraint that cannot be overbid corresponds to a restriction on the actions of the bidding 

agent. Budget constraints are widely used as a means to discipline the bidding agent in spectrum auctions 

and other high-stakes auctions (Engelbrecht-Wiggans 1987; Shapiro et al. 2013).  

Whether the principal can implement an optimal bidding strategy with such a constraint crucially 

depends on the level of information she has about the valuations. We show that even if the principal had 

full information, she could not always optimally align the agent’s incentives via budget constraints only. 

Therefore, we also analyze a situation in which the principal can pay contingent transfers to the agent to 

optimally incentive align the agent in an asymmetric information environment. Principal-agent 

relationships of bidding teams in auctions have only recently become a topic of interest in auction theory, 

but prior models focus on single object auctions (Burkett 2015; Burkett 2016).
3
 We demonstrate that 
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multi-object auctions are characterized by additional strategic considerations on which the agency 

problem has an impact that do not appear in single-object auctions.      

First, we describe the environment formally as the principal-agent 2 × 2 package auction model in 

which 2 firms compete for 2 units of a homogeneous good (perfect substitutes) in Section 2.
4
 The 2 × 2 

model captures the central strategic challenge that can also arise in larger markets and provide examples in 

the conclusions. We primarily focus on the first-price sealed-bid (FPSB) and the ascending package 

auctions in our analysis due to their relevance in spectrum auctions.
5
 However, in Section 4.2 we also 

discuss traditional (non-package) Simultaneous Multiple-Round Auctions (SMRA) that have frequently 

been employed to sell spectrum (Milgrom 2000). It is still a topic of debate among regulators which 

auction format to use. Ideally, a mechanism would be strategy-proof and welfare-maximizing for the agent 

and the principal. Unfortunately, there is no strategy-proof mechanism for value-maximizing agents 

(Fadaei and Bichler 2016), and therefore there cannot be a strategy-proof mechanism for both. We briefly 

illustrate this result in our 2 × 2 model for the Vickrey-Clarke-Groves (VCG) mechanism (Clarke 1971; 

Groves 1973; Vickrey 1961) in Section 2.2.   

We are limiting our attention to markets in which it is efficient to have two winners (dual-winner 

outcome). This environment is called dual-winner efficiency and has been introduced and motivated for a 

procurement setting by Anton and Yao (1992). This context enables us to demonstrate strategic difficulties 

that can arise with principal-agent relationships in bidding firms as principals need to coordinate in the 

efficient equilibrium and there is a conflict of interest with the agent. Moreover, this limited setting 

actually allows us to derive the principal’s Bayesian Nash equilibrium strategies as one can only analyze 

specific environments game-theoretically. The role of this model is similar to that of the stylized local-

local-global (LLG) model that is often used to analyze threshold problems in combinatorial auctions 

(Ausubel and Baranov 2018; Goeree and Lien 2016).  
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Finally, the described setting models an interesting market environment that is also relevant to business 

practice. For example, in a spectrum auction two bidders might be interested in multiple homogeneous 

licenses in a band and it is the efficient solution for bidders to split the spectrum. Interestingly, one can 

often observe demand inflation in such situations in the field even though payoff-maximizing bidders 

would reduce demand from the start. Note here, that regulators tend to be legally bound to aim for 

efficiency as noted, for example, for the spectrum auction to sell personal communications services (PCS) 

licenses in 1994 by the US Federal Communications Commission (FCC) (McMillan 1994).   

In Section 3, we focus on the FPSB package auction and analyze the agency problem that arises.  First, 

in Section 3.1 we analyze the equilibrium bidding strategies of profit-maximizing principals in case they 

had full information about the valuations of the firm and were participating in the auction without their 

agents. Bayesian Nash equilibrium analysis of multi-object auctions has turned out challenging as, for 

example, in case of the SMRA for (asymmetric) bidders with synergies in their valuations (Goeree and 

Lien 2014; Krishna and Rosenthal 1996). Similar to Anton and Yao (1992) we assume prior information 

about the efficiency environment, i.e. dual-winner efficiency, and show that coordination on the efficient 

outcome constitutes an efficient Bayesian Nash equilibrium (dual-winner equilibrium) for the principals in 

a FPSB package auction in this environment. Under reasonable distributional assumptions this equilibrium 

payoff-dominates a single-winner equilibrium. Contrary to Anton and Yao (1992) the proofs are 

independent of a publicly known efficiency parameter and involve two-dimensional package valuations. 

Moreover, in Section 4.1 we extend these results to the ascending package auction format.  

In Section 3.2 we analyze strategies of the agents if they were to participate in the auction without their 

principals, but with a budget constraint for one and two units. In this section, the constraints are 

considered exogenous and drawn from a random distribution. We show that it is the unique Bayesian Nash 

equilibrium for the agent not to bid on a single unit but only on the package of two units. The analysis 

highlights the bias of the agent and how his equilibrium bidding strategy differs from that of the principal 

leading to inefficiency. The same behavior continues to be optimal for the agents in the ascending package 
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auction as shown in Section 4.1.2. We focus on the implementation of the principal’s original efficient 

equilibrium using budget constraints in the symmetric information environment in Section 3.3. We show 

that even if the principal has complete information, there cannot always be budget constraints that set the 

right incentives for the agents and at the same time constitute the equilibrium for the principal in the FPSB 

package auction. 

In Section 4, we extend our analysis to the ascending package auction and the SMRA. The principals’ 

dual-winner equilibrium of not bidding on the package of two units at all is reminiscent of demand 

reduction equilibria in (ascending) uniform-price multi-unit auctions in (Ausubel et al. 2014) and in 

particular to (Engelbrecht-Wiggans and Kahn 1998) in which equilibrium-conditions for a zero-bid on the 

second unit are established. This bidding behavior is in stark contrast to the agents’ equilibrium strategy 

which involves demand-inflation of bidding on two units only. However, the ascending auctions have 

advantages over the FPSB package auction in our model if the principal knows the efficiency environment 

in the market. In this case, she could set the budget for the package to null and implement her equilibrium 

strategy.  

Interestingly, for the ascending package auction this advantage is a feature of the second-price 

payment rule which we demonstrate by establishing outcome equivalence between the ascending package 

auction and the VCG mechanism with respect to solving the agency dilemma in the principal-agent 2 × 2 

package auction model. Note that a principal would still need to know that the outcome with two winners 

is efficient, which is often not given in the field. However, as an additional advantage over the FPSB 

package auction the ascending mechanism allows bidders to observe their opponents strategies and adjust 

accordingly. For profit-maximizing bidders this reduces the burden of starting to coordinate on the dual-

winner outcome as the strategy can be altered anytime to pursue the single-winner outcome if the 

opponent does not cooperate. To the best of our knowledge this is the first theoretical paper to 

demonstrate the advantage of an ascending package auction to coordinate on efficient allocations. We also 

discuss how our model helps explain more complex markets with more bidders and items.  
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Finally, in Section 5 we study the implementation of an optimal (“second-best”) contract with menus 

of contingent wages and budget constraints in the asymmetric information setting. We focus on a 

strategically interesting situation in which there is uncertainty about the package valuation as well as their 

corresponding ranges, but not about the efficiency environment. With knowledge about the efficiency in 

the market the principal can align the incentives of the agent by paying wages that compensate the agent 

for not aiming to win the package of two units in the FPSB package auction. However, these wages can be 

very high making it impossible to implement the coordination equilibrium. Similar to the symmetric 

information environment, in the ascending package auction, the principal would only need to set the 

budget for two units to zero to implement her strategy.  

2 The Model  

In our model we consider 2 ex-ante symmetric firms 𝑖, 𝑗 ∈ 𝐼 with |𝐼| = 2, competing in a multi-object 

package auction for 2 units of a homogeneous good in which the number of units is denoted by 𝑙 ∈ 𝐿 =

{1, 2}. In each firm 𝑖, a value-maximizing and budget-constrained agent bids in the auction on behalf of a 

profit-maximizing principal. The auction itself corresponds to a game of incomplete information between 

firms and the risk-neutral auctioneer selects the revenue maximizing set of packages. We denote this 

setting as principal-agent 2 × 2 package auction model.  

2.1 Bidding Firms 

Each firm 𝑖 ∈ 𝐼 has a value for 𝑙 units of 𝑣𝑖(𝑙) ∈ 𝑉(𝑙) = [𝑣(𝑙), 𝑣(𝑙)] and we define the vector of 

package values as 𝑣𝑖 = (𝑣𝑖(1), 𝑣𝑖(2)) ∈ 𝑉 = 𝑉(1) × 𝑉(2). Let us normalize the reservation utility 

𝑣𝑖(0) = 0 and assume 𝑣𝑖(1) < 𝑣𝑖(2) for all 𝑖 ∈ 𝐼. Note that the assumption implies 𝑣(2) > 𝑣(1) and 

𝑣(2) > 𝑣(1). Moreover, we are considering a model with decreasing marginal values and an extra 

assumption that the highest marginal value of the second unit is less than the lowest possible value for the 

first unit, i.e. 𝑣(2) − 𝑣(1) < 𝑣(1). We refer to this environment as dual-winner efficiency, as it is efficient 
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for both firms to obtain one unit each, independent of their package valuation draws. The condition 

2 ∙ 𝑣(1) > 𝑣(2) ensures dual-winner efficiency for all 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 and we also assume strictly separated 

package-valuation ranges, 𝑣(1) < 𝑣(2). 

Given the standard symmetry assumption, each firm 𝑖’s vector of valuation draws 𝑣𝑖 is a priori 

distributed according to a monotonically increasing joint cumulative distribution function Ϝ(𝑣𝑖)|𝑣𝑖(1)<𝑣𝑖(2) 

with Ϝ|𝑉(1)<𝑉(2): 𝑉 → [0, 1]. The marginal distribution function for package value 𝑣𝑖(𝑙) ∈ 𝑉(𝑙) ∀ 𝑙 ∈ 𝐿 is 

of the form 𝐹𝑙(𝑣𝑖(𝑙)) with 𝐹𝑙: 𝑉(𝑙) → [0, 1] and strictly positive density function 𝑓𝑙(𝑣𝑖(𝑙)) > 0. We 

assume the distribution functions Ϝ(∙)|𝑉(1)<𝑉(2), 𝐹𝑙(∙) and 𝑓𝑙(∙), to be common knowledge within a firm 𝑖 

and between both firms 𝑖 and 𝑗.  

The risk-neutral principal maximizes expected profit in which her profit of winning a package of 𝑙 

units is given by 𝜋𝑖(𝑙) = 𝑣𝑖(𝑙) − 𝑝𝑖(𝑙). In this expression 𝑝𝑖(𝑙) denotes the final price paid for a package 

of 𝑙 units in the auction and depends on the auction format. Let the bid submitted in a sealed-bid auction 

(or the highest price accepted in an ascending auction) for the package of 𝑙 units be 𝛽𝑖(𝑙) = 𝛽(𝑣𝑖(𝑙)) and 

𝛽: 𝑉(𝑙) → ℝ ∀ 𝑙 ∈ 𝐿 are 𝐹𝑙(∙)-measurable functions. Let us define the vector of package bids as 𝛽𝑖 =

(𝛽𝑖(1), 𝛽𝑖(2)). The agent’s gross utility includes his value-maximizing motives and is denoted as 

𝑢𝑖(𝑙) = 𝑤(𝑣𝑖(𝑙)) when winning a package of 𝑙 units. The function 𝑤: 𝑉(𝑙) → ℝ is strictly increasing in 

package value 𝑣𝑖(𝑙) and thus, an agent always prefers winning two units to one unit. Moreover, the 

function 𝑤(∙) is assumed to be commonly known among both firms and within each firm 𝑖, which is a 

standard assumption in contract theory and important for the derivation of optimal transfers in Section 5.  

In the symmetric information setting in Section 3 and 4 the principal determines a budget constraint 

for the package of 𝑙 units of 𝛼𝑖(𝑙) ∈ 𝐴(𝑙) = [𝛼(𝑙), 𝛼(𝑙)] with which to provide her agent to bid in the 

auction. We refer to the vector of all package budget constraints as 𝛼𝑖 = (𝛼𝑖(1), 𝛼𝑖(2)) with 𝛼𝑖 ∈ 𝐴 =

𝐴(1) × 𝐴(2). As long as the price for a bundle of 𝑙 units is weakly lower than his respective budget 
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constraint of 𝛼𝑖(𝑙), the agent obtains a utility of 𝑢𝑖(𝑙). Any price 𝛽𝑖(𝑙) > 𝛼𝑖(𝑙) is an unacceptable action 

for him, as he will be fired, for example, if payments exceed the budget constraint.  

In our initial analysis of the agents’ strategies without the principals in Section 3.2 (and 4.1.2), we 

assume that 𝛼𝑖(𝑙) is an exogenous random variable to demonstrate the bias of the agent with respect to the 

equilibrium bidding strategy of the principal. Each agent 𝑖 ∈ 𝐼 draws a budget for one unit of 𝛼𝑖(1) ∈

𝐴(1) and a package budget for two units of 𝛼𝑖(2) ∈ 𝐴(2). We assume 𝛼𝑖(1) ≤ 𝛼𝑖(2) for all 𝑖 ∈ 𝐼. 

Moreover, each agent 𝑖’s vector of budget draws 𝛼𝑖 is a priori distributed according to a monotonically 

increasing joint cumulative distribution function  𝑄(𝛼𝑖)|𝛼𝑖(1)≤𝛼𝑖(2): 𝐴 → [0, 1] with respective marginal 

distribution function for budget 𝛼𝑖(𝑙) ∈ 𝐴(𝑙) ∀ 𝑙 ∈ 𝐿 of 𝑄𝑙(𝛼𝑖(𝑙)): 𝐴(𝑙) → [0, 1]. The distribution 

functions 𝑄(∙)|𝛼𝑖(1)≤𝛼𝑖(2) and 𝑄𝑙(∙), are assumed to be common knowledge between agent 𝑖 and 𝑗.    

In Section 3.3 (and 4.1.3), we will remove the assumption of exogenously determined budgets and ask 

whether an informed principal can endogenously implement her equilibrium bidding strategy by providing 

the agent with budget constraints, 𝛼𝑖. In this setting we will denote the commonly known joint and 

marginal probability distribution functions of the budget constraints as 𝐷(𝛼𝑖): 𝐴 → [0, 1] and 

𝐷𝑙(𝛼𝑖(𝑙)): 𝐴(𝑙) → [0, 1], respectively. The principal-agent package auction model is illustrated in Figure 

1 below.   

 

 

First, each principal decides on a vector of budget constraints, 𝛼𝑖, with which to provide her agent. 

Then, agents compete against each other and decide on a vector of bids, 𝛽𝑖, in the auction. The principal 

has to choose the budget constraints to implement the optimal dual-winner equilibrium.    

