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Abstract Algorithms for the convex decomposition of fractional linear program-
ming solutions are at the core of a class of market protocols proposed by Lavi and
Swamy (2011). Due to their generality, these protocols can approximately maxi-
mize social welfare in many hard real-world allocation problems while encourag-
ing truthful participation at the same time. Until recently, the only polynomial-
time decomposition technique relied heavily on the notoriously inefficient ellipsoid
method, limiting the practical applications of Lavi and Swamy’s work significantly.
To address this issue, we present a much simpler and faster decomposition tech-
nique based on a simple geometric idea. After a formal comparison with other
decomposition techniques, we conduct an extensive experimental evaluation to
show its advantages in practice.

Keywords algorithmic game theory · approximation algorithms · convex
decomposition · linear programming · mechanism design

1 Introduction

In many markets resources are allocated to agents whose valuation of the market’s
outcome is private information. If the agents are self-interested, they might be
misrepresented their valuation for personal benefit. To avoid strategic manipula-
tion and determine a desirable allocation, algorithmic mechanism design studies
market protocols that encourage truthful participation. See (Nisan et al 2007) for
an introduction. The celebrated Vickrey (1961), Clarke (1971) and Groves (1973)
(VCG) mechanism achieves this through a pricing scheme ensuring that all agents
maximize their utility by revealing their true valuation. For a VCG mechanism to
be truthful, the ability to compute outcomes that maximize social welfare with
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respect to the reported valuations is crucial. Unfortunately, this so called winner
determination problem (WDP) is often NP-hard and cannot be solved optimally
for many real-world problem sizes. A prominent example is the broadcast incen-
tive auction which was recently conducted by the US Federal Communications
Commission.1 Computationally hard allocation problems are also wide-spread in
logistics and supply chain management (Bichler et al 2006). For our experiments
we draw on an allocation problem from retail logistics.

1.1 Related Work

To preserve truthfulness for approximate solutions of the WDP, a mechanism with
a VCG pricing scheme must be maximal-in-range (Nisan and Ronen 2000). This
means it must return an optimal outcome with respect to a predefined subset of
outcomes. The maximal-in-range principle can be readily generalized to random-
ized mechanisms. Such mechanisms are called maximal-in-distribution-range and
draw an outcome randomly according to a distribution optimizing expectation
among a predefined subset of distributions. In combination with a VCG pric-
ing scheme, maximal-in-distribution-range mechanisms are truthful in expectation,
i.e. all agents maximize their expected utility by revealing their true valuation
(Dobzinski and Dughmi 2009). Assuming the WDP can be expressed as an inte-
ger linear program (ILP), Lavi and Swamy (2011) propose a scheme to construct
maximal-in-distribution-range mechanisms based on ordinary approximation al-
gorithms for the ILP. Due to its remarkable generality, their approach applies to
wide range of real-world resource allocation problems.

A formal description of Lavi and Swamy’s mechanism design scheme can be
found in Section 3. At this point we present a high level overview: Let α be an upper
bound on the integrality gap of the ILP, i.e. the largest ratio between a solution
of the ILP and a solution of the linear programming relaxation (LP-relaxation).
Scaling the polytope of the LP relaxation by a factor of α yields a set of fractional
solutions completely contained in the convex hull spanned by the solutions of the
ILP. Any solution from this set therefore corresponds to the expected outcome of
some probability distribution over outcomes. Furthermore, it is easy to optimize
over this set using standard linear programming techniques such as the simplex
method. To obtain a maximal-in-distribution-range mechanism, all that remains
is to compute a distribution over outcomes, i.e. a convex combination of integral
solutions, matching the relaxed solution in expectation.

For this task, Lavi and Swamy resort to a decomposition technique by Carr
and Vempala (2000), which models the decomposition as a linear program (LP).
However, since the LP has exponentially many variables, one for each outcome,
it is not solved directly. Instead, Carr and Vempala consider the dual to reduce
the number of variables. The dual, which has exponentially many constraints, is
solved via the ellipsoid method. The use of the ellipsoid method is crucial as is does
not need a complete enumeration of the constraints provided that a suitable sep-
aration oracle exists (Bland et al 1981). As separation oracle, the approximation
algorithm of the WDP can be used. The resulting algorithm yields a polynomially
sized convex combination within a polynomial number of calls to the approxima-

1 https://www.fcc.gov/about-fcc/fcc-initiatives/incentive-auctions
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tion algorithm. However, considering the notoriously poor practical performance
of the ellipsoid method, Carr and Vempala’s approach is mostly of theoretical rel-
evance. Since an efficient convex decomposition is crucial for the applicability of
Lavi and Swamy’s work to real-world problems, two algorithms to replace the el-
lipsoid method have been developed in parallel. In an earlier conference version of
this work, Kraft et al (2014) propose a geometric decomposition technique, while
Elbassioni et al’s (2016) approach is based on the multiplicative weights update
method (MWU method).

1.2 Contribution

We first introduce a decomposition technique based on a simple geometric princi-
ple that avoids the impractical ellipsoid method.2 Instead of computing an exact
decomposition, we settle for arbitrarily precise approximations. Given a precision
parameter ε > 0, our approach requires at most ⌈n2ε−2⌉ calls to the approxima-
tion algorithm, where n denote the number of positive variables in the solution of
the LP relaxation. Furthermore, the resulting convex combination consists of at
most ⌈n2ε−2⌉+ n+ 1 outcomes. The gain in performance comes at the price of a
reduction in social welfare by a factor of (1 + ε).

Next, we formally compare our algorithm to the decomposition technique pro-
posed by Elbassioni et al (2016). The technique is based on an approximation of
Carr and Vempala’s LP via Khandekar’s (2004) algorithm. The resulting convex
combination consist of at most n⌈log(n)ε−2⌉ outcomes and is constructed within
at most the same number of calls to the approximation algorithm.

The formal analysis suggests a better performance of Elbassioni et al’s de-
composition technique in the worst case. To compare performance in practice, we
conduct an extensive study with more than 4000 individual experiments, which
are based on a real-world resource allocation problem in retail logistics proposed
by Karänke et al (2015). To our knowledge, this is the first application of Lavi
and Swamy’s mechanism design scheme to a realistic resource allocation problem.
As the baseline of our experiments we use a slightly modified version of Carr and
Vempala’s decomposition technique that does not run the ellipsoid method to the
end, but terminate as soon as a convex decomposition is possible. This generally
requires less calls to the approximation algorithm and allows for a more meaningful
comparison to the other decomposition techniques. For low levels of precision, we
find that the difference in performance among all three methods is small. However,
as the level of precision rises, our algorithm is substantially faster than Elbassioni
et al’s, which in turn is substantially faster than Carr and Vempala’s. In partic-
ular, our approach requires the fewest calls to the approximation algorithm. The
evaluation of our data suggests that the advantage in practical performance is due
to the greedy nature of our algorithm.

