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1. Introduction

In 2012 the Royal Swedish Academy of Sciences awarded Alvin E. Roth and Lloyd S. Shapley with the Nobel

Memorial Prize in Economic Science ”for the theory of stable allocations and the practice of market design” (Riksbank

2012). Many algorithms have been developed in this field starting with the seminal work by Gale and Shapley (1962)

who introduced the Deferred Acceptance (DA) algorithm for the Stable Marriage problem (SM). The problem is

two-sided as men and women have preferences over each other. The one-to-many generalization of SM is known as

the Hospitals / Residents problem (HR), because the assignment of residents or students to hospitals has become an

influential application. The one-to-many version of the DA algorithm, where students are proposing to the hospitals, is

also referred to as Student Optimal Stable Mechanism (SOSM) algorithm. Gale and Shapley (1962) showed that when

preferences of both sides are strict in a student-proposing version, a DA algorithm yields the unique stable matching

that is Pareto superior for students to any other stable matching. A matching is stable if no student-school pair exists,

where both prefer one another to their current assignment. The algorithm has a number of additional properties if

preferences are strict: It is strategy-proof for students, and it is not Pareto-dominated by any other Pareto efficient

mechanism that is strategy-proof. The DA algorithm is also favorable from a computational point of view, because

the worst-case complexity is only quadratic.

Note that every stable matching is Pareto efficient with strict preferences of both sides. In course assignment,

both course organizers and students might have preferences over the opposite side. In many cases, welfare analysis

takes only students preferences into account, and treat course rankings over students as exogenous constraints, often

referred to as priorities. In this paper, we focus on Pareto efficiency from the students’ perspective.

In contrast to two-sided matching problems, in one-sided matching problems only one set of participants has

preferences. In the House Allocation problem (HA) only applicants have preferences over houses. The one-to-many

version where multiple applicants can be assigned to one house is called the Capacitated House Allocation problem

(CHA) and houses are characterized by a fixed capacity. Some of the mechanisms for CHA can be adapted such

that they allow for the houses or objects to have priorities over the agents, which is then similar to the school choice

or course allocation problem. In addition to these wide-spread problems, many-to-many versions of the bipartite

matching problem under preferences have been studied as well as problems which are not based on a bipartite graph,

such as the Stable Roommates problem. Manlove (2013) provides an excellent overview of the various matching

problems under preferences and respective algorithms to solve these problems. The literature is close to established

fields in operational research, but adds stability and incentive compatibility as design desiderata.

In particular, one-to-many matching under preferences has found wide-spread application for school choice, col-

lege admission, or the assignment of residents to hospitals. In the school choice problem, for example, public school

districts give parents the opportunity to choose the public school their child will attend. The problem is solved by con-

sidering preferences of both families and schools (Abdulkadiroğlu and Sönmez 2003). The assignment of students to

courses at universities is similar and even more wide-spread. Such problems can be found in almost every university,
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although they are often solved via first-come first-served mechanisms in spite of the advantages that stable matching

mechanisms provide (Diebold et al. 2014). All of these prominent applications are versions of HR or CHA problems,

which we will focus on in this paper. Properties such as efficiency, incentives to report preferences truthfully, and

stability of the outcome in two-sided markets are success factors in practical applications. But there are several other

design desiderata, which asks for an empirical evaluation, in particular when preferences include indifferences.

1.1. Matching with Indifferences

The DA algorithm and its one-to-many extension require strict preferences. In most applications, however, pref-

erences include ties. For example, course organizers might be indifferent among all students in a particular semester.

Also, in school choice, school priorities are typically determined according to criteria that do not provide a strict

ordering of all students, often leading to large indifference classes. We will refer to the two-sided version of the HR

problem with ties as HRT. In school choice such ties in preferences are typically broken randomly to achieve a fixed

strict ordering of the schools. Although random tie-breaking procedures preserve stability and strategy-proofness of

the matching, they adversely affect the efficiency of the outcome as is illustrated in Example 1.

Example 1 Consider three course organizers c1, c2, and c3 with a capacity of one each and three

students s1, s2, and s3 with the following preferences in Table 1. For example, course organizer c2 is

indifferent between the students s1 and s3, but prefers student s2.