Figure 1 Illustration of the principal-agent package auction model 
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In the asymmetric information setting in Section 5 the principal knows the dual-winner efficiency 

environment but she is not informed about the package value draws and their exact ranges. However, we 

assume that she knows bounds for these supports. In particular, we model these bounds as a random draw 

𝑑 ∈ 𝐷 = [𝑑, 𝑑] that specifies 𝑑 ≡ 𝑣(2) − 𝑣(1) that is unknown to the principal. Note that 𝑑 corresponds 

to the true entire range out of which valuations for one unit and the package can be drawn. The principal 

does know the support 𝐷 and that the market satisfies dual-winner efficiency such that 2 ∙ 𝑣(1) > 𝑣(2). In 

addition to the vector of package constraints, 𝛼𝑖, the principal employs a vector of payments for the agent 

in the asymmetric setting, 𝑚𝑖 = (𝑚𝑖(1), 𝑚𝑖(2)), with payment for the package of 𝑙 units of 𝑚𝑖(𝑙). A 

principal 𝑖 has to design a menu of budget constraints and payments, (𝛼𝑖, 𝑚𝑖), to implement a dual-winner 

equilibrium.  

2.2 Auction Formats 

It is straightforward to see that the VCG mechanism is not incentive-compatible for agents, who do not 

internalize payments in their utility function and, moreover, that there cannot be a strategy-proof and 

deterministic mechanism for value-maximizing agents (Fadaei and Bichler 2016). Therefore, we focus on 

the practically relevant 2 × 2 FPSB package auction, the 2 × 2 ascending package auction and the 2 × 2 

SMRA with 2 units of a homogeneous good and 2 bidders. Budgets in the VCG mechanism for the 

principal-agent 2 × 2 package auction model can optimally be set as in the ascending package auction 

with sufficient information about the efficient allocation as we show in Section 4.2. Therefore, the VCG 

mechanism and the ascending package auction are outcome equivalent with respect to the agency 

dilemma. Nevertheless, we focus on the ascending format as it is practically relevant.  

In multi-unit package auctions, each bidder 𝑖 ∈ 𝐼 submits an all-or-nothing bid for every package. 

Here, each package is identified by the number of units, 𝑙 ∈ 𝐿, it contains, i.e. a package of two units and a 

package of one unit. In these package auctions, we assume an XOR bid language because it is the most 

general bid language allowing the expression of complements and substitutes (Nisan 2006), and it is also 
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typically used in spectrum auctions. An XOR bid language allows a bidder to specify a bid for all possible 

packages, but only one of the bids submitted can become winning. This avoids problems in which a bidder 

might win multiple non-overlapping bids for which her value is less than the sum of the winning package 

values.  

Before the auction starts, bidders decide whether they participate or not and make this decision public. 

In the 2 × 2 FPSB package auction, both bidders simultaneously submit their bids 𝛽𝑖 = (𝛽𝑖(1), 𝛽𝑖(2)) to 

the auctioneer without knowing the opponent’s bids. Then, a risk-neutral auctioneer selects the revenue-

maximizing combination of package bids. This can either be an allocation in which each bidder 𝑖 and 𝑗 

gets one unit, 𝛽𝑖(1) + 𝛽𝑗(1) ≥ max {𝛽𝑖(2), 𝛽𝑗(2)}, or an allocation in which one bidder wins the package 

of both units, max{𝛽𝑖(2), 𝛽𝑗(2)} > 𝛽𝑖(1) + 𝛽𝑗(1). In case of a tie between an allocation with two winners 

or a single winner, the auctioneer allocates one unit to each of the bidders. In case of a tie between two 

package bids, the auctioneer randomizes. Any firm 𝑖 that wins a package of 𝑙 units pays a corresponding 

price of 𝑝𝑖(𝑙) = 𝛽𝑖(𝑙) to the auctioneer. 

We also study a multi-unit clock auction with package bidding. In this 2 × 2 ascending package 

auction, two clocks are visible to each bidder and they are used to indicate a personalized single-unit price 

𝑝𝑖(1) of the items and a personalized package price 𝑝𝑖(2) for all 𝑖 ∈ 𝐼. Bidders only see their personalized 

clock prices that start at zero and then increase gradually. A participating bidder needs to bid at least on 

one unit at the start and once she stops bidding on the single unit and on the package she cannot enter the 

auction again. Each active bidder can either press the button for a package bid or for a single unit or both 

to start the respective clock(s). A bidder 𝑖 releasing the button at price 𝑝𝑖(𝑙) = 𝛽𝑖(𝑙) indicates her decision 

to stop demanding the package of 𝑙 units at any price higher than 𝛽𝑖(𝑙).  The auction stops as soon as there 

is no over-demand anymore, and the revenue-maximizing allocation is determined on the basis of the 

reported prices.  
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In addition, we compare our results to the 2 × 2 SMRA. We use an ascending uniform-price multi-unit 

auction as an abstraction for a multi-unit SMRA, similar to Ausubel et al. (2014). For perfect substitutes 

both auction formats are identical. In this auction, there is a single uniform-price p which starts at zero and 

the auction stops when demand no longer exceeds supply. There are also two buttons similar to the 

ascending package auction, but no package bidding is allowed. Each button is for one unit and a bidder 

can first press both buttons and then release one or even both of the buttons simultaneously if she wants to 

stop bidding on one of the units or both units, respectively. She can also just press one button. Appendix II 

provides a detailed discussion of the rules of the ascending package auction and the ascending uniform-

price auction and their outcomes. 

3 The First-Price Sealed-Bid Package Auction 

In this section, we analyze the equilibrium bidding strategy of the principal if she had full information 

about the valuations in the FPSB package auction. Then, we analyze equilibrium bidding strategies of 

agents (without principals) and show the bias of the agent with respect to the principal’s equilibrium 

bidding strategy and the resulting inefficiencies. Finally, we examine the principal’s options to incentive 

align the agent with budget constraints in the symmetric information environment.   

3.1 Principals’ Strategies 

Let us first analyze how a profit-maximizing principal would bid in equilibrium without hidden 

information and without an agent. We will first derive necessary and sufficient conditions for the dual-

winner equilibrium in Theorems 1 and 2, respectively. This is a Bayesian Nash equilibrium in which the 

efficient dual-winner outcome results for all possible valuations 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 in the 2 × 2 FPSB package 

auction in case of dual-winner efficiency. Theorem 3 states conditions under which the single-winner 

outcome constitutes a single-winner equilibrium for all possible valuations 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 in dual-winner 

efficiency. This equilibrium is just an adaptation of the standard Bayesian Nash equilibrium in a FPSB 
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single-object auction in which bidders bid only on the package. Finally, Theorem 4 establishes conditions 

for the efficient dual-winner equilibrium to be payoff-dominant. We will first start with the necessary 

conditions for the dual-winner equilibrium.  

Theorem 1: Suppose any bidder 𝑖’s bidding strategy 𝛽𝑖 = (𝛽𝑖(1), 𝛽𝑖(2)) constitutes a dual-winner 

equilibrium in the 2 × 2 FPSB package auction. Then it must be true that: 

(1.) 𝛽𝑖(1) is constant over 𝑣𝑖(1) ∈ 𝑉(1) and denoted by 𝛽𝑖(1) = 𝛽(1) for all 𝑖 ∈ 𝐼 

(2.) 𝛽(1) ∈ [𝑣(2) − 𝑣(1), 𝑣(1)] 

(3.) 2 ∙ 𝛽(1) = 𝑠𝑢𝑝𝑣𝑖(2){𝛽(𝑣𝑖(2))}.   

In the dual-winner equilibrium both bidders must pool at a constant single-unit bid of 𝛽(1) from condition 

(1.) out of its range from condition (2.). Moreover, the single-unit bid bounds in condition (2.) show that 

dual-winner efficiency is necessary for the existence of a dual-winner equilibrium. Condition (3.) ensures 

that the auctioneer always selects the dual-winner outcome in equilibrium. Let us now derive the sufficient 

conditions for the dual-winner equilibrium in the next theorem.  

Theorem 2: Assume dual-winner efficiency is given, 𝑣(2) < 2 ∙ 𝑣(1), then any principal 𝑖’s vector of bids 

𝛽𝑖 = (𝛽(1), 𝛽𝑖(2)) is a dual-winner equilibrium in the 2 × 2 FPSB package auction if the following 

conditions hold:  

(1.) 𝛽(1) ∈ [𝑣(2) − 𝑣(1), 𝑣(1)] 

(2.) 𝛽𝑖(2) = 𝛽(𝑣𝑖(2)) with 𝛽(. ) continuous and strictly increasing on its support 𝑉(2) 

(3.) 𝛽(𝑣(2)) = 2 ∙ 𝛽(1)  

(4.) 𝐺(𝑣𝑖(2), 𝛽(1)) ≤ 𝛽(𝑣𝑖(2)) for all 𝑣𝑖(2) ∈ 𝑉(2) and all 𝑖 ∈ 𝐼 

The lower bound 𝐺(. ) is defined as:  

𝐺(𝑣𝑖(2), 𝛽(1)) ≡ 𝛽(1) +
𝛽(1) − 𝑣(1) ∙ (1 − 𝐹2(𝑣𝑖(2))

𝐹2(𝑣𝑖(2))
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Conditions (2.) and (4.) restrain any bidder 𝑖’s equilibrium bidding function for two units. It is not 

allowed to fall below the lower bound of 𝐺(𝑣𝑖(2), 𝛽(1)) in order to support the pooling bid for one unit. 

This condition ensures that winning the package is less profitable in expectation than obtaining a single 

unit in equilibrium. For our analysis we focus on the lowest pooling bid for one unit of 𝛽(1) = 𝑣(2) −

𝑣(1). This maximizes the utility of both bidders and therefore serves as a natural focal point for implicit 

coordination in the dual-winner equilibrium.   

Let us introduce a brief example to illustrate the dual-winner equilibrium. Suppose  𝑣𝑖(1) ∈

[110,150] and 𝑣𝑖(2) ∈ [160,190], both uniformly distributed. The payoff-dominant pooling bid in the 

dual-winner equilibrium for both bidders is 𝛽(1) = 𝑣(2) − 𝑣(1) = 190 − 110 = 80. The upper bound 

for 𝛽𝑖(2) is 160. A higher bid would make the auctioneer select the package bid. Remember, in case of a 

tie, the auctioneer selects the dual-winner outcome. The bidder with the lowest type on a single unit, 

𝑣𝑖(1) = 110, and the highest type on the package, 𝑣𝑖(2) = 190, has the strongest incentive to deviate. 

With the equilibrium bids 𝛽𝑖 = (80, 160), her payoff for one unit and for the package is 30. The lower 

bound for 𝛽𝑖(2) is defined by a function 𝐺(𝑣𝑖(2), 80). For a low value draw of 𝑣𝑖(2) = 165 the lower 

bound is 𝐺(165,80) = 10, and an equilibrium bid for the package is 𝛽𝑖(2) ∈ [10,160]. Each bidder type 

has to follow this lower bound function in equilibrium to ensure the opponent has no incentive to 

profitable deviate on the single-winner award, i.e. the payoff in the dual-winner equilibrium of 30 for the 

lowest type on one unit always needs to be higher or equal to the expected payoff of the package bid. In 

addition, suppose the opponent j bids low, say zero, on the package. Then bidder i could also bid low on 

the package in an attempt to be able to bid 𝛽𝑖(1) < 80 on a single object and make a higher profit on one 

unit in a dual-winner outcome. The lower bound 𝐺(𝑣𝑖(2), 80) avoids such deviations from equilibrium, 

too.  

The dual-winner equilibrium is not the only equilibrium for payoff-maximizing principals in our 

model, and there is also a single-winner equilibrium.  
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Theorem 3: Any principal 𝑖’s vector of bids 𝛽𝑖 is a single-winner equilibrium in the 2 × 2 FPSB package 

auction under dual-winner efficiency if the following conditions hold:  

(1.) 𝛽𝑖(2) = 𝑣𝑖(2) − 𝐹2(𝑣𝑖(2))−1 ∙ ∫ 𝐹2 (𝑣𝑗(2)) ∙ 𝑑𝑣𝑗(2)
𝑣𝑖(2)

𝑣(2)
 

(2.) 𝛽𝑖(1) ∈ [0, 𝑣(2) − 𝑣(1)) 

The equilibrium bid on the package in the single-winner equilibrium of the 2 × 2 FPSB package 

auction from condition (1.) corresponds to the equilibrium strategy of the well-known standard FPSB 

auction in which two units are sold as the sole package to two bidders. Condition (2.) ensures any bidder 

can enforce the single-winner equilibrium by making the dual-winner outcome unprofitable for the 

opponent. In our earlier example with the uniform distribution, this equilibrium bid on the package would 

simply be 𝛽𝑖(2) =
𝑣𝑖(2)

2
+ 80. The equilibrium bid on one unit must be low enough to veto the dual-

winner outcome for all possible bidder types, i.e. 𝛽𝑖(1) ∈ [0,10). If principal 𝑖 with type 𝑣𝑖 = (130,165) 

bids 𝛽𝑖(1) = 9 and 𝛽𝑖(2) = 162.5, even opponent 𝑗 with the highest value draw for one unit, 𝑣𝑗(1) =

150, cannot profitably implement the dual-winner outcome as the sum of single-unit bids is strictly 

smaller than the lowest equilibrium bid  on two units, i.e. 150 + 9 < 160.  

Using payoff-dominance, we can show that for specific distributional properties, payoff-maximizing 

bidders prefer to coordinate in the dual-winner equilibrium rather than select the single-winner 

equilibrium.  

Theorem 4: Any principal 𝑖 prefers the dual-winner equilibrium to the single-winner equilibrium in the 

dual-winner efficiency environment of the 2 × 2 FPSB package auction iff the expected value of two units 

exceeds two times the bidder-optimal dual-winner equilibrium pooling bid 𝛽𝑖(1) = 𝑣(2) − 𝑣(1), i.e. 

2 ∙ (𝑣(2) − 𝑣(1)) < 𝐸 (𝑣𝑗(2)).  

Intuitively, the expected package valuation exceeds twice the pooling bid if the probability for large 

package value draws is high. If high value draws for the package of two units are likely, however, any 
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bidder prefers the dual-winner equilibrium to the single-winner equilibrium because she is likely to lose in 

the latter equilibrium. In our earlier example, the condition is satisfied as 2 ∙ 80 < 175. In this case the 

principal prefers the dual-winner equilibrium as it yields higher expected payoff. Let us now turn to the 

analysis of the agents’ equilibrium strategies in the 2 × 2 FPSB package auction.  

3.2 Agents’ Strategies 

Now, we analyze the strategies of agents assuming the budget constraints to be random variables. This 

assumption is sufficient to highlight the bias of the agent and the resulting inefficiency of the auction. In 

Section 3.3 we will then analyze if a principal can set budget constraints such that the agents implement 

her equilibrium bidding strategy. Let us first provide a few useful lemmas for the 2 × 2 FPSB package 

auction that eliminate weakly dominated strategies. These lemma allows for a succinct analysis of 

equilibrium bidding strategies. 

Lemma 1: Any strategy in which an agent bids strictly less than his budget for two units, �̂�𝑖(2) < 𝛼𝑖(2), 

is weakly dominated, independent of his bid on one unit in the 2 × 2 FPSB package auction.  

As agents are value-maximizing and strictly prefer the package to one unit, there is no reason for them 

to not fully bid their budget on two units.  

Lemma 2: The set of strategies �̂�𝑖 = (�̂�𝑖(1), 𝛼𝑖(2)) with �̂�𝑖(1) ∈ (0, 𝛼𝑖(1)) is weakly dominated by the 

strategy-set 𝛽𝑖 = (𝛽𝑖(1), 𝛼𝑖(2)) with 𝛽𝑖(1) ∈ {0, 𝛼𝑖(1)} in the 2 × 2 FPSB package auction.   

