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are wide-spread, but strategically challenging. We show that, unlike in single-object auctions, first-price

sealed-bid and the Dutch combinatorial auction formats are not strategically equivalent. While the former

exhibits a coordination problem for bidders, the Dutch formats have only efficient equilibria. The price
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bidders coordinate. Also, the theoretical predictions explain bidder behavior in the lab remarkably well.
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1. Introduction

Combinatorial auctions in which bidders can submit bids on packages of objects have found wide-

spread application, because they allow bidders to express synergistic valuations for different objects

(Cramton et al. 2006). In particular, the simple first-price sealed-bid (FPSB) auction format has

found numerous applications in industrial procurement (Bichler et al. 2006), logistics (Caplice
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2007), and for the sale of spectrum licenses.1 Unfortunately, equilibrium bidding strategies in

FPSB combinatorial auctions are not yet well understood. In a widely cited paper, Bernheim and

Whinston (1986) studied the equilibrium of an FPSB combinatorial auction under complete infor-

mation. However, incomplete information analysis has turned out to be challenging. The seminal

article by Anton and Yao (1992), which provides a Bayesian Nash equilibrium analysis for a pro-

curement market with two objects, two bidders, and diseconomies of scale provided an important

step forward in understanding first-price sealed-bid combinatorial auctions. Their analysis yields

an equilibrium selection problem for bidders, suggesting that such auctions could be inefficient in

practice. The assumption that bidders know the economies of scale in the market is realistic in

many procurement markets, and it allows for the characterization of equilibrium bidding strategies

in first-price auctions. It is unclear, however, whether the 2-bidder case generalizes, because bidders

can veto the split award unilateraly. In this paper, we also focus on markets with diseconomies of

scale, but analyze the 2-bidder and the n-bidder case for different types of first-price combinatorial

auctions. We provide a comprehensive theoretical analysis of FPSB and Dutch auction formats

and also results of lab experiments, which provide further evidence that different versions of the

Dutch combinatorial auction formats have remarkable properties.

1.1. Motivation

In split-award auctions a procurement manager splits his demand for a larger quantity of a good

into two (or more) shares (aka. lots), such as a 30% and a 70% share or two 50% shares. In an ex-

post split-award auction, the buyer allows suppliers to submit bids on individual shares as well as on

100% of the order, which differentiates ex-post split-award auctions from their ex-ante counterpart

(Bichler et al. 2015, Chaturvedi et al. 2016).2 We limit our attention to the case with two shares

only and diseconomies of scale, and assume that the suppliers know the scale economies in the

market, but the buyer does not.3 The assumption of diseconomies of scale is practically relevant,

for example, if suppliers face capacity limits or stepwise fixed costs. Moreover, it is strategically

interesting, because suppliers must coordinate to obtain an efficient solution.

Split-award auctions are often used for multi-sourcing in industrial procurement. Companies such

as Sun and HP, for example, procure products worth hundreds of millions of dollars using different

1 The regulators in Norway (2013) and France (2011) used a FPSB combinatorial auction.

2 For the sake of simplicity, we reduce the term ex-post split-award auctions to split-award auctions in the rest of this
paper. If we mention the ex-ante format, it is denoted explicitly.

3 These assumptions are similar to Anton and Yao (1992). Note that ex-post split-award auctions differ from share
auctions for a perfectly divisible object in which bidders submit continuous bid schedules for different shares of the
object (Wilson 1979, Ausubel and Cramton 1998).
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types of multiple sourcing auctions (Elmaghraby 2007). For risk considerations, such firms often

want to have more than one supplier, but they are also particularly interested when the dual source

solution is the cost-minimal solution. This work is partly motivated by procurement practices of a

large European engineering and electronics multinational. Within one year (April 2015 to March

2016) more than one third of its procurement auctions were split-award auctions.4 81% of these were

ex-ante and 19% of these were ex-post split-award auctions, with 88% of the split-award auctions

allocated two shares only. 14% of the split-award auctions were FPSB auctions, in which suppliers

submitted bids on individual shares and on the overall package; the others were run sequentially

using a Dutch ascending auction followed by an FPSB auction, or using two Dutch auctions in a

sequence, in which the winner of the first share was allowed to quote for the remaining share(s) as

well in the ex-post formats.

The choice of a proper auction design depends on the prevailing scale economies in the market:

with economies of scale (and no risk-premium), it is efficient to select a single supplier (sole source

award), and the procurement manager can also employ a single-object auction. However, the solu-

tion with two suppliers (split award) is efficient with diseconomies of scale and when a buyer can

expect savings from an ex-ante split-award auction. A buyer who knew the scale economies in the

market, could use the appropriate auction design for each efficiency scenario. However, while it

is reasonable to assume that bidders know the scale efficiencies of their product, this is often not

true for the buyer. Thus, an auctioneer often wants to employ an (ex-post) split-award auction, in

which both a sole source and a split award are possible outcomes. In these auctions, the suppliers

can submit bids on shares of the business as well as on the whole business, i.e., the package of both

shares. The buyer then selects the cost minimizing combination of bids, i.e., the decision whether

to split the award or to select a single supplier is endogenous.

Anton and Yao (1992) characterize Bayesian Nash equilibria for FPSB split-award auctions in

procurement markets with diseconomies of scale, two shares, and two bidders. They assume that

the efficiency setting in the market is common knowledge among the suppliers and is such that an

outcome with both bidders winning is efficient. The authors show that coordination on a split award

is a Bayesian Nash equilibrium in their model, which is referred to hereafter as a σ equilibrium.

However, they show that there is also a winner-takes-all (WTA) equilibrium in which both bidders

compete for only the package.

This environment modeled by Anton and Yao (1992) is interesting for a number of reasons. First,

in the efficient σ equilibrium bidders need to coordinate, which is strategically challenging. Second,

4 Only auctions with a total spend beyond a minimum level were recorded. The spend for the individual auctions
ranged from 250,000 to 175 million Euros.
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environments with diseconomies of scale are relevant for a large number of procurement events

because of the risk premiums often associated with such environments. In around 75% of the ex-post

split-award auctions overseen by the above mentioned engineering and electronics manufacturer,

procurement managers determined a risk premium for the sole source allocation a priori; this made

them frequently select the dual-source solution even in situations in which the sole source solution

was cheaper. In fact, the setting with diseconomies of scale is strategically equivalent to one in

which the buyer defines a constant risk premium for the sole source award and bidders benefit

from economies of scale, as we will discuss later.

1.2. Contributions

The contributions of this paper are twofold. First, we derive bidding strategies in various first-

price combinatorial auction formats. We extend the results of Anton and Yao (1992) for the FPSB

auction to n> 2 bidders and provide Bayesian Nash strategies as closed-form solutions in such an

environment. As in the setting with two bidders, there is a coordination problem for the bidders,

because multiple equilibria emerge. Additionally, alternative auction formats such as the Dutch

split-award auction and a combination of Dutch and FPSB auction in a second phase are analyzed.

We are not aware of a game-theoretical treatment of these Dutch auctions, in spite of their wide-

spread use in procurement practice, nor are we aware of an analysis with more than two bidders.

We show that both auction formats reduce the strategic complexity for the bidders considerably

compared to the FPSB auction, because only efficient equilibria exist.

While the Dutch and the Dutch-FPSB split-award auctions are cost equivalent, this is only true

for the FPSB split-award auction when bidders choose the payoff-dominant efficient equilibrium.

By contrast, the Dutch and FPSB auctions are strategically equivalent in single-object auctions.

Overall, the fine differences among the information revealed to bidders during the FPSB, Dutch-

FPSB, and Dutch formats lead to interesting and non-obvious differences in the equilibrium bidding

strategies of multi-object auctions.

Second, we provide an experimental analysis of the three first-price auction formats and show that

the theoretical models explain important empirical regularities in the lab. As predicted the two

Dutch auction formats are more efficient than their sealed-bid counterpart. We found evidence for

tacit collusion in all auction formats with 2 bidders as suggested by theory. In the competitive

three-bidder setting the bidding behavior in the Dutch auction does not significantly differ from

the equilibrium strategy. This is remarkable, because bidder behavior in single-object first-price

auctions typically deviates substantially from the risk-neutral Bayesian Nash equilibrium strategies

(Cox et al. 1983, Filiz-Ozbay and Ozbay 2007, Kirchkamp and Rei 2011, Bichler et al. 2015).
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The price information from the first phase of the Dutch combinatorial auction formats provides

an excellent signal helping bidders to coordinate on the efficient equilibrium. In contrast, the

equilibrium selection problem makes it very hard for bidders to coordinate in the FPSB auction

with two bidders. The experimental results show that bidders in a FPSB auction with two bidders

select both types of equilibria described by Anton and Yao (1992), and we find 55% inefficient

allocations.

As theory suggests, the Dutch auction is much more efficient than the FPSB auction in the two-

bidders environment, at a higher cost. In two-bidder markets, the Dutch-FPSB auction appears as

an interesting and practically simple alternative that yields the highest share of efficient allocations

(82%) of all three mechanisms and low procurement cost. The sealed-bid auction in the second

phase of the Dutch-FPSB format allows for a broader set of equilibrium bid prices and leads to

lower bid prices in the first phase of the experiments. This avoids coordination problems that arise

in the Dutch auction, in which bidders sometimes overbid the unique equilibrium bid price in an

attempt to achieve a higher payoff, making it attractive to win the package. This phenomenon,

actually leads to a higher number of inefficient sole source allocations in the Dutch, compared to

the Dutch-FPSB auction. Furthermore, we find evidence for pooling and tacit collusion, as bidders,

who succeeded to coordinate on the split, achieved high profits in all three auction formats.

Interestingly, the addition of just one more bidder levels the differences among the three auction

formats and almost always results in the selection of an efficient split. This is also the case for FPSB

split-award auctions, although this format still has an inefficient winner-takes-all equilibrium even

with more than two bidders. Addition of a third bidder also has a substantial effect on the total

procurement costs, which drop by 42% in the FPSB and Dutch-FPSB auctions and by 49% in the

Dutch auction, because a high pooling price cannot be maintained anymore in equilibrium. Overall,

we find surprisingly high levels of efficiency in simple combinatorial first-price auctions, except for

the FPSB auction with two bidders only, in which the equilibrium selection problem and the power

of bidders to veto a split award unilaterally, lead to a high share of inefficient allocations. Overall,

with more than two bidders first-price combinatorial auctions achieve high levels of efficiency in

our procurement environment, which is in contrast to what one would expect from the analysis of

the FPSB auction with two bidders only.

2. The Model

Before describing the auctions discussed in this paper, we first provide some necessary notation

and terminology.
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2.1. Notation and Terminology

A buyer conducts a split-award auction in order to award a business among n≥ 2 ex-ante symmet-

ric, risk-neutral, and profit-maximizing suppliers.5 We focus on a simple setting in which bidders

can win either a contract for 50 or 100% of the business, which makes it technically a combinato-

rial (reverse) auction with two identical units and the package up for auction. The possibility to

submit all-or-nothing package bids makes this type of auction different from multi-unit auctions

with multi-unit demand as discussed by Chakraborty (2006). Bidder i’s (with i∈ {1,2, ..., n}) costs

for 100% of the business, ks
i , are determined by a private cost parameter Θi. The cost type is

independently drawn from an arbitrary distribution function F (·) with support [Θ,Θ] (0<Θ<Θ)

with the density f positive and continuous. A constant efficiency parameter 0 < C < 1, which is

equivalent for and known to all suppliers, determines the costs for 50% of the business, kσ
i =CΘi.

Costs for no award are zero. Furthermore, the buyer does not know the efficiency parameter C.

Hereafter, the i-th lowest order statistic out of n different cost types is denoted by Θi:n.

Each bidder i either submits or accepts prices for 100 and/or 50% of the business, ps(·) and pσ(·)

respectively. Bidders are assumed to be individually rational, which means that all submitted bids,

ps(·) and pσ(·), must be at least as high as the supplier’s costs for the respective allocation. The

auctioneer is ex-ante indifferent between awarding 100% of the business to a single supplier (sole

source award) and awarding 50% of the business each to two different suppliers (split award).

Hence, the winner determination in a split-award auction must satisfy the auctioneer’s indifference

condition.

A split-award auction, which implements the buyer’s indifference condition, must assure

that the sole source award (split award) is selected, if and only if min
i∈{1,2,...,n}

{ps(Θi)} < (≥)

min
i ̸=j; i,j∈{1,...,n}

{pσ(Θi)+pσ(Θj)}. Similar to Anton and Yao (1992), we focus on markets with strong

diseconomies of scale in which suppliers must coordinate in the efficient solution. Dual Source Ef-

ficiency (DSE) describes a setting in which it is always efficient for the buyer to award 50% of the

business to each of two different suppliers. Anton and Yao (1992) show that with n = 2 bidders

independent of the two draws of the bidders’ cost types, the split is always the efficient award if

the efficiency parameter C lies below Θ

Θ+Θ
. This can be easily transfered to a setting with n > 2

bidders.

An ex-ante defined risk-premium by the procurement manager extends the scope of DSE. The

same types of equilibria emerge in a setting with a constant risk premium r for the sole source

5 We apply notation in line with Anton and Yao (1992). The terms auctioneer and buyer as well as bidder and supplier
are used interchangeably.
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award and with C < Θ+r

Θ+Θ
, which also allows values for C of greater than 0.5, e.g., a setting with

C = 0.52, Θ ∈ [100,140], and r = 25 in which an equilibrium with pooling prices and split awards

exists even though suppliers have economies of scale.

2.2. The Auctions

We next describe the auction formats analyzed in this paper. As the FPSB split-award auction is

simple and well-known from Anton and Yao (1992), we only introduce the Dutch and Dutch-FPSB

auction.

2.2.1. The Dutch Split-Award Auction The Dutch split-award auction can be divided

into two stages or phases. In the first phase, bidders simultaneously compete for the split as well

as the sole source award. After one of the bidders accepts the price for 100% of the business, the

auction ends. In the case in which one of the bidders approves a counteroffer for the 50% share,

phase 2 starts.

Phase 1: In each round r of the auction, bidders simultaneously receive counteroffers6 for 50%,

cσr , and 100% respectively, of the business, csr. The starting prices for both counteroffers should

be at least lower than or equal to the minimal costs for each share, i.e. cσ1 ≤CΘ and cs1 ≤Θ. The

auctioneer can also start close to zero. Subsequently, both price functions are raised continuously

by the buyer such that in each round r csr = 2cσr . The auctioneer must stick to this pricing rule

in every round to assure that the outcome of the auction satisfies his indifference condition.7 The

buyer awards the business on a first-come-first-served basis.

In each round, a bidder i has three options: he can approve the counteroffer for 50 or 100% of the

business, or he can reject both. The following three scenarios are possible:

(i) If bidder i is first to accept a counteroffer for the 50% share in round r, the split is awarded

to supplier i at a price of cσr and phase 1 is over;

(ii) If bidder i is first to accept csr in round r, this supplier i wins the sole source award and the

auction terminates immediately;

(iii) If a bidder rejects both counteroffers in round r, he risks losing the whole or at least a share

of the business.

6 Typically, there is a request for quotation (RfQ) before the final awarding, in which suppliers are asked by the
buyer to submit first offers for the business. Hence, the auctioneer’s offers in the final Dutch are normally called
counteroffers in procurement practice.

7 Suppose that the buyer would choose a pricing rule with csr < 2cσr . If one bidder accepts the counteroffer for 50% in
round t of phase 1 and a different bidder is willing to pay the same price in phase 2, the auction ends with the buyer
awarding the split at a price 2cσt . However, the buyer does not know, if a supplier would have accepted 100% of the
business for a counteroffer csr, such that cst < csr < 2cσt . With such a deviation from the pricing rule proposed above, a
buyer would risk higher purchasing costs. Similar reasoning applies if the buyer commits to a pricing rule such that
csr > 2cσr .
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Phase 2: The second phase is only relevant, when the split award has been awarded to a single

supplier in phase 1. In this case, the remaining 50% of the business is auctioned off to all suppliers

in a regular single-unit Dutch auction. Regardless of the price for the 50% share in phase 1, the

starting price in phase 2 is cσ1 (the same as in phase 1); this is necessary to allow efficient equilibrium

bidding strategies (Gretschko et al. 2014). The first bidder to approve a counteroffer wins the

remaining half of the business and the auction is over.

Because all bidders participate in the auction in phase 2, the bidders are now asymmetric. The

winner, w, of phase 1 faces costs of Θw if he wins the second auction, while the other bidders,

l ̸=w, have costs of CΘl. If the winner of phase 1 wins the remaining 50% share in phase 2 as well,

he gets paid the sum of both split prices. Individual rationality, however, dictates that his costs

for 100% of the business have to be covered by the sum of both split prices.

2.2.2. The Dutch-FPSB Split-Award Auction The Dutch-FPSB split-award auction is a

hybrid format containing elements from both the Dutch and the FPSB split-award auction formats.

It can also be divided into two phases, with phase 1 following the same rules as in the Dutch format.

Phase 2 becomes relevant if the split is awarded to a bidder in phase 1. However, the remaining

50% of the business is auctioned off by an FPSB in phase 2. All bidders including the winner of

phase 1 are submitting bids for the remaining 50% share, and the supplier with the lowest price

wins.

3. Equilibrium Analysis

We start with an introduction of the different equilibrium types, which can emerge in the split-

award model. Subsequently, we give a short recap of the results on the FPSB format of Anton and

Yao (1992) for two bidders and derive equilibria in the Dutch and the Dutch-FPSB split-award

auction.

3.1. Equilibrium Types

The FPSB split-award model can be characterized as a one-stage game with incomplete informa-

tion, for which we consider symmetric Bayesian Nash equilibria in pure strategies, similar to Anton

and Yao (1992). Such an equilibrium consists of an equilibrium bidding strategy for the sole source

and the split award (pse(·), pσe (·)). Both functions are non-decreasing in cost types Θ and continuous.

In equilibrium, there must not be a deviating strategy for any cost type Θ̂ ∈ [Θ,Θ] that yields a

higher expected payoff than the equilibrium payoff. Hence, three different types of deviations have
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to be excluded in equilibrium: a sole source deviation in which a bidder focuses on winning the

entire business, a split deviation in which a bidder concentrates on winning 50% of the business

and a hybrid deviation which can result in both allocations with positive probability. By applying

a sole source or split deviation a bidder submits a competitive price for his target award and a

high bid-to-lose price for the other award in order to implement the desired allocation. This must

not apply for hybrid deviations, in which no award is excluded completely. Furthermore, bidders

can even unilaterally exclude the split allocation by using a so-called veto strategy (ps(·), pσ(·)) =

(ps(·), ps(·)−CΘ) in case of n= 2 bidders. If bidder i plays a veto strategy, then the auctioneer

always choses the sole source allocation independently of the strategy of supplier j, as the sum of

both split prices can never be lower than their minimum. Obviously, such a unilateral veto strategy

is not possible for sole source awards, as these will always be attractive for a buyer as a result of

competitive bidding by the other supplier, or in case of n> 2 bidders.