Table 1: Exemplary matching instance I with three students and three course organizers. Entries in round brackets are tied.

Students si Preference list ≽si Course organizers c j Capacity q j Preference list ≽c j

s1: c2 c1 c3 c1: 1 (s1, s2, s3)

s2: c3 c2 c1 c2: 1 s2 (s1, s3)

s3: c2 c3 c1 c3: 1 (s1, s3) s2

If ties are broken such that s1 is preferred to s2, and s2 is preferred to s3, then the student optimal stable

matching M would assign s1 to c1, s2 to c2, and s3 to c3. However, considering the original course

organizer preferences with indifferences there are Pareto improvements by assigning student s3 to course

c2 and student s2 to course c3. The new matching Pareto dominates M from the students’ point of view

and it is stable with respect to the original preferences of the course organizers.

Note that there are two notions of Pareto efficiency in two-sided matching, one where both sides are considered

and one where only the students are considered in a student optimal stable matching. Every stable matching with strict

preferences is Pareto efficient when both sides are considered, because no participant can be made better off without

making some other worse off. However, when only the students are considered in the student optimal matching, then
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there can be Pareto improvements for students in general (Roth 2008) and also when we have preferences with ties as

Example 1 illustrates. As indicated earlier, we will focus on the Pareto improvements for students in this paper.

1.2. Related Literature

Abdulkadiroğlu et al. (2009) show that every student optimal stable matching can be obtained with single tie-

breaking, but the outcome might not be Pareto efficient. Single tie-breaking means that there is a single tie-breaking

rule that is used for all courses in a course assignment problem for example. They show that there exists no strategy-

proof mechanism (stable or not) that Pareto improves on the DA algorithm with single tie-breaking. This means

that no other strategy-proof mechanisms such as serial dictatorship or top trading cycles Pareto dominate the DA

algorithm. Ashlagi and Nikzad (2015) compare single and multiple tie-breaking rules for the DA algorithm in school

choice depending on the balance between supply and demand in the matching market.

However, there may be stable matching mechanisms, which are not strategy-proof. Erdil and Ergin (2008) and

Kesten (2010) introduced mechanisms (ESMA, WOSMA, and EADAM), which correct for efficiency losses in SOSM.

When preferences involve ties, there is a non-empty set of stable matchings that are Pareto optimal for the students.

These stable matchings may have different sizes and one might want to find the maximum stable matching, even if

respective mechanisms are not strategy-proof. Manlove et al. (2002) already showed that ties can lead to computation-

ally hard problems. Kwanashie and Manlove (2013) proposed an integer program to find the maximum-cardinality

stable matching for the HR problem with ties (MAX HRT). This maximum-cardinality stable matching is not neces-

sarily efficient, however. Empirical results on MAX HRT can be found in (Irving and Manlove 2010).

There is a trade-off between strategy-proofness, the maximization of the cardinality of a matching, and the effi-

ciency of different stable matching mechanisms, but little is known about the order of magnitude of these trade-offs.

Obviously, the cost of strategy-proofness depends on the distribution of preferences and can be analyzed using field

data. Abdulkadiroğlu et al. (2009) analyzed a data set on student preferences from 2003-04 in New York City and

compared algorithms developed by Erdil and Ergin (2008) to find student optimal matchings based on the preferences

with ties and the outcome of the SOSM algorithm with single tie-breaking. They found a significant efficiency loss

due to tie-breaking, which is in contrast to data from Boston’s assignment system in 2005-06, where they report that

the costs of strategy-proofness were negligible. It is important to better understand the cost of strategy-proofness and

the differences between matching mechanisms. This has also been posed as a central research question in the seminal

paper by Abdulkadiroğlu et al. (2009).

The same question can be asked for one-sided matching problems. For example, in course allocation students

often need to be assigned to tutor groups at different times of the week. The material discussed in these tutor groups

is identical within a week and tutors do not have preferences, but students do have preferences for different times in

their weekly schedule. This is an example of a one-sided one-to-many matching, where students are often indifferent

between several tutor groups. We refer to the problem as CHAT if ties are included. Stability is not an issue in these

settings, but Pareto efficiency is. Apart from this the popularity and the profile of a matching matter. A matching
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is popular, if there is no other matching that is preferred by a majority of the agents. The profile describes the

distribution of ranks resulting from a matching. We compare Random Serial Dictatorship (RSD), a well-known

strategy-proof mechanism, to alternative algorithms which maximize popularity or the profile to estimate the cost of

strategy-proofness.