A value-maximizing agent either expects his budget for the package to be high enough to win the 

package, and he vetoes the dual-winner outcome with a bid of zero on one unit, or he beliefs coordination 

on the dual-winner outcome allows him to win at least one unit, then he maximizes his chances by bidding 

his full budget for one unit. Bids in the interval 𝛽𝑖(1) ∈ (0, 𝛼𝑖(1)) are always weakly dominated.   

With Lemma 1 and 2, we can now derive the agents’ equilibrium strategies in the 2 × 2 FPSB 

package auction. Our first observation is an ex-post equilibrium in which agents do not coordinate.  
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Theorem 5: It is an ex-post equilibrium for any agent 𝑖 to submit a vector of bids 𝛽𝑖 = (0, 𝛼𝑖(2))  in the 

2 × 2 FPSB package auction for any vector of package budgets 𝛼𝑖 ∈ 𝐴.  

There could be other Bayesian Nash equilibria. Interestingly, 𝛽𝑖 = (0, 𝛼𝑖(2)) is also the unique 

Bayesian Nash equilibrium as we will show next, i.e. there is no other Bayesian Nash equilibrium by the 

bidding agents. Intuitively, any agent 𝑖’s opponent j would only be willing to coordinate on one unit if his 

valuation for two packages was low. In this case, however, it would be a best response for bidder 𝑖 not to 

coordinate, but try to win the package of both units independent of both agents’ actual values. In the ex 

post equilibrium arbitrary risk-averse bidders cannot coordinate on winning one unit with certainty.
 6
   

Theorem 6: The strategy 𝛽𝑖 = (0, 𝛼𝑖(2)) is the unique Bayesian Nash equilibrium for any agent 𝑖 in the 

2 × 2 FPSB package auction for any vector of package budgets 𝛼𝑖 ∈ 𝐴.    

Note that the agent does not respond to the valuations of the firm 𝑣𝑖, but only to the budgets 𝛼𝑖 that he 

is given as long as 𝑣𝑖(1) < 𝑣𝑖(2) and 𝛼𝑖(1) ≤ 𝛼𝑖(2). Therefore, the agent’s unique equilibrium bidding 

strategy is independent of the efficiency environment considered. More importantly, the unique 

equilibrium of the agent in the 2 × 2 FPSB package auction is in conflict with the efficient dual-winner 

equilibrium of the principal. In the next Section 3.3 we analyze the possibilities of the principal to 

implement her dual-winner equilibrium bidding strategy by constraining the agent with budgets in the 

symmetric information environment.   

3.3  Principal-Agent Model 

In this section, we assume an environment in which the supports of the prior distributions and the value 

draws are known to the principals, and we show that even in this symmetric information setting budget 

constraints can be insufficient to implement the principal’s equilibrium bidding strategy in the principal-

agent 2 × 2 FPSB package auction model. In Section 3.2, we assumed agent 𝑖’s budget constraints, 𝛼𝑖(𝑙) 

with 𝛼𝑖(1) ≤ 𝛼𝑖(2), to be exogenous random draws. As we have shown, agents would not bid on a single 
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unit in the unique equilibrium with these types of budget constraints. There is always an agent type with a 

high enough package budget constraint such that only bidding on two units yields higher expected utility, 

independent of the opponent’s strategy. The only option to counteract these incentives is to assign a 

relatively low budget constraint for two units for all package valuations. In particular, budget constraints 

of the form 𝛼(2) < 𝛼(1) are required. Given opponent 𝑗 wants to coordinate on the dual-winner outcome, 

even an agent 𝑖 with the highest package budget of 𝛼(2) cannot win two units with certainty by not 

bidding on the small package.   

Lemma 3: Any principal 𝑖 can direct her agent on the dual-winner outcome in the symmetric information 

environment of the principal-agent 2 × 2 FPSB package auction model by assigning her package-

dependent budget constraints of the form 𝛼𝑖 = [𝛼𝑖(1), 𝛼𝑖(2)] with 𝛼(2) < 𝛼(1) that satisfy inequalities 

𝛼𝑖(1) + 𝛼(1) ≥ 𝛼𝑖(2) and 𝑢𝑖(1) ≥ 𝑢𝑖(2) ∙ 𝑃(𝛼𝑖(2) ≥ 𝛼𝑗(2) ∩ 𝛼𝑖(2) ≥ 𝛼𝑗(1)).      

In Lemma 3 the expression 𝑃(𝛼𝑖(2) ≥ 𝛼𝑗(2) ∩ 𝛼𝑖(2) ≥ 𝛼𝑗(1)) denotes the probability of agent 𝑖’s 

package budget constraint exceeding opponent 𝑗’s budget constraints for one and two units. In order of 

keeping the lemma traceable we do not express the corresponding probability in terms of the marginal and 

joint distribution functions 𝐷𝑙(∙) and 𝐷(∙). Following backward induction, we need to analyze whether the 

budget constraint scheme from Lemma 3 actually permits the implementation of the principals’ dual-

winner equilibrium. In other words, we need to understand when these budget constraints violate the 

principals’ equilibrium bid functions from Theorem 2. In Theorem 7, we derive a distributional condition 

under which the principals cannot direct their agents to truthfully reveal their profit-maximizing 

equilibrium strategies. 

Theorem 7: There is no vector of budget constraints, 𝛼𝑖 = [𝛼𝑖(1), 𝛼𝑖(2)], with which any principal 𝑖 can 

implement the dual-winner equilibrium under dual-winner efficiency in the symmetric information 

environment of the principal-agent 2 × 2 FPSB package auction model if the following inequality is true: 

2 ∙ (𝑣(2) − 𝑣(1)) > 𝑣(1).    
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It follows that a solution to the two-stage game in which principal and agent are incentive aligned, 

cannot exist under reasonable ranges of valuations. In our leading example with vi(1) ∈ [110,150] and 

vi(2) ∈ [160,190], both uniformly distributed, it is easy to verify that the condition in Theorem 7 is 

satisfied as 2 ∙ 80 > 150. This means that budget constraints are not always sufficient to align agent 

strategies in a FPSB package auction, even if the principal knows the valuations. Intuitively, any firm 

faces the following trade-off: On the one hand, the principal has to bid high enough on two units in 

equilibrium to prohibit the opponent from making a profit by deviating from the dual-winner equilibrium. 

On the other hand, the agent can only be directed on bidding for one unit if his budget constraint on the 

package is low enough. Both requirements cannot always be met simultaneously.  

 Moreover, note that Theorem 7 highlights consequences of the principal-agent problem that are 

specific to the multi-unit package auction environment. In a standard single-unit auction, for example, the 

principal could simply provide the agent with a budget in height of her optimal bid for one unit and solve 

the agency problem under symmetric information within our principal-agent model.  

4 Ascending Auctions 

In what follows we will extend our analysis to the 2 × 2 ascending package auction and the 2 × 2 SMRA, 

as they are also widely used. The structure of this section follows the same logic as Section 3.  

4.1 Ascending Package Auction 

4.1.1 Principals’ Strategies 

We start with the characterization of the principals’ dual-winner equilibrium in the ascending package 

auction if they had full information and were to bid alone in the auction. Theorem 8 shows that an 

efficient dual-winner outcome can be supported as equilibrium for all possible valuations 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 in 

case of dual-winner efficiency in the 2 × 2 ascending package auction.  
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Theorem 8: In an ex-post dual-winner equilibrium of the 2 × 2 ascending package auction, any principal 

𝑖 only bids on one unit until the respective price reaches her valuation of 𝛽𝑖(1) = 𝑣𝑖(1). 

Similar to the 2 × 2 FPSB package auction, there is also a single-winner equilibrium.  

Theorem 9: In an ex-post single-winner equilibrium of the 2 × 2 ascending package auction under dual-

winner efficiency, any principal 𝑖 remains active on the single unit as long as its price is strictly below 

𝛽𝑖(1) = 𝑣(2) − 𝑣(1) and continues to bid on the package of two units until the respective price reaches 

her valuation of 𝛽𝑖(2) = 𝑣𝑖(2).   

The single-winner equilibrium of the 2 × 2 ascending package auction corresponds to the equilibrium 

strategy of the well-known single-object ascending (English) auction in which two units are sold as the 

sole package to two bidders. Again, any bidder can enforce the single-winner equilibrium by making the 

dual-winner outcome unprofitable for the opponent. However, in the ascending package auction the dual-

winner equilibrium always strictly dominates the single-winner equilibrium in payoff.  

Corollary 1: Any principal 𝑖 always strictly prefers the dual-winner equilibrium to the single-winner 

equilibrium in the 2 × 2 ascending package auction in dual-winner efficiency.  

Although the 2 × 2 ascending package auction is characterized by a similar equilibrium selection 

problem than the 2 × 2 FPSB package auction, the former auction format possesses two advantages. First, 

the dual-winner equilibrium strictly dominates the single-winner equilibrium in profit and therefore serves 

as a natural focal point for the bidders to coordinate on. Second, bidders can observe their opponents’ 

equilibrium choices and adjust accordingly. This means they see if the opponent wants to coordinate on a 

dual-winner equilibrium. If this is not the case, they can switch and still aim for a single-winner 

equilibrium. Note that this robustness of the 2 × 2 ascending package auction against the equilibrium 

selection problem might serve as an additional reason for each bidder to start coordinating on the efficient 

allocation in the first place. 
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4.1.2 Agents’ Strategies 

In the analysis of the 2 × 2 ascending package auction, let us first introduce an adapted definition of 

straightforward bidding (Milgrom 2000) for agents in the 2 × 2 ascending package auction.  

Definition 1 (Straightforward bidding of value-maximizing agents): For any vector of package 

budgets 𝛼𝑖 ∈ 𝐴, any agent 𝑖 begins to bid on the most valuable package of two units and remains active 

until he is overbid at his corresponding budget of 𝛽𝑖(2) = 𝛼𝑖(2). As long as he is winning, he does not bid 

for the smaller single unit. If the agent is overbid, he starts to bid for the less valuable package and again 

remains active until he is overbid at his respective budget of 𝛽𝑖(1) = 𝛼𝑖(1).   

Remember that Lemma 2 also holds for the 2 × 2 ascending package auction: An agent 𝑖’s strategies 

that are not weakly dominated are to remain active on the package until the price reaches his 

corresponding valuation and either to quit directly on one unit or to remain active until the respective 

single-unit valuation is reached. 

Theorem 10: In the 2 × 2 ascending package auction straightforward bidding of any agent i constitutes 

an ex-post equilibrium. In this equilibrium the agent with the highest budget for two units does not get 

active on one unit.  

Similar to Theorem 6 of the 2 × 2 FPSB package auction, Theorem 10 describes an ex-post 

equilibrium that is robust against risk aversion. In both auction formats, agents never coordinate on 

winning one unit each. This result is independent of the efficiency environment. The analysis shows that 

in the 2 × 2 package auction, agents will only bid on the large package in equilibrium. Note, once a 

bidder does not care about the profit, its bidding problem in both the first-price auction and second-price 

auction is the same. In general, the agents’ equilibrium behavior of not bidding on one unit leads to a 

conflict of interest with the principals’ dual-winner equilibrium. In the next section, we discuss how to 

overcome this conflict via budget constraints in the 2 × 2 ascending package auction.  
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4.1.3 Principal-Agent Model 

 Unlike the 2 × 2 FPSB package auction, the principals’ dual-winner equilibrium can easily be 

implemented as a solution to the principal-agent 2 × 2 ascending package auction model, as long as dual-

winner efficiency is known.  

Theorem 11: Any principal 𝑖 can implement the dual-winner equilibrium with the vector of budget 

constraints 𝛼𝑖 = [𝛼𝑖(1), 𝛼𝑖(2)], with 𝛼𝑖(1) = 𝑣𝑖(1) and 𝛼𝑖(2) = 0, in the symmetric information 

environment of the principal-agent 2 × 2 ascending package auction model under dual-winner efficiency.        

Note that the budget constraint in this theorem requires complete information about the valuation for a 

single unit or at least a good estimate of 𝑣𝑖(1). Alternatively, the principal could just set a budget at 

𝛼𝑖(1) = 𝑣(1). With only two agents in our model, there would not be excess demand in the initial round 

and the auction would close at reservation prices. Remember from Section 4.1.2 that if one principal does 

not start to coordinate on the dual-winner outcome, the auction continues and the other principal might be 

able to adjust budgets and also pursue the single-winner award. Again, this observation might constitute 

an additional reason why coordination on the dual-winner outcome in the principal-agent 2 × 2 ascending 

package auction model is easier than in the principal-agent 2 × 2 FPSB package auction model. 

With precise information about the valuation for a single unit the principal can apply the same budgets 

as in Theorem 11 to implement the efficient allocation in the 2 × 2 VCG mechanism. Then the VCG 

mechanism implements the dual-winner outcome for the principals under dual-winner efficiency in the 

2 × 2 package auction model.
7
 The outcome equivalence between the VCG mechanism (generalized 

second-price sealed-bid auction) and the ascending package auction in the principal-agent 2 × 2 package 

auction model is reminiscent of the outcome equivalence between the standard single-unit English and 

Vickrey auctions. This suggests that the payment rule causes the different results in Theorem 7 and 

Theorem 11. 
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In the first-price mechanism the principal has to submit a high package bid to make deviations from the 

dual-winner outcome by her opponent unprofitable in equilibrium. This prevents a solution of the agency 

dilemma as the budget for two units is too high for agents to coordinate. Contrary, in the strategy-proof 

VCG mechanism the principal’s report on the package does not affect the competing principal’s bidding 

behavior who is indifferent between truthfully reporting her valuation for the package and hiding this 

valuation. Vice versa, this reasoning is true for both principals and therefore, the agency dilemma is easy 

to solve if the principals know that the solution with two winners is efficient. This is because the principal 

can also set the budget for the package bid to zero as in the ascending auction. The fact that the VCG 

mechanism is strategy-proof independent of the complexity of the market environment suggests that it 

makes it easier to solving the agency dilemma more generally.   

The insights of the principal-agent 2 × 2 package-auction model are also helpful for the analysis of 

more complex markets. Suppose, for example, the number of packages strictly exceeds the number of 

bidders, which is common in combinatorial auctions in the field. Here, individual bidders' veto-power 

against coordination on a multiple-winner outcome is still strong such that the results from the 2 × 2 

market extend. Often there are many bidders participating in an auction, but only a few are strong and they 

decide the outcome. For example, in the German auction in 1999 that we will discuss in the last section 

there were four bidders and ten units, but in the strategic analysis one can focus on the competition 

between Mannesmann and T-Mobile.  It is reasonable to assume that the principals both understood that 

an outcome with two winners was efficient and payoff-dominant to a single-winner equilibrium.   