2 Setting

Many real-world resource allocation problems can be solved naturally by means of
0-1 integer programming. Consider for instance the following scenario from retail

2 The key algorithmic idea was presented at WINE Kraft et al (2014).
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logistics by Karänke et al (2015) in which I carriers i ∈ {1, 2, . . . , I} have to trans-
port goods between K warehouses k ∈ {1, 2, . . . ,K}. Each carrier owns one truck
and each warehouse k can service at most ct,k trucks in time slot t ∈ {1, 2, . . . , T}.
To reduce waiting time at the loading docks, carriers can reserve time slots via a
binary reservation matrix r ∈ {0, 1}T×K . Setting rt,k = 1 corresponds to a reser-
vation for warehouse k at time t. Otherwise, if rt,k = 0, no reservation is made.
Let R = {0, 1}T×K be the set of all reservation matrices. Carrier i’s valuation for
a particular reservation matrix r is denoted by vi,r. We assume that all valua-
tions are normalized and monotone, i.e. vi,r = 0 if r contains no reservations and
vi,r ≤ vi,r′ if all reservations of r are included in r′.

Suppose reservations are allocated to carriers in a multi-unit combinatorial
auction. Valuation vi,r corresponds to carrier i’s bid for the reservation matrix r.
The outcome of the auction is captured by binary variables xi,r. If carrier i receives
her reservations according to r, then xi,r = 1; otherwise xi,r = 0. Assuming the
auctioneer aims to maximize social welfare, we can formulate the WDP as the
following 0-1 ILP:

maximize:
I∑

i=1

∑
r∈R

vi,rxi,r

subject to:
I∑

i=1

∑
r∈R

rt,kxi,r ≤ ct,k ∀t ∈ T, k ∈ K

∑
r∈R

xi,r ≤ 1 ∀i ∈ I

xi,r ∈ {0, 1} ∀i ∈ I, r ∈ R

(Q)

The first set of constraints ensures that no warehouses exceeds its capacity at any
point in time. The second set of constraints captures the XOR relation of bids, i.e.
each carrier is granted at most one reservation matrix.

Note that Q corresponds to a multidimensional multiple choice knapsack prob-
lem. Solving the WDP is therefore NP-hard and the direct implementation of
a VCG auction computationally intractable. However, Lavi and Swamy’s (2011)
mechanism design scheme admits the construction of a randomized auction that
approximates social welfare and is truthful in expectation at the same time. We
will review their work in Section 3.

2.1 Prerequisites

In the following we identify the prerequisites for Lavi and Swamy’s mechanism
design scheme. For this purpose, we introduce a general framework, which we will
use throughout Section 3 and 4. Suppose the WDP of a given resource allocation
problem is formulated as a 0-1 ILP max{

∑n
k=1 vkxk | x ∈ X ∩ Zn} over some n-

dimensional polytope X ⊆ [0, 1]n. For convenience we define Z(X) = X ∩Zn. The
requirements the ILP must satisfy are:

1. The components of an outcome x ∈ X must be separable into disjoint sets Ni

such that
∑

k∈Ni
vkxk corresponds to agent i’s valuation of x.
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2. Polytope X must satisfy the packing property. This means if x ∈ [0, 1]n is
dominated by an outcome x′ ∈ X, then x ∈ X must also hold true.

3. The LP relaxation max{
∑n

k=1 vkxk | x ∈ X} must be efficiently solvable.
4. The integrality gap of X must be bounded by an efficiently verifiable value

α ≥ 1. More precisely, a polynomial-time algorithm A : Rn
≥0 → Z(X) should

exists such that α
∑n

k=1 vkA(v)k ≥ max{
∑n

k=1 vkxk | x ∈ X} for all v ∈ Rn
≥0.

The first requirement, i.e. the separability of outcomes, is necessary for the compu-
tation of VCG prices. Clearly, the retail logistics problem satisfies this. As carrier
i’s valuation of outcome x ∈ [0, 1]I×R corresponds to

∑
r∈R vi,rxi,r, it suffices to

set Ni = {(i, r) | r ∈ R}. The remaining three requirements are necessary for the
decomposition of LP relaxation’s solution. In the remainder of this section, we
argue that all three requirements are satisfied by the retail logistics problem.

We begin with the packing property. Let x, x′ ∈ [0, 1]I×R be two, possibly
fractional, allocations. We say that x′ dominates x′ if xi,r ≤ x′

i,r for all carriers
i and reservation matrices r. Note that x can be created from x′ by partially
retaining reservation matrices. Since this neither violates the warehouse capacities
nor the XOR relation of bids, Q satisfies the packing property naturally.

Solving the LP relaxation of Q is more intricate. The reason is the exponential
number of variables xi,r with respect to the warehouses and time slots. Clearly,
it is impractical to solve the LP relaxation directly. Even gathering an exhaustive
list of the carriers’ valuations is already intractable; a common issue in combi-
natorial auctions. However, not all valuations must be known explicitly. Under
the reasonable assumption that each carrier is only interested in a small num-
ber of reservation matrices, bids can be expressed concisely via bidding languages
(Nisan 2006). Otherwise, demand queries can be used to identify relevant valua-
tions (Blumrosen and Nisan 2005). Both approaches yield optimal solutions of the
LP relaxation. Furthermore, we may assume these solutions to be sparse, i.e. their
number of positive components is polynomial in T and K.

Finally, we address the integrality gap. Remember that Q represents the WDP
of a multi-unit combinatorial auction. As such, it is common knowledge that Q
can be a approximated within a ratio of O((TK)1/(1+c)), where c denotes the
minimum capacity among all warehouses and time slots. In a stronger result, Briest
et al (2005) present a polynomial-time approximation algorithm that verifies an
integrality gap of 3e(TK)1/(1+c). It is important to note that this integrality gap
verfier works for all vectors v ∈ RI×R

≥0 and is not restricted to normalized and
monotone valuations.

3 The Mechanism Design Scheme

In this section, we review Lavi and Swamy’s (2011) mechanisms design scheme.
Suppose the WDP is formulated as a 0-1 ILP max{

∑n
k=1 vkxk | x ∈ Z(X)} over

some n-dimensional polytope X. Provided that the ILP satisfies the prerequisites
of Section 2, the mechanism design scheme yields a randomized market protocol
that is truthful in expectation and approximates the optimal social welfare within
a ratio of α. Their approach consists of three basic steps:

1. Compute a solution x∗ ∈ X of the LP relaxation max{
∑n

k=1 vkxk | x ∈ X}
and determine the corresponding VCG prices pi for each agent i. This yields
a truthful mechanism for the fractional problem.
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2. Use the α-integrality gap verifier A to decompose x∗/α into a convex com-
bination λ ∈ [0, 1]Z(X) of integral outcomes x ∈ Z(X). The resulting convex
combination should satisfy

∑
x∈Z(X) λxx = x∗/α.