The Dutch and the Dutch-FPSB split-award auction are modeled as two-stage games with observed

actions and incomplete information, for which we analyze perfect Bayesian equilibria. Thus, the

equilibrium (S,µ) is characterized as a set S of strategies, which have to be sequentially rational

given a system of beliefs µ= {µw, µl}. In phase 2, µw characterize the beliefs of a loser from the first

phase about the type of the winner of phase 1, whereas µl are the beliefs of any bidder in phase 2

about the type of a loser of phase 1. Additionally, the system of beliefs µ has to be consistent given

S for every possible information set. A strategy in the Dutch auction is a price function ps1e (·) for

100% of the business in phase 1 or a pair of price functions pσ1e (·) and pσ2e (·) for 50% of the business

in phases 1 and 2, respectively, for which a bidder accepts the respective counteroffers csr or cσr

in equilibrium. In the Dutch-FPSB format, the function pσ2e (·) represents the submitted prices in

the sealed-bid stage for the remaining 50% share. The set of beliefs µ is defined by probability

distributions over the possible types of the opponents’ before phase 1 and phase 2.

In the Dutch and Dutch-FPSB auctions, a sole source deviation can be realized either by accepting

the counteroffer for 100% in phase 1 or by trying to win the 50% offer in phases 1 and 2; a split

deviation is possible in both phases. There are no veto strategies in these (partly) ascending split-

award variants, as suppliers can only accept the counteroffers presented by the auctioneer, who

sticks to his indifference condition. There is no unilateral strategy, which fully excludes a specific

allocation from being awarded. Furthermore, no hybrid deviations have to be considered, because

a bidder cannot accept a split and a sole source award simultaneously.

Similar to Anton and Yao (1992), three different general equilibrium types can be distinguished: In

a WTA equilibrium, the sole source award is chosen by the auctioneer with probability 1 indepen-

dently of the cost draws of the suppliers. The same applies for the split award in a σ equilibrium.
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A hybrid equilibrium is a bidding strategy that can result in both a split and a sole source award

depending on the cost draws of the suppliers.

3.2. The 2-Bidder Model

First, we analyze equilibrium bidding behavior in split-award auctions with only two bidders, for

which bidders can veto the split outcome. This is a specific environment, which needs be analyzed

differently. However, it provides a basis for our analysis of markets with more bidders. We start

with a short recap of the results on the FPSB format of Anton and Yao (1992). Subsequently, we

derive equilibria in the Dutch and the Dutch-FPSB split-award auction.

3.2.1. The FPSB Split-Award Auction For the sake of convenience we shortly summarize

the results of Anton and Yao (1992) and cite the most important propositions in order to make

our article self-contained. Anton and Yao (1992) analyze equilibrium bidding behavior in a FPSB

split-award auction with two bidders and DSE, demonstrating both WTA and a σ equilibria. An

important result of this work is that constant pooling prices for 50% of the business are necessary

in order to derive a σ equilibrium; they show that various σ equilibria with different pooling prices

pσe ∈ [ΘC, (1−C)Θ] can exist. In such cases, bidders submit high sole source prices that support the

equilibrium and must not be higher than a given boundary G(pσe ,Θ) in order to avoid profitable

deviations for the sole source award. As bidders are individual rational, σ equilibria can only exist,

when the boundary G(pσe ,Θ) allows for sole source prices above costs for 100% of the business.

Proposition 1 (Anton and Yao 1992) In the FPSB split-award auction with n = 2 risk-neutral

bidders and DSE, a σ equilibrium (pse(Θ), pσe (Θ)) is given by

pse(Θ) =Θ

pσe (Θ) = pσe ∈ [ΘC, (1−C)Θ],

if Θ≥G(pσe ,Θ) for all Θ∈ [Θ,Θ].

An inefficient WTA equilibrium exists as well, as bidders can strategically veto the split allocation

with high bid-to-lose prices for 50% of the business. The sole source price of such a strategy equals

the price in a single-unit auction, as this is the profit-maximizing strategy of a bidder, when the

probability to win the split award is zero in equilibrium.
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Proposition 2 (Anton and Yao 1992) In the FPSB split-award auction model with n = 2 risk-

neutral bidders and DSE, a WTA equilibrium (pse(Θ), pσe (Θ)) with

pse(Θ) =Θ+

∫ Θ

Θ
(1−F (t))n−1dt

(1−F (Θ))n−1

pσe (Θ) = pse(Θ)−CΘ

exists.

Hybrid equilibria were introduced for settings with uncertain economies of scale in (Anton et al.

2010). These type of equilibria are described by a strategic cost type τ , for which bidders change

their equilibrium bidding strategy: low-cost bidders with Θ< τ focus on winning the sole source

award, whereas bidders with high cost types try to win the split award. It is interesting to note

that the same type of hybrid equilibria as presented in proposition 1 of Anton et al. (2010) also

exist in settings with DSE. Because the split is the efficient award for all cost draws under DSE, τ

is not restricted to a specific interval as with uncertain economies of scale. Hence, hybrid equilibria

with τ ∈ (Θ,Θ) can exist as long as individual rationality is given by condition 1. The proof of

corollary 1 is a straightforward extension.

Corollary 1. In the FPSB Split-Award Auction Model with n = 2 risk-neutral bidders and

DSE, a constant parameter τ ∈ (Θ,Θ) and DSE, a hybrid equilibrium with

(pse(Θ), pσe (Θ)) =

(min{2[τ −Cτ ],Θ} , τ(1−C)) if Θ≥ τ

(Θ+ τ(1− 2C) 1−F (τ)

1−F (Θ)
+
∫ τ

Θ

1−F (x)

1−F (Θ)
dx , τ(1−C)) if Θ< τ

.

exists, if

2τ(1−C)>Θ (1)

applies.

The fact that beyond the WTA and the σ equilibrium also hybrid equilibria exist, underscores that

there is a veritable equilibrium selection problem. This will be discussed further in section 4.2, in

which we analyze conditions for payoff dominance of the efficient σ equilibrium.

3.2.2. The Dutch Split-Award Auction In this section, we analyze bidding behavior in the

Dutch split-award auction, for which perfect Bayesian equilibria are applied as solution concept.

Thus, an equilibrium strategy in the Dutch split-award auction defines prices, for which a supplier

accepts either the split or the sole source award, as well as a system of beliefs µ. Unlike the FPSB
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split-award auction, only the σ equilibrium with the highest pooling price is possible in the Dutch

split-award auction model.

Corollary 2. Consider the Dutch split-award auction model with n = 2 risk-neutral bidders

and DSE. Then, if a σ equilibrium exists, the split price must be constant and equal to pσe =Θ(1−C)

for all bidders with cost types Θ∈ [Θ,Θ].

All proofs can be found in the Appendix A. As in the FPSB auction, the split price in a σ

equilibrium must be constant in the Dutch split-award auction. Otherwise, it would be always

more profitable for the supplier with the lower price for 50% to accept the same counteroffer as

his opponent. However, only a σ equilibrium with a split price pσe (Θ) =Θ(1−C) can emerge, not

multiple efficient equilibria as in the FPSB format.

The main difference between the FPSB and the Dutch split-award auction is the information

provided about the opponent’s behavior. Whereas the Dutch split-award auction is similar to a

two-stage game, in which the winner immediately observes a deviation from a σ equilibrium, this

information is provided ex-post in the FPSB split-award auction. If bidder A is the winner of 50%

of the business for a price pσ in phase 1 of a Dutch split-award auction then it must be a possible

threat for A to accept the offer for the remaining share at a price of pσ + ε (with ε > 0) as soon as

it becomes obvious that his opponent deviates from equilibrium.

In a two-stage game such a threat is only credible if bidder A makes at least as much payoff as

already achieved in phase 1, i.e., if at least bidder A’s additional costs for providing 100% of the

business, (1−C)ΘA, are covered. Therefore, pσe = (1−C)Θ remains as the only possible split price

because for lower split prices, a profitable split deviation as described above cannot be prevented

by the winner of phase 1. In the next proposition, we will provide conditions for which a pure σ

equilibrium exists.

Proposition 3 In the Dutch split-award auction model with n= 2 risk-neutral bidders and DSE,

there is a unique and efficient σ equilibrium with a strategy profile (pσ1e (·), pσ2e (·)) and beliefs µ(· |

pσ1e (·)) = {µw(· | pσ1e (·)), µl(· | pσ1e (·))} after the loser of phase 1 observes pσ1e (·), if for all x∈ (Θ,Θ]

∆Π(x,Θ)= (x(1−C)−CΘ)(1−F (x))−Θ(1−C)+CΘ< 0 (2)

applies.

A bidder accepts the 50% share in phase 1 for a price pσ1e (Θ) = (1−C)Θ independent on his cost

type Θ.
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The second-phase strategy is different for both bidders: The winner of phase 1 with cost type Θw

threatens to accept the remaining share for a price of pσ2we (Θw) = Θw(1− C), while the loser of

phase 1 with cost type Θl, l ̸=w, accepts the split award again at a price of pσ2le (Θl) = (1−C)Θ.

The beliefs of the loser of phase 1 about the cost type of the winner of phase 1 are the same as

ex-ante. Hence, no updating has to be considered and µw(Θ | pσ1e (Θw)) = F (Θ) for Θ∈ [Θ,Θ].

The same applies for the beliefs of the winner of phase 1 about the type of the loser, i.e. µl(Θ |

pσ1e (Θw)) = F (Θ) for Θ∈ [Θ,Θ].

Sole source deviations can be ignored, as for all possible cost types Θ the payoff for the split

award is a pair of two higher than the payoff for the sole source award in every round q < r with

counteroffers csq < csr < 2Θ(1− C). Because the buyer sticks to his indifference condition, such a

deviation cannot be realized unilaterally. The proof of corollary 2 shows that split deviations for

the remaining share are difficult to exclude, as the threat to prevent such deviations by the winner

of phase 1 has to be credible. Therefore, condition (2) assures that a split deviation that tries to

win the remaining share in phase 2 for a higher split price than pσe yields a lower expected payoff

than a bid in equilibrium. Because of the pooling prices, there is no additional information about

the cost type of the winner in phase 1, which is why updating of beliefs is not critical for the

derivation of the equilibrium strategy. Next, we show that, unlike the FPSB split-award auction,

the efficient σ equilibrium is unique in a Dutch split-award auction.

Proposition 4 In the Dutch split-award auction model with n= 2 risk-neutral bidders with DSE,

there is neither a WTA nor a hybrid equilibrium.

In the FPSB split-award auction, bidders are able to play a WTA strategy, because they can

unilateraly exclude the split by submitting high bid-to-lose prices for the 50% share. However, this

is not possible in the Dutch auction, because there is always a profitable split deviation for high

cost types playing a potential WTA equilibrium. Hence, such a strategy cannot be an equilibrium.

All possible types of hybrid equilibria can be excluded as well. Thus, if a σ equilibrium exists in

the Dutch split-award auction with n= 2 bidders, it is the unique equilibrium.

3.2.3. The Dutch-FPSB Split-Award Auction Next, we analyze equilibrium bidding in

the Dutch-FPSB split-award auction. The auction format combines the two first-price mechanisms

and the bidding behavior contains elements from the equilibrium strategies of both auction formats.

The necessary conditions for a split price in a σ equilibrium are summarized in corollary 3.
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Corollary 3. Consider the Dutch-FPSB split-award auction model with n = 2 risk-neutral

bidders and DSE. Then, if a σ equilibrium exists, the split price pσe must be constant and pσe ∈

[ΘC,Θ(1−C)] for all bidders with cost types Θ∈ [Θ,Θ].

Multiple constant split prices in a given range are possible in a σ equilibrium. As in the FPSB

split-award auction, a bidder can only observe ex-post, whether or not his opponent played a

σ equilibrium or not. Hence, it is easier for the bidders to implement a σ equilibrium strategy.

As described above, a threat must be realized, and becomes payoff-relevant, when the opponent

deviates in a Dutch split-award auction. When phase 2 is a sealed-bid stage, this problem disappears

and it suffices that the threat prevents the opponent from deviating. When this is fulfilled, the

threat never becomes effective and the expected payoff of the winner of phase 1 remains the same.

Proposition 5 summarizes the results for the existence of pure σ equilibria:

Proposition 5 In the Dutch-FPSB split-award auction model with n= 2 risk-neutral bidders and

DSE, there are different efficient σ equilibria with a strategy profile (pσ1e (·), pσ2e (·)) and beliefs µ(· |

pσ1e (·)) = {µw(· | pσ1e (·)), µl(· | pσ1e (·))} after the loser of phase 1 observes pσ1e (·), if

Θ≤G(Θ, pσe ) = pσe +
pσe −CΘF (Θ)

1−F (Θ)
for all Θ∈ [Θ,Θ] (3)

applies.

Both bidders accept the split award at a pooling price pσ1e (·) = pσe ∈ [ΘC, (1−C)Θ].

The loser of phase 1 with cost type Θl submits the pooling price of phase 1, pσ2le (Θl) = pσe , in the

sealed-bid stage in phase 2, whereas the winner of phase 1 with cost type Θw, w ̸= l, submits a

credible threat for the remaining share at a price of pσ2we (Θw) =max{pσe ,Θw − pσe}.

The beliefs about the opponent’s cost type do not change after phase 1, i.e. µw(Θ | pσ1e (Θw)) = F (Θ)

for Θ∈ [Θ,Θ] and µl(Θ | pσ1e (Θw)) = F (Θ) for Θ∈ [Θ,Θ]

The reasoning here is similar to that in proposition 3. As the auctioneer offers the shares according

to his indifference condition in phase 1, sole source deviations are not possible in equilibrium.

Condition (3) is important to assure that the credible threat of the winner of phase 1 is possible

without violating the assumption of individual rationality. Note that the function G(·, ·) is the

same as in Anton and Yao (1992). This means that exactly the same σ equilibria as in the FPSB

split-award auction can emerge. Furthermore, if condition (3) applies, all split deviations in phase

2 can be excluded in a σ equilibrium with split price pσe . As in the Dutch split-award auction, only

efficient σ equilibria can emerge.
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Proposition 6 In the Dutch-FPSB split-award auction model with n= 2 risk-neutral bidders with

DSE, there is neither a WTA nor a hybrid equilibrium.

We omit the proof for the proposition 6 as it follows that of proposition 4. The same efficient

equilibria as in the FPSB auction emerge without additional restrictions. Furthermore, it can

be shown that WTA and hybrid equilibria are excluded as equilibrium bidding strategies, which

reduces the coordination problem to efficient equilibria. As we will see in the welfare analysis below,

such a coordination problem can be solved via payoff dominance.

The characteristics of both first-price mechanisms influence the equilibrium bidding behavior in

the Dutch-FPSB split-award auction. The combinatorial Dutch auction in phase 1 is sufficient to

exclude inefficient equilibria. The sealed-bid mechanism in phase 2 also allows for σ equilibria with

various split prices in the same range as in the FPSB auction, as the winner in phase 1 can credibly

threaten to punish deviations from a σ equilibrium.

3.3. The n-Bidder Model

Next, we analyze the bidding behavior with more than two suppliers. The n-bidder case leads to

differences in how the equilibrium strategies are derived and in the outcome compared to the 2-

bidder case. In particular, a pooling equilibrium at high prices that exists in all first-price auction

formats for both bidders in the 2-bidder case cannot be maintained anymore.

3.3.1. The FPSB Split-Award Auction We start with analyzing bidding behavior in the

FPSB split-award auction. First, it is interesting to see that there is a WTA equilibrium in DSE

with n> 2 suppliers, even though bidders have less power to veto a split award for their opponents:

Proposition 7 In the FPSB split-award auction with n> 2 risk-neutral bidders and DSE, a WTA

equilibrium (pse(Θ), pσe (Θ)) is given by

pse(Θ) =Θ+

∫ Θ

Θ
(1−F (t))n−1dt

(1−F (Θ))n−1

pσe (Θ) = pse(Θ)−CΘ.

By following such an equilibrium strategy, the split-award auction is reduced to a single-object

auction for 100% of the business, because the split is excluded for all bidders (and the auctioneer)

due to sufficiently high split prices. The expected payoffs of all possible (unilateral) split deviations

are zero with probability 1. Therefore, the sole source price must be equal to the equilibrium
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strategy in a single-object auction in order to maximize the expected profit for winning the whole

business.

In addition to the WTA equilibrium, a σ equilibrium exists with DSE as well. This equilibrium

always results in the efficient allocation, the split award.

Proposition 8 In the FPSB split-award auction with n > 2 risk-neutral bidders and DSE, a σ

equilibrium (pse(Θ), pσe (Θ)) is given by

pse(Θ) =max{ΘC + pσe (Θ),Θ}

pσe (Θ) =ΘC +C

∫ Θ

Θ
(1−F (t))n−1 +(n− 1)F (t)(1−F (t))n−2dt

(1−F (Θ))n−1 +(n− 1)F (Θ)(1−F (Θ))n−2
.

if either C < Θ

2Θ
or

E[Πσ
e (Θ)]>(pσe (x1)+ pσe (x2)−Θ)P (pσe (x1)+ pσe (x2)<min{pσe (Θ1:n−1)+min{pσe (Θ2:n−1), p

σ
e (x2))},

max{Θ1:n−1, p
σ
e (Θ1:n−1)+ΘC}})

+ (pσe (x2)−CΘ)P (pσe (x2)< pσe (Θ2:n−1)∧ pσe (x1)≥ pσe (Θ1:n−1)) (4)

applies for all Θ∈ [Θ,2CΘ) and x1 <x2 with x1 ∈ [Θ,Θ], x2 ∈ (x1,Θ].

The split price is derived by maximizing the expected payoff of being amongst the two suppliers

winning the split award in order to rule out split deviations. In contrast to the setting with two

bidders, in which the suppliers’ bids for the split award are constant, split prices are increasing with

costs and the highest cost type Θ makes a payoff of zero in equilibrium. Bidders who concentrate

on winning the split award, submit sole source prices at least as high as the buyer’s maximal

purchasing costs in the σ equilibrium, 2ΘC. However, sole source or even hybrid deviations are

nevertheless possible, if the efficiency parameter is not too small, i.e. Θ

2Θ
<C < Θ

Θ+Θ
.