1.3. Contributions

In this paper, we contribute to the central question raised by Abdulkadiroğlu et al. (2009) and provide an empirical

analysis based on 28 data sets from course assignment applications, both one- and two-sided. Currently, there is

limited literature comparing matching algorithms based on field data (Abdulkadiroğlu et al. 2009, Irving and Manlove

2010), and we are not aware of an analysis of the cost of strategy-proofness for matching with indifferences beyond

the paper by Abdulkadiroğlu et al. (2009). We elicited the data and assigned courses using SOSM with random

tie-breaking such that students had incentives to reveal their preferences truthfully. We calculate the cost of strategy-

proofness by using the same preferences to compute matchings using different matching mechanisms. We analyze the

existing one-sided and two-sided mechanisms, but also contribute two derivatives of existing mechanisms.

Apart from the theoretical properties, we use a number of different metrics to better understand the trade-offs

between different mechanisms. We discuss the time complexity, the size, the popularity, and the average rank of

resulting matchings. We also introduce the ”Area under the Profile Curve Ratio” (AUPCR) as a convenient way

to compare rank profiles of different matchings. The AUPCR up to a specific rank describes the probability that a

matching mechanism will rank a randomly chosen student higher than his n-th preference. The study reveals trade-

offs between design desiderata such as strategy-proofness, efficiency, size, and popularity of different mechanisms.

Apart from SOSM, we use the Top Trading Cycles algorithm (TTC) as a strategy-proof mechanism (for stu-

dents) for two-sided matching problems. If one is willing to give up on strategy-proofness, but still wants weaker

forms of truthfulness and Pareto efficiency for students in two-sided matching problems, then EADAM and WOSMA

are close in terms of average size, average rank, and popularity. They provide Pareto improvements regarding stu-

dents compared to SOSM with tie-breaking. IP MAX HRT computes a maximum cardinality stable matching via

integer programming, but it is not truthful. We also introduce MESMA and MWOSMA, which are both based on

IP MAX HRT, but compute Pareto improvements like in ESMA and WOSMA. Such mechanisms might well be an

alternative in some applications, where participants have little prior knowledge.

In one-sided matching applications RSD is a simple and strategy-proof mechanism. The Top Trading Cycle

(TTC) and successors provide strategy-proof alternatives. Probabilistic Serial (PS) is a non-strategy-proof but envy-

free randomized alternative. Algorithms such as Pop-CHAT and ProB CHAT are more popular and have a better

average rank. MPO CHA and MPO CHAT increase the size and the AUPCR of the matchings. RSD is the only

strategy-proof one-sided mechanism in this study.

For both, the one-sided and two-sided mechanisms, we compute the cost of strategy-proofness with respect to size

and AUPCR.
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2. One-to-Many Matching Mechanisms

In what follows, we introduce definitions, metrics, and matching mechanisms analyzed in this paper.

2.1. Matchings, Matching Mechanisms, and their Properties

A one-to-many matching problem consists of two finite sets of agents S = {s1, s2, . . . , sn} and C = {c1, c2, . . . , cm}
with S ∩ C = ∅. The agents si ∈ S have a unit capacity while the agents c j ∈ C have a positive integer maximum

capacity q j ∈ Z+. Let Q =
∑m

j=1 q j denote the total capacity of all agents c j ∈ C. We will alternatively refer to students

si and courses or course organizers c j in this paper. To ensure that a feasible matching exists we assume n ≤ Q.

Let E ⊆ S ×C denote the set of acceptable s-c-pairs. For each agent in si ∈ S (resp. c j ∈ C) the set of acceptable

agents in C (resp. S ) is defined by:

A (si) =
{
c j ∈ C :

(
si, c j

)
∈ E
}
,

A
(
c j

)
=
{
si ∈ S :

(
si, c j

)
∈ E
}
.