3. Choose outcome x ∈ Z(X) at random with probability λx and charge each
agent i a price of pi(

∑
k∈Ni

vkxk)/(
∑

k∈Ni
vkx

∗
k) if

∑
k∈Ni

vkx
∗
k ̸= 0. Otherwise

do not charge agent i anything. This yields an α-approximation mechanism
that is truthful in expatiation.

The first step can be implemented via standard linear programming algorithms,
such as the simplex method. The implementation of the third step is also straight
forward. Our main focus is therefore on the decomposition of x∗/α.

For a convenient decomposition we slightly modify Lavi and Swamy’s mech-
anism design scheme in the following way: First, we do not require λ to be an
exact decomposition of x∗/α. Instead, λ only needs to weakly dominate x∗/α, i.e.∑

x∈Z(X) λxxk ≥ x∗
k/α for all k. At the end of this section we show how to adapt

the third step of the mechanism design scheme to account for such a relaxed λ. It
is also possible to convert λ directly into an exact decomposition of x∗/α (Kraft
et al 2014). Secondly, we assume that all components of x∗ are positive. This as-
sumption is justified as all λ ∈ [0, 1]Z(X) trivially dominate the components x∗

k/α
that are 0. Consequently, these components are irrelevant to the decomposition
and can be ignored. As mentioned in Section 2, this is particularly important
for combinatorial auctions, where the number of variables is exponential, but the
fractional solution is sparse.

3.1 The Ellipsoid Method

We proceed with the decomposition of x∗/α. For this task Lavi and Swamy use a
technique proposed by Carr and Vempala (2000), which is based on the ellipsoide
method and yields a convex combination λ weakly dominating x∗/α. Leveraging
the packing property of X, Lavi and Swamy slightly adapt this technique to ob-
tain an exact decomposition. However, since a dominating λ is sufficient for our
purposes, we present the original version of Carr and Vempala’s technique. Their
approach is based on the following LP:

minimize:
∑

x∈Z(X)

λx

subject to:
∑

x∈Z(X)

xkλx ≥ x∗
k/α for all 1 ≤ k ≤ n

∑
x∈Z(X)

λx ≥ 1

λx ≥ 0 for all x ∈ Z(X)

(P)

The variables λx represent the coefficients of a linear combination. The first
set of constraints ensures that the linear combination weakly dominates x∗/α.
The second constraint enforces the coefficients to sum up to a value of at least
1. Observe that a convex combination dominating x∗/α exists if and only if P
evaluates to 1. To prove that P indeed evaluates to 1, we consider the dual:
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maximize:
( n∑
k=1

(x∗
k/α)µk

)
+ ν

subject to:
( n∑
k=1

xkµk

)
+ ν ≤ 1 for all x ∈ Z(X)

µk ≥ 0 for all 1 ≤ k ≤ n

ν ≥ 0

(D)

The variables µk and ν correspond to the constraints of P. To gain intuition,
it is helpful to think of µ as a valuation function for the outcomes of the mech-
anism. According to this notion, the objective function of P captures the social
welfare of x∗/α with respect to µ. Similarly, the left hand side of the first set of
constraints corresponds to the social welfare of the integral outcomes x ∈ Z(X).
As the integrality gap of X is bounded by α, it is easy to see that D evaluates to 1.
Refer to Lemma 1 for a proof. By strong duality P also evaluates to 1, establishes
existence of a convex combination dominating x∗/α.

Lemma 1 D has an optimal solution of value 1.

Proof We first show that D has a solution of value 1. For this purpose, we set
ν = 1 and µ = 0. Clearly, this solution does not violate any constraints and has
an objective value of 1. It remains to show that no feasible solution has a better
objective value. For the sake of contradiction assume the existence of some µ′ and
ν′ with an objective value greater than 1, i.e. (

∑n
k=1(x

∗
k/α)µ

′
k) + ν′ > 1. Recall

that the integrality gap of X is at most α. Consequently, there must exist an
x ∈ Z(X) for which

( n∑
k=1

xkµ
′
k

)
+ ν′ ≥ max

{ n∑
k=1

x′
k

α
µ′
k

∣∣∣ x′ ∈ X
}
+ ν′ ≥

( n∑
k=1

x∗
k

α
µ′
k

)
+ ν′ > 1.

However, this contradicts the feasibility of µ′ and ν′ as they violate the constraint
of D associated with x. ⊓⊔

It remains to show how to compute an optimal solution of P. As each variable
λx corresponds to a point x ∈ Z(X), of which there might be exponentially many,
it is not practical to solve P directly. Instead, Carr and Vempala consider D first.
Since P only has n variables, it can be optimized in polynomial-time via the
ellipsoid method provided that a suitable separation oracle exists. Conveniently,
A can be used to construct such a separation oracle, see the proof of Theorem 1 for
more details. Let X̃ ⊆ Z(X) be the set of all integral points in X associated with
a constraint the ellipsoid method considered while optimizing D. Clearly, X̃ is of
polynomial size. Furthermore, the constraints associated with the points x ∈ X̃
must be sufficient to verify optimality for the solution computed by the ellipsoid
method. By strong duality, the corresponding variables λx are sufficient to find an
optimal solution of P. Let P̃ be a condensed version of P only containing variables
λx for which x ∈ X̃. All other variables are 0. As P̃ is of polynomial size, it can
be solve efficiently by standard linear programming algorithms. Algorithm 1 gives
a short summary of Carr and Vempala’s decomposition technique.



8 Martin Bichler et al.

Algorithm 1: EllipsoidDecomposition

Input: Polytope X ⊆ [0, 1]n, fractional solution x∗ ∈ X, α-integrality gap verifier A
Output: Convex combination λ ∈ RZ(X)

≥0

1 optimize D via the ellipsoid method using A as separation oracle;

2 let X̃ contain all points x ∈ Z(X) considered by the ellipsoid method;

3 construct P̃ by removing all variables λx for which x /∈ X̃ from P;

4 return an optimal solution of P̃;

Theorem 1 Algorithm 1 returns a convex combination λ ∈ RZ(X)
≥0 dominating

x∗/α. The run time of the algorithm is polynomial in that of A. The number of
positive coefficients in λ is also polynomial.