In contrast to a split deviation, a deviating bidder is not dependent on another competitive bid for

the same share. Thus, there are sole source and hybrid deviations with positive expected payoff,

which is why the proof of excluding both types of deviations is the most challenging part of the

proof. While sole source deviations can be excluded in general for all possible settings within the

model assumptions, the additional condition 4 as stated in the proposition is needed to assure the

exclusion of all possible hybrid deviations. When condition 4 is verified, proposition 8 provides a

closed-form solution for an efficient Bayesian Nash equilibrium strategy in a sealed-bid combina-

torial first-price auction and a general number of bidders n. Condition 4 can be approximated by



Kokott, Bichler, Paulsen: Combinatorial First-Price Auctions

17

a stricter condition that is simple to evaluate and numerical experiments yield that it holds for a

wide range of distributions.

Proposition 9 In the FPSB split-award auction with n > 2 risk-neutral bidders and DSE, there

is no hybrid equilibrium.

With a hybrid equilibrium, there must be at least one definite cost type τ , for which the winning

allocation stays the same provided that all cost draws of the n > 2 bidders are higher than τ . It

can be shown that there is no such potential cost type that fulfills all the required conditions with

DSE, which has as a consequence that such equilibria do not exist. Therefore, a bidder faces a

coordination problem in a FPSB split-award auction, for which he has to decide whether to play

a WTA or σ equilibrium. We discuss this coordination problem in section 4.

3.3.2. The Dutch Split-Award Auction As presented in section 2.2, the Dutch split-award

auction comprises two phases, if a single bidder has accepted a counteroffer for the 50% share in

phase 1. Therefore, an efficient equilibrium strategy has to maximize the bidders’ expected payoff

in both phases and has to consider the asymmetric cost structure of the suppliers in phase 2. After

the result of phase 1 is observed, there are two different types of suppliers, one winner and n− 1

losers of phase 1. Whereas all suppliers have the chance to win the whole business in phase 1, this

only applies for one supplier in phase 2. When the winner of phase 1 accepts a counteroffer for the

split in phase 2, he is the winner of the whole business.8 Hence, we have to define the equilibrium

strategies for both of these different types of bidders, because suppliers are not symmetric anymore

in phase 2.

Proposition 10 In the Dutch split-award auction with n > 2 risk-neutral bidders and DSE, the

unique σ equilibrium bidding strategy (pσ1e (·), pσ2e (·)) for phase 1 and 2 together with the beliefs

µ(· | pσ1e (·)) = {µw(· | pσ1e (·)), µl(· | pσ1e (·))} of the suppliers after observing the outcome in phase 1,

can be defined as follows:

Phase 1:

A supplier with cost type Θ accepts the counteroffer for the 50% share at a price of

pσ1e (Θ) =

∫ Θ

Θ
pσ2le (t)(n− 1)(1−F (t))n−2f(t)dt

(1−F (Θ))n−1
.

8 The buyer can also exclude the winning supplier from the auction in phase 2. All the results apply for both auction
variants with DSE. The format without the possibility of a requote is easier tractable with other efficiency settings.
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Phase 2:

The winner in phase 1 with cost type Θw accepts the counteroffer for the 50% share at a price of

pσ2we (Θw) = (1−C)Θw.

The n− 1 losers in phase 1 with cost types Θl accept the counteroffer for the 50% share at a price

of

pσ2le (Θl,Θw) =CΘl +C

∫ Θ

Θl
(1−F (t))n−2dt

(1−F (Θl))n−2
.

The cost type of the winner of phase 1 is revealed, as the bidders can infer it from the equilibrium

strategy in phase 1, i.e. the beliefs of the losers about the winners cost types, µw(Θ | pσ1e (·)), is a

distribution function over Θ∈ [Θ,Θ] with

µw(Θ | pσ1e (Θw)) =


0 if Θ< (pσ1e (Θw))

−1

1 if Θ≥ (pσ1e (Θw))
−1

.

The cost types of the n− 1 losers remain private and every bidder knows that all losers have cost

types higher than Θw. Hence, the beliefs about the losers of phase 1, µl(Θ | pσ1e (·)), can be defined

as a distribution function over Θ∈ [Θ,Θ] with

µl(Θ | pσ1e (Θw)) =


0 if Θ< (pσ1e (Θw))

−1

F (Θ)−F (Θw)

(1−F (Θw))
if Θ≥ (pσ1e (Θw))

−1
.

In order to exclude split deviations in phase 1 and 2, we take the equilibrium strategy of an ex-ante

split-award auction, in which the 50% share is awarded sequentially to two different suppliers. This

strategy maximizes the expected payoff for the split award in both phases. Hence, it only remains

to be shown that there is no sole source deviation, which is more profitable than the σ equilibrium.

An assessment of the expected payoff of such deviations yields the desired result for phase 1.

Additionally, it can be shown that the winner of phase 1 has no chance to win the remaining 50%

share in phase 2. One of his opponents secures himself the remaining 50% share before this award

becomes attractive for him. Because this would be the only possible sole source deviation in phase

2, the proof is complete.

In the FPSB split-award auction, bidders are able to play a WTA strategy, as they can exclude

the split by submitting high bid-to-lose prices in equilibrium. However, this is not possible in the
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Dutch auction, as there is always a profitable split deviation for high cost types playing a potential

WTA equilibrium. Hence, such a strategy cannot be a Bayesian Nash equilibrium. Furthermore,

similar deliberations as in the proof of proposition 9 show that no hybrid equilibrium exists with

DSE in the Dutch split-award auction.

3.3.3. The Dutch-FPSB Split-Award Auction The equilibrium analysis for the Dutch-

FPSB split-award auction is identical to the Dutch auction with more than 2 bidders. All the

equilibrium strategies of section 3.3.2 are equivalent.

4. Welfare Analysis

In this section we first study the efficiency of all three auction formats and then discuss differences

in the procurement costs for the auctioneer.

4.1. The 2-Bidder Model

As in the equilibrium analysis, the setting with only two suppliers needs to be analyzed separately

from the setting with n> 2 suppliers.

4.2. Efficiency Analysis

Bidding behavior in the Dutch split-award auction is straightforward for suppliers, as there is a

unique and efficient σ equilibrium strategy. In addition, the Dutch-FPSB split-award auction, in

which multiple σ equilibria exist, always results in efficient allocation. The σ equilibrium with

the highest possible split price pσe =Θ(1−C) is payoff-dominant over all other efficient equilibria;

obviously, a σ equilibrium with a lower split price yields less payoff, as the probability to win does

not increase as the split price decreases.

The coordination problem in the FPSB split-award auction is more challenging for bidders, because

a WTA, multiple σ equilibria with split prices pσe ∈ [ΘC,Θ(1−C)], and multiple hybrid equilibria

with different strategic parameters τ ∈ (Θ,Θ) can exist in this auction format. Proposition 5 in

Anton and Yao (1992) describes a setting in which the σ equilibrium is payoff-dominant over the

WTA equilibrium for the bidders. We extend these results by considering hybrid equilibria as well;

corollary 4 gives conditions for which an efficient σ equilibrium is payoff-dominant over all other

types of equilibria.

Corollary 4. In the FPSB split-award auction model with n= 2 risk-neutral bidders, a con-

stant parameter τ ∈ (Θ,Θ) and DSE, a σ equilibrium is payoff-dominant for all bidders if the

following conditions apply:
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(i) pσe =Θ(1−C)

(ii) E[Πτ
e(Θ, τ)]≤Θ(1−C)−CΘ ∀ Θ∈ [Θ,Θ]

(iii) E(Θ)< 2Θ(1−C)

The expected payoff of a type Θ in a hybrid equilibrium with strategic parameter τ is

E[Πτ
e(Θ, τ)] =


τ(1− 2C)(1−F (τ))+

∫ τ

Θ
(1−F (x))dx if Θ< τ

(τ(1−C)−CΘ)(1−F (τ)) if Θ≥ τ
.

As mentioned above, only the σ equilibrium with the highest pooling price pσe =Θ(1−C) can be

payoff-dominant over all other equilibria. When condition (ii) applies, there is no cost type with

a higher equilibrium payoff in a hybrid than in a σ equilibrium. Condition (iii) assures that the

σ equilibrium is payoff-dominant over its WTA counterpart. Corollary 4 describes the strategic

complexity of bidding in a FPSB split-award auction. The conditions are very restrictive and it

is hard to find a setting, for which these conditions are fulfilled simultaneously. Furthermore, the

strategic parameter τ , for which bidders change the strategy must be known to all bidders and to

the buyer when hybrid equilibria are possible. This additional assumption is hard to motivate in

procurement practice.

4.3. Comparison of Purchasing Costs

We use payoff dominance to overcome the bidders’ coordination problem. A prediction on the

expected procurement costs of a buyer can only be done in settings with a payoff-dominant equi-

librium. This applies for the Dutch as well as the Dutch-FPSB split-award auction, although not

always for the FPSB auction.

Corollary 5. In the split-award auction model with n= 2 risk-neutral bidders and DSE, there

is cost equivalence between the Dutch and the Dutch-FPSB auction formats. The buyer’s expected

procurement costs are E[pb] = 2Θ(1−C) in these auctions. This applies for the FPSB auction if

the conditions of corollary 4 are valid.

We omit the proof, as it is trivial and follows directly from the equilibrium analysis. Because the

split is awarded with probability 1 in a σ equilibrium, the purchasing costs in the Dutch and Dutch-

FPSB split-award auctions equal twice the split price pσe =Θ(1−C). This only applies for the FPSB

split-award auction when all conditions of corollary 4 are fulfilled and there is a payoff-dominant σ

equilibrium. Otherwise, cost equivalence between the (partly) ascending auction formats and the

sealed-bid variant fails. According to the equilibrium analysis, bidders are able to coordinate on
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very high split prices in a σ equilibrium, although they face lower average costs for 50% than for

100% of the business. In settings in which the expected costs of a σ equilibrium are lower than in

a single-unit auction, a buyer should prefer one of the two (partly) ascending split-award auctions

(Dutch and Dutch-FPSB) in order to achieve higher efficiency at lower costs in equilibrium.

Furthermore, it is interesting to observe that for all possible cost draws of the two suppliers, costs

of the auctioneer in an efficient sigma equilibrium of the analyzed first-price auctions are always

lower than the VCG costs. This doesn’t hold for n > 2 as we will see, and is due to the fact that

the VCG payments depend on the second bidder’s costs for the package, which is high in DSE.

Corollary 6. The purchasing costs in a first-price split-award auction, for which a payoff-

dominant σ equilibrium exists, are lower than the VCG costs with n= 2 risk-neutral bidders and

DSE independent of the cost draws of the suppliers.

In other words, cost equivalence not only fails between the different first-price split-award auctions,

but also does not hold between first- and second-price split-award auctions in the 2-Bidder-Model.

By applying a Dutch or Dutch-FPSB split-award auction instead of a VCG mechanism, the auc-

tioneer achieves full efficiency and procurement costs are expected to be lower.

4.4. The n-Bidder Model

In what follows, the efficiency and procurement costs with more than two bidders are analyzed.

4.4.1. Efficiency Analysis Bidding behavior in the Dutch or Dutch-FPSB split-award auc-

tion is straightforward for suppliers, as there is a unique and efficient equilibrium strategy. However,

in the FPSB split-award auction, bidders face a coordination problem between the WTA and the

σ equilibrium. Payoff dominance can be a remedy in equilibrium selection problems, but it does

not help in the FPSB auction.

Proposition 11 In the FPSB split-award auction, the WTA equilibrium cannot be payoff-

dominant over the σ equilibrium for all cost types Θ ∈ [Θ,Θ] with n > 2 risk-neutral bidders and

DSE.

In the proof, we show that bidders with a high cost draw always prefer a σ equilibrium due to higher

expected profits regardless of the parameters n,C,F (·) or the support [Θ,Θ]. Therefore, only the

σ equilibrium can be payoff-dominant with DSE. However, if there is at least a single cost type

Θ ∈ [Θ,Θ], whose expected profits in a WTA are higher than in a σ equilibrium, the equilibrium

coordination problem cannot be solved by payoff dominance. The proof of this proposition is
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omitted, because it follows directly from the comparison of equilibrium payoffs of a σ and WTA

equilibrium.

Proposition 12 Neither the σ nor the WTA equilibrium are payoff-dominant in a FPSB split-

award auction with n> 2 risk-neutral bidders and DSE, if for at least one cost type Θ∈ [Θ,Θ]

C <

∫ Θ

Θ
(1−F (x))n−1dx∫ Θ

Θ
(1−F (x))n−1 +(n− 1)F (x)(1−F (x))n−2dx

applies.

The condition in proposition 12 applies in many environments, e.g. whenever the cost parameters

are uniformly distributed over any support [Θ,Θ].

Corollary 7. There is no setting, for which either the WTA equilibrium or the σ equilibrium

is payoff-dominant for all cost types in a FPSB split-award auction with n> 2 risk-neutral bidders

and DSE, if Θ∼U [Θ,Θ].

Thus, the coordination problem makes it very hard to predict the bidding behavior and the outcome

in a FPSB split-award auction. An inefficient WTA or an efficient σ equilibrium are possible

as equilibrium outcomes. These problems do not arise in the Dutch or Dutch-FPSB split-award

auction, because there is a unique and efficient σ equilibrium.

4.5. Comparison of Purchasing Costs

For the FPSB split-award auction we can only define the expected costs for the buyer on the

condition that all bidders follow the same equilibrium strategy. Hence, we get expected costs for

the WTA and for the σ equilibrium in the FPSB split-award auction. When bidders chose a WTA

equilibrium, the price for the auctioneer equals the purchasing costs in a single-unit auction. If the

bidders choose the σ equilibrium, then bidders in all auction formats, the descending, the Dutch,

the FPSB, and the VCG auction, aim for a single share in equilibrium.

With this symmetric σ equilibrium, n> 2 and identical 50% shares, the auctions are strategically

equivalent to traditional multi-unit auctions with single-unit demand such that we can draw on the

well-known revenue equivalence theorem for this environment (Myerson 1981, Engelbrecht-Wiggans

1988).

Bidders typically do not have single-unit demand in combinatorial auctions. However, by playing a

σ equilibrium and submitting non competitive bid-to-lose prices for 100% of the business, the sole
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source award is off-equilibrium and the results are outcome equivalent to an ex-ante split-award

auction, in which bidders cannot win more than 50% of the business. This is the reason, why

the assumption of single-unit demand can be applied to bidders playing a σ equilibrium and the

purchasing costs in the Dutch auction equal the costs in the VCG or descending auction with DSE.

This is only true for the FPSB auction provided that bidders are able to coordinate on the split.

Although the split is efficient, purchasing costs in a σ equilibrium are not necessarily lower than

in a WTA equilibrium. However, this applies for most of the settings with DSE.

Corollary 8. In the FPSB split-award auction with n > 2 risk-neutral bidders and DSE, the

price for the buyer in the σ equilibrium is always lower than in the WTA equilibrium,

• if either C < Θ

2Θ
applies or

• if Θ∼U [Θ,Θ] applies.

The expected price for the auctioneer in a σ equilibrium raises with a higher efficiency parameter

C, whereas prices in the WTA equilibrium are independent of C. Hence, if the efficiency parameter

C is sufficiently low, the costs for the auctioneer are always lower in the σ equilibrium.

Additionally, we show that for all possible C < Θ

Θ+Θ
and uniformly distributed cost types, the σ

equilibrium yields lower purchasing costs than the WTA equilibrium. Corollary 7 states that there

is always a coordination problem in such a setting and no equilibrium is payoff-dominant. Thus,

when costs are assumed to be uniformly distributed over any support [Θ,Θ], the auctioneer should

prefer the Dutch or Dutch-FPSB over the FPSB split-award auction with DSE not only because of

its efficiency properties and lower strategical complexity for the bidders but also because of lower

expected purchasing costs.

Note that the effect of adding a third bidder on procurement costs is substantial. In a split-award

auction, with uniformly distributed cost types Θ ∈ [100,140] and an efficiency parameter C = 0.3

procurement costs are reduced by 44.3% in expectation9, if a third bidder is added. An additional

fourth bidder only has and impact of minus 2.6%, a fifth supplier only an impact of minus 1.7%.

5. Experimental Evaluation

Before discussing efficiency and procurement costs and the bidder behavior in our experiments in

detail, we will first describe the experimental design.

9 Procurement prices are expected to drop from a σ equilibrium with the highest pooling price, 2Θ(1−C), to 2E[Θ3:3]
in the σ equilibrium with three bidders.
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5.1. Experimental Design

In our human subject experiments, we tested our proposed theory for a two-bidder and a three-

bidder environment of the three first-price split-award auction mechanism FPSB, Dutch and Dutch-

FPSB. Thus, our treatment variables were:

• Auction Format: FPSB, Dutch, and Dutch-FPSB split-award auctions

• Number of Bidders: 2 and 3 bidders

At the beginning of every period in all treatments the bidders are informed about their own cost

draws for the supply of 50% or 100% of a fictitious order. Each bidder’s cost parameter Θ is

uniformly and independently distributed on the interval [100.00,140.00]. The efficiency parameter

is set to C = 0.3. Thus, a bidder’s costs for the 100% share, Θ, lie within the range [100.00,140.00]

and his costs for the 50% share, C ∗ Θ, lie within [30.00,42.00]. Although every bidder knows

his own costs only and not those of his competitors, common knowledge of the cost parameter

distribution and the efficiency parameter is given. Consecutively, the respective auctions proceeded

as described in section 2.2.

Sample Size

group 1 group 2 group 3 group 4 Σ

FPSB 12 12 12 10 46

2x2 Setting Dutch-Dutch 12 12 12 12 48

Dutch-FPSB 12 12 12 12 48

FPSB 12 12 12 0 36

2x3 Setting Dutch-Dutch 12 12 12 12 48

Dutch-FPSB 12 12 12 12 48

274

Table 1 Matching Group Sample Sizes

Upper bounds are implemented in each auction format. In the FPSB auction, each bidder is allowed

to submit one bid of up to 150.00 for the 50% share and one bid of up to 300.00 for the 100% share

at the start of every period. Both values can be entered in step sizes of 0.5.

In the Dutch and in the first phase of the Dutch-FPSB auction, the price for the 50% share starts

at a price of 30 and increases at step sizes of 0.5 every half second. The price for the 100% share is

twice the price of the smaller share and rises accordingly. Both prices cannot exceed upper bounds

of 150.00 and 300.00, respectively. We conducted two sessions for each of the treatment variables.