Moreover, as we will show in Section 5, the ascending auction format allows for easier coordination 

even under asymmetric information in our principal-agent 2 × 2 package auction model as long as the 

efficiency setting is known to the principals. This is a consequence of the fact that the principals’ 

equilibrium bids are independent of each other in a strategy-proof second-price mechanism. In more 

complex settings the efficiency environment might not be known by the principals. If the principals 
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neither know the values nor dual-winner efficiency, they are not able to set the budget constraints such that 

the payoff-dominant equilibrium is selected in our model. The bidding firms compete although they would 

not if the principals had the same information as the agents.  In the next section we show that the agency 

dilemma discussed for package auctions also carries over to non-combinatorial mechanisms.  

4.2 Simultaneous Multiple-Round Auction 

Unlike the ascending package format there is only a dual-winner equilibrium for principals in which both 

immediately reduce demand to one unit in the 2 × 2 SMRA, but no single-winner equilibrium. To analyze 

the agents’ bidding strategies in the SMRA we need an adapted definition of straightforward bidding.  

For any vector of package budgets 𝛼𝑖 ∈ 𝐴, suppose an agent has budget constraints of the form 

𝛼𝑖(1) ≥ 𝛼𝑖(2) 2⁄ , then he remains active on two units until the unit price reaches half his budget for the 

package, 𝛼𝑖(2) 2⁄ . He then reduces his demand to one unit and remains active until the unit price reaches 

his single-unit budget constraint of 𝛼𝑖(1). If agent 𝑖 is provided with budgets of 𝛼𝑖(1) < 𝛼𝑖(2) 2⁄ , he will 

bid up to 𝛼𝑖(1) for two units, then indicate demand for one unit and immediately after that drop out 

completely because he must not bid beyond his constraint for one unit. If he did bid beyond 𝛼𝑖(1) for two 

units and first dropped out at 𝛼𝑖(2) 2⁄  from both units, then he could be assigned a single unit at a price of 

𝛼𝑖(2) 2⁄  beyond budget, which is inacceptable.  

It is straightforward to show an equilibrium in which both agents engage in straightforward bidding 

that may result in the dual-winner outcome and in the single-winner award depending on the budget 

constraints. Similar to the ascending package auction, principals can set a zero budget constraint for two 

units to implement the dual-winner equilibrium with their agents, and the auction would stop immediately 

in our model in which the principals know that there is dual-winner efficiency. However, if the principals 

have uncertainty about dual-winner efficiency or the agents are not appropriately restricted with zero 

budgets for the package, they may not reduce demand which can help explain demand inflation in the 

SMRA in the field that we discuss in the conclusions.  
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5 Contracts with Contingent Transfers 

This section determines the optimal contract of budget constraints and contingent transfers or wages 

between principal and agent in the asymmetric information setting. The principal only knows that there is 

dual-winner efficiency, but she neither knows the package value draw for 𝑙 units, 𝑣𝑖(𝑙), nor its exact range, 

𝑉(𝑙), for all 𝑙. However, we assume that she knows supports for the range bounds: the support for the 

lower bound 𝑣(𝑙) ∈ 𝑉(𝑙) = [𝑣(𝑙), 𝑣(𝑙)] and the support for the upper bound 𝑣(𝑙) ∈ 𝑉(𝑙) = [𝑣(𝑙), 𝑣(𝑙)]. 

This notation allows us to specify the lower bound for the random variable 𝑑 as 𝑑 ≡ 𝑣(2) − 𝑣(1), the 

smallest possible range out of which all values can be drawn, and the upper bound as 𝑑 ≡ 𝑣(2) − 𝑣(1), 

the largest possible range. Remember that the principal does not know the exact value of 𝑑, but only its 

support 𝐷, whereas the agent knows both. The implementation of the dual-winner equilibrium in the 2 × 2 

ascending package auction remains as simple as in Theorem 11 with the only difference of assigning a 

budget constraint of 𝑣(1) for the package of one unit. Thus, principals do not incur any agency costs.    

In the 2 × 2 FPSB auction the optimal contract to implement the dual-winner equilibrium is more 

difficult to design. A principal 𝑖 has to design a menu of budget constraints and payments, (𝛼𝑖 , 𝑚𝑖), to 

direct her agent to submit the dual-winner equilibrium strategies of 𝛽(1) = 𝑣(2) − 𝑣(1) and 𝛽(2) = 2 ∙

(𝑣(2) − 𝑣(1)) in the auction.  

Theorem 12: Any principal 𝑖 can implement her dual-winner equilibrium with the vector of budget 

constraints 𝛼𝑖 = [𝛼𝑖(1), 𝛼𝑖(2)] with 𝛼𝑖(1) = 𝑑 and 𝛼𝑖(2) = 2𝑑, and the vector of constant payments 

𝑚𝑖 = [𝑚(1), 𝑚(2)] with 𝑚(1) = 𝑤 (𝑣(2)) − 𝑤 (𝑣(1)) and 𝑚(2) = 0, in the asymmetric information 

environment of the principal-agent 2 × 2 FPSB package auction model given dual-winner efficiency. 

      The principal does not need to set incentives for bidding on the package, but she needs to pay a 

constant amount that compensates any agent for not winning two units. Unfortunately, these agency costs 

caused by wages in the FPSB auction can be very high as the theorem shows. Also, in this environment a 
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principal typically does not know 𝑤(. ). However, if any principal 𝑖 now sets the optimal menu of budget 

constraints and payments, the set of implementable dual-winner equilibria become a subset of the original 

set. This becomes clear by looking at the range of implementable pooling prices: 𝛽(1) ∈ [𝑣(2) − 𝑣(1) +

𝑚(1), 𝑣(1) − 𝑚(1)].   

Note, that for a given upper range, 𝑑 = 𝑣(2) − 𝑣(1), of the random draw 𝑑, the optimal transfer, 

𝑚(1) = 𝑤 (𝑣(2)) − 𝑤 (𝑣(1)), increases as the magnitude of the agent’s value-maximizing motive, 𝑤(. ), 

rises. With larger 𝑚(1) the lower bound of supportable pooling prices, 𝑣(2) − 𝑣(1) + 𝑚(1), increases 

whereas the upper bound, 𝑣(1) − 𝑚(1), decreases. Therefore, it can happen that no range of supportable 

pooling prices, [𝑣(2) − 𝑣(1) + 𝑚(1), 𝑣(1) − 𝑚(1)], is left. In this case the principal cannot implement 

an efficient dual-winner equilibrium even with contingent transfers in the asymmetric information setting. 

Moreover, if the principal was unsure about dual-winner efficiency, she might pay transfers and 

implement the dual-winner equilibrium although it is not maximizing her expected payoff and is even 

inefficient.      

6 Conclusions 

We analyze a hidden information model in which the agent bids on behalf of the principal in a multi-

unit auction. He knows the goods valuations but has limited liability and the principal has to pay. In this 

model, there is no reason for the agent to maximize payoff, but he tries to win the most valuable allocation 

within budget. We show that there is a conflict of interest between principal and agent in efficiency 

settings in which it is payoff dominant for the principals to coordinate. The types of manipulation 

discussed in this paper are specific to multi-object auctions, and differ from the problems in single-object 

auctions (Burkett 2015; Burkett 2016).  
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If the auctioneer is concerned about efficiency and is aware of agency problems among bidding firms 

he should favor ascending package auctions. First, if the principals understand that there is dual-winner 

efficiency, the ascending package auction and the VCG mechanism allow to implement the efficient 

equilibrium that is also payoff-dominant in our model. Second, ascending package auctions further 

alleviate coordination problems in multi-object markets and might even have advantages in environments 

in which the principals do not know the efficiency environment ex ante because they can learn new 

information about the competition during the auction. 

However, note that in our principal-agent package auction model, the principal would need to know 

that there is dual-winner efficiency to set budget constraints appropriately in an ascending package auction 

or the VCG mechanism. In a FPSB package auction, this might not even be possible in equilibrium with 

budget constraints only, even if the principal had precise information about the valuations. The wide use 

of budget constraints in bidding firms might be due to the fact that there is often considerable uncertainty 

about the valuations, the efficiency environment and the prior type distributions for the principal in the 

field and only the agent has detailed information. With uncertainty about the efficiency environment, the 

equilibrium bidding strategies in our model are unknown. In such an environment, principals often try to 

at least limit the risk of the agent overbidding substantially via budget constraints. However, overall 

budget constraints are insufficient to make the agent bid payoff-maximizing in general as we have shown. 

In our principal-agent package auction model,  

Let us leverage the insights from our model and revisit some well-known examples of spectrum 

auctions. In the German spectrum auction in 1999 the two strong players Mannesmann and T-Mobile 

reduced demand to five blocks each in the initial rounds of the ascending auction  (Grimm et al. 2003). 

One could assume that in this simple environment with 10 homogeneous objects it was clear to the 

principal that the dual-winner outcome would be payoff-dominant. The auction was criticized for low 

revenue, but it can well have been the efficient allocation.
8
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While the 1999 auction result is compatible with enforcing coordination on a dual winner outcome, 

other auctions show that demand inflation is also observed, which is compatible with the agency problem 

generally described in this paper. An example is the German auction in 2015 (Bichler et al. 2017).
9
 The 

bidders did not coordinate and several observers reported “demand inflation” rather than demand 

reduction.
10

 The analysts’ estimates before the auction differed substantially and it is likely that the 

principals had little information about the value of a package making it very hard to set appropriate budget 

constraints.
11

  

There is not much public information about FPSB combinatorial auctions. France used this auction 

format for selling spectrum in the 800MHz auction and the 2.6 GHz auction in 2011 and the average 

prices in these auctions were among the highest in Europe.
12

 This could be the result of strong competition 

on larger packages by agents who are not appropriately constrained to coordinate on demand-reduction 

equilibria. Of course, one must not over-interpret these observations. The comparison of prices in 

spectrum auctions in the field is far from trivial and a number of factors influence the final prices. Apart 

from the specifics of the auction format, the competitive situation, the reservation prices and spectrum 

caps, the types of bands in the auction, and country-level idiosyncrasies matter to name just a few. In 

summary, the traditional assumption in which bidders are modeled as payoff-maximizing individuals 

might be too simple and the presence of principal-agent relationships in the bidding firms can have 

significant negative impact on the efficiency of auctions as a means to allocate scarce resources.  
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Appendix I: Proofs 

Proof of Theorem 1  

For the following argument suppose opponent 𝑗 follows the dual-winner equilibrium strategy 𝛽𝑗 =

(𝛽𝑗(1), 𝛽𝑗(2)). Regarding condition (1.), suppose any bidder 𝑖’s equilibrium bidding function for one unit 

𝛽𝑖(1) varies with 𝑣𝑖(1) in the dual-winner equilibrium, so that 𝛽(𝑣𝑖(1)) < 𝛽(𝑣𝑖(1)) with 𝑣𝑖(1) ≠ 𝑣𝑖(1). 

Then bidder 𝑖 with value 𝑣𝑖(1) for one unit has an incentive to bid 𝛽𝑖(1) = 𝛽(𝑣𝑖(1)) to raise her profit: 

𝑣𝑖(1) − 𝛽(𝑣𝑖(1)) > 𝑣𝑖(1) − 𝛽(𝑣𝑖(1)). Thus, any bidder 𝑖 with single-unit values of 𝑣𝑖(1) or 𝑣𝑖(1) bids 

𝛽(𝑣𝑖(1)) independent of her valuation. This reasoning is true for any bidder with any value and results in 

the equilibrium bidding function for one unit of 𝛽(𝑣𝑖(1)) = 𝛽(𝑣𝑖(1)) = 𝛽(1) for all 𝑣𝑖(1), 𝑣𝑖(1) ∈ 𝑉(1), 

the pooling bid.  

The upper bound in condition (2.) ensures that any bidder with the lowest single-unit value 𝑣(1) will not 

make a negative profit in the dual-winner equilibrium: 𝑣(1) ≥ 𝛽(1). Note further that any bidder 𝑖 with 

vector of valuations 𝑣𝑖 = [𝑣(1), 𝑣(2)] has the highest incentive to deviate from the dual-winner outcome. 

The lower bound in condition (2.) makes sure this bidder does not deviate at any pooling price 𝛽(1) ≥

𝑣(2) − 𝑣(1). The respective bidder i could marginally overbid twice the pooling bid with her bid on the 

package of two units to obtain the profit of the single-winner outcome with certainty: 𝜋𝑖(2) = 𝑣(2) − 2 ∙

𝛽(1) − 𝜀 for 𝜀 → 0. Note, that depending on her type, opponent 𝑗 might in fact bid twice the pooling bid 

on the package of two units. It is the highest bid on two units that still supports the dual-winner outcome 

as stated in condition (3.). For this deviation not to be profitable, the pooling bid has to be of the form 

𝛽(1) ≥ 𝑣(2) − 𝑣(1). Note that bidder 𝑖’s profit in the dual-winner equilibrium is given by 𝜋𝑖(1) =

𝑣(1) − 𝛽(1). If this bidder with vector of valuations 𝑣𝑖 = [𝑣(1), 𝑣(2)] has no incentive to deviate from 

the dual-winner equilibrium, then no other bidder 𝑗 with valuations 𝑣𝑗(1) ≥ 𝑣(1) and 𝑣𝑗(2) ≤ 𝑣(2) 

deviates either. Note that if bidder 𝑖 did not bid 𝛽(1), but zero for example, then it would not be in 

equilibrium for bidder 𝑗 to bid 𝛽(1). 
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For the dual-winner outcome to be chosen by the revenue-maximizing auctioneer for all possible package 

bids, it has to be true that 2 ∙ 𝛽(1) ≥ 𝑠𝑢𝑝𝑣𝑖(2){𝛽(𝑣𝑖(2))} as stated in condition (3.). The supremum is 

defined as the smallest upper bound or the greatest element in the set. Suppose 

2 ∙ 𝛽(1) > 𝑠𝑢𝑝𝑣𝑖(2){𝛽(𝑣𝑖(2))}, then for any bidder 𝑖, it is a best response to deviate from her equilibrium 

strategy by underbidding the pooling bid slightly with her single-unit bid (and thus raising her profit in the 

dual-winner equilibrium). This cannot be optimal and therefore we obtain the equilibrium requirement of 

2 ∙ 𝛽(1) = 𝑠𝑢𝑝𝑣𝑖(2){𝛽(𝑣𝑖(2))}. QED. 

Proof of Theorem 2  

The dual-winner equilibrium requires mutually best responses of both bidders. Assume opponent 𝑗 sticks 

to her dual-winner equilibrium strategy for all possible package values 𝑣𝑗(1) ∈ 𝑉(1) and 𝑣𝑗(2) ∈ 𝑉(2). 