Proof Recall that every feasible solution of P̃ is a linear combination of points
in X̃ dominating x∗/α. Since X̃ ⊆ Z(X), proving the following three statements
immediately establishes the theorem: (a) Every optimal solution of P̃ is a convex
combination, i.e. P̃ evaluates to 1. (b) X̃ is of polynomial size. (c) X̃ can be
computed in polynomial-time with respect to the run time of A.

As our first step, we consider the execution of the ellipsoid method on D.
Provided that we have a suitable separation oracle, the ellipsoid method yields
an optimal solution of D in polynomial-time with respect to the run time of the
separation oracle. Recall that a separation oracle identifies hyperplanes separating
infeasible solutions from the feasible region. According to Lemma 1, we can add
(
∑n

k=1(x
∗
k/α)µk) + ν ≤ 1 to the constraints of D without losing optimal solu-

tions. To construct a suitable separation oracle, we distinguish three cases: First,
if (

∑n
k=1(x

∗
k/α)µk) + ν < 1, we return the newly added constraint as separator.

Secondly, if µ < 0, we return the violated non-negativity constraint as separator.
Finally, if the previous two cases do not apply, we use A to compute an integral
point x = A(µ). Because A verifies an integrality gap of α, it holds true that

( n∑
k=1

xkµk

)
+ ν ≥ max

{ n∑
k=1

x′
k

α
µk

∣∣∣ x′ ∈ X
}
+ ν ≥

( n∑
k=1

x∗
k

α
µk

)
+ ν ≥ 1.

Consequently, using the constraint associated with x as separator yields the desired
separation oracle.

We now direct our attention to the set X̃. Remember that X̃ contains all in-
tegral points of X corresponding to constraints the ellipsoid method considered
while optimizing D. Because the ellipsoid method only requires a polynomial num-
ber of iterations, each of which calls the separation oracle, we know that X̃ only
contains a polynomial number of points and the run time is polynomial in A. This
proves (b) and (c). Let D̃ be an LP identical to D where all constraints associated
with a point not in X̃ are removed. Since the ellipsoid method never uses these
constraints, D̃ and D must have the same optimal value, namely 1. Furthermore,
D̃ is the dual of P̃. By strong duality, P̃ also evaluates to 1. This establishes (a)
and concludes the proof. ⊓⊔
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3.2 Dominating Convex Combinations

We end this section with a brief remark on how to adopt Lavi and Swamy’s mech-
anism design scheme to account for a convex combination λ that dominates x∗/α.
Remember that λ models a probability distribution over all feasible outcomes ac-
cording to which a single outcome x ∈ Z(X) is drawn at random in the final step
of the scheme. The mechanism is truthful in expectation if the expected value E(x)
of x is equal to x∗/α. If λ dominates x∗/α, then E(x) also dominates x∗/α. To
compensate for the surplus in expectation, all components xk for which E(xk) > 0
can be set to 0 with probability 1− (x∗

k/α)/E(xk). This modification is admissible
because X satisfies the packing property. Let x′ denote the resulting outcome.
Basic probability theory implies that

E(x′
k) = Pr(x′

k = 1) = Pr(xk = 1)
x∗
k/α

E(xk)
= Pr(xk = 1)

x∗
k/α

Pr(xk = 1)
=

x∗
k

α
.

Consequently, x′ matches x∗/α in expectation and can be used instead of x in the
third step of Lavi and Swamy’s mechanism design scheme.

4 Alternative Decomposition Techniques

In this section we present two alternative decomposition techniques avoiding the
notoriously impractical ellipsoid method in Lavi and Swamy’s (2011) mechanism
design scheme. The gain in efficiency comes with a slight loss in social welfare.
Instead of a convex combination λ ∈ [0, 1]Z(X) that dominates x∗/α, both decom-
position techniques yield a λ dominating (1+ε)−1x∗/α where ε > 0 is an arbitrary
accuracy parameter.

4.1 The Closest Point Method

We begin with our decomposition technique, which we call closest point method
(CP method). Starting with a trivial convex combination λ(t) ∈ [0, 1]Z(X), the
method repeatedly updates λ(t) until it is within close distance to x∗/α. In each
iteration the new convex combination λ(t+1) is chosen to match the closest point
to x∗/α on the line segment between

∑
x∈Z(X) λ(t)xx and a sampled integral point

x ∈ Z(X). After at most n2ε−2 iterations λ(t) is sufficiently close to x∗/α to be
converted into a dominating convex combination. For this purpose, the coefficients
of λ(t) are carefully raised, resulting in a linear combination λ that dominates x∗/α
and whose coefficients sum up to

∑
x∈Z(X) λx ≤ 1+ ε. Scaling λ down by the sum

of its coefficients then yields a convex combination that dominates (1+ ε)−1x∗/α.
Refer to Algorithm 2 for a formal implementation of the CP method. In the

following we present an intuitive description of the algorithm. The initialization
phase constructs a convex combination λ(0) consisting of the single point 0, i.e. the
origin. Since X satisfies the packing property, we know that 0 is contained in X.
Let t denote the current iteration. Furthermore, let x̃(t) =

∑
x∈Z(X) λ(t)x denote

the point corresponding to the convex combination λ(t). The shortest L1 distance
between x̃(t) and a point dominating x∗/α is

∑n
k=1 max{x∗

k/α− x̃(t)k, 0}. While
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Algorithm 2: ClosestPointDecomposition

Input: Polytope X ⊆ [0, 1]n, fractional solution x∗ ∈ X, α-integrality gap verifier A,
accuracy parameter ε > 0

Output: Linear combination λ ∈ RZ(X)
≥0

1 t← 0; λ(t)← 0; λ0 ← 1; x̃← 0;
2 while

∑n
k=1 max{x∗

k/α− x̃(t)k, 0} > ε do
3 µ(t)← x∗/α− x̃(t);
4 x(t)← A((max{µ(t)k, 0})nk=1); forall the k such that µ(t)k < 0 do x(t)k ← 0;

5 δ ← argminδ′∈[0,1] ∥x∗/α− (δ′x̃(t) + (1− δ′)x(t))∥;
6 λ(t+ 1)← δλ(t+ 1); λ(t+ 1)x(t) ← λ(t+ 1)x(t) + 1− δ;

7 x̃(t+ 1)←
∑

x∈Z(X) λ(t+ 1)xx;

8 t← t+ 1;

9 λ← λ(t); forall the k such that x∗
k/α > x̃(t)k do λk̂ ← λk̂ + (x∗

k/α− x̃(t)k);

10 return λ;

this distance is still greater than ε, λ(t) needs to be updated. For this purpose,
the algorithm uses the integrality gap verifier A to sample a new integral point
x(t) ∈ Z(X). To close in on x∗/α, the vector µ(t) = x∗/α − x̃(t) appears to be a
sensible sample direction. However, as A can only handle non-negative inputs, the
algorithm uses (max{µ(t)k, 0})nk=1 instead and sets all components x(t)k for which
µ(t)k < 0 to 0 afterwards. Since X satisfies the packing property, the resulting x(t)
is still contained in Z(X). The algorithm is now ready to construct a new convex
combination λ(t+1). Note that every point x′ on the line segment between x̃(t) and
x(t) can be expressed as a convex combination x′ = δx̃(t) + (1− δ)x(t). Choosing
the δ that minimizes ∥x∗/α−x′∥ yields the x′ closest to x∗/α. The corresponding
convex combination λ(t + 1) is obtained by scaling λ(t) with δ and adding 1 − δ
to coefficient of x(t). Iteration t ends with an update of x̃(t).