Each agent ak ∈ S ∪ C has a preference list ≽ak ranking the acceptable agents in A (ak). For au, av ∈ A (ak) agent

ak is said to strictly prefer au to av if au ≻ak av and indifferent between if au ∼ak av. Indifferences are also called ties.

The rank of an agent au in the preference list ≽ak of an agent ak is defined as one plus the number of agents that ak

prefers to au:

rank (ak, au) = 1 +
∣∣∣{av ∈ A (ak) : av ≻ak au

}∣∣∣ .
Definition 2.1 (Matching) A matching M is a subset of E: M ⊆ E. The agents si ∈ S and c j ∈ C are said to be

assigned if
(
si, c j

)
∈ M. Let M (si) and M

(
c j

)
denote the set of assignees of si and c j in M, resp.:

M (si) =
{
c j ∈ C :

(
si, c j

)
∈ M
}
,

M
(
c j

)
=
{
si ∈ S :

(
si, c j

)
∈ M
}
.

A matching M is feasible if:

(i) |M (si)| ≤ 1 ∀ si ∈ S and

(ii)
∣∣∣∣M (c j

)∣∣∣∣ ≤ q j ∀ c j ∈ C.

LetM denote the set of all feasible matchings. One desirable property of matchings is Pareto efficiency, meaning

that no student can be made better off without making any other student worse off:

Definition 2.2 (Pareto efficiency of matchings) A matching M is Pareto efficient with respect to the students if there is

no other feasible matching M′ such that M′(s) ≽si M (si) for all students si ∈ S and M′(si) ≻si M (si) for some si ∈ S .

Stability means that there should be no unmatched pair of a student and a course
(
si, c j

)
where student si prefers

course c j to her current assignment and she has higher priority than some other student who is assigned to course c j.

Stability can be seen as a property of a solution that has no justified envy:
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Definition 2.3 (Stability) A matching M is stable if M (s′) ≻s M (s) implies s′ ≻M(s′) s for all s, s′ ∈ S .

The set of stable matchings is a subset of the Pareto optimal matchings considering both sides. Note that the notion

of Pareto efficiency introduced above concerns only the students. In the absence of ties, a stable matching is Pareto

optimal for both sides, but not necessarily for the students only, as we showed in Example 1; see Roth (1982) and

Ergin (2002). An example in Abdulkadiroğlu and Sönmez (2003) also shows that there are strict preferences where a

matching can either be stable or Pareto efficient, but not both.

Next we will discuss mechanisms to compute matchings and their properties. A mechanism computes a matching

for given preferences of students and courses. More formally, a mechanism χ is a function χ : P|A| →M that returns

a feasible matching M ∈ M of students to courses for every preference profile ≽A ∈ P|A| of students and courses. For

a submitted preference profile ≽A ∈ P|A| of the students, χ(≽A) is the associated matching. For a student s ∈ S the

assigned course is χs(≽A) ∈ C.

A mechanism is Pareto efficient if it always selects a Pareto efficient matching. Also, a mechanism is stable if it

always selects a stable matching. Another important property of a mechanism is strategy-proofness. This means that

there is no incentive for any student not to submit her true preferences, no matter what the other students submit:

Definition 2.4 (Strategy-proofness) A mechanism χ is strategy-proof if for any preference profile ≽A ∈ P|A|, any

student s ∈ S and ≽s
′ we have χs(≽A) ≽s χs(≽s

′,≽A\{s}).

(≽s
′,≽A\{s}) denotes the preference profile, where the preferences ≽s

′ of student s differ from her true preferences

≽s.

Note that Roth (1982) has shown that there cannot be a stable and strategy-proof matching mechanism for both

sides. For one-sided matching the result for strategy-proof and non-dictatorial mechanisms follows from Gibbard

(1973, 1977). In the literature on school choice, schools are typically assumed to have publicly known priorities, but

they are assumed not to be strategic, while the students are possibly strategic. These are reasonable assumptions also

for many course assignment problems. In the following subsections, we describe metrics for matchings and matching

mechanisms to solve one-to-many matching problems with preferences and summarize their properties. We start with

two-sided matching mechanisms, then we continue with mechanisms for one-sided problems and metrics relevant to

one-sided matching.