Each session consisted of two matching groups in each of which we let 12 subjects participate in 15
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consecutive first-price split-award auctions. The subjects were matched randomly to the auctions

in each of the 15 periods and no interaction between subjects across matching groups occurred.

Each subject participated in one session only. However, for the FPSB auction with 2 bidders, one

out of the four matching groups contained only 10 subjects, and with three bidders we were able

to carry out the experiment for only three matching groups. In total, 274 subjects participated in

the experiments. The sample sizes of the different treatments are summarized in Table 1.

In the two-bidder treatments, in each period the 12 subjects were randomly divided into six auctions

consisting of two bidders each. In total, we conducted 360 auctions for the Dutch and Dutch-FPSB

formats and 345 auctions for the FPSB format. In the three-bidder treatments, four auctions took

place in every period, which resulted in 240 auctions for the Dutch and Dutch-FPSB auctions and

180 for the FPSB format. The number of auctions for the different matching groups are depicted

below in Table 2.

Number of Auctions

group 1 group 2 group 3 group 4 Σ

FPSB 90 90 90 75 345

2x2 Setting Dutch-Dutch 90 90 90 90 360

Dutch-FPSB 90 90 90 90 360

FPSB 60 60 60 0 180

2x3 Setting Dutch-Dutch 60 60 60 60 240

Dutch-FPSB 60 60 60 60 240

1725

Table 2 Number of Auctions per Matching Group

At the beginning of each session the instructions were read aloud to all subjects. The subjects then

had time to go through the instructions on their own and answer the comprehension questions.

The interaction in the experiment was computerized and entirely anonymous. Communication or

personal interaction between the subjects did not take place.

The experiments were conducted at the experimenTUM, the laboratory for experimental economic

studies of the Technical University of Munich in 2016. Subjects were undergraduate and graduate

students from the Technical University of Munich from a wide range of different study programs.

Our experiments were computerized using the experimental software z-Tree (Fischbacher 2007).

The sessions lasted on average one and a half to two hours and subjects were paid their cumulative

earnings from all periods including a show-up fee of 6e (US$6.56). On average subjects earned

20.85e (US$22.78).
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5.2. Theoretical Predictions

In this section, we determine the equilibrium strategies for the chosen experimental setting from

Section 5.1 for two and three bidders. Note that the parameters in our experimental setting are

chosen such that a σ equilibrium exists in the FPSB, Dutch, and Dutch-FPSB split-award auctions.

5.2.1. FPSB Split-Award Auction In the chosen experimental setting the σ equilibrium

of the FPSB auction is characterized by the following range of pooling prices for the 50% share:

pσe ∈ [54.06,70.00]. Each of these prices is supported by a bid on the 100% share according to

pse(Θ)≤G(pσe ,Θ) for all Θ∈ [Θ,Θ], where G(pσe ,Θ)= pσe +
40pσe−42Θ+4200

140−Θ
. The range of equilibrium

pooling prices is restricted by the off-equilibrium non-negative profit condition Θ≤G(pσe ,Θ) for all

Θ∈ [Θ,Θ]. In the WTA equilibrium, the optimal bid on 100% of the business pse(Θ) = 0.5Θ+70 is

supported by any bid on 50% share of at least pσe ≥ pse − 30.

In our experimental setting, the σ equilibrium with the highest pooling price of pσe = 70.00 is payoff-

dominant over the WTA equilibrium as well as over any hybrid equilibrium with τ ≥ 117.78.10 We

predict split-award prices as high as 70.00.

In the setting with three bidders, there is an inefficient WTA equilibrium with competitive prices

for the package of two units, pse(Θ) = 2Θ
3

+ 140
3
, and high bid-to-lose prices for the single unit,

pσe (Θ) = pse(Θ)− 30. A sole source price as high as the bidder’s cost type Θ is sufficient to support

competitive split prices of pσe =
0.1(−(300−2Θ)Θ+280Θ−2800)

Θ−60
in the efficient σ equilibrium.

Neither the σ nor the WTA equilibrium is payoff-dominant in this setting as shown in corollary 7

and it is not possible to predict by this criterion, which equilibrium the bidders should select.

5.2.2. Dutch Split-Award Auction In our experimental setting the σ equilibrium of the

Dutch auction is defined as a unique pooling price of pσ1e = pσ2e = pσe = 70.00 on the 50% share for

phases 1 and 2. The winner of phase 1 threatens to accept the remaining 50% of the business at

a price of pσ2e (Θ) = 0.7Θ. The conditions for a σ equilibrium hold, and we expect the same split

prices of 70.00 as in the FPSB format.

With more than two bidders there still is only a unique and efficient σ equilibrium in the Dutch

auction, which always results in split allocation with two bidders winning a single unit sequentially

in each phase. The bidder with the lowest cost draw should win the first unit for a price of pσ1e (Θ) =

0.15(Θ+ 140) + 0.05(140−Θ) and play a threat of Θ(1−C) in phase 2. The second-lowest cost

draw is supposed to accept a counteroffer of pσ1e (Θ) = 0.15(Θ + 140) for the remaining share in

phase 2.

10 It is difficult to find realistic settings for which payoff dominance of the σ over the hybrid equilibrium is satisfied
for all τ .
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5.2.3. Dutch-FPSB Split-Award Auction The range of pooling prices for the 50% share

in phases 1 and 2 in the σ equilibrium of the Dutch-FPSB auction is analogous to the FPSB

format with pσ1e = pσ2e = pσe ∈ [54.06,70.00]. Each of the equilibrium pooling prices is supported

by the winner of 50% of the business from phase 1 threatening to submit a price of pσ2e (ΘA) =

max{pσe ,Θ− pσe} for the remaining 50% of the business in phase 2. The σ equilibrium exists, and

based on payoff dominance we predict the Dutch-FPSB auction to produce the same split prices

as its Dutch counterpart. As the Dutch-FPSB is strategically equivalent to the Dutch auction with

n> 2 bidders, the same σ equilibrium as in section 5.2.2 emerges.

5.2.4. Efficiency and Purchasing Costs As the two ascending auctions are characterized

solely by efficient σ equilibria we expect the latter two formats to yield the efficient split award

more often than the FPSB format in the experiments. The expected procurement costs for the

buyer in the Dutch and the Dutch-FPSB split-award auctions are E[pb] = 140.00 in the two-

bidder environment. This applies as well for FPSB auctions in which all σ equilibria are payoff-

dominant over the respective hybrid equilibria. If we consider non-payoff-dominant σ equilibria

clear predictions about an expected purchasing price cannot be made.

The predictions concerning efficiency are independent of the number of bidders. However, for

n= 3 bidders the coordination problem in the FPSB auction involves solely the σ and the WTA

equilibrium as hybrid equilibria do not exist anymore. The expected VCG price for buying the

split award is 78.00 in the three-bidder setting, which equals the costs for the auctioneer in each

format, when bidders coordinate on the efficient σ equilibrium. Whereas this can be expected in

the ascending formats, also a WTA equilibrium with expected costs for the auctioneer of 126.67

can be supported in the FPSB auction.

5.3. Welfare Results

We first discuss our aggregate results on efficiency and procurement costs.

5.3.1. Efficiency

Result 1 With three bidders and two shares, the three auction formats almost always implement

the efficient split award. With only two bidders, the Dutch-FPSB auction leads to higher proportion

of split awards (82%) than the Dutch auction (64%), for which again the split is more often awarded

than in the FPSB split-award auction (45%).
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First, we analyze the proportion of auctions that result in the efficient split out of all non-deleted

auctions.11 The allocations of the different treatments are summarized in Table 3 below. We omitted

auctions with bids below costs. Contrary to theory, many sole source awards are observed in all

three auction formats in the two-bidder setting. The Dutch-FPSB auction results most often in

the split allocation, followed by the Dutch, and then the FPSB auction (p= 0.00).12 The split was

awarded in nearly all of the auctions independent of the auction design. Only the Dutch auction

ended in a profitable sole source award.

Furthermore, we compare the share of efficient allocations, i.e. the proportion of allocations, which

resulted in an efficient split award for the two lowest cost types. 71.8 % and 70.1 % of all auctions

ended up in such an efficient split allocation in the FPSB and Dutch-FPSB auction with three

bidders. With only 64.4 % the Dutch was the least efficient auction with respect to this metric.

We conjecture that this results from the overall higher prices in this format, which can lead to

inefficient allocations especially in settings, for which the two highest cost types lie very close

together. Obviously, the two different shares are identical in the 2x2 setting.

Efficiency

Total Omitted Split Efficient Allocative

Auctions Auctions Awards Allocations Efficiency

2 x 2 Setting

FPSB 345 2 44.9 % 44.9 % 79.4 %

Dutch 360 12 64.4 % 64.4 % 86.6 %

Dutch - FPSB 360 15 81.4 % 81.4 % 93.2 %

2 x 3 Setting

FPSB 180 10 100 % 71.8 % 98.8 %

Dutch 240 7 100 % 64.4 % 98.4 %

Dutch-FPSB 240 16 100 % 70.1 % 99.1 %

Table 3 Efficiency

Often a relative measure of allocative efficiency is used to characterize the result of combinatorial

auctions. The last column of Table 3 provides the mean allocative efficiency based on the definition

11 The omitted auctions are the result of a small number of participants repeatedly bidding below their costs. In the
two-bidder setting two individuals bid below their costs in the FPSB auction, eight do so in the Dutch auction, and
nine do so in the Dutch-FPSB format. In the three-bidder setting, seven participants violate individual rationality in
the FPSB split-award auction, seven do so in the Dutch format, and six do so in the Dutch-FPSB counterpart.

12 A ”test of equal proportions” is used for all significance tests between two samples.
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of Kwasnica et al. (2005). 13 The mean allocative efficiency of the Dutch-FPSB is the highest in

both settings with 93.2% and 99.1 %. Whereas there are again significant differences in the 2x2

setting, the Allocative efficiency is close to 100% for all different auction formats with three bidders.

To explain the surprisingly high number of sole source awards in each split-award auction format

and the discrepancy in efficiency between the two ascending auctions, we analyze the bidding

behavior in more detail in Section 5.4. In the three-bidder setting, the split is almost always awarded

and allocations are highly efficient independent of the auction format.

5.3.2. Procurement Costs

Result 2 With only two bidders, the FPSB and Dutch-FPSB auction formats yield substantially

lower procurement costs of 129.98 and 130.12 , respectively, than the Dutch split-award auction

with a value of 155.11. Ranging from 75.5 to 79.16, the procurement costs of all auction formats

with three bidders are considerably lower than in the two-bidder setting.

The overall procurement costs are defined as the price the auctioneer has to pay in each treat-

ment. The procurement costs of the different treatments are summarized in Table 4 below, with

the standard deviations (sd) given in brackets. The Dutch auction results in higher average costs

than the other two auction formats in the two-bidder environment. There is no significant differ-

ence in costs between the FPSB and the Dutch-FPSB split-award auctions (p =0.42), but there

is a significant difference between the FPSB and the Dutch and the Dutch-FPSB and the Dutch

auctions (p=0.00).14 The procurement costs for the FPSB and Dutch-FPSB auctions are signif-

icantly below the theoretical prediction of 140 with 95% confidence intervals of [128.36,131.60]

and [128.18,132.05], whereas the purchasing price for the Dutch format is significantly above the

theoretical prediction with a 95% confidence interval of [152.77,157.44].15

There are slight but significant differences in procurement costs among the auction formats in the

three-bidder markets at a 5% significance level. The overall procurement costs in the three-bidder

setting are substantially lower compared to the two-bidder setting and they are close to but still

significantly different from (p=0.00) the predicted VCG prices.

13 Assume Nσ
winner,N

s
winner are the sets of bidders, who won the split, respectively the sole source award, and Nσ

optimal

is the set of the two bidders with the lowest cost type per auction. Then, the allocative efficiency of a split-award
auction with DSE is defined as

Allocative efficiency=
Σi∈Nσ

optimal
CΘi

Σi∈Nσ
winner

CΘi +Σi∈Ns
winner

Θi
.

14 A two-sample Mann-Whitney test is used for all significance tests between two samples.

15 A student t-test is used for all single sample significance tests.
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Average Procurement Costs

Overall Split Award Sole Source Award

2 x 2 Setting

FPSB 129.98 2 × 62.30 = 124.60 (sd = 22.60) 134.37 (sd = 12.29)

Dutch 155.11 2 × 76.01 = 152.02 (sd = 24.94) 160.67 (sd = 20.07)

Dutch-FPSB 130.12 2 × 64.19 = 128.38 (sd = 21.41) 137.78 (sd = 16.60)

2 x 3 Setting

FPSB 75.50 2 × 37.75 = 75.50 (sd = 5.46) -

Dutch 79.16 2 × 39.50 = 79.00 (sd = 4.46) 115

Dutch-FPSB 76.40 2 × 38.20 = 76.40 (sd = 4.99) -

Table 4 Procurement Costs

In the two-bidder setting, there is a tradeoff between the higher efficiency of the Dutch auction and

the lower procurement costs of the FPSB auction. We find higher prices for both the sole source and

the split award in the Dutch auction than in the FPSB auction. The Dutch-FPSB auction achieves

low prices and high efficiency and thus has advantages for the procurement manager in this respect,

even resulting in higher efficiency than the Dutch auction with procurement costs that are not

significantly different from those of the FPSB auction. Conversely, in the three-bidder setting all

three auction formats are equally efficient. Again, the Dutch auction is the most expensive format

tested at a 5% level, followed by the Dutch-FPSB, and the FPSB format. However, the differences

are much smaller than in the two-bidder case.

5.4. Bidding Behavior

We next discuss the individual bidder behavior in the two-bidder and three-bidder environments

for each of the three different auction formats. We estimated fixed-effects regressions for bids and

prices of bidders in the split and sole-source award in all treatments and attached the outcomes

in appendix B subsection B.1. We also included univariate regressions in which the cost draw is

the single independent variable. These regressions allow us to interpret all plots of bids and prices

on cost draws in subsection B.2. These plots and the corresponding univariate regressions provide

intuitive insights on the subjects’ bidding behavior. Finally, appendix B subsection B.3 contains

plots of bids/prices in split allocations for all treatments across periods. These plots visualize any

adaptation in bidding behavior with repeated interaction of the bidders.

Especially in the two-bidder setting, the derived σ equilibria have a collusive flavour. In order to

describe the different forms of tacit collusion we apply the following distinction. We define that

pooling behavior includes high split prices, which lie (1) above the highest possible cost draw for the
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split, CΘ, and (2) within the range of equilibrium predictions. Furthermore, the regression analysis

should show that (3) these pooling prices are not significantly influenced by the own cost draw of

the bidder. When this is not the case and only (1) and (2) apply, we talk about tacit collusion.

Prices, which are even higher than the equilibrium predictions, are defined as strong pooling or

strong tacit collusion.

5.4.1. Two-Bidder FPSB Split-Award Auction

Result 3 As theory predicts, split-award winners show pooling behavior as nearly all split prices

are above 42 (CΘ) and the average split price is 62.3. Furthermore, the own cost draw does not

significantly influence the split prices in the fixed-effects regression analysis. In the sole-source allo-

cations bidders tried to exclude the split award with high bids on one unit and submitted competitive

bids on two units.

Remember, there is an inherent equilibrium coordination problem in the FPSB auction format,

because the inefficient WTA equilibrium can be simply implemented by the unilateral use of veto

bids. Solely the existence of these veto bids might make the σ equilibrium less attractive in practice

as its implementation requires both bidders not to use veto bids. Moreover, it is strategically

complex for two bidders to coordinate on a split. To support any single-unit pooling price bidders

have to bid at least twice the amount on two units such that the revenue maximizing auctioneer

chooses the split award. Note, however, that such bids only lead to an equilibrium if both bidders

actually pool at the same bid for one unit which is very unlikely.

We observe that bidders who win the split-award bid low on the single unit with an average bid of

62.3 and submit a high average bid of 145.7 on the double-unit package. Such bids facilitate coordi-

nation on the split award independent of slight deviations by the opponent, especially regarding the

choice of an alternative pooling price. However, this strategy is vulnerable against a combination

of high single-unit prices and low double-unit bids. In sole source award allocations that do not

involve veto bids (9% of all bidders make use of their veto power), winners submit average bids of

68.8 and 135.5, and losers bid on average 78.3 and 157.1 on one and two units, respectively. As a

result, the sum of both parties average single-unit bids (147.1) exceeds the winner’s average bid

on two units. In other words, the winners do not bid high enough on two units and the losers bid

too high on one unit, thus, preventing coordination on the split award.

Figure 1 shows the single- and double-unit bids of split award winners plotted against the cost

draws. The figure already indicates that winners of the split award pool their single-unit bids

and submit high double-unit bids as theory predicts. Also, the bids of split-award winners on the
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Figure 1 Bids of Split-Award Winners in FPSB

(n=2)
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Figure 2 Bids of Sole-Source-Award Winners in

FPSB (n=2)

package are increasing with the cost draw. The regression line for the single-unit bids lies within

the predicted pooling boundaries and the regression line for the double-unit bids is within the

predicted support, too. The winners of the sole-source award submit bid-to-lose split prices as can

be seen in the left plot of figure 2 in which the univariate regression even has a negative slope. The

bid for two units is increasing in the cost draw as predicted by theory and illustrated in the right

plot of the figure. We observe overbidding which is mainly caused by the very high double-unit

bids of the sole-source award losers. We conjecture that many of them aim for the split award.

In the appendix B we summarize the results of a number of fixed-effects regressions, which support

the graphical analysis. We also analyze the bidder behavior across the periods in a session. For

split-award winners the cost draw is not a significant explanatory variable for the height of the

single-unit bid. Manual inspection yields that many bidders stick to their strategy of either bidding

on the sole source or the split over time. We observe a significant decrease in the height of the single-

unit bid for ten out of 46 sole-source award bidders across all 15 periods. This might suggest that

some sole-source bidders adapt and try to win the split award but do not alter their double-unit

bids. The latter bids of split-award winners and the distribution of allocations appears to remain

constant over periods. Details can be found in the appendix B in figures 17 and 18, respectively.

5.4.2. Two-Bidder Dutch Split-Award Auction

Result 4 Split-award winners achieve above-equilibrium prices with an average of 74.80 in the

first phase and an average of 77.23 in the second phase. This can be seen as a form of strong tacit

collusion, where bidders agree on higher payoffs.