Then we demonstrate that under conditions (1.) to (4.), 𝛽𝑖 = [𝛽(1), 𝛽𝑖(2)] is a dual-winner equilibrium 

supporting strategy in relation to any other deviating bidding strategy �̂�𝑖 = [�̂�𝑖(1), �̂�𝑖(2)]. Note that the 

profit in a dual-winner equilibrium for any bidder 𝑖 is given by 𝜋𝑖(1) = 𝑣𝑖(1) − 𝛽𝑖(1) for all 𝑣𝑖(1) ∈

𝑉(1). Let us refer to this as equilibrium profit. Now we consider three different possible cases that can 

result from bidder 𝑖 playing any deviating strategy �̂�𝑖 = [�̂�𝑖(1), �̂�𝑖(2)] instead of the equilibrium strategy 

𝛽𝑖 = [𝛽(1), 𝛽𝑖(2)]. Any deviating strategy might involve changing only the bid for one unit, the bid for 

two units or both bids. Nevertheless, any of the three mentioned deviations will always end up in one of 

the following three outcomes given opponent 𝑗 sticks to the proposed equilibrium strategy 𝛽𝑗 =

[𝛽(1), 𝛽𝑗(2)]: no single-winner outcome for principal 𝑖, 𝛽(1) + �̂�𝑖(1) > �̂�𝑖(2), a single-winner outcome, 

𝛽(1) + �̂�𝑖(1) < �̂�𝑖(2), and an indifference condition for bidder 𝑖, 𝛽(1) + �̂�𝑖(1) = �̂�𝑖(2). Let us consider 

each case in turn:  

 Case 1: 𝛽(1) + �̂�𝑖(1) > �̂�𝑖(2)  
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Bidder 𝑖 deviates to a different dual-winner outcome. However, bidder 𝑖 would never reach a dual-

winner outcome if 𝛽(1) + �̂�𝑖(1) < 𝛽(𝑣𝑗(2)) for all 𝑣𝑗(2) ∈ 𝑉(2), i.e. 𝛽(1) + �̂�𝑖(1) < 𝛽(𝑣(2)). Thus, it 

is a necessary condition for �̂�(1) to exceed 𝛽(𝑣(2)) − 𝛽(1) to satisfy Case 1. Due to condition (3.), 

raising �̂�𝑖(1) above 𝛽(1) does not increase the probability of winning, which is already equal to one in the 

dual-winner equilibrium, but strictly lowers profits. Therefore, the rationalizable range for the deviating 

bid is defined by �̂�𝑖(1) ∈ [𝛽(𝑣(2)) − 𝛽(1), 𝛽(1)]. The expected profit, �̂�𝑖(1), of submitting a �̂�𝑖(1) from 

this range for any single-unit value 𝑣𝑖(1) is given by equation (I):   

�̂�𝑖(1) = (𝑣𝑖(1) − �̂�𝑖(1)) ∙ 𝑃(𝛽(𝑣𝑗(2)) ≤ 𝛽(1) + �̂�𝑖(1)) (I) 

Now, (I) can be simplified as follows: As 𝛽(∙) is continuous and strictly increasing, for any �̂�𝑖(1) ∈

[𝛽(𝑣(2)) − 𝛽(1), 𝛽(1)], a unique proxy valuation for the package of two units 𝑣𝑖(2) ∈ 𝑉(2) can be 

defined, so that �̂�𝑖(1) = 𝛽(𝑣𝑖(2)) − 𝛽(1). Using this expression for �̂�𝑖(1) to rewrite equation (I) we 

obtain equation (II):    

�̂�𝑖(1) = (𝑣𝑖(1) − 𝛽(𝑣𝑖(2)) + 𝛽(1)) ∙ 𝐹2(𝑣𝑖(2)) (II) 

Deviating single-unit bids of the form �̂�𝑖(1) ∈ [𝛽(𝑣(2)) − 𝛽(1), 𝛽(1)] imply a focus on a deviation 

weakly below the pooling equilibrium price of 𝛽(1). In addition, any bidder 𝑖 with single-unit value of 

𝑣𝑖(1) = 𝑣(1) earns least in a dual-winner outcome and therefore has the highest incentive to deviate to a 

lower bid on one unit in equilibrium. To cancel this incentive, her dual-winner equilibrium profit of 

𝜋𝑖(1) = 𝑣(1) − 𝛽𝑖(1) has to exceed her profit from deviating, �̂�𝑖(1), which is ensured in inequality (III):   

𝑣(1) − 𝛽𝑖(1) ≥ (𝑣(1) − 𝛽(𝑣𝑖(2)) + 𝛽(1)) ∙ 𝐹2(𝑣𝑖(2)) (III) 

Rearranging and adding 𝑣𝑖(1), we obtain condition (4.) for all 𝑣𝑖(1) ∈ 𝑉(1) and 𝑣𝑖(2) ∈ 𝑉(2) 

because 𝑣𝑖(1) ≥ 𝑣(1): 
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𝛽(𝑣𝑖(2)) ≥ 𝛽(1) +
𝛽(1) − 𝑣(1) ∙ (1 − 𝐹2(𝑣𝑖(2))

𝐹2(�̂�𝑖(2)
≡ 𝐺(𝑣𝑖(2), 𝛽(1)) 

If bidder 𝑖 with the lowest value for one unit has no incentive to deviate, then in fact no player with a 

higher value can have an incentive to deviate independent of the valuation for two units. The proposed 

dual-winner equilibrium is preferred to a Case 1 deviation by any bidder 𝑖 as long as all deviating bids for 

two units are bounded from below by 𝐺(𝑣𝑖(2), 𝛽(1)). This is true for all valuations 𝑣𝑖(1) ∈ 𝑉(1) and 

𝑣𝑖(2) ∈ 𝑉(2).  

 Case 2: 𝛽(1) + �̂�𝑖(1) < �̂�𝑖(2)  

Bidder 𝑖 deviates in a way that the auctioneer never selects any dual-winner outcome. definitely does 

not win both units either if �̂�𝑖(2) < 𝛽(𝑣(2)), which then defines the lower bound of her deviating bid for 

the package. If �̂�𝑖(2) > 𝛽(𝑣(2)), the bidder wins both units, but lowering the respective bid until 

�̂�𝑖(2) = 𝛽(𝑣(2)) strictly dominates in profit without changing the probability of winning. Thus, we obtain 

a rationalizable range for bidder 𝑖’s deviating package bid of �̂�𝑖(2) ∈ [𝛽(𝑣(2)), 𝛽(𝑣(2))] with an 

expected deviating profit of �̂�𝑖(2) = (𝑣𝑖(2) − �̂�𝑖(2)) ∙ 𝑃(𝛽(𝑣𝑗(2)) ≤ �̂�𝑖(2)) for all 𝑣𝑖(2) ∈ 𝑉(2). Let us 

again use the proxy notation �̂�𝑖(2) = 𝛽(𝑣𝑖(2)) to rewrite above profit as �̂�𝑖(2) = (𝑣𝑖(2) − �̂�𝑖(2)) ∙

𝐹2(𝑣𝑖(2)). Bidder 𝑖 prefers the dual-winner equilibrium profit 𝜋𝑖(1) to the deviating profit of �̂�𝑖(2) if the 

following inequality (IV) holds:   

0 ≥ 𝐹2(𝑣𝑖(2)) ∙ [
𝛽(1) − 𝑣𝑖(1)

𝐹2(�̂�𝑖(2))
+ 𝑣𝑖(2) − �̂�𝑖(2)] 

(IV) 

The above inequality is true for all valuations 𝑣𝑖(1) ∈ 𝑉(1), 𝑣𝑖(2) ∈ 𝑉(2) and 𝑣𝑖(2) ∈ 𝑉(2) if the 

term in squared brackets is weakly negative. We already know the sufficient condition to satisfy Case 1 is 

𝛽(𝑣𝑖(2)) ≥ 𝐺(𝑣𝑖(2), 𝛽(1)). It ensures opponent 𝑗’s equilibrium-supporting bid on two units to be 

sufficiently high. Then, principal 𝑖’s deviation to a different dual-winner outcome is less likely to succeed 
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and therefore does not offer high enough expected profit for the deviation to be worthwhile. Note, that a 

similar reasoning applies in Case 2: Again, principal 𝑗’s equilibrium-supporting bid on two units must be 

sufficiently high. In this case, principal 𝑖’s deviation to a single-winner award is less likely to succeed and 

therefore not profitable enough in expectation. As a result the sufficient condition from Case 1 can be used 

in Case 2 as well. Thus, the term in squared brackets in (IV) is in fact weakly negative for all 𝑣𝑖(1) ∈

𝑉(1), 𝑣𝑖(2) ∈ 𝑉(2) and 𝑣(2) 𝜖 𝑉(2) because the following inequality (V) is true:      

𝛽(1) − 𝑣𝑖(1)

𝐹2(�̂�𝑖(2))
+ 𝑣𝑖(2) ≤ 𝐺(𝑣𝑖(2), 𝛽(1)) 

(V) 

Using the definition of 𝐺(𝑣𝑖(2), 𝛽(1)) and rearranging, we obtain (VI): 

𝑣(1) − 𝑣𝑖(1) ≤ 𝐹2(�̂�𝑖(2) ∙ [𝛽(1) + 𝑣(1) − 𝑣𝑖(2)] (VI) 

The LHS of the above inequality is weakly negative. Now we have to distinguish two cases regarding 

the RHS of inequality (VI): If 𝛽(1) + 𝑣(1) − 𝑣𝑖(2) ≥ 0, the inequality always holds. If 𝛽(1) + 𝑣(1) −

𝑣𝑖(2) < 0, we have to show that 𝛽(1) + 𝑣(1) − 𝑣𝑖(2) ≥ 𝑣(1) − 𝑣𝑖(1). This is true for all 𝑣𝑖(1) ∈ 𝑉(1) 

and 𝑣𝑖(2) ∈ 𝑉(2) given the lower bound of condition (1.). As inequality (VI) holds, inequality (V) must 

also be true. Remember from Case 1 that 𝛽(𝑣𝑖(2)) ≥ 𝐺(𝑣𝑖(2), 𝛽(1)) must be given, which implies that 

inequality (IV) is satisfied. Therefore, any deviation considered in Case 2 is not profitable.  

 Case 3: 𝛽(1) + �̂�𝑖(1) = �̂�𝑖(2)  

In this case, bidder 𝑖 deviates as if she were indifferent between the dual-winner and single-winner 

outcome. Remember from condition (1.) that any bidder 𝑖 with valuations of 𝑣𝑖 = [𝑣(1), 𝑣(2)] is 

indifferent between the dual-winner equilibrium and any single-winner outcome at the pooling price. 

Hence, the deviating behavior in Case 3 does in fact define her equilibrium strategy. Rewrite as the 

deviation in Case 3 to 𝛽(1) = �̂�𝑖(2) − �̂�𝑖(1) and bear in mind the lower bound from condition (1.): 
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𝛽(1) ≥ 𝑣(2) − 𝑣(1). Combining these two equations by substituting for 𝛽(1) and rearranging, we obtain 

inequality (VII): 

𝑣(1) − �̂�𝑖(1) ≥ 𝑣(2) − �̂�𝑖(2) (VII) 

Now, consider player 𝑖 with values of 𝑣𝑖 = [𝑣𝑖(1), 𝑣𝑖(2)] in which 𝑣𝑖(1) > 𝑣(1) and 𝑣𝑖(2) ≤ 𝑣(2). 

For any such bidder, (VII) holds with strict inequality and she strictly prefers any deviating dual-winner 

outcome (LHS) to any single-winner award, which contradicts Case 3. Note that for bidder 𝑖 with 

valuations of 𝑣𝑖 = [𝑣𝑖(1), 𝑣𝑖(2)] in which 𝑣𝑖(1) ≥ 𝑣(1) and 𝑣𝑖(2) < 𝑣(2), the same reasoning holds.  

Note in particular that by strictly decreasing the deviating bid on two units from �̂�𝑖(2) to �̂�𝑖(2)′, so 

that the deviation from Case 3 becomes 𝛽(1) + �̂�𝑖(1) > �̂�𝑖(2)′, the bidder changes from a Case 3 

deviation to a Case 1 deviation. As the latter always leads to some dual-winner outcome, it dominates 

Case 3 for all 𝑣𝑖 = [𝑣𝑖(1), 𝑣𝑖(2)] with 𝑣𝑖(1) > 𝑣(1) and 𝑣𝑖(2) ≤ 𝑣(2), and for all 𝑣𝑖 = [𝑣𝑖(1), 𝑣𝑖(2)] in 

which 𝑣𝑖(1) ≥ 𝑣(1) and 𝑣𝑖(2) < 𝑣(2). Finally, as a Case 1 deviation is not beneficial, a Case 3 deviation 

cannot possibly be either. QED. 

 

Proof of Theorem 3  

In a single-winner equilibrium, any bidder 𝑖 solely aims for the package of two units for all package 

valuations of 𝑣𝑖(1) ∈ 𝑉(1) and 𝑣𝑖(2) ∈ 𝑉(2). This scenario is strategically equivalent to the well-known 

FPSB auction for a single package in which two units are sold as the unique bundle. In this standard 

auction format, the equilibrium strategy of any bidder 𝑖 takes the form of 𝛽𝑖(2) from condition (1.).  

Note that the single-winner equilibrium requires any bidder 𝑖 to possess ultimate “veto” power on the 

dual-winner outcome to make it unprofitable for her opponent to deviate from equilibrium. Suppose 

opponent 𝑗 follows the proposed equilibrium strategy and submits a very low “veto” bid 𝛽𝑗(1) on one 
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unit, such as 𝛽𝑗(1) = 0 for example. Then bidder 𝑖 would have to submit a deviating single-unit bid, 

�̂�𝑖(1), to retain the chance of winning the dual-winner outcome in which �̂�𝑖(1) is defined by the next 

inequality (I):  

�̂�𝑖(1) > 𝛽𝑖(𝑣(2)) = 𝑣(2) (I) 

In inequality (I), 𝛽𝑖(𝑣(2)) is the optimal bid on the package of bidder 𝑖 with lowest valuation for two 

units. Add the valuation for one unit 𝑣𝑖(1) on both sides of inequality (I) and rearrange to obtain 

inequality (I’): 

𝑣𝑖(1) − 𝑣(2) > 𝑣𝑖(1) − �̂�(1) (I’) 

The LHS of inequality (I’) is strictly negative if 𝑣(2) > 𝑣𝑖(1) for all single-unit valuations 𝑣𝑖(1) ∈

𝑉(1), i.e. if 𝑣(2) > 𝑣(1) is true. The last inequality holds by assumption. As the LHS of (I’) is strictly 

negative, the RHS of inequality (I’) must be strictly negative. Note that the RHS corresponds to bidder 𝑖’s 

profit in the forced deviating dual-winner outcome. Thus, if opponent 𝑗 submits a “veto” bid in form of 

condition (2.), any deviating single-unit bid �̂�𝑖(1) of bidder 𝑖 to enforce the dual-winner outcome results 

in strictly negative profit. As she receives weakly positive expected profit in the single-winner 

equilibrium, a deviating bid of �̂�𝑖(1) is strictly dominated by any single-unit bid that supports the single-

winner equilibrium. By symmetry, only a bid of the form 𝛽𝑖(1) < 𝑣(2) − 𝑣(1) supports the single-winner 

equilibrium for all 𝑣𝑖(1) ∈ 𝑉(1) and 𝑣𝑖(2) ∈ 𝑉(2) with certainty. QED.  