2.2. Metrics for Matchings

Efficiency and strategy-proofness are relevant to one-sided and two-sided matching problems. However, stability

is not meaningful for one-sided matching problems. We will now introduce four additional metrics that are particularly

useful for one-sided matchings.

The size of a matching simply describes the number of matched agents. Another possibility to compare different

matchings is the average rank and the median rank. However, these metrics are only meaningful in combination

with the size of the matching, because a smaller matching could easily have a smaller average rank if only certain
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students would be matched. We report the average average rank, because it has been used as a metric to gauge the

difference in welfare of matching algorithms in Budish and Cantillon (2012) and Abdulkadiroğlu et al. (2009), two

of the few experimental papers on matching mechanisms. Alternatively, one could compute the maximum k such that

some student has their kth-choice course.

The profile contains more information as it compares how many students were assigned to their first choice, how

many to their second choice, and so on. Similarly, for courses it compares how many students were assigned to the

first choice of a course (see Figure 4 for an example of profiles for different matching mechanisms).

The profile of two matchings is not straightforward to compare. Second order stochastic dominance is one possi-

bility (Levy 1992).3 Risk-averse expected-utility maximizers prefer a second-order stochastically dominant gamble to

a dominated one. We want to compare multiple profiles based on a single metric, and decided to use a metric similar

to the Area under the Curve of a Receiver Operating Characteristic in signal processing (Hanley and McNeil 1982).

The Area Under the Profile Curve Ratio (AUPCR) describes the area which is covered by the profile of a particular

matching mechanism and is scaled between 0 and 100. The AUPCR up to a specific rank is equal to the probability

that a matching mechanism will match a randomly chosen student higher than his n-th preference.

Definition 2.5 (Area Under Profile Curve Ratio) The Area Under the Profile Curve Ratio (AUPCR) is the ratio of

the Area Under the Profile Curve (AUPC) and the total area (TA), where the AUPC describes the integral below the

profile curve.

Regarding the students it is defined as follows:

T AS (M) = |C| ·min (|S | ,Q)

AUPCS (M) =

|C|∑
r=1

∣∣∣∣(si, c j

)
∈ M : rank

(
si, c j

)
≤ r
∣∣∣∣

AUPCRS (M) =
AUPCS (M)

T AS (M)

Finally, the popularity helps to compare two matchings with each other. A matching M is popular if it is preferred

by the majority of the agents. The formal definition is as follows:4

Definition 2.6 (Popularity (Manlove 2013, Abraham et al. 2007)) Let M,M′ ∈ M and P (M,M′) be the number of

agents preferring M to M′. M is more popular than M′ (M I M′), M is equally popular than M′ (M h M′) and M is

popular if the following equivalences hold:

M I M′ ⇔ P
(
M,M′

)
> P
(
M′,M

)
,

M h M′ ⇔ P
(
M,M′

)
= P
(
M′,M

)
,

M ∈ M is popular ⇔ ∀ M′ ∈ M : M I M′.

3In contrast to cumulative distribution functions, a more preferable profile is to the left and not to the right of a profile.
4An alternative to popularity are the unpopularity factor or unpopularity margin described in (Manlove 2013, Sec. 7.2.7).
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Please note that the more popular than relation I is not transitive (Abraham et al. 2007).

2.3. Two-Sided Matching Mechanisms

Let us now briefly introduce the two-sided matching mechanisms analyzed in our study.

2.3.1. Gale-Shapley Student-Optimal Stable Mechanism (SOSM)

The Gale-Shapley Student-Optimal Stable Mechanism (SOSM) is an extended version of the Deferred Acceptance

algorithm from Gale and Shapley (1962), which allows for one-to-many assignments. SOSM is stable and strategy-

proof (Abdulkadiroğlu and Sönmez 2003). The SOSM is stable when all preferences are strict. Moreover it is

constrained efficient for students in the sense that the outcome is not Pareto dominated by any other stable matching.

If there are ties, independent of how ties are broken the outcome is still stable, however is not guaranteed to be

constrained efficient any more (Erdil and Ergin 2008). Also, the SOSM matching with ties does not need to be

maximal, because with ties multiple stable matchings with different sizes may exist. The time complexity of SOSM

is O (|E|) as every acceptable student-course pair (E ⊆ S ×C) is at most considered once (Gusfield and Irving 1989).