Kokott, Bichler, Paulsen: Combinatorial First-Price Auctions

33

In the Dutch auction there is a unique perfect Bayesian split equilibrium. Therefore, strategic

complexity is lower compared to the FPSB format as bidders observe increasing single- and double-

unit prices publicly and can constantly compute their respective profits. Furthermore, a payoff-

maximizing bidder will not accept two units at a double-unit price below 140 (which corresponds

to a single-unit price of 70) as the split is more profitable. In the experiments, fewer than 10% of

all direct sole-source winners accept a double-unit price below 140. With this common knowledge

there is a low risk in letting the single-unit price rise to 70 as the equilibrium suggests. Even if the

opponent accepts at a lower price in the first phase, there is always a chance to win the second

unit.

Interestingly, we find average split prices of 74.80 in phase 1 and 77.23 in phase 2, which strictly

exceed the equilibrium prediction of 70. It appears that bidders implicitly agree upon letting the

price rise above the equilibrium prediction to make higher profits in the split allocation. The

publicly increasing prices allow both bidders to constantly reinforce this agreement on strong tacit

collusion until one bidder accepts, which apparently leads both bidders to exceed the equilibrium

price. The first bidder to accept the single-unit price, signals at which price the opponent should

accept the second unit. Assume that one unit was sold in phase 1 for a price of 74. The loser

of phase 1 knows that the price for the remaining share is likely to rise again at least to 74, as

otherwise the opponent would have accepted both units at a price of 148 in phase 1. In fact, 78%

of the bidders only accepted the counteroffer for one unit in phase 1, when their payoff for the

split award was strictly higher than for the sole source award. Therefore, the loser of the first unit

might not want to accept the second unit at a lower price than his opponent in phase 1, because it

is not credible for the winner of phase 1 to accept the second unit below the price of the first unit.

The price of the first unit is a natural lower bound for the price of the second unit and typically

bidders try to go even a bid higher at the risk that the opponent takes both shares.

Of course, if the loser of the first phase lets the price in phase 2 rise too high it will become more

profitable for the winner to accept the second consecutive unit. Similarly, if the price in phase 1

rises too high it might become more profitable for one of the two bidders to directly accept two

units. For example, if the first unit is sold at a price of 74, a bidder with cost draw 110 makes a

payoff of 74-33=41. Now, if the second unit reaches a price of 78, the winner of the first unit should

accept this price as well, as it provides a higher payoff of 152-110=42. Thus, if bidders let the split

prices rise too high the sole-source award becomes more profitable at some point. This is also what

we see in the data. There is a substantial proportion of sole-source awards in the Dutch auction

due to such behavior, although the proportion of efficient split awards has increased significantly

compared to the FPSB format.
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Figure 3 Bids of Split-Award Winners in Dutch-

Dutch (n=2)
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Figure 4 Bids of Consecutive Sole-Source-Award

Winners in Dutch-Dutch (n=2)

The first-unit price was taken as a signal for the second-unit price, which was higher in 58% of all

split allocations. The relation between the two split prices is depicted in figure 3 in which both

univariate regression lines lie entirely above the predicted pooling price of 70. The prices in case

of bidders winning two consecutive units are depicted in figure 4 and are strongly increasing in

costs, but otherwise show a similar pattern than the split prices. Figure 9 in appendix B contains

the prices at which two units were directly accepted which are on average higher than in the

split award. Similar to the FPSB auction the distribution of allocations does not change across

the periods as is shown in figure 20 in the appendix. The fixed-effects regressions for split-award

winners in appendix B yield that the cost draws have a significant but small effect on the bid price

of the first phase, but not in the second phase. In the second phase, the bid price of the first phase

is a significant covariate.

5.4.3. Two-Bidder Dutch-FPSB Split-Award Auction

Result 5 Split allocations involve tacit collusion of the bidders with average single-unit prices of

61.80 and 66.57 in phases 1 and 2, respectively. The lower prices avoid sole-source bids as they

happen in the Dutch auction. Repeated auctions lead to significantly higher prices in this auction

format, as bidders learn to coordinate on higher split prices.

In the Dutch-FPSB auction we observe average single-unit prices of 61.80 and 66.57 in phases

1 and 2, respectively. Efficient equilibria, in which bidders tacitly collude on split prices below

70, are in line with the theoretical predictions for this format. In contrast to the Dutch auction,
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bidders have a credible threat with low sealed bids on the second unit that would result in a lower

overall profit for a bidder, but forces his opponent not to bid too high on the second unit and win.

Interestingly, we observe that 62% of the winners of the first unit submit bids for the second unit to

make as much profit when winning both units as when winning one unit. Such bids are no credible

threats in the Dutch-FPSB auction. The strategic option of using threats to implement split prices

below 70 is rarely used in the experiments, probably because it cannot be directly observed by the

opponent.

The credible threat is the reason for the different equilibrium bidding strategies between both

ascending auction formats. The fact that this credible threat is not used might suggest that one

would see prices similar to the Dutch auction. However, prices are lower in the Dutch-FPSB auction.

It appears less certain for a bidder to win the second unit, and bidders tend to accept the first

unit already at a lower price in order to secure one unit. Furthermore, we conjecture that the

possibility of possible threats in itself leads to higher insecurity and lower bidding already in phase

1. Similar to the Dutch auction, the price of the first unit is a signal for the second unit, and we

observe slightly higher prices for the second unit. In summary, bidders are faced with relatively

low split prices at which sole-source deviations are less likely to occur. Therefore, we observe even

fewer sole-source allocations in the Dutch-FPSB auction than in the Dutch format. Overall, this

increases efficiency.

Plots of the bids in the Dutch-FPSB auction can be found in appendix B. In the fixed-effects

regressions we find a small but significantly positive effect of the cost draws on both units, and

again the price of the first phase was a significant covariate for the price in the second phase (see

tables 7 in appendix B). As in the Dutch auction the impact of the cost draws on the bid is very

small (e.g., 0.13 for the first bid), which is close to the constant bid price predicted by the theory.

In contrast to the other auction formats, we found a significant positive impact of the number of

periods on the bid price for the first price. This indicates that the subjects adapted and learned to

tacitly collude on higher split prices over time.

5.4.4. Three-Bidder FPSB, Dutch, and Dutch-FPSB Split-Award Auction

Result 6 With three bidders almost always the efficient split award is implemented. In the FPSB

auction format it is difficult for bidders to realize a sole source allocation, and they need to rely on

another bidder. In the two ascending auction formats sole source awards are no equilibrium and

they do not happen in the lab.

Contrary to the ascending auctions, there is an inefficient WTA equilibrium in the FPSB auction.

To implement a sole-source allocation in this format at least two bidders have to exclude the
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split award with high bid-to-lose prices for one unit. Note, however, that in this case only the

bidder with the lowest cost type wins and both losers know that they would have won one unit

with certainty by coordinating on the split award. This implies that both losers may regret their

decision to chose the WTA strategy. In contrast, in the split allocation the only loser could not

have won the sole-source award by unilaterally playing a bid-to lose strategy for the split. He could

only regret not to bid aggressive enough for the split award after the winning bids are disclosed.

The anticipation of this form of loser’s regret is a possible explanation for too aggressive bidding

in first-price sealed-bid auctions (Filiz-Ozbay and Ozbay 2007). In our experiments, not only the

winning bid(s) but also the winning allocation is disclosed to all bidders after each auction. Hence,

we conjecture that anticipated regret of the losers in a WTA equilibrium as described above prevent

bidders from trying to win the sole-source allocation in an environment with three bidders, whereas

these equilibria can be observed in the experiments with two bidders.

Furthermore, a simple and effective strategy in such an environment is to bid competitive for the

split as well as for the sole source award. Such a bidding behavior excludes the sole source and is

not vulnerable to deviations even from both opponents. Such a strategy is a form of a σ equilibrium

with a moderate bid-to-lose price for 2 units.16 Assume a bidder with costs of 120 for two units

and 36 for one unit submits bids of 124 and 38, respectively. If all bidders follow a σ strategy with

bid-to-lose prices on two units, he has good chances to win the split award. In the case where both

opponents try to coordinate on the sole source award with high bid-to-lose prices for one unit and

competitive bids for two units, his chances (with regard to his cost draw) are still good to win both

units.

We conjecture that the combination of both phenomena leads to the high efficiency and non-

appearance of sole source awards in the FPSB auction with three bidders. As predicted, in the

ascending auction formats competition and the inherent DSE cost structure lead to low prices for

the first and the second unit consecutively, so that the sole-source award is always unprofitable.

As expected in case of competitive bidding for the split award with three bidders in all auction

formats the fixed-effects regressions in tables 8 to 10 in appendix B contain a cost parameter with

significant explanatory power that is positively correlated with the corresponding dependent vari-

able. We used the Wald test to test for the correspondence between fixed-effects within regression

model and the derived equilibrium strategy.

Although the single-unit bids of split-award winners in the three-bidder setting of the FPSB auc-

tion are significantly different from the equilibrium strategy (Wald test with p < 2.2e− 16), the

16 Remember, that in our setting bidding the cost draw for two units is enough to exclude the split award.
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univariate regression line in the left plot of figure 13 in appendix B still indicates correspondence.

Similar to the experimental evaluation of bidding in single-unit auctions we observe underbidding

in our setting. Moreover, in the right plot the double-unit bids weakly exceed the cost type as

predicted by theory.

As can be seen from the regression line in the left plot of figure 14, the equilibrium strategy is a good

predictor for the bidding behavior of split-award winners for the first unit in the Dutch auction

(Wald test with p = 0.3443). Also, the bidding behavior for the second unit corresponds to the

theoretical prediction (Wald test with p= 0.07675). The left plot of figure 15 in appendix B shows

that split-award winners of the first unit in the Dutch-FPSB auction submit bids weakly below

the equilibrium strategy and the fixed-effects regression differs significantly (Wald test with p <

2.2e− 16). Although split-award winners of the second unit appear to bid closer to the theoretical

prediction in figure 16, their bidding behavior does not correspond to the equilibrium strategy

(Wald test with p= 0.001158).

Similar to the experimental literature on first-price single-item auctions, we observe underbidding

for the split-award winners in the FPSB and the Dutch-FPSB auctions with three bidders. This

causes the fixed-effects regression lines to differ significantly from the equilibrium predictions.

Moreover, the first- and second-unit bids in the Dutch-FPSB format neither differ from each other

(Wald test with p = 0.9912), nor from the single-unit bid of split-award winners in the FPSB

auction (Wald test with p= 0.2343 and p= 0.2552 respectively). We conjecture that the strategical

differences between both auction formats do not influence average bidding behavior.

Similar to our two-bidder setting, average single-unit prices in the Dutch auction with three bidders

are significantly higher than in the other two formats. Interestingly, the bids for the first- and

second units do not differ significantly from the predictions although they do not differ from each

other (Wald test with p= 0.07219). These higher prices in the Dutch format may explain the lower

allocative efficiency as well as the lower share of efficient allocations compared to the other two

auctions.

6. Conclusions

Ex-post split-award auctions are a widely used form of combinatorial procurement auctions. In

particular, first-price auctions are often chosen for their simplicity. There is little competition in

procurement particularly if there are only a few qualified suppliers for specific products to be

procured. Unfortunately, bidding strategies of such auctions are not well understood. After the

complete-information analysis by Bernheim and Whinston (1986), the analysis by Anton and Yao
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(1992) showed that, for the wide-spread FPSB split-award auction with two bidders, there is an

efficient split equilibrium and an inefficient WTA equilibrium, leaving the bidders with a veritable

coordination problem. The 2-bidder model is specific, because bidders can veto the split award

unilateraly, and it is unclear if the results carry over to markets with more than two bidders, and

if it is predictive in the lab.

We extend the analysis to n > 2 bidders, and also analyze the Dutch split-award auction and

the Dutch-FPSB split-award auction, which are wide-spread in procurement practice, but have

not yet been studied. For markets with two bidders, we show that the Dutch split-award auction

has a unique split equilibrium with a constant pooling price. The Dutch-FPSB also exhibits only

efficient split equilibria, but it allows for multiple equilibrium prices. The strategic differences for

the bidders arise because of differences in the revealed information in the three auction formats.

There is cost equivalence between the Dutch and the Dutch-FPSB auction, while this only applies

for the FPSB format when suppliers coordinate in a split equilibrium. In markets with more than

two bidders, the FPSB auction still exhibits a WTA equilibrium even though the veto power of

bidders ceases. The theoretical results organize important patterns in the experimental results such

as pooling prices in the two-bidder auction and the equilibrium selection problem.

In our experimental assessments, we found that bidders in the two-bidder FPSB auction indeed

selected both types of awards. It is interesting to see that many more split allocations emerged

in the Dutch auctions at prices even beyond the equilibrium pooling price. We conjecture that

bidders interpret non-acceptance of counteroffers at low prices as an implicit agreement on high

prices. These high prices sometimes lead bidders in the first phase to bid on the package of two

units or accept also a high price in the second phase, such that there are inefficient sole-source

awards. The introduction of a sealed-bid stage in phase 2 of the Dutch-FPSB auction led to lower

prices in the first phase. As a consequence, winning the package became less attractive, which led

to even higher efficiency. The Dutch-FPSB auction appears as a robust and simple alternative that

yields high efficiency and low procurement cost.

Interestingly, with a single additional bidder the inefficiency of the 2-bidder environment is largely

gone, even in the FPSB split-award auction, where there is still an equilibrium selection problem.

The veto power of bidders vanishes and instead they want to win the 50% share and coordinate

with others. Furthermore, we found that prices drop substantially in all three auction formats

as theory predicts. Competition was very effective in the laboratory even though bidders in the

FPSB split-award auction could also choose a sole-source award in theory. In summary, first-price

combinatorial auctions are highly efficient in our setting. The lower strategic complexity and high

efficiency of the Dutch auction formats can be seen as an advantage.
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Appendix A: Proofs

A.1. Proof of Corollary 2

Using the same logic as in proposition 1 of Anton and Yao (1992), it is possible to show that split prices in a

σ equilibrium have to be constant. Otherwise, the bidder with the lower split price always has an incentive

to deviate from the equilibrium strategy. We will show that the only possible split price in a σ equilibrium is

pΣe =Θ(1−C). First, we assume a σ equilibrium with a constant split price pσ
e > (1−C)Θ exists. In this case,

there is always a profitable sole source deviation for a bidder Θ̂ =Θ by accepting the counteroffer for 100%

of the business at a price of p̂s(Θ̂) = 2pσ
e − ε with ε↘ 0, as E[Π̂s(Θ)]>E[Π̂σ(Θ)] implies pσ

e > (1−C)Θ+ ε.

Second, we assume a σ equilibrium such that pσ
e < (1−C)Θ exists and bidder A with ΘA ̸=Θ sticks to the

equilibrium strategy and accepts the 50% share in the first phase; then, he makes a profit of pσ
e −ΘA > 0 in

equilibrium. However, in this case there is a split deviation for the loser of phase 1, which generates a higher

payoff than in equilibrium. This player knows that the additional costs for providing 100% of the business

are ΘA(1−C) for the winner of phase 1. Hence, the deviating bidder can accept the remaining share at a

price of Θ(1−C)− ε knowing that the other bidder cannot accept any previous offer without reducing his

already achieved payoff. Even when the winner threatens to accept the 50% share for a lower price than

Θ(1−C), this is not credible because both bidders are assumed to be payoff-maximizing. Following such a

strategy, a deviating bidder wins 50% of the business with probability 1 and achieves a higher payoff than

by playing a σ equilibrium with a split price pσ
e < (1−C)Θ. Q.E.D.

A.2. Proof of Proposition 3

The Dutch split-award auction is modeled as a two-stage game, where the action of phase 1 is observed by

both players before phase 2 starts. Because the σ equilibrium includes pooling prices, which are independent

on the respective cost type, the loser of phase 1 does not get any information about the cost type of his

opponent. Hence, his beliefs µ are not updated after phase 1 and remain the same as ex-ante.

Furthermore, we have to prove that the strategy profile (pσ1
e (·), pσ2

e (·)) is sequentially rational given the

system of beliefs. Therefore, we have to prove that there is neither a sole source nor a split deviation

for any bidder i ∈ {A,B} that yields a higher expected payoff than the equilibrium payoff of Πσ
e (Θi) =

(1−C)Θ−CΘi.

Sole source deviations: In each round r, the counteroffers cσr and csr are presented according to the

pricing rule, 2cσr = csr, which satisfies the buyer’s indifference condition. Thus, only sole source deviations

with prices p̂s(Θ̂)> 2Θ̂(1−C) have to be considered. For all other sole source deviations, a bidder makes a

higher profit by accepting the split in the same round. However, sole source deviations with prices greater

than 2(1−C)Θ̂ can never be realized, as the opponent who sticks to the equilibrium strategy accepts the

split at a price of (1−C)Θ in equilibrium, and counteroffers for 100% of the business greater than 2(1−C)Θ

are not presented. This excludes sole source deviations in phase 1. As the remaining 50% share is offered in

phase 2, only the winner of phase 1 can follow a sole source deviation in this stage. Again, if the other bidder

sticks to the equilibrium strategy, the sum of the split price in phase 1 and a counteroffer for the remaining

share cannot be greater than 2(1−C)Θ, which excludes profitable sole source deviations in phase 2 as well.
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Split deviations: The expected payoff of all possible split deviations with split prices lower than Θ(1−C)

is obviously less than the equilibrium payoff, as the probability of winning 50% does not increase with a

lower split price.

In phase 1, a split deviation with a split price higher than (1−C)Θ is not possible, when the other bidder

follows the equilibrium strategy. However, this does not apply in phase 2 because it would not be a credible

threat for bidder A, the winner of phase 1 with a cost of type ΘA ∈ (Θ,Θ], to accept the remaining 50% share

in phase 2 for a price (1−C)Θ. Bidder A can only accept a counteroffer for the remaining 50% share when

his additional costs (1−C)ΘA in the case of winning the remaining 50% share are covered and he makes at

least the same payoff as in phase 1. Although such split deviations with split prices p̂σ2(Θ̂)>Θ(1−C) are

possible, we show in the following that they yield lower than expected payoff than the equilibrium strategy.

Assume a bidder tries to deviate with a split price (1−C)Θ< p̂σ(Θ̂)≤ (1−C)Θ in phase 2. The upper

boundary arises because the winner of phase 1 accepts the counteroffer for the remaining 50% share at a

price of (1− C)Θ. Such a strategy can be expressed by p̂σ(x) = x(1− C) with the variable x ∈ (Θ,Θ]. A

deviating bidder B risks losing the whole business because he knows that supplier A will fulfill his threat at

pσ2w
e (ΘA) =ΘA(1−C). The deviating bidder faces a trade-off because he does not know the cost type of the

other bidder; recall that the split price in phase 1 is constant and independent of the cost type ΘA, which is

why the loser does not get any information about the cost type of the winner in phase 1.