Once x̃(t) is close enough to the set of points dominating x∗/α, the algorithm
begins to construct a linear combination λ that dominates x∗/α. For this purpose,
let k̂ be an n-dimensional point whose components are all 0 except for component
k̂k, which is 1. Since X has a finite integrality gap and satisfies the packing prop-
erty, we know that k̂ is contained in Z(X). To obtain λ , it is sufficient to add
x∗
k/α − x̃(t)k to the coefficient λ(t)k̂ whenever x∗

k/α > x̃(t)k. Clearly, the coeffi-
cients of λ sum up 1 +

∑n
k=1 max{x∗

k/α − x̃(t)k, 0} ≤ 1 + ε, yielding the desired
linear combination.

Theorem 2 Algorithm 2 computes a linear combination λ ∈ RZ(X)
≥0 that domi-

nates x∗/α and satisfies
∑

x∈Z(X) λx ≤ 1 + ε. The algorithm terminates after at

most ⌈n2ε−2⌉ iterations of the while loop and λ has at most ⌈n2ε−2⌉+n+1 positive
components.

Proof From the discretion of Algorithm 2, it should be clear that each λ(t) is
a valid convex combination. The initial convex combination λ(0) consists of a
single point and each subsequent iteration adds at most one new point. Once the
while loop has terminated, the algorithm constructs a linear combination λ that
dominates x∗/α by adding at most n more points, i.e. the points 1̂, 2̂, . . . , n̂. This
process raises the sum over the coefficients by an additional quantity of at most
ε. To establish the theorem, it is therefore sufficient to proof that the algorithm
terminates after at most ⌈n2ε−2⌉ iterations.
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To estimate the number of iterations, we consider how the length of µ(t), i.e.
the distance between x∗/α and x̃(t), decreases over time. In particular, our goal
is to prove that ∥µ(⌈n2ε−2⌉)∥ ≤ ε/

√
n. Using Hölder’s inequality to bound the L1

norm of µ(⌈n2ε−2⌉), this implies that

n∑
k=1

max
{x∗

k

α
− x̃(⌈n2ε−2⌉)k, 0

}
≤

∥∥µ(⌈n2ε−2⌉)
∥∥
1
≤

√
n
∥∥µ(⌈n2ε−2⌉)

∥∥ ≤ ε.

Therefore, if ∥µ(⌈n2ε−2⌉)∥ ≤ ε/
√
n indeed holds true, then the while loop termi-

nates after iteration t = ⌈n2ε−2⌉ or before.
Let t be an iteration before termination. To show ∥µ(⌈n2ε−2⌉)∥ ≤ ε/

√
n, we

first argue that x̃(t) and x(t) are separated by a hyperplane H through x∗/α
perpendicular to µ(t). We say that H separates x̃(t) from x(t) if

n∑
k=1

x(t)kµ(t)k ≥
n∑

k=1

x∗
k

α
µ(t)k >

n∑
k=1

x̃(t)kµ(t)k. (1)

To prove the first inequality of (1), remember that the algorithm sets all compo-
nents x(t)k = 0 for which µk < 0. Consequently, we get

n∑
k=1

x(t)kµ(t)k =
n∑

k=1

x(t)k max{µ(t)k, 0}

=
n∑

k=1

A
(
(max{µ(t)k, 0})nk=1

)
k
max{µ(t)k, 0}.

Since A returns a point that is an α-approximation in the direction given as its
argument, we conclude further that

n∑
k=1

x(t)kµ(t)k ≥ max
{ n∑
k=1

x′
k

α
max{µ(t)k, 0}

∣∣∣ x′ ∈ X
}

≥
n∑

k=1

x∗
k

α
max{µ(t)k, 0} ≥

n∑
k=1

x∗
k

α
µ(t)k.

This proves the first inequality of (1). We continue with the second inequality.
Because the algorithm has not terminated yet, it holds true that

0 <

n∑
k=1

(x∗
k

α
− x̃(t)k

)2
=

n∑
k=1

((x∗
k

α

)2
− 2

x∗
k

α
x̃(t)k + x̃(t)2k

)
.

Rearranging this term yields

n∑
k=1

((x∗
k

α
− x̃(t)k

)
x̃(t)k

)
<

n∑
k=1

((x∗
k

α
− x̃(t)k

)x∗
k

α

)
.

As µ(t) = x∗/α− x̃(t), this establishes the second inequality of (1) and proves that
x̃(t) and x(t) are separated by H.

Next, let z(t) be the point at the intersection of H with the line segment
between x̃(t) and x(t). This intersection exists because H separates x̃(t) from
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x(t). Consider the triangle formed by the points x̃(t), x∗/α and z(t). Since H
is perpendicular to µ(t), i.e. the vector x∗/α − x̃(t), there is a right angle at
x∗/α. Furthermore, remember that x̃(t + 1) is chosen as the point on the line
segment between x̃(t) and x(t) that is closest to x∗/α. Consequently, x̃(t + 1) is
the perpendicular foot on the leg opposing x∗/α. The corresponding altitude is
∥x∗/α− x̃(t+1)∥ = ∥µ(t+1)∥. Using basic geometry, we can express the squared
altitude of such a right triangle as

∥µ(t+ 1)∥2 =
∥x∗/α− x̃(t)∥2∥x∗/α− z(t)∥2

∥x∗/α− x̃(t)∥2 + ∥x∗/α− z(t)∥2 =
∥µ(t)∥2∥x∗/α− z(t)∥2

∥µ(t)∥2 + ∥x∗/α− z(t)∥2 .