 

Proof of Theorem 4  

Remember from Theorem 2 that any principal 𝑖 submits the payoff-maximizing pooling bid of 𝛽𝑖(1) =

𝑣(2) − 𝑣(1) in the dual-winner equilibrium and obtains respective equilibrium profit of 𝑣𝑖(1) − 𝑣(2) +

𝑣(1) with certainty. The principal’s expected equilibrium profit in the single-winner equilibrium is 
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∫ 𝐹2(𝑣𝑗(2)) ∙ 𝑑𝑣𝑗(2)
𝑣𝑖(2)

𝑣(2)
, as in the standard FPSB auction in which two units are sold as the sole package 

to two bidders. For principal 𝑖 let us define the difference between expected profits in the dual-winner and 

single-winner equilibrium as a function Δ[𝑣𝑖(1), 𝑣𝑖(2)]: 𝑉 → ℝ on the compact set 𝑉 ⊂ ℝ2, with   

𝛥[𝑣𝑖(1), 𝑣𝑖(2)] = 𝑣𝑖(1) − 𝑣(2) + 𝑣(1) − ∫ 𝐹2(𝑣𝑗(2)) ∙ 𝑑𝑣𝑗(2)
𝑣𝑖(2)

𝑣(2)

 

The above function is continuous, due to the differentiability of its constituents. It follows that it 

possesses a global maximum and a global minimum on 𝑉. Moreover, Δ[𝑣𝑖(1), 𝑣𝑖(2)] is strictly increasing 

in its first argument and strictly decreasing in its second argument. Consequently, the function does not 

have a critical point in the interior of its domain, but on the boundary. Its maximum occurs at (𝑣(1), 𝑣(2)) 

and the minimum at (𝑣(1), 𝑣(2)), with values of Δ[𝑣(1), 𝑣(2)] = 𝑣(1) − 𝑣(2) + 𝑣(1) and 

Δ[𝑣(1), 𝑣(2)] = 𝑣(1) − 𝑣(2) + 𝑣(1) − ∫ 𝐹2(𝑣𝑗(2)) ∙ 𝑑𝑣𝑗(2)
𝑣(2)

𝑣(2)
, respectively. Remember that dual-

winner efficiency is defined by �̅�(2) < 2𝑣(1). This implies the maximum Δ[𝑣(1), 𝑣(2)] is always strictly 

positive and the minimum Δ[𝑣(1), 𝑣(2)] is strictly positive for all package valuations 𝑣𝑖(1) ∈ 𝑉(1) and 

𝑣𝑖(2) ∈ 𝑉(2) if inequality (I) holds:   

𝑣(1) − 𝑣(2) + 𝑣(1) − ∫ 𝐹2(𝑣𝑗(2)) ∙ 𝑑𝑣𝑗(2)
𝑣(2)

𝑣(2)

> 0 (I) 

Using integration by parts, inequality (I) can be rewritten to (II): 

2 ∙ 𝑣(1) − 2 ∙ 𝑣(2) + ∫ 𝑓2(𝑣𝑗(2)) ∙ 𝑣𝑗(2) ∙ 𝑑𝑣𝑗(2)
𝑣(2)

𝑣(2)

> 0 (II) 

Finally, it follows that Δ[𝑣𝑖(1), 𝑣𝑖(2)] is strictly positive for all package valuations 𝑣𝑖(1) ∈ 𝑉(1) and 

𝑣𝑖(2) ∈ 𝑉(2) if 𝐸 (𝑣𝑗(2)) > 2 ∙ 𝛽(1). QED. 
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Proof of Lemma 1: 

We prove the lemma by eliminating weakly dominated strategies. A strategy is weakly dominated if, 

regardless of what the other agent does, the strategy earns an agent a payoff at most as high as any other 

strategy, and, the strategy earns a strictly lower payoff for some profile of the other agent’s strategies. 

Suppose agent 𝑖 follows the set of strategies �̂�𝑖 = (𝛽(1), �̂�𝑖(2)) with fixed 𝛽(1) ∈ [0, 𝛼𝑖(1)] and 

�̂�𝑖(2) < 𝛼𝑖(2). Let us first focus on the setting in which opponent 𝑗 submits bids of 𝛽(1) + 𝛽𝑗(1) <

𝛽𝑗(2). Then,   

a) if 𝛽𝑗(2) < �̂�𝑖(2) agent 𝑖 wins both units. However, he also wins the package with strategy 𝛽𝑖 =

(𝛽(1), 𝛼𝑖(2)), and the higher bid on two units does not impact his utility.    

b) If 𝛽𝑗(2) = �̂�𝑖(2) agent 𝑖 might win two units through randomization by the auctioneer. With strategy 

𝛽𝑖 agent 𝑖 would win the package, which provides a strictly higher utility.     

c) If 𝛽𝑗(2) > �̂�𝑖(2) agent 𝑖 wins nothing, but might have won the package with strategy 𝛽𝑖 in case 

𝛼𝑖(2) > 𝛽𝑗(2), . such that �̂�𝑖 was strictly dominated. Otherwise he is indifferent between strategies �̂�𝑖 

and 𝛽𝑖.   

Let us now consider the setting in which opponent 𝑗 submits bids of 𝛽(1) + 𝛽𝑗(1) ≥ 𝛽𝑗(2). Here,   

d) if 𝛽(1) + 𝛽𝑗(1) < �̂�𝑖(2) agent 𝑖 wins the package in any case and is indifferent between �̂�𝑖 and 𝛽𝑖. 

e) If 𝛽(1) + 𝛽𝑗(1) ≥ �̂�𝑖(2) agent 𝑖 wins one unit, but could win the package with strategy 𝛽𝑖 as long as 

𝛽(1) + 𝛽𝑗(1) < 𝛼𝑖(2), which would strictly dominate �̂�𝑖. For 𝛽(1) + 𝛽𝑗(1) ≥ 𝛼𝑖(2) agent 𝑖 is 

indifferent between strategies �̂�𝑖 and 𝛽𝑖.   

It can be useful to analyze �̂�𝑖(2) < 𝛼𝑖(2) also under two strategic goals: winning the package or winning 

only one unit. Obviously, if a value-maximizing agent wants to win the package, any �̂�𝑖(2) < 𝛼𝑖(2) will 

be weakly dominated. However, 𝛽𝑖(2) = 𝛼𝑖(2) can also not decrease the utility of the agent if he aims to 

win a single unit only. If an agent wanted to maximize his probability of winning one unit only, then he 
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will bid 𝛽𝑖(1) = 𝛼𝑖(1). A bid 𝛽𝑖 = (𝛼𝑖(1), 𝛼𝑖(2)) weakly dominates a bid 𝛽𝑖 = (𝛼𝑖(1), �̂�𝑖(2)) with 

�̂�𝑖(2) < 𝛼𝑖(2). This is because the utility for the package is higher, and bidding 𝛽𝑖 = (𝛼𝑖(1), 𝛼𝑖(2)) 

increases the probability of 𝛼𝑖(1) + 𝛽𝑗(1) < 𝛽𝑖(2), but it does not decrease the probability of 𝛼𝑖(1) +

𝛽𝑗(1) > 𝛽𝑗(2). Thus, any strategy set �̂�𝑖 = (𝛽(1), �̂�𝑖(2)) is weakly dominated by the set of strategies 

𝛽𝑖 = (𝛽(1), 𝛼𝑖(2)) for all 𝛽(1) ∈ [0, 𝛼𝑖(1)]. QED.  

 

 

Proof of Lemma 2: 

 

We prove this lemma by eliminating weakly dominated strategies. From Lemma 1, we know that any 

strategy 𝛽𝑖(2) < 𝛼𝑖(2) is weakly dominated. Now, we can concentrate on strategies 𝛽𝑖′ = (0, 𝛼𝑖(2)),  

𝛽𝑖′′ = (𝛼𝑖(1), 𝛼𝑖(2)), and the strategy set �̂�𝑖 = (�̂�𝑖(1), 𝛼𝑖(2)) with �̂�𝑖(1) ∈ (0, 𝛼𝑖(1)). In what follows, 

we show that �̂�𝑖 is weakly dominated. Let us first analyze agent 𝑗 submitting bids of �̂�𝑖(1) + 𝛽𝑗(1) <

𝛼𝑗(2). Then,  

a) if 𝛼𝑗(2) < 𝛼𝑖(2) agent 𝑖 wins both units just as with strategy 𝛽𝑖′ = (0, 𝛼𝑖(2)). A strategy 𝛽𝑖′′ =

(𝛼𝑖(1), 𝛼𝑖(2)) might still lead to winning the package, but it could also lead to 𝛼𝑖(1) + 𝛽𝑗(1) >

𝛼𝑖(2), such that the agent wins only one unit. In this case, strategy 𝛽𝑖′′ is strictly dominated.  �̂�𝑖 is 

weakly dominated in each of the cases because a payment is not considered in utility 𝑢𝑖.  

b) If 𝛼𝑗(2) = 𝛼𝑖(2) he might win the package or nothing due to the randomization of the auctioneer as 

with strategy 𝛽𝑖′. Strategy 𝛽𝑖′′ does either not change the outcome or it does lead to winning one unit 

with certainty in case of 𝛼𝑖(1) + 𝛽𝑗(1) > 𝛼𝑖(2). In the latter case, 𝛽𝑖′′ dominates the other strategies 

if 𝑢𝑖(1) > 0.5𝑢𝑖(2). If 𝑢𝑖(1) < 0.5𝑢𝑖(2), then the agent is indifferent between �̂�𝑖 and 𝛽𝑖′.  Strategy �̂�𝑖 

is again weakly dominated in each of the cases 
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c) If 𝛼𝑗(2) > 𝛼𝑖(2) he wins nothing independent of strategy �̂�𝑖 or 𝛽𝑖′. With strategy 𝛽𝑖′′ agent 𝑖 will not 

win anything if 𝛼𝑖(1) + 𝛽𝑗(1) < 𝛼𝑗(2), or he will win one unit if 𝛼𝑖(1) + 𝛽𝑗(1) > 𝛼𝑗(2). In the 

earlier case the bid on a single unit is irrelevant, in the latter case, 𝛽𝑖′′ strictly dominates the other 

strategies 𝛽𝑖′ and weakly dominates �̂�𝑖. 

Let us now consider opponent 𝑗 submitting bids of �̂�𝑖(1) + 𝛽𝑗(1) ≥ 𝛼𝑗(2). Then,  

d) if �̂�𝑖(1) + 𝛽𝑗(1) < 𝛼𝑖(2), the outcomes of this case correspond to a) for agent 𝑖.  

e) If �̂�𝑖(1) + 𝛽𝑗(1) = 𝛼𝑖(2) he wins one unit just as with strategy 𝛽𝑖′′. If 𝛼𝑖(2) > 𝛼𝑗(2), then  

𝛽𝑖′ strictly dominates �̂�𝑖. Also, if 𝛼𝑖(2) = 𝛼𝑗(2) and 𝑢𝑖(1) < 0.5𝑢𝑖(2), then 𝛽𝑖′ strictly dominates �̂�𝑖. 

If 𝛼𝑖(2) = 𝛼𝑗(2) and  𝑢𝑖(1) > 0.5𝑢𝑖(2), then 𝛽𝑖′′ strictly dominates 𝛽𝑖′. Strategy �̂�𝑖 is weakly 

dominated in all cases. 

f) If �̂�𝑖(1) + 𝛽𝑗(1) > 𝛼𝑖(2) he wins one unit just as with strategy 𝛽𝑖′′. With strategy 𝛽𝑖′ we have to 

distinguish different cases. Case 𝛼𝑗(2) > 𝛼𝑖(2) corresponds to the outcome in c) and 𝛽𝑖′ is strictly 

dominated by 𝛽𝑖′′ in which agent i would win one unit. If in case 𝛼𝑗(2) < 𝛼𝑖(2), then 𝛽𝑖′ strictly 

dominates the other strategies. Finally, case 𝛼𝑗(2) = 𝛼𝑖(2) is reflected in b) and 𝛽𝑖′ is strictly 

dominated by 𝛽𝑖′′ if 𝑢𝑖(1) > 0.5𝑢𝑖(2). With 𝑢𝑖(1) < 0.5𝑢𝑖(2) then strategy 𝛽𝑖′ would strictly 

dominate  𝛽𝑖′. Also here strategy �̂�𝑖 is weakly dominated. 

In summary, the strategy set �̂�𝑖 = (�̂�𝑖(1), 𝛼𝑖(2)) with �̂�𝑖(1) ∈ (0, 𝛼𝑖(1)) is always weakly dominated by 

the set of strategies 𝛽𝑖 = (𝛽𝑖(1), 𝛼𝑖(2)) with 𝛽𝑖(1) ∈ {0, 𝛼𝑖(1)}. QED. 

 

Proof of Theorem 5 

Suppose opponent 𝑗 follows the proposed equilibrium strategy and bids 𝛽𝑗 = (0, 𝛼𝑗(2)). In this case 

bidder 𝑖 cannot win one unit independent of which strategy he chooses from the set of weakly dominant 

strategies defined in Lemma 2. Remember, he always bids his full budget on two units that exceeds his 
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single unit budget by assumption. With 𝛽𝑖 = (𝛼𝑖(1), 𝛼𝑖(2)) he either wins the package or nothing because 

𝛼𝑖(1) ≤ 𝛼𝑖(2).  Therefore, agent 𝑖 is indifferent between both strategies and 𝛽𝑖 = (0, 𝛼𝑖(2)) is an 

equilibrium. In this equilibrium no agent 𝑖 would want to deviate even if he knew the opponent’s type. 

Again, assume opponent 𝑗 to follow the proposed equilibrium strategy. For package budgets of the form 

𝛼𝑖(2) > 𝛼𝑗(2), bidder 𝑖 wins two units following the equilibrium strategy and has no incentive to adjust. 

In case of 𝛼𝑖(2) < 𝛼𝑗(2), agent 𝑖 does not win anything independent of his strategy and therefore is 

indifferent to deviating. QED. 