Split deviations with p̂σ(x) can only be excluded, when for all cost types Θ and for all x, the expected

payoff of such a deviation is less than the σ equilibrium payoff, i.e., ∆Π(x,Θ) = E[Π̂σ(Θ)]− E[Πσ
e (Θ)] <

0 ∀ Θ ∈ [Θ,Θ] ∀ x ∈ (Θ,Θ]. As ∆Π(x,Θ) is strictly decreasing in Θ, it suffices to show that ∆Π(x,Θ) < 0

applies for all x. This is fulfilled by the necessary condition (2). The strategy in phase 2 of the winner of the

50% share in phase 1 is credible, as the payoff of this threat equals the equilibrium payoff when it must be

carried out.

Since bid prices are constant in equilibrium and (1−C)Θ>CΘ, the probability of winning the split by

deviating does not depend on your own cost type, but the equilibrium payoff decreases with Θ. Thus, if we

show that a deviation is not profitable for the highest cost type Θ, it is not profitable for any cost type. The

expected payoff of a split deviation with split price (1−C)Θ< p̂σ(Θ̂)< (1−C)Θ is

E[Π̂σ(Θ)] =(p̂σ(Θ)−CΘ)P (p̂σ(Θ)≤Θi(1−C))

=(x(1−C)−CΘ)P (x(1−C)≤Θi(1−C))

=(x(1−C)−CΘ)(1−F (x))

For x=Θ, the expected payoff of such a deviation equals the equilibrium payoff of the highest cost type Θ.

Hence, it must apply for all x∈ [Θ,Θ] that

E[Π̂σ(Θ)]≤E[Πσ(Θ]

(x(1−C)−CΘ)(1−F (x))≤Θ(1−C)−CΘ

Q.E.D.
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A.3. Proof of Proposition 4

If there is a WTA equilibrium strategy, such a strategy would have to be payoff-dominant over all possible

split and sole source deviations.

Sole source deviations: In the WTA equilibrium in proposition 7, a bidder must accept a counteroffer

for the sole source award, csr, in round r for a price of ps
e(Θ) =Θ+

∫Θ
Θ

(1−F (t))dt

(1−F (Θ))
in order to ensure that there

is no sole source deviation that yields a higher payoff than the equilibrium strategy.

Split deviations: Next, we show that if all bidders play such a WTA strategy, there is at least one bidder

who has an incentive to deviate. Consider a bidder with the highest cost type Θ who makes a payoff of zero

in equilibrium by accepting the counteroffer csr = ps
e(Θ) in round r. With DSE, there is always a round q

preceding round r with a counteroffer csq = 2ΘC+ ε < csr, in which this bidder makes a higher payoff than in

equilibrium. Hence, there is no WTA equilibrium in a Dutch split-award auction with DSE. Q.E.D.

A hybrid equilibrium consists of disjunct cost intervals Is
1, I

s
2, ..., I

s
t and Iσ

1 , I
σ
2 , ..., I

σ
u . Bidders with cost types

belonging to the first intervals focus on winning the sole source award, while bidders with other cost types

try to coordinate on the split award. Furthermore, t, u ∈N and Is
1

.

∪ Is
2

.

∪ ...
.

∪ Is
t

.

∪ Iσ
1

.

∪ Iσ
2

.

∪ ...
.

∪ Iσ
u = [Θ,Θ]

applies. We divide the different hybrid equilibria in two types: hybrid equilibria in which the highest cost

types focus on winning the sole source award, i.e., Is
t = (τ,Θ]; and hybrid equilibria in which the bidder

with costs of Θ tries to win the split, i.e., Iσ
u = [τ,Θ]. The strategic parameter τ indicates the cost type

for which bidders change their strategy in a hybrid equilibrium. Using the same reasoning as above for the

WTA equilibrium, the bidder with the highest cost type has an incentive for a split deviation in the hybrid

equilibrium with Is
t = (τ,Θ]. Hence, such hybrid equilibria do not exist.

Next, assume a hybrid equilibrium with an interval Iσ
u = [τ,Θ] in which the highest cost type tries to win

the split award. As in the analysis of (Anton et al. 2010), a bidder with cost type τ must be indifferent between

winning the split for pσ
e (τ) or the sole source award for 2pσ

e (τ). Otherwise, this bidder would not change

his strategy, i.e., E[Πs
e(τ)] =E[Πσ

e (τ)] implies pσ
e (τ) = τ(1−C). This directly implies that pσ

e (τ) = τ(1−C)

is the equilibrium split price for bidder τ and all other bidders with Θ ∈ Iσ
1

.

∪ Iσ
2

.

∪ ...
.

∪ Iσ
u as well, as split

prices must be constant based on the same reasoning as in corollary 2. However, all cost types for which the

strategy changes in equilibrium must be indifferent between both awards, such as τ for Iσ
t = [τ,Θ]. Because

this is never true with a constant split price and multiple disjunct intervals in which bidders compete for

the split award, a hybrid equilibrium with u > 1 can be excluded. Hence, it suffices to show that no hybrid

equilibrium with Is
1 = [Θ, τ) and Iσ

1 = [τ,Θ] exists.

In such an equilibrium, the highest cost type makes an expected payoff of (1−C)τ−ΘC > 0. Furthermore,

the equilibrium price for the sole source award of the lowest cost type, must be greater than 2Θ(1−C) in

order to exclude a more profitable split deviation. Therefore, there is always a profitable split deviation for

the highest cost type by accepting the offer for the 50% share for a price of Θ(1−C), as

E[Π̂(Θ)]>E[Πe(Θ)]

Θ(1−C)−ΘC > ((1−C)τ −ΘC)(1−F (τ)).
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This is the necessary condition for a σ equilibrium.

Hence, we proved that when a σ equilibrium exists, it is unique.

Assume there is such an equilibrium with an arbitrary parameter τ ∈ (Θ,Θ). The sole source price ps
e(Θ)

for Θ ∈ [Θ, τ) must assure that there is no sole source deviation in equilibrium, i.e., that E[Πs
e(Θ

∗,Θ)] =

(ps
e(Θ

∗)−Θ)(1−F (Θ∗)) is maximized for Θ∗ =Θ. As in the analysis of (Anton et al. 2010), this applies with

the following sole source prices

ps
e(Θ) =Θ+ τ(1− 2C)

(1−F (τ))

(1−F (Θ))
+

∫ τ

Θ
1−F (t)dt

(1−F (Θ))

for types Θ ∈ [Θ, τ). Furthermore, for a type τ there must be no incentive to deviate from equilibrium

by accepting the offer for 50% for a price lower than 0.5ps
e(τ). Such a deviation would yield the following

expected payoff dependent on variable x, which defines the deviating split price: E[Π̂σ(x, τ)] = (0.5ps
e(x)−

τC)(1−F (x)). Solving the first-order condition yields: −f(x)(x− 2Cτ) = 0.

d

dx
E[Π̂σ(x, τ)] = 0

0.5(−f(x)(x− 2Cτ)+ (1−F (x))− (1−F (x))) = 0

−f(x)(x− 2Cτ) = 0

The solution of the first-order condition is x= 2Cτ < τ , and it can be shown that it is the unique maximum

of the expected payoff function, as f is strictly positive and the derivative of E[Π̂σ(x, τ)] is positive (negative)

for all values for x that are lower (higher) than 2Cτ . Hence, there is always a profitable split deviation with

x= τ − ε for a bidder with cost type τ in a hybrid equilibrium, as E[Π̂σ(τ − ε, τ)]>E[Π̂σ(τ, τ)] =E[Πσ
e (τ)]

and no such hybrid equilibrium can emerge. Q.E.D.

A.4. Proof of Corollary 3

The results for (i) and (ii) of proposition 1 in Anton and Yao (1992) can be easily transferred to the Dutch-

FPSB split-award auction case. In the Dutch split-award auction, the bidding strategy of a bidder A, the

winner of phase 1, has to assure that it yields at least the same payoff as in phase 1, as the payoff is realized

by carrying out the threat. However, when phase 2 is an FPSB mechanism, it suffices that the offer for the

remaining share impedes split deviations. Then, as long as the auctioneer bids at least pσ
e for the remaining

share, the probability that the threat must be carried out and the payoff of bidder A is changed to zero, as

the opponent has no incentive to deviate from equilibrium. This makes it easier for the winner to exclude

split deviations in phase 2 and various split prices can emerge in equilibrium.

A.5. Proof of Proposition 5

As in the proof of proposition 3, the pooling price in phase 1 does not allow for any updating of the beliefs

about the opponent’s cost type. In what follows, we show that deviations from the pooling equilibrium
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are unprofitable for all different cost types in every stage of the game. Hence, the sequential rationality

assumption for perfect Bayesian equilibria applies.

Assume a σ equilibrium in which both bidders win 50% of the business for a constant split price pσ
e ∈

[ΘC,Θ(1−C)] in equilibrium.

Sole source deviations: With the same logic as in the proof of proposition 3 payoff-dominant bidders

have no incentive to deviate for the sole source award in equilibrium .

Split deviations: Split deviations in phase 1 can be easily excluded, as the expected payoff is either strictly

lower than the equilibrium payoff (for deviations with a lower split price than pσ
e ) or zero (for deviations with

higher split prices). Bidder A, the winner of the first 50% share, submits a quote of max{pσ
e ,ΘA − pσ

e} in

phase 2 in order to implement the σ equilibrium strategy. This threat is credible as his equilibrium payoff of

phase 1 does not change in expectation. The probability that his opponent deviates is zero, as the expected

payoff of such a split deviation is lower than the equilibrium payoff. This is assured by condition (3). We

skip this line of reasoning because it is similar to the proof of proposition 1 (Case 1 deviation) in Anton and

Yao (1992) for the FPSB split-award auction. Q.E.D.

A.6. Proof of Proposition 7

As in a WTA equilibrium for two bidders (Anton and Yao 1992), the existence of such an inefficient equilib-

rium can be shown with n> 2 bidders:

Sole source deviations: In order to avoid any sole source deviation, the sole source price ps
e(·) has to

maximize the expected payoff of winning 100% of the business

E[Πs
e(Θ)] = (ps

e(Θ)−Θ)P (ps
e(Θ)≤ ps

e(Θ1:n−1)) for every Θ∈ [Θ,Θ]

Split deviations: Additionally, split deviations can be excluded by sufficiently high equilibrium prices for

the split, which satisfy

pσ
e (Θ)>Θ−ΘC.

These prices assure that the auctioneer never choses the split, as the sum of any possible split deviation

p̂σ(Θ̂) ≥ ΘC and the lowest split price of another supplier is strictly greater than Θ, the highest possible

price the auctioneer has to pay for 100% of the business in equilibrium. Hence, the payoff of such a deviating

strategy is always zero. Q.E.D.

A.7. Proof of Proposition 8

We will show that in equilibrium neither sole source nor split deviations are profitable for bidders.
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Sole source deviations: With a sole source deviation (p̂s(Θ̂), p̂σ(Θ̂)), a bidder aims to win the sole source

award and excludes the split (for himself). By differentiating the following cases, it is shown that there is no

sole source deviation, which yields a higher expected payoff than a σ equilibrium.

i) 2ΘC ≤Θ

All possible deviating sole source prices p̂s(Θ̂) have to be greater than or equal to Θ to fulfill the assumption

of individual rationality. As all other bidders play the σ equilibrium, the highest possible price for the

auctioneer is 2ΘC by awarding the split. Therefore, the auctioneer never allocates the sole source award to

any bidder with p̂s(Θ̂)≥Θ> 2ΘC and the expected payoff of such deviations is zero.

ii) Θ

2Θ
<C < Θ

Θ+Θ
:

We show that there is no sole source deviation with prices p̂s(Θ̂). A sole source deviation with price p̂s(Θ̂) =

2pσ
e (Θ) is payoff-dominant over all possible deviations with lower sole source prices, because the probability

to win the sole source award is 1 for all deviations of this type. Hence, it suffices to show that deviations

with prices greater than or equal to 2pσ
e (Θ) are not attractive for the bidders. The upper bound for deviating

sole source prices is 2ΘC, because the probability that a sole source award is chosen is zero, when a bidder

submits a higher price for the sole source award.

As first step, the optimal deviating sole source price p̂s(Θ̂) ∈ [2pσ
e (Θ),2ΘC] for all possible cost types

Θ̂ ∈ [Θ,2ΘC] is derived. Because pσ
e (Θ) is continuous, we can express all possible p̂s(Θ̂) by 2pσ

e (Θ) with

variable Θ∈ [Θ,Θ] and the expected profit of a sole source deviation as

E[Π̂s(Θ̂)] = (p̂s(Θ̂)− Θ̂) P (p̂s(Θ̂)≤ pσ
e (Θ2:n−1)+ pσ

e (Θ1:n−1))

= (2pσ
e (Θ)− Θ̂) P (2pσ

e (Θ)≤ pσ
e (Θ2:n−1)+ pσ

e (Θ1:n−1))

Obviously, the probability that the deviating sole source price is lower than the split prices of the second

lowest and lowest order statistic is always less than the probability that it is lower than two times the split

price of the second lowest order statistic. Hence, the payoff

E[Π̂s′(Θ̂)] = (2pσ
e (Θ)− Θ̂) P (2pσ

e (Θ)≤ 2pσ
e (Θ2:n−1))

= (2pσ
e (Θ)− Θ̂) P (pσ

e (Θ)≤ pσ
e (Θ2:n−1))

= (2pσ
e (Θ)− Θ̂) ((1−F (Θ))n−1 +(n− 1)F (Θ)(1−F (Θ))n−2)

< (pσ
e (Θ)−CΘ̂) ((1−F (Θ))n−1 +(n− 1)F (Θ)(1−F (Θ))n−2)

≤E[Πσ
e (Θ̂)

as Θ= Θ̂ maximizes the payoff function and

C <
Θ

Θ+Θ

ΘC <Θ(1−C)

pσ
e (Θ)< Θ̂(1−C) because pσ

e (Θ)≤ΘC and Θ≤ Θ̂ |+pσ
e (Θ)

2pσ
e (Θ)− Θ̂< pσ

e (Θ)−CΘ̂
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Split deviations: Split prices pσ
e (Θ) have to maximize the expected payoff of winning 50% of the business

for a bidder with cost type Θ

E[Πσ
e (Θ)] = (pσ

e (Θ)−ΘC)P (pσ
e (Θ)≤ pσ

e (Θ2:n−1)) for every Θ∈ [Θ,Θ]

in equilibrium. The first-order condition can be simplified to:

d

dΘ
{((1−F (Θ))n−1 +(n−1)F (Θ)(1−F (Θ))n−2)pσ

e (Θ)}=

ΘC((n− 1)(n− 2)(1−F (Θ))n−3F (Θ)(−f(Θ))

By applying boundary condition pσ
e (Θ) =ΘC and integration on both sides, we get

((1−F (Θ))n−1 +(n− 1)F (Θ)(1−F (Θ))n−2)pσ
e (Θ) |ΘΘ=∫ Θ

Θ

xC((n− 1)(n− 2)(1−F (x))n−3F (x)(−f(x))dx.

Solving for pσ
e (Θ) results in the equilibrium split price for a bidder with cost type Θ:

pσ
e (Θ) =CΘ+C

∫ Θ

Θ
(1−F (x))n−1 +(n− 1)F (x)(1−F (x))n−2dx

(1−F (Θ))n−1 +(n− 1)F (Θ)(1−F (Θ))n−2

Hybrid deviations: Least, one have to exclude hybrid deviations, i.e. deviating strategies, for which the

sole source as well as the split award can emerge with (strictly) positive probability.

i) 2ΘC ≤Θ

When this condition applies, hybrid deviations are excluded due to the individual rationality assumption

following the same logic as as discussed above for sole source deviations.

ii) Θ

2Θ
<C < Θ

Θ+Θ
:

In contrast to pure deviations, the bids of the deviating bidder are influencing each other, as a low bid

for the sole source award can lower the probability of winning the split award and vice versa. Because all

other bidders follow the equilibrium strategy, only bidders with cost types Θ̂ ≤ ΘC + p̂σ(Θ̂) have positive

probability of winning the sole source award. The lower bound 2pσ
e (Θ)≤ p̂s(Θ̂) emerges, as all lower deviating

sole source prices are dominated. The same logic applies for deviating split prices, which are bounded below

by pσ
e (Θ) and above by ΘC. The expected payoff of such deviations (p̂s(Θ̂), p̂σ(Θ̂)) is

E[Π̂] = (p̂s(Θ̂)− Θ̂)P (p̂s(Θ̂)<min{pσ
e (Θ1:n−1)+min{pσ

e (Θ2:n−1), p̂
σ(Θ̂)},max{Θ1:n−1, p

σ
e (Θ1:n−1)+ΘC}})

+ (p̂σ(Θ̂)−CΘ̂)P (p̂σ(Θ̂)< pσ
e (Θ2:n−1)∧ p̂s(Θ̂)≥ p̂σ(Θ̂)+ pσ

e (Θ1:n−1))
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We define p̂s(Θ̂) = pσ
e (x1)+ pσ

e (x2) and p̂σ(Θ̂) = pσ
e (x2) with x1 ∈ [Θ,Θ], x2 ∈ [Θ̂,Θ] and pσ

e (x1)+ pσ
e (x2)> 0.

It is known that

C <
Θ

Θ+Θ

ΘC <Θ(1−C)

pσ
e (x1)<Θ(1−C) as pσ

e (x1) ≤ΘC and Θ≤Θ

pσ
e (x2)+ pσ

e (x1)−Θ< pσ
e (x2)−Θ |+pσ

e (x2)

We want to find x1 and x2 such that the following expected payoff function is maximized:

E[Π̂(Θ̂)] = (pσ
e (x1)+ pσ

e (x2)− Θ̂)P (pσ
e (x1)+ pσ

e (x2)<min{pσ
e (Θ1:n−1)+min{pσ

e (Θ2:n−1), p
σ
e (x2))},

max{Θ1:n−1, p
σ
e (Θ1:n−1)+ΘC}})

+ (pσ
e (x2)−CΘ̂)P (pσ

e (x2)< pσ
e (Θ2:n−1)∧ pσ

e (x1)+ pσ
e (x2)≥ pσ

e (x2)+ pσ
e (Θ1:n−1))

For deviations with x1 ≥ x2 we can show that

E[Π̂(Θ̂)]<(pσ
e (x2)−CΘ̂)P (pσ

e (x2)≤ pσ
e (Θ2:n−1)∧ pσ

e (x1)< pσ
e (Θ1:n−1))

+ (pσ
e (x2)−CΘ̂)P (pσ

e (x2)≤ pσ
e (Θ2:n−1)∧ pσ

e (x1)≥ pσ
e (Θ1:n−1))

≤(pσ
e (x2)−CΘ̂)P (pσ

e (x2)≤ pσ
e (Θ2:n−1))

≤E[Π(Θ̂)]

If assumption 4 applies, deviations with x1 <x2 can be excluded. Q.E.D.