Although we do not know the exact distance between x∗/α and z(t) we can bound
the distance by ∥∥∥x∗

α
− z(t)

∥∥∥2 =
n∑

k=1

(x∗
k

α
− z(t)k

)
≤

n∑
k=1

1 = n,

as both points are contained in the standard hypercube [0, 1]n. For ∥µ(t+ 1)∥2 this
yields the recurrence relation ∥µ(t+1)∥2 ≤ (∥µ(t)∥2n)/(∥µ(t)∥2+n). Rearranging
this inequality to n/∥µ(t+1)∥2 ≥ 1+n/∥µ(t)∥2, enables us to easily derive a bound
on its solution. The result is n/∥µ(t + 1)∥2 ≥ (t + 1) + n/∥µ(0)∥2. Rearranging
once more yields

∥µ(t+ 1)∥2 ≤ ∥µ(0)∥2n
∥µ(0)∥2(t+ 1) + n

≤ n2

n(t+ 1) + n
=

n

t+ 2
.

The second inequality holds true because µ(0) is contained in the standard hyper-
cube [0, 1]n, implying that ∥µ(0)∥2 ≤ n. Setting t = ⌈n2ε−2⌉, we get

∥µ(⌈n2 + ε−2⌉)∥ ≤
√

n

⌈n2ε−2⌉+ 1
≤

√
n

n2ε−2
=

ε√
n
,

which concludes the proof. ⊓⊔

4.2 The Multiplicative Weights Update Method

Next, we compare the CP method to a decomposition technique proposed by El-
bassioni et al (2015). Their decomposition technique, which is based on the MWU
method, is an adaptation of Khandekar’s (2004) fully polynomial-time approxi-
mation scheme for covering LPs. Applying this algorithm to the linear program
Q introduced in Section 2 yields a linear combination λ that dominates x∗/α and
whose coefficients sum up to at most 1+ε. To highlight similarities and differences
between the two decomposition techniques, we present a slightly modified version
of Elbassioni et al.’s work. In particular, we apply Khandekar’s algorithm directly
to the decomposition LP, using similar notation to that of the previous subsection
whenever appropriate. See Algorithm 3 for a formal implementation. Simplifying
the algorithm also allows us to slightly improve the approximation bounds from
1 + 4ε to 1 + ε.

We proceed with an intuitive description of Algorithm 3. Starting with the
initially empty linear combination λ(0), the algorithm repeatedly adds integral



Fast Convex Decomposition for Algorithmic Mechanism Design 13

Algorithm 3: MultiplicativeWeightsUpdateDecomposition

Input: Polytope X ⊆ [0, 1]n, fractional solution x∗ ∈ X, α-integrality gap verifier A,
accuracy parameter 0 < ε ≤ 1/2

Output: Linear combination λ ∈ RZ(X)
≥0

1 t← 0; λ(t)← 0; x̃(t)← 0; N(t)← {1, 2, . . . , n};
2 while N(t) ̸= ∅ do
3 µ(t)← 0; forall the k ∈ N(t) do µ(t)k ← (1− ε)(αx̃(t)k)/x

∗
k ;

4 x(t)← A((µ(t)k/x∗
k)

n
k=1);

5 λ(t+ 1)← λ(t); λ(t+ 1)x(t) ← λ(t+ 1)x(t) + α−1 min{x∗
k/x(t)k | k ∈ N(t)};

6 x̃(t+ 1)←
∑

x∈Z(X) λ(t+ 1)xx;

7 N(t+ 1)← {k | x̃(t+ 1)k < log(n)ε−2(x∗
k/α)};

8 t← t+ 1;

9 λ← (ε2/ log(n))λ(t);
10 return λ;

points x(t) ∈ Z(X) to λ(t) until all dimensions k are inactive. We say that k is
inactive if x̃(k)t ≥ log(n)ε−2(x∗

k/α). For convenience, we denote the set of active
dimensions at time t by N(t) = {k | x̃(t)k < log(n)ε−2(x∗

k/α)}. As x∗ is positive,
all dimensions are initially active, i.e. N(0) = {1, 2, . . . , n}.

To update λ(t), the algorithm samples a new integral point x(t) via the inte-
grality gap verifier A. The sample direction is determined as follows: First, the al-
gorithm constructs the vector µ(t) by setting µ(t)k = (1−ε)(αx̃(t)k)/x

∗
k if k ∈ N(t),

and µ(t)k = 0 otherwise. This way the contribution of an active dimension k is
proportional to the ratio x̃(t)k/x

∗
k while inactive dimensions do not contribute at

all. Note that the exponent of (1 − ε) is finite as x∗ is positive. Secondly, the al-
gorithm scales µ(t) by x∗ to obtain the sampling vector (µ(t)k/x

∗
k)

n
k=1. Again all

components of this vector are finite as x∗ is positive. After x(t) has been computed,
the corresponding coefficient λ(t)x(t) is raised to obtain a new convex combination
λ(t + 1). For this purpose, the algorithm identifies the minimum ratio x∗

k/x(t)k
among all active dimensions k ∈ N(t), multiplies it by α−1 and adds it to λ(t)x(t).
The iteration ends with an update of x̃(t) and N(t).

Once all components are inactive, the while loop terminates. At this point x̃(t)
weakly dominates log(n)ε−2(x∗/α). Scaling λ(t) by a factor of ε2/ log(n) eventu-
ally yields a linear combination λ dominating x∗/α. Furthermore, the coefficients
of λ sum up to at most 1 + ε as the following theorem states:

Theorem 3 Algorithm 3 computes a linear combination λ ∈ RZ(X)
≥0 that domi-

nates x∗/α and satisfies
∑

x∈Z(X) λx ≤ 1 + ε. The algorithm terminates after at

most n⌈log(n)ε−2⌉ iterations of the while loop and λ has at most n⌈log(n)ε−2⌉
positive components.

Proof From the description of Algorithm 3, it should be clear that the final lin-
ear combination λ returned by the algorithm dominates x∗/α. Furthermore, each
iteration of the while loop adds at most one new integral point x(t) ∈ Z(X) to
λ(t). To establish the theorem, it is therefore sufficient to prove the following two
statements: (a) The algorithm terminates after at most n⌈log(n)ε−2⌉ iterations.
(b) The coefficients of λ(t) sum up to at most log(n)ε−2(1 + ε) upon termination
of the while loop.



14 Martin Bichler et al.

We begin with (a). Our goal is to show that each iteration increases some com-
ponent x̃(t)k with k ∈ N(t) by x∗

k/α. We also show that no component of x̃(t) ever
decreases. Because dimension k becomes inactive once x̃(t)k ≥ log(n)ε−2(x∗

k/α),
this immediately yields the desired bound on the number of iterations.