2.3.2. Efficiency Adjusted Deferred Acceptance Mechanism (EADAM)

Kesten (2010) developed the Efficiency Adjusted Deferred Acceptance Mechanism (EADAM), in order to recover

the efficiency losses in SOSM. EADAM takes a SOSM matching and identifies student-course pairs (called interrupt-

ing pairs) that may harm the welfare when constructing the SOSM matching. Therefore, the preferences of the student

are modified if the student consents to waive her preferences, and SOSM is executed on the updated preferences. This

procedure is repeated until no interrupting pair exists any more. The algorithm only discovers Pareto improvements

such that no student would be worse off compared to the SOSM matching, even if she waives preferences. There is

no other fair matching that Pareto dominates the EADAM outcome. A similar algorithm can also be used to handle

inefficiency due to ties. One can combine the EADAM algorithm proposed for the case when priority orders are strict

with the one to handle ties as a way to achieve full Pareto efficiency.

EADAM achieves Pareto efficiency in presence of ties regarding students, but it relaxes strategy-proofness and

stability. The matching may become unstable concerning the original preferences. EADAM is not strategy-proof, but

Kesten (2010) proved that truth-telling is an ordinal Bayesian Nash equilibrium in EADAM. A strategy is an ordinal

Bayesian Nash equilibrium if it is a Bayesian Nash equilibrium for every possible von Neumann-Morgenstern utility

representation of students true preferences. The time complexity of EADAM is O
(
|E|2
)

(Kesten 2010).

2.3.3. Top Trading Cycle

The Top Trading Cycle (TTC) mechanism was described by Shapley and Scarf (1974) and designed for housing

markets, where agents initially hold an object. Subsequently, the agents trade among themselves to return the final

allocation. TTC satisfies individual rationality, Pareto-efficiency, strategy-proofness, and the outcome is in the core

with strict preferences. The TTC algorithm can also be adapted for one-to-many and two-sided matching problems
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such as the course allocation problem, where students and course organizers have preferences, and more than only

a single course seat is available. While this TTC algorithm for two-sided matching problems is Pareto efficient and

strategy-proof, it is not stable (Abdulkadiroğlu and Sönmez 2003). It is also not necessarily Pareto efficient in the

presence of ties.

2.3.4. Efficient and Stable Matching Algorithm (ESMA)

Erdil and Ergin (2006, 2008) developed the Efficient and Stable Matching Algorithm (ESMA) to address ties in

the preferences. ESMA also takes a SOSM matching and performs Pareto improvements, which preserve stability

by exchanging course seats in the presence of ties. As a result, there is no stable matching which Pareto dominates

the outcome. However, ESMA does not necessarily lead to a maximum matching, and it is not strategy-proof. The

authors showed, however, that truth-telling is also an ordinal Bayesian Nash equilibrium in ESMA in an environment

with symmetric information. The time complexity of ESMA is O
(
|S |3 · Q

)
.

2.3.5. Worker Optimal Stable Matching Algorithm (WOSMA)

Erdil and Ergin (2006, 2008) also suggested the Worker Optimal Stable Matching Algorithm (WOSMA), which is

similar to ESMA. It computes a student-optimal stable matching by carrying out stable student improvement chains

and cycles based on a SOSM matching. WOSMA is again stable, but not Pareto efficient for students (Erdil and

Ergin 2006, 2008). Similar to ESMA, WOSMA does not necessarily lead to a maximum matching and it is not

strategy-proof. In contrast to EADAM, WOSMA does not change the students preference lists. The time complexity

of WOSMA is O
(
|S |3 · |C|

)
.

2.3.6. Integer Program for MAX HRT (IP MAX HRT)

Stable matchings in HRT instances may have different sizes. For the problem of finding a maximum cardinality

stable matching (MAX HRT) (Rothblum 1992) already provided integer programming formulations. In addition, there

were constraint programming approaches to HRT and related problems (see Manlove (2013) for an overview). In our

analysis, we draw on a recent integer programming formulation by Kwanashie and Manlove (2013) for MAX HRT

(IP MAX HRT). The solution of this integer program is a stable matching of maximum cardinality. Even though

the problem is NP-complete, typically instances with hundreds of students can be solved to optimality in practice.