If one wants to test assumption 4 for a specific setting, it is better to use the stricter condition

E[Π̂(Θ̂)]<(pσ
e (x1)+ pσ

e (x2)− Θ̂)P (pσ
e (x2)≤ pσ

e (Θ2:n−1)∧ pσ
e (x1)< pσ

e (Θ1:n−1))

+ (pσ
e (x2)−CΘ̂)P (pσ

e (x2)≤ pσ
e (Θ2:n−1)∧ pσ

e (x1)≥ pσ
e (Θ1:n−1))

<(pσ
e (x1)+ pσ

e (x2)− Θ̂)P (pσ
e (x1)< pσ

e (Θ1:n−1))

+ (pσ
e (x2)−CΘ̂)P (pσ

e (x2)≤ pσ
e (Θ2:n−1)∧ pσ

e (x2)≥ pσ
e (Θ1:n−1)) | because x1 <x2

and check, whether it is lower than the equilibrium payoff for all possible cost types and all possible combi-

nations of x1 and x2.

A.8. Proof of Proposition 9

Assume there is a hybrid equilibrium with cost intervals Is
1, I

s
2, ..., I

s
t and Iσ

1 , I
σ
2 , ..., I

σ
u , for which the sole

source award, respectively the split award, is the equilibrium outcome when the interval includes the two

lowest cost draws of the n competitors. Furthermore, t, u∈N and

Is
1 ∪ Is

2 ∪ ...∪ Is
t ∪ Iσ

1 ∪ Iσ
2 ∪ ...∪ Iσ

u = [Θ,Θ]
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applies. The functions ps
i (Θ) for i∈ 1, ..., t and pσ

j (Θ) for j ∈ 1, ..., u are the relevant equilibrium prices for the

sole source and split awards in the intervals Is
i and Iσ

i , respectively. Then, every possible hybrid equilibrium

must include a strategic parameter τ1 ∈ (Θ,Θ), for which the equilibrium results in the same award, when

all bidders have cost draws higher than τ . Without loss of generalization, we assume for the proof that

Is
1 = [Θ, τ1] and Iσ

1 = (τ1,Θ]. Then, the following conditions have to apply for a hybrid equilibrium:

(i) ps
1(τ1) = 2pσ

1(τ1)

(ii) ps
1(τ1)− τ1 = pσ

1(τ1)−Cτ1

(iii) pσ
1(τ1)≤ΘC

The first two conditions for hybrid equilibria have been established by Anton et al. (2010) for the FPSB

auction and two bidders. When all cost types belong to Is
1, the auctioneer choses the sole source award in

equilibrium; the split is selected, when all cost types are in Iσ
1 . Then, the auctioneer must be indifferent

between both awards in the case that all bidders have the same cost type τ1, as the price functions p
s
e(Θ) and

pσ
e (Θ) are increasing and continuous. Furthermore, a bidder must be indifferent of winning the sole source

award or the split award, when his cost parameter is τ1. Otherwise, he would not change his strategy for this

cost type in equilibrium. The third condition is a standard requirement for split prices in equilibrium with

more than two bidders. 17

In what follows, we show that these three assumptions can never be met simultaneously with DSE:

Combining (i) and (ii) results in pσ
1(τ1) = τ1(1−C) . Hence, with (iii)

pσ
1(τ1)≤ΘC

C ≥ τ1

τ1 +Θ

must apply. This is never true for τ1 ∈ (Θ,Θ) with DSE. Q.E.D.

A.9. Proof of Proposition 10

In order to prove sequential rationality, it has to be shown that there are no payoff-dominant sole source or

split deviations in phase 1 as well as in phase 2. In contrast to the setting with two bidders, the equilibrium

strategies for both phases are increasing. Hence, the losers of phase 1 have full information about the cost type

of the winner of phase 1, while their cost types remain private. This updating process has to be considered

for the derivation of the equilibrium strategies.

Split deviations: The equilibrium bidding strategy in phase 1 and 2 is similar to the equilibrium strategy

in an ex-ante split-award auction, in which two times 50% are auctioned off sequentially in two FPSB

auctions. The winner of the first auction cannot participate in the auction for the remaining 50% share,18

which is the reason why only deviations for the split award are possible. Hence, a strategy which maximizes

17 This is different to the case with two bidders, in which split prices are constant and can be greater than or equal
to ΘC. In such a setting, hybrid equilibria cannot be excluded.

18 Otherwise it would not be an ex-ante split-award auction.



Kokott, Bichler, Paulsen: Combinatorial First-Price Auctions

50

the expected payoff in a sequential ex-ante split-award auction, also excludes all split deviations in the Dutch

ex-post split-award auction. In proposition 15.1 in (Krishna 2009, p. 217), an equilibrium in a sequential

multi-unit (forward) auction is characterized, which can be easily transformed to an ex-post split-award

auction in our setting. Both settings are comparable, as we will see below that the winner of the first 50%

share cannot win the remaining 50% share due to DSE and the assumption of individual rationality. Hence,

the following equilibrium emerges:

Bidders accept the counteroffer for the split award in phase 1 at a price of

pσ1
e (Θ) =

∫ Θ

Θ
pσ2l
e (t)(n− 1)(1−F (t))n−2f(t)dt

(1−F (Θ))n−1
.

For phase 2, bidders are asymmetric, because n−1 losers and one winner of phase 1 compete for the remaining

50% share. The losers of phase 1 approve the counteroffer for the 50% share at a price of

pσ2l
e (Θ,Θw) =CΘ+C

∫ Θ

Θ
(1−F (t))n−2dt

(1−F (Θ))n−2
.

in equilibrium.

Additionally, we have to define a strategy for the winner of phase 1, which is off-equilibrium. When, for

example, supplier w wins 50% of the business in phase 1 and is also the winner of the remaining 50% share

in phase 2, the auctioneer pays him the sum of both split prices. Due to individual rationality this sum must

be at least as high as the costs for 100% of the business, Θw. Furthermore, the overall payoff of bidder w has

to be at least as high as the payoff in phase 1, as bidders are assumed to be payoff-maximizing and otherwise

the strategy would not be a credible threat. Therefore, bidder w can only accept counteroffers in phase 2,

which are higher than his additional costs (1−C)Θw. This is the case at a price of

pσ2w
e (Θw) = (1−C)Θw.

A loser of phase 1 with cost type Θl faces the following maximization problem in phase 2:

max
z

E[Π(z)] = (p2σl
e (z,Θw)−Θl)P (p2σl

e (z,Θw)<min{p2σl
e (Θ1:n−2,Θw), p

σ2w
e (Θw)} |Θ1:n−2 ≥Θw)

= (p2σl
e (z,Θw)−Θl)

(1−F (z))n−2

(1−F (Θw))n−2

As (1−C)Θw > pσ2l
e (Θ,Θw) applies for all Θ,Θw ∈ [Θ,Θ] with DSE, the n− 1 losers know that Θw never

wins the remaining share in equilibrium. Otherwise it would not be a a σ equilibrium and this is also the

reason, why ΘC and not pσ2w
e (Θw) is the upper limit for pσ2l

e (Θ,Θw). Nevertheless, the beliefs about the

cost types of the n−1 losers are updated after phase 1, as every supplier knows that the costs of every loser

of phase 1 cannot be lower than Θw, which is identical to the ex-ante format discussed by Krishna (2009).

One can easily check that inserting the equilibrium strategy p2σl
e (Θl,Θw) with z =Θl from above maximizes

the expected payoff.
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The expected equilibrium payoffs in phase 2 has to be considered for the derivation of the strategy in

phase 1 as well. Because the winner of phase 1 never wins the remaining share in phase 2, the same logic of

the proof of ex-ante split-award auctions yields pσ1
e (Θ).

However, there could be profitable sole source deviations, which are only possible in the ex-post format.

In what follows, we show that such deviations do not exist with DSE.

Sole source deviations: In phase 1, a bidder can deviate from equilibrium by accepting the 100% share

before the first 50% is awarded. Such a sole source deviation is only possible for types Θ̂∈ [Θ,2ΘC] and has

to satisfy

2pσ1
e (Θ)≤ p̂s(Θ)≤ 2ΘC.

The probability of winning the auction by accepting a counteroffer for 100% at a price of 2pσ1
e (Θ) is 1.

Therefore, no price which is lower than this bound can yield a higher expected payoff and such deviations

can be neglected. There is an upper bound for sole source deviations, because the split is accepted by a

bidder at the latest in round r with counteroffers csr = 2ΘC and cσr =ΘC.

Because all price functions are continuous, the deviating sole source price p̂s(Θ̂) can be expressed by

p̂s(Θ̂) = 2pσ1
e (Θ) with Θ∈ [Θ,Θ]. In what follows we show that the expected payoff for a sole source deviation

is strictly lower than the expected payoff in a σ equilibrium:

E[Π̂s(Θ̂)] = (p̂s(Θ̂)− Θ̂)P (p̂s(Θ̂)< 2pσ1
e (Θ1:n−1))

= (2pσ1
e (Θ)− Θ̂)P (2pσ1

e (Θ)< 2pσ1
e (Θ1:n−1))

= (2pσ1
e (Θ)− Θ̂)P (pσ1

e (Θ)< pσ1
e (Θ1:n−1))

= (pσ1
e (Θ)− Θ̂C + pσ1

e (Θ)− (1−C)Θ̂)(1−F (Θ))n−1

< (pσ1
e (Θ)− Θ̂C)(1−F (Θ))n−1 +(ΘC − (1−C)Θ̂)︸ ︷︷ ︸

<0, as C< Θ̂
Θ̂+Θ

(1−F (Θ))n−1

< (pσ1
e (Θ)− Θ̂C)(1−F (Θ))n−1

≤max
Θ

(pσ1
e (Θ)− Θ̂C)(1−F (Θ))n−1

=E[Πσ
e (Θ̂)].

The winner w of phase 1 has the chance to deviate for the sole source award in phase 2. We know that in

equilibrium the highest possible price for the auctioneer is CΘ, which determines the upper bound for any

sole source deviation. However, accepting the split for this price is unprofitable regardless of the cost type

of bidder w, because the additional costs for producing 100% of the business are not covered at this price.

CΘ< (1−C)Θw

C <
Θw

Θw +Θ

This applies for all Θw with DSE. Q.E.D.
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A.10. Proof of Corollary 4

The expected payoff in a σ equilibrium, E[Πσ
e (Θ)] = Θ(1−C)−CΘ, must be for all cost types Θ ∈ [Θ,Θ]

greater than or equal to the expected payoff of any other possible equilibrium. Condition (i) is necessary in

order to achieve payoff dominance over all σ equilibria. The derivation of the expected payoff function used

in condition (ii), which assures payoff dominance of the split over hybrid equilibria with parameter τ , can

be found in (Anton et al. 2010). Condition (iii) is adapted from proposition 5 of Anton and Yao (1992).

A.11. Proof of Corollary 6

It is known that truthful bidding, i.e. CΘi for 50% as well as Θi for 100% of the business is a dominant

strategy for bidders i∈ {A,B} in a VCG mechanism. Hence, the price of the auctioneer can be calculated as

pb
V CG(ΘA,ΘB) =ΘAC +(ΘB − (ΘAC +ΘBC))+ΘBC +(ΘA − (ΘAC +ΘBC))

= (ΘA +ΘB)(1−C)

≥ 2Θ(1−C)

= pb
σ(ΘA,ΘB) for all ΘA,ΘB ∈ [Θ,Θ]

For every possible combination of cost types the sum of the VCG prices is lower than or equal to the

purchasing costs in a payoff-dominant σ equilibrium in one of the three first-price split-award auctions

analyzed above. Q.E.D.

A.12. Proof of Proposition 11

For the following proofs, we need the ex-interim expected payoffs for a cost type Θ

E[Πs
e(Θ)] =

∫ Θ

Θ

(1−F (x))n−1dx in a WTA equilibrium and

E[Πσ
e (Θ)] =C

∫ Θ

Θ

(1−F (x))n−1 +(n− 1)F (x)(1−F (x))n−2dx in a σ equilibrium.

In what follows, it is shown that for all possible settings with DSE, regarding the parameters C, F , Θ, Θ

and n, there is always an interval (Θ∗,Θ] for which the σ equilibrium yields a higher payoff than the WTA

equilibrium, i.e., for which

E[Πs
e(Θ)]<E[Πσ

e (Θ)] for all Θ∈ (Θ∗,Θ]

E[Πs
e(Θ)]−E[Πσ

e (Θ)]< 0 for all Θ∈ (Θ∗,Θ].
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We show that this is true for high cost types:

lim
Θ→Θ

E[Πs
e(Θ)]−E[Πσ

e (Θ)]< 0

lim
Θ→Θ

∫ Θ

Θ

(1−F (x))n−1dx−C

∫ Θ

Θ

(1−F (x))n−1 +(n− 1)F (x)(1−F (x))n−2dx< 0

lim
Θ→Θ

∫ Θ

Θ
(1−F (x))n−1dx∫ Θ

Θ
(1−F (x))n−1 +(n− 1)F (x)(1−F (x))n−2dx

<C ∥ 0

0
L’Hospital

lim
Θ→Θ

−(1−F (t))n−1

−(1−F (t))n−1 − (n− 1)F (t)(1−F (t))n−2
<C

lim
Θ→Θ

1

1+ (n− 1) F (t)

1−F (t)

<C

0<C

Because this inequality applies for all possible C, the σ equilibrium always yields more payoff than the

WTA equilibrium for cost types in an interval (Θ∗,Θ].

As a result, a WTA equilibrium cannot be payoff-dominant for all cost types with DSE. Q.E.D.

A.13. Proof of Corollary 7

When the split equilibrium is payoff-dominant for an arbitrary setting with DSE, more than two bidders

and uniformly distributed cost parameters with support [Θ,Θ], it must apply that

E[Πs
e(Θ)]−E[Πσ

e (Θ)]< 0 ∀Θ∈ [Θ,Θ].

We know from proposition 11 that the σ equilibrium yields higher expected payoff than the WTA equilibrium

for bidders with high cost types. Therefore, it suffices to show that for a bidder with cost type Θ =Θ, the

WTA equilibrium yields a higher expected profit than the σ equilibrium.

E[Πs
e(Θ)]−E[Πσ

e (Θ)]> 0∫ Θ

Θ

(1−F (x))n−1dx−C

∫ Θ

Θ

(1−F (x))n−1 +(n− 1)F (x)(1−F (x))n−2dx> 0

(1−C)

∫ Θ

Θ

(Θ−x)n−1

(Θ−Θ)n−1
dx−C

∫ Θ

Θ

(n− 1)
(x−Θ)(Θ−x)n−2

(Θ−Θ)n−1
dx> 0 ∥ ∗(Θ−Θ)n−1

(1−C)

[
− (Θ−x)n

n

]Θ
Θ

−C(n− 1)

[
− (Θ−x)n

n(n− 1)

]Θ
Θ

> 0

(1− 2C)︸ ︷︷ ︸
>0

(Θ−Θ)n

n︸ ︷︷ ︸
>0

> 0

Hence, for small cost types, a WTA equilibrium yields higher payoff than a σ equilibrium. Q.E.D.
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Integration by parts:

∫ Θ

Θ

(x−Θ)(Θ−x)n−2dx=

[
− (Θ−x)n−1

n− 1
(x−Θ)

]Θ
Θ

−
∫ Θ

Θ

− (Θ−x)n−1

n− 1
dx

= 0+

[
− (Θ−x)n

n(n− 1)

]Θ
Θ

A.14. Proof of Corollary 8

We show that the expected price for the auctioneer in the σ equilibrium is lower than in the σ equilibrium,

when either C is sufficiently low or the cost types are uniformly distributed with DSE.

First, assume C < Θ

2Θ
. Then

E[pσ
b ] = 2CE[Θ3:n]<E[Θ2:n] =E[pWTA

b ]

C <
E[Θ3:n]

2E[Θ2:n]

The function f(x, y) = x
2y

is decreasing in y and increasing in x. Because E[Θ2:n]<Θ and E[Θ3:n]>Θ, the

inequality applies. Q.E.D.

Second, with a uniform distribution the expectation value of the k-th lowest order statistic Θk:n can be

expressed by

E[Θk:n] =Θ+
k

n+1
(Θ−Θ).

Hence, we can show that

E[pσ
b ] = 2CE[Θ3:n]<E[Θ2:n] =E[pWTA

b ]

2C(Θ+
3

n+1
(Θ−Θ))<Θ+

2

n+1
(Θ−Θ)

C <
Θ+ 2

n+1
(Θ−Θ)

2Θ+ 6
n+1

(Θ−Θ)
RHS ↗ 0.5 with n↗ inf

Therefore, it suffices to show that this applies for n= 3 and C =
Θ

Θ+Θ
:

Θ

Θ+Θ
<

Θ+ 1
2
(Θ−Θ)

2Θ+ 3
2
(Θ−Θ)

Θ

Θ+Θ
<

Θ+Θ

Θ+3Θ

3ΘΘ+Θ2 <Θ2 +2ΘΘ+Θ
2

0<Θ(Θ−Θ)

Q.E.D.
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Appendix B: Supporting Documentation for the Reviewing: Statistical Analysis

and Lab Environment

This appendix contains fixed-effects regressions of bids and prices for bidders in split and sole-source awards

for all treatments in subsection B.1. Moreover, fixed-effects regressions of the allocation (split vs. sole-source

award) are included. We also added the univariate regressions of bids and prices on the cost draws and plotted

them in subsection B.2. Finally, plots of split-award winner bids and prices over periods of all treatments are

attached to provide insight into the development of bidding behavior with repeated interaction in auctions.

We also added plots to visualize the distribution of allocations over periods for the two-bidder treatments.