Let t be an arbitrary iteration before termination and let k be an active dimen-
sion that maximizes the ratio x(t)k′/x∗

k′ among all k′ ∈ N(t). As our first step we
argue that x(t)k = 1. For the sake of contradiction, assume that x(t)k ̸= 1. Because
all components of x(t) are either 0 or 1, this implies x(t)k = 0. Considering that k
maximizes the ratio x(t)k′/x∗

k′ , we conclude that α
∑n

k′=1(µ(t)k′/x∗
k′)x(t)k′ = 0.

Remember that the vector (µ(t)k′/x∗
k′)nk′=1 corresponds to the sample direction of

x(t). Since A verifies an integrality gap of α, it holds true that

α
n∑

k′=1

µ(t)k′

x∗
k′

x(t)k′ ≥ max
{ n∑
k′=1

µ(t)k′

x∗
k′

x′
k′

∣∣∣ x′ ∈ X
}

≥
n∑

k′=1

µ(t)k′

x∗
k′

x∗
k′ = ∥µ(t)∥1 ≥ µ(t)k.

(2)

Being an active dimension, k satisfies µ(t)k = (1−ε)(αx̃(t)k)/x
∗
k > 0; a contradiction

to the observation that α
∑n

k′=1(µ(t)k′/x∗
k′)x(t)k′ = 0.

Now that x(t)k = 1 has been established, we investigate how x̃(t)k increases in
iteration t. By choice of k, we have x∗

k/x(t)k = min{x∗
k′/x(t)k′ | k′ ∈ N(t)}. Re-

member that α−1 min{x∗
k′/x(t)k′ | k′ ∈ N(t)} is the weight assigned to x(t) when

added to λ(t). Consequently, it holds true that x̃(t+1) = x̃(t)+(α−1x∗
k/x(t)k)x(t).

Clearly, no component of x̃(t+1) is decreased in this process. Furthermore, x̃(t+1)k
is increased by x∗

k/α as x̃(t+1)k = x̃(t)k + (α−1x∗
k/x(t)k)x(t)k = x̃(t)k + (x∗

k/α).
This proves (a).

We continue with (b). Let q be the value of t upon termination. Our goal
is to show that

∑
x∈Z(X) λ(q)x ≤ (1 + ε)ε−2 log(n) is valid. As our first step,

we analyze the decrease in the L1 norm of µ(t) over time. For this purpose, we
assume that 1 ≤ t < q and define δ(t) = min{x∗

k/x(t)k | k ∈ N(t)}. Remember
that x̃(t) = x̃(t− 1) + α−1δ(t− 1)x(t− 1). In the process of proving (a), we have
argued that the components of x̃(t) monotonically increase over time. As a result,
N(t) monotonically decreases, i.e. N(t) ⊆ N(t−1). Applying the definition of µ(t)
we conclude that

∥µ(t)∥1 =
∑

k∈N(t)

(1− ε)(αx̃(t)k)/x
∗
k ≤

∑
k∈N(t−1)

(1− ε)(αx̃(t)k)/x
∗
k

=
∑

k∈N(t−1)

(1− ε)(αx̃(t−1)k+δ(t−1)x(t−1)k)/x
∗
k

=
∑

k∈N(t−1)

µ(t− 1)k(1− ε)(δ(t−1)x(t−1)k)/x
∗
k .

(3)

We will now take a closer look at (1 − ε)(δ(t−1)x(t−1)k)/x
∗
k . By definition of

δ(t− 1), we can upper bound the exponent by

δ(t− 1)
x(t− 1)k

x∗
k

= min
{ x∗

k′

x(t− 1)k′

∣∣∣ k′ ∈ N(t− 1)
}x(t− 1)k

x∗
k

≤ 1
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for all k ∈ N t−1. Consequently, it holds true that

(1− ε)(δ(t−1)x(t−1)k)/x
∗
k + ε

(
δ(t− 1)

x(t− 1)k
x∗
k

)
≤ (1− ε) + ε = 1,

or simply (1 − ε)(δ(t−1)x(t−1)k)/x
∗
k ≤ 1 − ε(δ(t − 1)x(t − 1)k)/x

∗
k. Applying this

inequality to the bound on ∥µ(t)∥1 established earlier yields

∥µ(t)∥1 ≤
∑

k∈N(t−1)

µ(t− 1)k

(
1− εδ(t− 1)

x(t− 1)k
x∗
k

)
= ∥µ(t− 1)∥1

(
1− εδ(t− 1)

∥µ(t− 1)∥1

∑
k∈N(t−1)

µ(t− 1)k
x∗
k

x(t− 1)k

)
.

According to inequality (2), the term
∑

k∈N(t−1)(µ(t− 1)k/x
∗
k)x(t− 1)k is lower

bounded by ∥µ(t− 1)∥/α, implying that

∥µ(t)∥1 ≤ ∥µ(t−1)∥1
(
1− εδ(t− 1)

∥µ(t− 1)∥1
∥µ(t− 1)∥1

α

)
= ∥µ(t−1)∥1

(
1− εδ(t− 1)

α

)
.

Finally, using the inequality 1−y ≤ e−y, which holds true for all y ∈ R, we obtain
the following recurrence relation

∥µ(t)∥1 ≤ ∥µ(t− 1)∥1 exp
(
−εδ(t− 1)

α

)
. (4)

As our next step, we bound (1− ε)(αx̃(q)k)/x
∗
k , where k ∈ N(q− 1) is an active

component of the last iteration q− 1 before termination. Remember that the sum∑
k′∈N(q−1)(1 − ε)(αx̃(q)k′ )/x(q)∗k′ arose as an intermediate term in inequality (3)

while establishing recurrence relation (4). Therefore, this sum is less or equal to
∥µ(q − 1)∥1 exp(−α−1εδ(q − 1)), implying that

(1−ε)(αx̃(q)k)/x
∗
k ≤

∑
k′∈N(q−1)

(1−ε)(αx̃(q)k′ )/x(q)∗k′ ≤ ∥µ(q−1)∥1 exp
(
−εδ(q − 1)

α

)
.

Applying recurrence relation (4) q − 1 times yields

(1− ε)(αx̃(q)k)/x
∗
k ≤ ∥µ(0)∥1 exp

(
−εδ(q − 1)

α

) q−2∏
t=0

exp
(
−εδ(t)

α

)
= n exp

(
− ε

α

q−1∑
t=0

δ(t)
)
.

(5)

The last equality uses the observation that ∥µ(0)∥1 = n as all components of µ(0)
are initially 1.

Finally, we consider the coefficients of λ(q). In each iteration t, the algorithm
raises one coefficient by an additional value of α−1δ(t). Since all coefficients of
λ(0) are initially 0,

∑
x∈Z(X) λ(q)x is equal to α−1 ∑q−1

t=0 δ(t). We may there-

fore substitute one term with the other. In case of inequality (5), this results in
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(1− ε)(αx̃(q)k)/x
∗
k ≤ n exp(−ε

∑
x∈Z(X) λ(q)x) for any k ∈ N(q − 1). After taking

logarithms and rearranging we obtain∑
x∈Z(X)

λ(q)x ≤ 1

ε

(
log(n)− αx̃(q)k

x∗
k

log(1− ε)
)
.