Proof of Theorem 6  

We prove the theorem by contradiction. Assume there is a set of budget combinations 𝑆 ⊂ A for which 

bidders submit bids 𝛽𝑖 = (𝛼𝑖(1), 𝛼𝑖(2)). For all draws of package budget combinations not in 𝑆 bidders 

bid on the large package only, i.e. 𝛽𝑖 = (0, 𝛼𝑖(2)). Let us focus on a bidder 𝑖 with any draws of package 

budgets 𝛼𝑖 ∈ 𝐴 and suppose his opponent 𝑗 possesses budget draws of 𝛼𝑗 ∈ 𝑆. Based on Lemma 2 

opponent 𝑗 employs the strategy 𝛽𝑗 = (𝛼𝑗(1), 𝛼𝑗(2)). Bidder 𝑖’s expected payoff of bidding on the large 

package only is 𝜋𝑝 = 𝑢𝑖(2) ∙ 𝑃(𝛼𝑖(2) ≥ 𝛼𝑗(2)) whereas his expected payoff of using 𝛽𝑖 = (𝛼𝑖(1), 𝛼𝑖(2)) 

is    

𝜋𝑠𝑝 = 𝑢𝑖(2) ∙ 𝑃 (𝛼𝑖(2) ≥ 𝛼𝑗(2) ∩ 𝛼𝑖(2) ≥ 𝛼𝑖(1) + 𝛼𝑗(1)) + 

+ 𝑢𝑖(1) ∙ 𝑃(𝛼𝑖(1) + 𝛼𝑗(1) ≥ 𝛼𝑖(2) ∩ 𝛼𝑖(1) + 𝛼𝑗(1) ≥ 𝛼𝑗(2)),  

in which 𝑃(𝑋) denotes the probability of event X to occur. To keep the proof traceable we will not 

express the relevant probabilities as functions of 𝑄𝑙(∙) and 𝑄(∙). Define the difference between bidder 𝑖’s 

expected payoffs, Δ𝜋, as Δ𝜋 = 𝜋𝑠𝑝 − 𝜋𝑝. We now demonstrate that Δ𝜋 ≤ 0 ∀ 𝛼𝑖 ∈ 𝐴 which corresponds 

to showing that set 𝑆 is empty, i.e. there cannot exist a Bayesian Nash equilibrium strategy in which any 

agent i bids 𝛽𝑖 = (𝛼𝑖(1), 𝛼𝑖(2)).   
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First, observe that bidder 𝑖’s package draw for two-units of 𝛼𝑖(2) ∈ [�̂�𝑖(2), 𝛼(2)] cannot belong to set 

𝑆 independent of the budget for one unit. For the highest possible budget draw for two units, 𝛼𝑖(2) =

𝛼(2), the difference in bidder 𝑖’s expected payoffs is weakly negative for all possible single-unit budgets, 

i.e. Δ𝜋 ≤ 0 ∀ 𝛼𝑖(1) ∈ 𝐴(1), as            

𝑢𝑖(2) ∙ 𝑃 (𝛼(2) ≥ 𝛼𝑖(1) + 𝛼𝑗(1)) + 𝑢𝑖(1) ∙ 𝑃(𝛼𝑖(1) + 𝛼𝑗(1) ≥ 𝛼(2)) ≤ 𝑢𝑖(2). (I) 

Let us distinguish two different cases. If 𝛼(2) < 2 ∙ 𝛼(1) then 𝑃 (𝛼(2) ≥ 𝛼𝑖(1) + 𝛼𝑗(1)) < 1 and 

𝑃(𝛼𝑖(1) + 𝛼𝑗(1) ≥ 𝛼(2)) > 0. As 𝑢𝑖(1) is strictly smaller than 𝑢𝑖(2) the LHS is strictly smaller than the 

RHS and (I) holds strictly for bidder 𝑖 with highest package budget and any single-unit budget draw. If 

𝛼(2) ≥ 2 ∙ 𝛼(1) then 𝑃 (𝛼(2) ≥ 𝛼𝑖(1) + 𝛼𝑗(1)) = 1 and 𝑃(𝛼𝑖(1) + 𝛼𝑗(1) ≥ 𝛼(2)) = 0, so (I) holds 

with equality. Bidder 𝑖 is indifferent between bidding on the package only and bidding on one and two 

units for all possible single-unit budget draws because he wins the large package anyway. WLOG in this 

case we can assume bidder 𝑖 with package budget draws 𝛼𝑖(2) ≥ �̌�𝑖(2) to bid on the large package only, 

independent of the single-unit budget draw, with �̌�𝑖(2) being defined as the lowest package budget such 

that 𝑃 (�̌�𝑖(2) ≥ 𝛼𝑖(1) + 𝛼𝑗(1)) = 1. Note that for both cases (I) also holds strictly for slightly lower two-

unit budgets, 𝛼𝑖(2) ∈ [�̂�𝑖(2), 𝛼(2)), independent of the budget draw for one unit.    

Second, define the set of budget combinations with the highest package budget draw in 𝑆 as 𝐻 ⊆ 𝑆. 

Let us from now on focus on bidder 𝑖 with budget draws of 𝛼𝑖 ∈ 𝐻. By definition if his package budget 

draw, 𝛼𝑖(2), is marginally increased he does not belong to set 𝑆 anymore. Bidder 𝑖’s expected payoff from 

bidding on the large package only, 𝛽𝑖 = (0, 𝛼𝑖(2)), remains unaltered whereas his expected payoff from 

bidding on the single unit and the package corresponds to  

𝜋𝑠𝑝 = 𝑢𝑖(2) ∙ 𝑃 (𝛼𝑖(2) ≥ 𝛼𝑗(2) ∩ 𝛼𝑖(2) ≥ 𝛼𝑖(1) + 𝛼𝑗(1)) + 

+ 𝑢𝑖(1) ⋅ 𝑃(𝛼𝑖(2) ≥ 𝛼𝑗(2) ∩ 𝛼𝑖(1) + 𝛼𝑗(1) ≥ 𝛼𝑖(2)).  
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The bidder’s probability of winning the single unit must include the opponent not having a higher 

package budget draw than himself, 𝛼𝑗(2) ≤ 𝛼𝑖(2). Otherwise, by symmetry, opponent 𝑗 would not bid on 

the single unit independent of his corresponding budget and bidder 𝑖 could not win one unit anyway. Note 

at this stage, there might be budget combinations with lower budget draws for two units for which 

opponent 𝑗 bids on the large package only. However, if we can show that bidder 𝑖 prefers to bid on the 

large package only if we assume all bidders with lower package budget draws to bid on both packages he 

will not change his preferences if some bidders with lower package budgets bid on the large package only.    

By definition for bidder 𝑖 with a budget draw from set 𝑆 the difference in his expected payoff must be 

positive for all his budget combinations, i.e. Δ𝜋 > 0 ∀ 𝛼𝑖 ∈ 𝐻 ⊆ 𝑆, which corresponds to  

𝑢𝑖(2) ∙ 𝑃 (𝛼𝑖(2) ≥ 𝛼𝑗(2) ∩ 𝛼𝑖(2) ≥ 𝛼𝑖(1) + 𝛼𝑗(1)) + 

+ 𝑢𝑖(1) ⋅ 𝑃 (𝛼𝑖(2) ≥ 𝛼𝑗(2) ∩ 𝛼𝑖(1) + 𝛼𝑗(1) ≥ 𝛼𝑖(2)) > 

> 𝑢𝑖(2) ∙ 𝑃(𝛼𝑖(2) ≥ 𝛼𝑗(2)).  (I’)  

We use conditional probability to rewrite the LHS of (I’) and cancel out 𝑃(𝛼𝑖(2) ≥ 𝛼𝑗(2)) to obtain 

𝑢𝑖(2) ∙ 𝑃 (𝛼𝑖(2) ≥ 𝛼𝑖(1) + 𝛼𝑗(1)|𝛼𝑖(2) ≥ 𝛼𝑗(2)) + 

+ 𝑢𝑖(1) ⋅ 𝑃 (𝛼𝑖(2) ≤ 𝛼𝑖(1) + 𝛼𝑗(1)|𝛼𝑖(2) ≥ 𝛼𝑗(2)) > 𝛼𝑖(2).  

As 𝑢𝑖(1) is strictly smaller than 𝑢𝑖(2) the LHS is strictly smaller than the RHS in (I’) and in fact Δ𝜋 <

0 ∀ 𝛼𝑖 ∈ 𝐻 ⊆ 𝑆. Hence, bidder 𝑖 has an incentive to deviate and bid for the large package only. Thus, set 

𝐻 cannot belong to 𝑆. Finally, as it is always possible to define a subset 𝐻 in 𝑆 in which bidder 𝑖 has the 

highest budget for two units in the set 𝑆, there cannot be a set 𝑆 ⊂ 𝑉 as defined above, and the argument 

unravels for all types. Therefore, the proposed Bayesian Nash equilibrium strategy is in fact unique. QED. 
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Proof of Lemma 3 

Any agent 𝑖 can be coordinated on winning one unit together with his opponent with certainty. For this, 

the sum of both single-unit bids must exceed each agent’s package bid. Remember from Lemma 1 that 

any agent always spends his entire package budget constraint and if he submits a non-zero bid on one unit, 

he bids his entire single-unit budget constraint. Therefore, both principals have to implement a budget 

constraint scheme so that the sum of both single-unit budget constraints exceeds each agent’s package 

budget constraint in the dual-winner outcome.  

In this allocation, principal 𝑖 chooses the vector of budget constraints 𝛼𝑖 such that condition 𝛼𝑖(1) +

𝛼(1) ≥ 𝛼𝑖(2) is satisfied. She does not know firm 𝑗’s budget for one unit. Thus, she has to make sure his 

two-unit budget constraint is below the sum of both single-unit budget constraints. This has to be true for 

all possible single-unit budget constraints of his opponent, especially the smallest budget constraint of 

𝛼(1). Thus, we get 𝛼𝑖(1) + 𝛼(1) ≥ 𝛼𝑖(2). 

For agent 𝑖 to in fact submit a positive single-unit bid, his certain utility from bidding on this package 

must exceed his expected utility from winning two units. This is ensured in condition 𝑢𝑖(1) ≥ 𝑢𝑖(2) ∙

𝑃(𝛼𝑖(2) ≥ 𝛼𝑗(2) ∩ 𝛼𝑖(2) ≥ 𝛼𝑗(1)). On the RHS, agent 𝑖 does not bid on one unit, but can win two units 

instead. Here, 𝑃(𝛼𝑖(2) ≥ 𝛼𝑗(2) ∩ 𝛼𝑖(2) ≥ 𝛼𝑗(1)) is the probability with which his package budget 

constraint exceeds opponent 𝑗’s single- and package budget constraints. The budget constraint 𝛼𝑖(2) is 

chosen so that 𝑃(𝛼𝑖(2) ≥ 𝛼𝑗(2) ∩ 𝛼𝑖(2) ≥ 𝛼𝑗(1)) is low enough for the RHS to be lower than the LHS. 

Thus, agent 𝑖 prefers to bid on one unit and win with certainty. QED.       

 

Proof of Theorem 7  

For the following line of argument suppose the opposing principal 𝑗 manages to implement the dual-

winner equilibrium strategy. In Theorem 2, every principal chooses the same pooling price of 𝛽(1) in the 
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dual-winner equilibrium. Thus, according to Lemma 3, any principal 𝑖 has to provide her agent with the 

same single-unit budget constraint. This budget constraint must be in the amount of the pooling bid, i.e. 

𝛼𝑖(1) = 𝛽(1) ∀ 𝑖 ∈ 𝐼. Moreover, any principal 𝑖 selects a package budget constraint that corresponds to 

her equilibrium bid on two units and thus, 𝛼𝑖(2) = 𝛽(𝑣𝑖(2)). Finally, according to Lemma 1 every agent 

always truthfully bids her entire package budget constraint for two units, 𝛼𝑖(2). The following two 

conditions (I) to (II) then have to be satisfied to implement the dual-winner equilibrium:  

2 ∙ 𝛽(1) ≥ 𝛼𝑖(2) (I) 

𝛼𝑖(2) ≥ 𝐺(𝑣𝑖(2), 𝛽(1)) (II) 

𝑢𝑖(1) ≥ 𝑢𝑖(2) ∙ 𝑃(𝛼𝑖(2) ≥ 𝛼𝑗(2) ∩ 𝛼𝑖(2) ≥ 𝛼𝑗(1)) (III) 

Condition (I) ensures that the auctioneer will choose the dual-winner outcome in equilibrium. The last 

two conditions (II) and (III) ensure that no deviation from obtaining the single unit will increase payoff for 

principal and agent in equilibrium. They correspond to conditions (5.) from Theorem 2 and the second 

condition from Lemma 3, respectively. Let us now check whether the above three conditions can be 

satisfied for the focal point pooling bid of 𝛽(1) = 𝑣(2) − 𝑣(1). Suppose firm 𝑖 has the highest possible 

value for the package of two units 𝑣𝑖(2) = 𝑣(2). In this case, condition (II) becomes (II’) by definition of 

𝐺(𝑣𝑖(2), 𝛽(1)):    

𝛼𝑖(2) ≥ 2 ∙ (𝑣(2) − 𝑣(1)) (II’) 

Given Theorem 2 (4.), for a package value of 𝑣𝑖(2) = 𝑣(2) it must be true that 𝛽𝑖(𝑣(2)) = 2 ∙

(𝑣(2) − 𝑣(1)). Agent 𝑖’s bid on two units equals twice the pooling bid. Remember, principal 𝑖 chooses a 

package budget constraint in the amount of her respective equilibrium bid, which thereby also determines 

the highest possible budget for two units: 𝛼(2) = 𝛽𝑖(𝑣(2)). This implies 𝛼(2) = 2 ∙ (𝑣(2) − 𝑣(1)), 

which satisfies condition (I) and forces condition (II’) to hold with equality. Moreover, remember that 
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condition (III) reflects 𝛼𝑖(2) ≤ 𝛼(1), given the assumption of 𝛼(2) ≤ 𝛼(1). Applying this insight to the 

fact that 𝛼(1) ≤ 𝑣(1), by definition of the pooling price and its range, we obtain condition (III’):    

𝛼𝑖(2) ≤ 𝑣(1) (III’) 

Finally, combining conditions (II’) and (III’) is not possible if the condition from Theorem 7 is true. 

In this case, any firm 𝑖 with package value of 𝑣𝑖(2) = 𝑣(2) cannot implement budget constraints that 

satisfy two restrictions: They correspond to its principal’s equilibrium strategy and at the same time direct 

its agent to bid truthfully on both packages. Hence, the dual-winner equilibrium cannot be supported as a 

solution to the principal-agent 2 × 2 FPSB package auction model. QED.  

  

Proof of Theorem 8  

Let both bidders not bid on two units and solely start bidding on the single unit. Then there is no over-

demand, and the auction immediately stops at a price of zero for the package of one unit. Any bidder 𝑖 

receives equilibrium profit of 𝑣𝑖(1) with certainty. In the remaining proof, we assume opponent 𝑗 follows 

this proposed equilibrium strategy.  

Assume principal 𝑖 tries to win two units and suppose she does not bid on the single unit. If player 𝑖 

wins two units at a price of 𝑝𝑖(2) = 𝑣𝑗(1), she obtains a profit of 𝑣𝑖(2) − 𝑣𝑗(1). Remember, dual-winner 

efficiency implies 𝑣𝑖(1) + 𝑣𝑗(1) > 𝑣𝑖(2) for all possible valuations 𝑣𝑖(1), 𝑣𝑗(1) ∈ 𝑉(1) and 𝑣𝑖(2) ∈

𝑉(2). Thus, for any principal 𝑖, equilibrium profit of 𝑣𝑖(1) strictly exceeds 𝑣𝑖(2) − 𝑣𝑗(1). Now, let bidder 

𝑖 also bid on the package of one unit. This cannot possibly raise 𝑖’s profit on two units compared to not 

bidding on one unit. Finally, note that the proposed equilibrium strategy is independent of any bidder’s 

package valuations and, therefore, constitutes an ex-post equilibrium. QED. 
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Proof of Theorem 9  

Suppose both bidders do not begin to bid on one unit, but start bidding on two units and continue to be 

active until their respective values are reached, i.e. 𝑝𝑖(2) = 𝑣𝑖(2). Any bidder 𝑖 obtains an expected 

equilibrium profit of 𝐹2(𝑣𝑖(2)) ∙ (𝑣𝑖(2) − 𝑣𝑗(2)). Bidder 𝑖 has the highest package value with probability 

of 𝐹2(𝑣𝑖(2)). In this case, she wins two units at a price of the second highest value, 𝑣𝑗(2), and receives a 

profit of 𝑣𝑖(2) − 𝑣𝑗(2). From now on, assume opponent 𝑗 follows the proposed equilibrium strategy.    