B.1. Appendix: Regression Tables

In tables 5 to 10 the dependent variable is depicted in the left column and the intercept as well as all

independent variables in the columns to the right. For each dependent variable we provide estimates for the

coefficients of all explanatory variables for the univariate regression on cost draws X and the fixed-effects

regression X(P). The corresponding p-values are included in brackets below the coefficients. The columns

”subjects” and ”subjects per period” contain the number of subjects with significant (at least at the 5%

level) fixed-effects and fixed-effects over the periods of the experiment, respectively. The column ”period”

is the fixed-effect over periods for the reference subject and included for completeness. NA-values for the

latter column occur if a subject ends up in the corresponding allocation only once. The right outermost

column contains the R2 as a measurement for the explanatory power of the linear regression model. Note

that we used a logistic regression for the fixed-effects model of the binary outcome allocation with ajusted

measurement of explanatory power McFadden R2.

allocation intercept #subjects period #subjects per period McFadden R2

FPSB 2 A 0.82151 2 (all negative)/47 -0.15915 3 (all positive)/48 0.15533
(0.4737) * (0.2383) *

Split Bidders
single-unit bid intercept teta double-unit bid #subjects period #subjects per period adjusted R2

FPSB 2 S S 51.88973 0.08566
(1.04e-13)*** (0.117)

FPSB 2 S S(P) 34.49385 0.0571 0.07806 8 (all positive )/46 0.35459 2 (one positive and negative)/46 0.5286
(8.66e-05)*** (0.242545) (0.012520)* * (0.633163) *

double-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

FPSB 2 S D 91.11576 0.44934
(7.21e-13)*** (9.22e-06)***

FPSB 2 S D(P) 62.887305 0.481243 0.368754 3 (all positive)/46 0.094282 2 (all negative)/46 0.3685
(0.001058)** (3.50e-06)*** (0.012520)* * (0.953452) *

Sole-Source Bidders
single-unit bid intercept teta double-unit bid #subjects period #subjects per period adjusted R2

FPSB 2 SS S 100.8732 -0.1387
(8.7e-10)*** (0.303)

FPSB 2 SS S(P) 81.1726 -0.3662 0.444 5 (4 positive, 1 negative)/46 3.4386 11 (1 positive, 10 negative)/46
(6.98e-05)*** (0.001212)** (2.85e-12)*** * (0.033868)* *

double-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

FPSB 2 SS D 51.50754 0.7907
(1.18e-05)*** (6.31e-15)***

FPSB 2 SS D(P) 1.70465 0.83653 0.35606 7 (all positive)/46 -1.25169 1 (positive)/46
(0.926719) (<2e-16)*** (2.85e-12)*** * (0.390034) *

Table 5 FPSB (n=2) Regressions

In the fixed-effects regression FPSB 2 S S(P) in Table 5 the cost draw is not a statistically significant

explanatory variable for the single-unit bid of split award winners whereas each bidder’s double-unit bid

possesses relevant explanatory power. In regression FPSB 2 S D(P) the double-unit bid strictly increases in



Kokott, Bichler, Paulsen: Combinatorial First-Price Auctions

56

costs and the single-unit bid has explanatory power. In the fixed-effects regressions FPSB 2 SS S(P) and

FPSB 2 SS D(P) the single- and double unit bids of sole-source award bidders are statistically significant

increasing in the bid for the alternative number of units. The latter possesses more explanatory power than

for the split award winners which corresponds to our conjectures about the different relations of single- and

double-unit bids for split award winners and sole-source bidders. The negative influence of the cost parameter

in FPSB 2 SS S(P) might be explained by a large number of sole-source bidders, who submit high bids on

one unit to exclude the split award.

allocation intercept #subjects period #subjects per period McFadden R2

DU 2 A 1.90367 0 -0.013362 0/49 0.1415133

(0.2575) * (0.9398) *

Split Bidders

first single-unit bid intercept teta #subjects period #subjects per period adjusted R2

DU 2 S 1 51.20217 0.19497

(3.22e-08)*** (0.00854)**

DU 2 S 1(P) 52.2339 0.14209 4 (1 positive, 3 negative)/47 4.51003 2 (1 positive, 1 negative, 2 NA)/47 0.6171

(1.93e-05)*** (0.01678)* * 0.10722 *

second single-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

DU 2 S 2 62.10713 0.12452

(5.98e-12)*** (0.0767)

DU 2 S 2(P) 46.61149 0.06771 0.50969 25 (24 positive, 1 negative)/47 -0.71126 8 (6 positive and 2 negative, 3 NA)/47 0.8001

(9.74e-09)*** (0.088325) (<2e-16)*** * (0.142994) *

Sole-source Winners

direct double-unit bid intercept teta #subjects period #subjects per period adjusted R2

DU 2 SS D 95.6622 0.5888

(0.00108)** (0.02207)*

DU 2 SS D(P) 122.4552 0.09057 6 (all positive)/33 1.03293 1 (positive, 14 NA)/33 0.6203

(0.00176)** (0.76205) * (0.46129) *

first single-unit bid intercept teta #subjects period #subjects per period adjusted R2

DU 2 SS 1 6.4632 0.6052

(0.733072) (0.000589)***

DU 2 SS 1(P) -6.74E+00 5.44E-01 0/30 2.22E+00 0 (16 NA)/30 0.7367

(0.913) (0.149) * (0.535) *

second single-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

DU 2 SS 2 18.9572 0.5672

(0.212) (7.56e-05)***

DU 2 SS 2(P) 54.87064 -0.09605 1.06658 0/30 -3.48774 0 (16 NA)/30 0.7518

(0.3252) (0.7897) (0.0773). * (0.3008) *

Table 6 Dutch-Dutch (n=2) Regressions

In regression DU 2 S 1(P) in Table 6 the price of the first unit is increasing in the cost parameter.

Considering that the average price is above the equilibrium prediction. This suggests that high cost bidders

let the price rise higher above 70 as compared to their low cost counterparts. Interestingly, the price for

the second unit in the regression model DU 2 S 2(P) does not significantly depend on the cost draw but on

the height of the price for the first unit. Especially, the last observation is in line with our explanation of

the bidding behavior in the split awards of the Dutch auction with two bidders. Regarding the second unit,
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bidders appear to be influenced much more by the signal of their counterpart rather than by their own cost

type. Eight subjects even increased the price for the second unit statistically across the periods to make even

more profit (see figure 19).

In the fixed-effects regressions there are almost no independent variables with explanatory power. This can

be explained by our conjecture that sole-source awards occur when bidders let the price of the first and/or

the second unit rise too high. Similar to the split regression, the model DU 2 SS 2(P) describes sole-source

winners who obtain two single units consecutively. The price for the second unit is influenced by the price

of the first unit. If split-award winners hesitate to accept a second-unit price below the first-unit price,

sole-source winners are even more likely to do so.

allocation intercept #subjects period #subjects per period McFadden R2

DUSB 2 A -6.82E-03 0/49 2.59E-01 1 (negative)/49 0.1907833

(0.9961) * (0.2414) *

Split Bidders

first single-unit bid intercept teta #subjects period #subjects per period adjusted R2

DUSB 2 S W 1 51.01613 0.09005

(3.53e-15)*** (0.0776)

DUSB 2 S W 1(P) 51.05587 0.13715 34 (almost all negative)/49 0.26856 26 (almost all positive, 2 NA)/49 0.8192

(<2e-16)*** (1.83e-07)*** * (0.512747) *

second single-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

winner of first unit 49.61836 0.32714

DUSB 2 S W 2 (7.18e-07)*** (7.33e-05)***

DUSB 2 S W 2(P) 19.79858 0.446 0.124 4 (all positive) 0.07968 6 (4 negative, 2 positive, 2 NA)/49 0.4933

(0.254066) (1.11e-08)*** (0.537509) * (0.943477) *

winner of second 48.96511 0.14544

DUSB 2 S L 2 (2.61e-11)*** (0.0127)*

DUSB 2 S L 2(P) 4.83E+01 1.20E-01 1.81E-01 23 (almost all positive)/49 -2.73E-01 15 (mix, 1 NA)/49 0.7046

(1.88e-09)*** (0.002013)** (0.014269)* * (0.628269) *

Sole-source Winners

direct double-unit bid intercept teta #subjects period #subjects per period adjusted R2

DUSB 2 SS D 83.8373 0.4807

(0.00769)** (0.07491)

DUSB 2 SS D(P) -10.7642 1.3082 0/13 -0.5096 0 (8 NA)/13 0.415

(0.8837) (0.1137) * (0.8631) *

first single-unit bid intercept teta #subjects period #subjects per period adjusted R2

DUSB 2 SS 1 22.2237 0.3737

(0.2648) (0.0381)*

DUSB 2 SS 1(P) 6.783 0.4602 0/25 1.517 0 (16 NA)/25 0.8669

(0.9588) (0.6678) * (0.2148) *

second single-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

DUSB 2 SS 2 0.5297 0.6516

(0.974) (4.21e-05)***

DUSB 2 SS 2(P) 216.8512 -2.3889 2.4789 0/25 -2.8574 0 (16 NA)/25 0.9321

(0.224) (0.174) (0.123) * (0.201) *

Table 7 Dutch-FPSB (n=2) Regressions
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In the fixed-effects regressions for the Dutch-FPSB auction in table 7 we observe almost identical rela-

tionships between prices and explanatory variables than in the Dutch format. However, in the split-award

regression models DUSB 2 S W 1(P), DUSB 2 S W 2(P) and DUSB 2 S L 2(P) the cost draw has statis-

tically significant positive influence on the dependent variable. This is not surprising as with lower prices,

that are not supported by tacit collusion to the same extent as in the Dutch auction, bidders are inclined to

take into account their single-unit costs. Moreover, the price for the first unit is not a reliable predictor for

the bids on the second unit by winners of the first unit. As depicted in the right plot of figure 10 they bid

much higher to not risk winning the respective unit and sustain the split. In the left and right plot of this

figure the univariate regression lines lie within the predicted boundaries. The prices and bids of sole-source

winners are illustrated in figures 11 and 12.

Note, however, that contrary to the Dutch format, 26 winners of the first unit in split-award allocations

significantly increase the price for the respective unit over the number of periods as is shown in figure 21.

Regarding the second unit 15 winners substantially adapt the price at which they accept although not all of

them let the price rise higher. The distribution of allocations does not change over the periods as illustrated

in plot 22. These observations might indicate that subjects manage to overcome the initial uncertainty with

respect to the second period and eventually end up in a similar strong tacit collusion as described for the

Dutch auction and even support prices above equilibrium.

single-unit bid intercept teta 1/(teta-60) double-unit bid #subjects period #subjects over period adjusted R2

FPSB 3 S 2.09512 0.32766

(0.753) (5.53e-09)***

FPSB 3 S(P) -7.92E+01 5.75E-01 1.38E+03 2.08E-01 0/34 -8.71E-02 3 ( 2 positive, 1 negative)/34 0.3942

(0.117803) (0.044607)* (0.142947) (8.70e-10)*** * (0.903771) *

double-unit bid intercept teta single-unit bid #subjects period #subjects over period adjusted R2

FPSB 3 D 17.3928 0.9504

(0.243) (8.1e-14)***

FPSB 3 D(P) 17.35231 0.7494 0.39953 2 (all positive)/34 0.05135 3 ( all positive)/34 0.7784

(0.1358) (<2e-16)*** (7.05e-10)*** * (0.95894) *

Table 8 FPSB (n=3) Regressions

For the split award with three bidders the fixed-effects regressions in tables 8 to 10 contain a cost parameter

with significant explanatory power that is positively correlated with the corresponding dependent variable.
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first single-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

DU 3 1 26.9637 0.10899
(<2e-16)*** (5.24e-14)***

DU 3 1(P) 26.12313 0.092455 23 (all positive)/47 0.229195 12 (all negative, 6 NA)/47 0.6826
(<2e-16)*** (1.09e-14)*** * (0.028266)* *

second single-unit bid intercept teta single-unit bid #subjects period #subjects per period adjusted R2

DU 3 2 25.18748 0.12198
(<2e-16)*** (<2e-16)***

DU 3 2(P) 15.03993 0.120899 0.253872 3 (3 positive)/48 0.023405 2 (all negative, 3 NA)/48 0.6084
(9.50e-08)*** (<2e-16)*** (2.09e-05)*** * (0.84849) *

Table 9 Dutch-Dutch (n=3) Regressions

first single-unit bid intercept teta #subjects period #subjects over period adjusted R2

DUSB 3 W 1 18.61513 0.16846
(<2e-16)*** (<2e-16)***

DUSB 3 W 1(P) 17.888482 0.185402 10 (all positive)/49 -0.20185 8 (all positive, 2 NA)/49 0.7758
(<2e-16)*** (<2e-16)*** * (0.03235)* *

second single-unit bid intercept teta single-unit bid #subjects period #subjects over period adjusted R2

winner of first unit 45.426 0.4004
DUSB 3 W 2 (0.0126)* (0.0123)*

DUSB 3 W 2(P) 8.6789 0.32287 1.08283 9 (7 positive, 2 negative)/49 -0.39624 7 (4 positive, 3 negative, 2 NA)/49 0.8237
(0.651303) (0.052737). (0.148866) * (0.623098) *

winner and loser of second 7.2542 0.28409
DUSB 3 L 2 (0.238) (2.28e-08)***

DUSB 3 L 2(P) -5.794843 0.26957 0.282631 7 (all positive)/46 -0.042096 6 (1 positive, 5 negative)/46 0.5344
(0.584099) (6.51e-10)*** (0.161048) * (0.956202) *

Table 10 Dutch-FPSB (n=3) Regressions

Also, in regressions FPSB 3 S(P) and FPSB 3 D(P) the height of the single- and double-unit bid significantly

depends on the height of the bid for two and one units, respectively. The lower a bidder’s competitive bid

for one unit the more willing he is to submit a low bid on two units and vice versa as would be expected in

a competitive outcome.

Interestingly, in panel regression DU 3 2(P) for the second unit in the Dutch auction the price of the

first unit still contains high explanatory power whereas this is not the case for the respective regression

DUSB 3 L 2(P) in the Dutch-FPSB format. To explain this observation note that in the Dutch auction 12

subjects significantly decrease the price at which they accept the first unit over the periods. It appears that

if some bidders accepted the first unit at a higher price in the earlier periods then the price of the second

unit was also accepted at higher prices. This connection then vanishes with more periods. In contrast, in the

Dutch-FPSB format eight bidders let the price at which they accept the first unit rise significantly higher

with more periods. These bidders have accepted the first unit at rather low prices in early periods which did

not constitute a relevant signal for the price of the second unit. Generally, bidder behavior is rather constant

over periods as is depicted in plots 23 to 25.

B.2. Figures

In the plots of bids and prices against cost draws in figures 5 to 16 we include the solid univariate regression

lines and the dashed equilibrium strategies. If there are no significant fixed and period effects in the linear

regressions of bids and prices the univariate regression on the cost draws helps to visualize the subjects’

underlying bidding behavior.
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Figure 5 Bids of Split-Award Winners in FPSB

(n=2)
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Figure 7 Bids of Split-Award Winners in Dutch-

Dutch (n=2)
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Figure 10 Bids of Split-Award Winners in Dutch-
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B.3. Period Plots

In the following plots of bids and prices against periods the solid black line represents the average bid/price in

period 15 and the solid grey line depicts the average bid/price over all periods. For the two-bidder treatments

we included dashed lines for the range of constant pooling prices. Furthermore, for the treatments with two

bidders we also added plots of the distribution of allocations against periods.
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Figure 18 Distribution of allocations in FPSB (n=2)

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●
●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●●●●

●
●

●

●

●●●

●

●

●

●
●
●

●●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●
●●

●

●

●
●

●

●

●●●

●

●

●
●

●

●●

●
●●
●

●

●●

●●

●

2 4 6 8 12

40
60

80
10

0
12

0
14

0

Period

fir
st

 5
0%

 s
ha

re
 b

id

1 3 5 7 9 12 15

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●●

●

●

●●

●
●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

2 4 6 8 12

40
60

80
10

0
12

0
14

0

Period

se
co

nd
 5

0%
 s

ha
re

 b
id

1 3 5 7 9 12 15

Dutch split−award winners

Figure 19 Prices of Split-Award Winners in Dutch-Dutch (n=2)
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Figure 20 Distribution of allocations in Dutch (n=2)
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Figure 21 Prices of Split-Award Winners in Dutch-FPSB (n=2)
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Figure 22 Distribution of allocations in Dutch-FPSB (n=2)
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Figure 23 Bids of Split-Award Winners in FPSB (n=3)
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Figure 24 Prices of Split-Award Winners in Dutch-Dutch (n=3)
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Figure 25 Prices of Split-Award Winners in Dutch-FPSB (n=3)
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In the following we attach screenshots of the graphical user interface via which the subjects interacted

with each other and were presented with the relevant information during the different auction treatments.

To avoid redundancies we only provide screenshots for the two-bidder treatments. As our experiments were

conucted in German we provide English translations below the respective screens.

B.4. Screenshots in the FPSB Auction

Figure 26 Starting Screen in FPSB Treatments

The bidders are informed about their own costs for the supply of 50% or 100% of a fictitious order.

Moreover, a text on the screen indicates where the procurement auction, i.e., the submission of bids is going

to take place.

Each bidder is allowed to submit one bid for the 50% share and one bid for the 100% share of the order.

After the termination of the auction each bidder is informed about the winning prices and his own profit.
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Figure 27 Bid Submission Screen in FPSB Treatments

Figure 28 Result Screen in FPSB Treatments
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Figure 29 Waiting Screen in all Treatments

B.5. Screenshots in the Dutch Auction

Figure 30 Starting Screen in Dutch Treatments



Kokott, Bichler, Paulsen: Combinatorial First-Price Auctions

72

Each bidder is informed about his costs for the provision of the 50% or the 100% share. A text on the

screen indicates where the split-award auction takes place, i.e., where the increasing prices are located.

Figure 31 Screen with Increasing Prices in Dutch Treatments

The rising prices for the 50% share and the 100% share can be accepted via buttons next to them.

In case the 50% share was accepted the bidders are informed about the winner and the winning price.

The price for the remaining 50% share increases publicly and can be accepted via the button next to it.
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Figure 32 Result Screen for first unit in split of Dutch Treatments

Figure 33 Screen with Increasing Price for remaining unit in split of Dutch Treatments
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B.6. Screenshots in the Dutch-FPSB Auction

The Dutch-FPSB auction only differs from the Dutch-Dutch format in case the remaining unit is auctioned

off via a sealed-bid stage in the split award.

Figure 34 Bid Submission Screen for remaining unit in split of Dutch-FPSB Treatments

All bidders are allowed to submit one bid for the remaining 50% share of the order.