Although k is an active dimension in iteration q − 1 it cannot be active upon
termination anymore, i.e. x̃(q)k ≥ log(n)ε−2(x∗

k/α). Consequently, we get∑
x∈Z(X)

λ(q)x ≤ 1

ε

(
log(n)− log(n)ε−2 log(1− ε)

)
=

(
1− ε2 log(1− ε)

) log(n)
ε

.

If we choose ε from the interval (0, 1/2], where 1/2 provides a lower bound on the
root of log(1− y)y3 +1, then 1− ε2 log(1− ε) ≤ (1 + ε)/ε is satisfied. As a result,∑

x∈Z(X) λ(q)x ≤ (1 + ε)ε−2 log(n) holds true, which concludes the proof. ⊓⊔

5 Experimental Evaluation

For the experimental comparison between our decomposition technique and Elbas-
sioni et al’s (2015), we come back to the retail logistics scenario from Section 2. In
this scenario I carriers must plan their daily tour between K warehouses. As each
warehouse has a limited capacity at the loading docks, carriers may experience
long waiting times for loading and unloading their cargo if they do not coordinate.
To reduce waiting times, Karänke et al (2015) suggest that carriers reserve loading
docs in advance via a multi-unit combinatorial auction. Due to the complexity of
the corresponding WDP, this retail logistic scenario poses an appealing setting for
Lavi and Swamy’s (2011) mechanism design scheme. In what follows, we briefly
describe the transportation network we are using, the bid generation, and the main
treatment variables of the experiments. We then conclude with an evaluation of
the experimental results.

5.1 Experimental Setup

We draw on data from the distribution network of a German retailer, whose trans-
portation network provides the distances and respective travel times between 65
locations of warehouses. In each simulation, a random subset of locations is cho-
sen. From this set, carriers are assigned a distinct depot, marking the start and
end point of their tour, and a random set of warehouses they need to visit. Let S
denote number of warehouses per carrier, i.e. the number of stops on a carrier’s
tour excluding the start and endpoint. The loading docs of the warehouses have a
capacity of 2 for all time slots of the day. Each time slot is 10 minutes, resulting in
a total of T = 90 time slots. To consider different problem sizes, we simulate prob-
lem instances from 12 up to 30 carriers and 10 upto 30 warehouses in step sizes
of 2. Furthermore, the number of warehouses each carrier must visit ranges from
3 to 5. Overall, we run a full factorial experiment with the treatment variables
described in Table 1 leading to 3267 experiments.

In each simulation, carriers compute all possible routes to visit their warehouses
and submit bids on routes that are not taking longer than 10 percent of the optimal
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Variable Values

Number of carriers (I) {10, . . . , 30}
Number of warehouses (K) {10, . . . , 30}
Warehouses per carrier (S) {3, 4, 5}
Precision (ε) {0.001, 0.01, 0.05}
Decomposition technique {CP,MWU, ellipsoid}

Table 1 Treatment variables

round trip time. The problem sizes of this traveling salesman problem is small
enough that we can compute exact solutions. After the routes for each carrier
have been determined, we compute a bid price for each route, which is a package
bid in the auction. The bid price is proportional to the time saved per day. All bid
data generated is available upon request for replication studies.

The simulation is implemented in the Java programming language. The com-
mercial mathematical programming solver Gurobi Optimizer v5.6.3 is used for
solving the optimization problems. Experiments were executed on a computer
with an Intel Core i7-3612 QM CPU (4 cores, 2.1GHz) and 8GB RAM. We do not
run the ellipsoid method to the end, but terminate as soon as a decomposition is
possible.

5.2 Results

We find that the CP method is substantially faster in terms of runtime and uses
less iterations (or terms in the convex decomposition) than the MWU method for
high precision values of ε ≤ 0.01. For low precision values of ε = 0.05 the differ-
ences between MWU and CP are not significant. The CP algorithm and the MWU
algorithms are both substantially faster than the ellipsoid method.

Figure 1 illustrates the average number of iterations with respect to the preci-
sion parameter ε across all combinations of I, K and S. The figure shows clearly
that the average case performance of the CP method is much less sensitive to the
value of ε than the MWU method. Furthermore, as indicated by the dashed line,
CP and MWU both need much fewer iterations than the ellipsoid method. Table 2
lists the average number of iterations and the average runtime for CP and MWU
not only with respect to ε, but also with respect to the problem size, in particular
the number of carriers I. The average is taken across all combinations of K and
S. We also provide the average number of iterations and the average runtime of
the ellipsoid method.

For our statistical evaluation, we use a linear regression to analyze the differ-
ences among CP, MWU, and the ellipsoid method and to control for the impact of
I, K, and S in the different problem instances. The results across different levels
of precision vary significantly such that we report them separately.

For ε = 0.001 the MWU method and the ellipsoid method need 81.51 and
141.89 iterations more than the CP method on average. If we use the number
of iterations as dependent variable and set the CP method as baseline, then the
difference in the number of iterations is significant at p < 0.0001. Similarly, the
CP method is on average 13.95 seconds faster than the MWU method and 6.09
seconds faster than the ellipsoid method, which is significant at p < 0.0001. With
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Fig. 1 Number of iterations with respect to ε averaging over all I, K and S

decreasing precision the performance differences between CP and MWU become
smaller. For instance, choosing ε = 0.01 results in an average of 9.16 iterations more
for the MWU when compared to the CP method. The difference is not significant.
Considering the runtime, the CP method is 1.46 seconds faster than the MWU
method, a difference that is only significant at p < 0.01. The performance difference
becomes even less significant for ε = 0.05. In this case, the MWU requires 0.37
fewer iterations on average than the CP method and its average runtime is 0.29
seconds faster than the CP method. Both values are not significant. For a complete
list of the regression coefficients and their significance refer to Table 3.

To better understand the performance differences between the CP method and
MWU the method, it is interesting to consider the convergence of both techniques.
Figure 2 shows how the distance between the current convex combination and the
scaled fractional solution decreases over time for a sample instance with I = 20,
k = 10, S = 5 and ε = 0.01. It is striking how the progress of the MWU method
is almost linear whereas the CP method makes rapid progress at first and slows
down towards the end resulting in a hyperbolic plot. The reason might be that
the MWU method updates the convex combination much more carefully than the
CP method. An interesting question for future research would be to analytically
analyze the average case performance of the MWU method.
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