Bidder 𝑖 has no chance to profitably enforce the dual-winner outcome because opponent 𝑗 does in fact 

use her “veto” bid, given 𝑣(2) > 𝑣(1) is true. The reasoning is analogue to the proof of Theorem 3 and 

therefore omitted. Bidder 𝑖 is indifferent between submitting any single-unit bid of 𝛽𝑖(1) ∈ [0, 𝑣𝑖(1)] as 

long as she continues to be active on the large bundle until the price reaches her corresponding value of 

𝛽𝑖(2) = 𝑣𝑖(2). She obtains an expected profit of 𝐹2(𝑣𝑖(2)) ∙ (𝑣𝑖(2) − 𝑣𝑗(2)). However, if bidder 𝑖 

decides to drop out on two units before the price reaches her value of 𝑣𝑖(2), she strictly lowers her 

probability of winning. This strictly decreases her expected profit and cannot be optimal. In the single-

winner equilibrium, by symmetry, both bidders quit bidding on one unit before its price reaches 𝑣(2) −

𝑣(1) and remain active on the package of two units until its price reaches their respective valuations. With 

dual-winner efficiency being common knowledge, the proposed equilibrium strategies are independent of 

the bidders’ actual package valuations and therefore are rationalizable ex-post. QED. 

 

Proof of Corollary 1  

In the dual-winner equilibrium from Theorem 8, the bidder with the lowest value for one unit obtains the 

lowest profit of 𝑣(1) with certainty. According to Theorem 9, the highest possible profit achievable in the 

single-winner equilibrium is 𝑣(2) − 𝑣(2). Using the definition of dual-winner efficiency we get 𝑣(2) −

𝑣(2) < 2𝑣(1) − 𝑣(2) < 2𝑣(1) − 𝑣(1). The last inequality stems from the fact that 𝑣(2) > 𝑣(1). 
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Therefore, the profit in the dual-winner equilibrium is strictly greater than in the single-winner 

equilibrium for all possible bidder’s valuations 𝑣𝑖(1) ∈ 𝑉(1) and 𝑣𝑖(2) ∈ 𝑉(2). QED. 

 

 

Proof of Theorem 10 

Lemma 1 implies that both agents start bidding on the two-unit package. Each of them remains active 

until his budget for two units is reached. The bidder i, who is outbid on the package with 𝛼𝑖(2) < 𝛼𝑗(2), 

can then start bidding on one unit. However, since 𝛼𝑖(1) < 𝛼𝑖(2), the bidder i cannot become winning 

unilaterally with his bid on one unit. Both bidders have a higher utility for the package, and therefore 

agent j, who is the standing winner on the package, would not bid on a single unit. Note that the low 

bidder i on the package can also not win by starting to bid on the single unit only because he would be 

overbid by opponent j as well, who submits his equilibrium bid on the package only. In summary, even 

knowing the opponent’s type, no agent can benefit by deviating from his equilibrium strategy. Thus, 

straightforward bidding constitutes an ex-post equilibrium in the second stage of the principal-agent 2 × 2 

ascending package auction model. QED. 

 

Proof of Theorem 11  

In Theorem 8, any principal 𝑖 does not bid on the package of two units. She remains active on the 

package of one unit at most until the price reaches her corresponding valuation of 𝛽𝑖(1) = 𝑣𝑖(1). To 

implement the principal’s dual-winner equilibrium strategy for her agent, the principal provides a zero 

budget constraint on the large package. This eliminates the agent’s possibility to win the package and the 

principal can simply provide her agent with a budget constraint in the amount of her valuation for one 

unit. From the beginning there is no over-demand and the auction terminates immediately. QED. 
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Proof of Theorem 12   

Note first, that any firm 𝑖’s optimal contract menu must involve budget constraints of the form 𝛼𝑖(1) = 𝑑 

and 𝛼𝑖(2) = 2 ∙ 𝑑, i.e. 𝛼𝑖(2) = 2 ∙ 𝛼𝑖(1) due to Theorem 2. Next, assume opponent 𝑗 truthfully submits 

bids 𝛼𝑗(1) = 𝑑 and 𝛼𝑗(2) = 2 ∙ 𝑑. Now, suppose agent 𝑖 chooses a deviating budget constraint of 

�̂�𝑖(1) > 𝛼𝑖(1) for one unit from the menu, which by construction implies a deviating package budget 

constraint of �̂�𝑖(2) = 2 ∙ �̂�𝑖(1). This deviation results in the single-winner award as 2 ∙ �̂�𝑖(1) > �̂�𝑖(1) +

𝛼𝑗(1) and 2 ∙ �̂�𝑖(1) > 2 ∙ 𝛼𝑗(1) and agent 𝑖 wins the package. For this deviation to be unprofitable, the 

following incentive-compatibility constraint (IC1) needs to be satisfied:      

𝑤(𝑣(1)) + 𝑚𝑖(1) ≥ 𝑤(𝑣(2)) + 𝑚𝑖(2)    (IC1) 

Any profit-maximizing principal chooses 𝑚𝑖(2) = 0, and thus IC1 can be rewritten as: 𝑚𝑖(1) ≥

𝑤(𝑣𝑖(2)) − 𝑤(𝑣𝑖(1)). Principal 𝑖 could now offer a menu of payments 𝑚𝑖(1) = 𝑤(𝑣(2)) − 𝑤 (𝑣(1)) 

with corresponding budget constraints of 𝛼𝑖(1) = 𝑑 and 𝛼𝑖(2) = 2 ∙ 𝑑. However, as 𝑑 could be the result 

of various 𝑣(2) and 𝑣(1) pairings agent 𝑖 has an incentive to choose the pairing that offers the highest 

payment and still satisfies 𝑑 = 𝑣(2) − 𝑣(1). Agent 𝑖 with package valuations of 𝑣𝑖 = (𝑣(2) , 𝑣(1)) has 

the highest incentive to deviate the optimal payment scheme must involve constant transfers in height of 

𝑚(1) = 𝑤 (𝑣(2)) − 𝑤 (𝑣(1)).   

Finally, suppose agent 𝑖 chooses a deviating single-unit budget constraint of �̂�𝑖(1) < 𝛼𝑖(1) from the 

menu, which by construction implies a deviating budget of  �̂�𝑖(2) = 2 ∙ �̂�𝑖(1) for two units. Note that this 

deviation results in the single-winner award as 2 ∙ �̂�𝑖(1) < �̂�𝑖(1) + 𝛼𝑗(1) and 2 ∙ �̂�𝑖(1) < 2 ∙ 𝛼𝑗(1). Here, 

agent 𝑗 wins the package and agent i wins nothing. According to IC1, this deviation cannot be optimal for 

agent 𝑖. QED.   
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Appendix II: Formal Description of the Ascending Auctions 

In what follows, we discuss the possible outcomes of the 2 × 2 ascending package auction:  

 Case 1: Both bidders only bid on one unit and the auction stops immediately with both bidders 𝑖 

and 𝑗 winning one unit each at a price of zero.  

 Case 2: Bidder i bids on the package, while bidder j only bids on a single unit. The respective 

prices 𝑝𝑖(2) and 𝑝𝑗(1) rise on equal level. If bidder i releases the button and does not switch to 

one unit, then bidder j wins the package at price 𝑝𝑗(2) = 𝛽𝑖(2) because of 𝑣𝑗(1) < 𝑣𝑗(2). If 

bidder i reduces demand to one unit, we are in case 1 and each bidder 𝑖 wins one unit at a price of 

𝑝𝑖(1) = 𝛽𝑖(2) 2⁄ . If bidder j releases the button on one unit and does not switch to the package, 

then the package is assigned to bidder 𝑖 at a price of 𝑝𝑖(2) = 𝛽𝑗(1). If bidder j switches to the 

package, we are in case 3. 

 Case 3: Both bidders only bid on the package and the prices for 𝑝𝑖(2) and 𝑝𝑗(2) continue to rise 

at the same level until one bidder stops bidding on the package. The bidder, who dropped out on 

two units can still bid on one unit, such that we are in case 2. If one bidder 𝑖 stops pressing both 

buttons, the auction stops and the opponent 𝑗 wins the package at a price of 𝑝𝑗(2) = 𝛽𝑖(2). If both 

bidders reduce demand to one unit simultaneously, we are in case 1 and each bidder 𝑖 wins one 

unit at a price of 𝑝𝑖(1) = 𝛽𝑖(2) 2⁄ . If both bidders drop out from the auction at the same time, the 

auctioneer randomly assigns the package to one of the bidders at the current price.  

 Case 4: One bidder i bids on the package and the single unit, the other bidder j only on a single 

unit. Prices rise on 𝑝𝑖(1), 𝑝𝑖(2), and 𝑝𝑗(1) according to the indifference condition of the 

auctioneer, 𝑝𝑖(1) + 𝑝𝑗(1) = 𝑝𝑖(2). If bidder i stops bidding on the package, we are in case 1 and 

each bidder 𝑖 wins one unit at a price of 𝑝𝑖(1) = 𝛽𝑖(2) 2⁄ . If bidder i stops bidding on the one 

unit, we are in case 2. If bidder i releases both buttons, bidder j wins the package at price 𝑝𝑗(2) =

𝛽𝑖(2). If bidder j stops bidding on one unit, bidder i wins the package at price 𝑝𝑖(2) = 2𝛽𝑗(1).     
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 Case 5: One bidder i bids on the package and the single unit, the other bidder j only on the 

package. Prices rise on 𝑝𝑖(2), 𝑝𝑗(2) and 𝑝𝑖(1) on the same level. If bidder i stops bidding on the 

single unit, we are in case 3 but have to take into account the standing price on one unit of 

𝑝𝑖(1) = 𝛽𝑖(1). If bidder i stops bidding on the package, we are in case 2. If bidder j stops bidding 

on the package, the opponent wins the package at price 𝑝𝑖(2) = 𝛽𝑗(2).   

 Case 6: Both bidders bid on the package and the single unit. Prices rise on all clocks and the 

single-unit prices are in sum at the level of the package prices, which are equal. If one of them 

stops bidding on one unit, we are in case 5. If one of them stops bidding on the package, we are in 

case 4. If both release the button for the package, this is case 1 and each bidder 𝑖 wins one unit at 

price of 𝑝𝑖(1) = 𝛽𝑖(2) 2⁄ . If both simultaneously release the button for the single unit, we are in 

case 3. In case one bidder stops bidding on the package and her opponent stops bidding on one 

unit, we are in case 2. If both bidders simultaneously release both buttons, the auctioneer assigns 

each bidder 𝑖one object at price of 𝑝𝑖(1) = 𝛽𝑖(2) 2⁄ .  

In contrast, the following outcomes are possible for the 2 × 2 ascending uniform-price auction: 

 Case 1: Both bidders only bid on one unit and the auction stops immediately with both bidders 

winning one unit at unit price of zero. 

 Case 2: Bidder i bids on two units, while bidder j only bids on a single unit. The price increases. If 

bidder i stops bidding on the second unit, the auction stops and both bidders win one unit at 

current unit price of p. If bidder j stops bidding on her one unit, the auction stops and bidder i 

wins both units at twice the current unit price of p. If bidder i stops bidding on both units 

simultaneously, then the auction stops and the auctioneer awards one unit to both bidders at the 

current unit price of p.      

 Case 3: Both bidders bid on two units. If one bidder stops bidding on both units simultaneously, 

the other bidder gets the package of both units at twice the current unit price of p. If one bidder 
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drops out on one of the items, we are in case 2. If both bidders simultaneously stop bidding on the 

second unit, we are in case 1. 

                                                      

2
 Bulow et al. (2009) writes that “Prior to the AWS auction, analyst estimates of auction revenue ranged from $7 

to $15 billion. For the recent 700 MHz auction, they varied over an enormous range – from $10 to $30 billion.” This 

is by no means an exception and estimates of investment banks and other external observers can be quite different 

from the actual revenue of the auction. Prior to the German spectrum auction in 2010, most analysts expected low 

revenue (Berenberg Bank estimated €1.67 bn. and the LBBW bank estimated €2.10 bn.). The actual revenue from 

the auction was €5.00 bn. 
3
 Burkett (2015) has to be given credit for introducing principal-agent relationships in a single-object auction 

context. He showed how the fact that budget constraints are endogenously set by the principal to mitigate the agency 

problem affects the standard revenue comparisons between FPSB and SPSB auctions. Later, Burkett (2016) studies a 

principal’s optimal choice of the budget constraint for an agent participating in an auction-like direct-revelations 

mechanism. Principal and agent are assumed to be equity holders in the firm, interested in maximizing the firm’s 

expected return at the auction, but the bidder receives an additional private payoff when the firm wins the good. In 

contrast, we model a complementary environment with multiple objects in which agents are no equity holders. The 

types of manipulation possible for agents in such multi-object markets are quite different from single-object auctions. 

We show that the information asymmetry and the different preferences result in an agency dilemma that is difficult 

to resolve. 
4
 Many spectrum auctions are for homogeneous goods, i.e. multiple licenses of 5 MHz spectrum in a particular 

band. While the strategic problems discussed can also be found with heterogeneous goods, markets with 

homogeneous goods require less notational burden. 
5
 For example, France (2011) and Norway (2013) used a FPSB package auction, whereas Romania (2012) used 

an ascending combinatorial clock auction: 

https://www.ofcom.org.uk/__data/assets/pdf_file/0021/74109/telefonica_response.pdf  
6
 We refer to risk aversion as is implied by a concave utility function 𝑤(∙) over possible outcomes of the auction 

(lottery) {0, 𝑣𝑖(1), 𝑣𝑖(2)} for some agent 𝑖. Regarding Theorem 6 and Theorem 10 one could expect a risk averse 

agent to prefer the certain dual-winner outcome with utility of 𝑤(𝑣𝑖(1)) over the lottery of winning the single-

winner outcome with utility of 𝑤(𝑣𝑖(2)) ∙ 𝐹2(𝑣𝑖(2)) and not winning at all. 
7
 Given firm 𝑗 reports zero on two units, principal 𝑖 is indifferent between reporting truthfully and fully shading 

on the package. Fully shading on one unit is weakly dominated. Thus, the budget regime from Theorem 11 carries 

over to the 2×2 package auction model under the VCG mechanism. The agents are not affected by the generalized 

second-price payment rule and their reporting behavior corresponds to the one in Theorem 5.   
8
 We leave revenue maximization as a topic for future research and focus on efficient auction design, which is 

the primary goal of regulators. 
9
http://www.bundesnetzagentur.de/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Frequenzen

/OeffentlicheNetze/Mobilfunknetze/Projekt2016/projekt2016-node.html 

10
 http://telecoms.com/opinion/the-german-spectrum-auction-failure-to-negotiate/  

11
 The strategic analysis of the wide-spread two-stage combinatorial clock auction is more involved, which is 

why we do not discuss it in this context (Bichler and Goeree 2017). 
12

 https://www.ofcom.org.uk/__data/assets/pdf_file/0021/74109/telefonica_response.pdf 

https://www.ofcom.org.uk/__data/assets/pdf_file/0021/74109/telefonica_response.pdf
http://www.bundesnetzagentur.de/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Frequenzen/OeffentlicheNetze/Mobilfunknetze/Projekt2016/projekt2016-node.html
http://www.bundesnetzagentur.de/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Frequenzen/OeffentlicheNetze/Mobilfunknetze/Projekt2016/projekt2016-node.html
http://telecoms.com/opinion/the-german-spectrum-auction-failure-to-negotiate/