The IP MAX HRT is an NP-complete problem (Manlove et al. 2002), and there is some literature on approximation

algorithms for this problem (Király 2013). Note that the outcome does not need to be Pareto efficient for students.

2.3.7. Maximum Efficient and Stable Matching Algorithm (MESMA)

Similar to ESMA, Pareto improvement chains and cycles in an IP MAX HRT matching can be found using the

ESMA approach. The difference is that the algorithm starts with the result of IP MAX HRT rather than SOSM.

We refer to this procedure as Maximum Efficient and Stable Matching Algorithm (MESMA). This way we can gain

stability and Pareto efficiency with maximum cardinality matchings.
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Let us briefly describe how ESMA and MESMA find Pareto improvements in a stable matching. Regarding

the matching instance I in Example 1 and a possible stable matching M0 = {(s1, c3) , (s2, c2) , (s3, c1)} computed by

IP MAX HRT, the stable Pareto improvement would work as follows. The idea is to construct a 2-labeled graph ΓM

for a stable matching M.

Erdil and Ergin (2006) proved that a stable matching is Pareto efficient if and only if it does not admit a Pareto

improvement cycle or chain. The 2-labeled directed graph ΓM0 corresponding to the matching M0 is illustrated in

Figure 1.

s1

s2

s3

Figure 1: Example of MESMA applied to the matching instance I in Table 1

For example, there is an edge from s1 to s3 because M0 (s3) ≽s1 M0 (s1) and s1 ≽M0(s3) s3. The graph contains a

cycle C = ⟨s1, s2⟩ representing a stable Pareto improvement cycle. It can be carried out by exchanging the course

seats accordingly. Therefore, student s1 is assigned to course c1 in M1, where s3 was assigned to in M0. Both, M0 and

Table 2: Matching instance I from Example 1 with M0 and M1

Students si Preference list ≽si Course organizers c j Capacity q j Preference list ≽c j

s1: c2 c1 c3 c1: 1
(

s1 , s2, s3

)
s2: c3 c2 c1 c2: 1 s2 (s1, s3)

s3: c2 c3 c1 c3: 1
(
s1, s3

)
s2

M1 are shown in Table 2. Hence, the matching M1 = {(s1, c1) , (s2, c2) , (s3, c3)} Pareto dominates M0 regarding both

students and course organizers while still being stable.

2.3.8. Maximum Worker Optimal Stable Matching Algorithm (MWOSMA)

Just as MESMA improves on the IP MAX HRT matching using the ESMA approach, MWOSMA does the same

using stable student improvement chains and cycles from WOSMA. Therefore, the result is also stable and of maxi-

mum size. However, MWOSMA is not strategy-proof since IP MAX HRT is not strategy-proof either.

A summary of the theoretical properties and time complexity as well as empirical results is given in Table 20 in

the results section.
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2.4. One-Sided Matching Mechanisms

One-sided matching mechanisms are often described in the context of house allocation problems. We will continue

to use course assignment problems as an example, but assume that course organizers do not have preferences in this

context.

2.4.1. Serial Dictatorship

The Serial Dictatorship mechanism (SD) can be considered as a classical mechanism to construct a Pareto optimal

matching. Based on an ordering of the students S the mechanism takes each student in turn and assigns her to the

most-preferred under-subscribed course. The ordering can be based on priority or the outcome of a lottery. In the

latter case the mechanism is called Random Serial Dictatorship (RSD).

The RSD mechanism is Pareto efficient and strategy-proof. The size of the matching is not necessarily maximum,

due to the greedy approach of assigning students to courses and can have different sizes depending on the ordering.

The time complexity of RSD is O (|E|), because every acceptable student-course pair is considered at most once. The

RSD mechanism can also be applied to two-sided matching problems. However, it may be unstable for two-sided

problems.

In the presence of ties, RSD is not necessarily efficient. Suppose there is a student s1, who is indifferent between

courses c1 and c2, and a student s2 only interested in c1. If the tie in s1s list is broken in favor of c1, and the policy for

RSD is < s1, s2 >, then s1 is matched to c1 which is not Pareto optimal.

2.4.2. Popular-CHAT

The Popular-CHAT mechanism (Pop-CHAT) (Manlove and Sng 2006) aims to find the largest popular matching in

a CHAT instance, if a popular matching exists. This is not always the case (see for example the results on data set OS2

in our empirical analysis). The idea of Pop-CHAT is derived from a Theorem proposed by Manlove and Sng (2006),

which characterizes popular matchings. As every popular matching is Pareto optimal, Popular-CHAT is also Pareto

optimal as long as a popular matching exists. However, Popular-CHAT is not strategy-proof, meaning that a student

could benefit from concealing her true preferences. The time complexity of Popular-CHAT is O
((√

Q + |S |
)
|E|
)

(Manlove and Sng 2006).

2.4.3. Profile-based optimal CHAT

A rank-maximal matching can be constructed using the Profile-based optimal CHAT mechanism (ProB CHAT)

by Sng (2008). A matching is rank-maximal if its profile is lexicographically maximum over all possible matchings.

ProB CHAT proceeds incrementally by regarding ranks in an ascending manner. ProB CHAT is Pareto efficient but

not strategy-proof. The time complexity is O
(
min
(
z∗
√

Q,Q + z∗
)
|E|
)

where z∗ is the maximal rank of an edge in an

optimal solution (Sng 2008). A recent extension of the ProB CHAT algorithm to compute a maximum cardinality

matching considering the profile can be found in Kwanashie et al. (2015). Our analysis is based on the original paper

by Sng (2008).
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2.4.4. Maximum Pareto optimal CHA

The Maximum Pareto optimal CHA mechanism (MPO CHA) by Sng (2008) aims to find a maximum matching

which is Pareto optimal. It proceeds in three phases satisfying three conditions for a Pareto optimal matching (max-

imal, trade-in-free and cyclic coalition-free) stated by Sng (2008) and Manlove (2013). MPO CHA is not strategy-

proof. The time complexity is O
(√

n |E|
)

(Sng 2008, Manlove 2013). However, MPO CHA cannot handle ties in

preference lists.

2.4.5. Maximum Pareto optimal CHAT

The Maximum Pareto optimal CHAT mechanism (MPO CHAT) is an extension of the MPO CHA mechanism

where the phase for searching cyclic coalitions is adapted to handle ties. Therefore, a 2-labeled envy graph, compa-

rable to Erdil and Ergin (2006) (WOSMA), is built and searched for cycles. These cycles represent cyclic coalitions.

The time complexity of MPO CHAT is O ((|E| + |S | + |C|) |E|). A very recent strategy-proof and Pareto efficient mech-

anism for CHAT is given in Cechlárová et al. (2015).

2.5. Mechanisms Not Considered in the Study

There is a rapidly growing literature on one-sided and two-sided matching mechanisms. While we tried to cover

the most important mechanisms in the context of course allocation problems, we cannot possibly analyze all mecha-

nisms. For example, there are several new developments in the field of randomized assignment problems. Probabilistic

Serial (PS) is a randomized matching mechanism, which yields a lottery on a set of objects in the house allocation

problem. The PS mechanism produces an envy-free assignment with respect to the reported preferences, but it is not

strategy-proof (Bogomolnaia and Moulin 2001). There are various extensions of the initial house allocation problem

(Kojima 2009), but we decided to focus largely on deterministic algorithms in our study.

A few articles address housing markets with indifferences. The Top Trading Absorbing Sets (TTAS) (Alcalde-

Unzu and Molis 2011) and the Top Cycle Rules (TCR) (Jaramillo and Manjunath 2012) are strategy-proof, core

selecting, and Pareto optimal. Aziz and De Keijzer (2012) highlights commonalities among these mechanisms. Hous-

ing markets require an initial endowment, which is also different to the assignment problems discussed in this paper.
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3. Field Data

The data sets describe different matching instances in the context of course allocation. We collected the data sets

from a course allocation system that is used at the Technical University of Munich at the Department of Informatics.

The participants were told that the SOSM will be used to match students to courses. Students had a short introduction

and they knew that the mechanism is strategy-proof for students. Strategic manipulation by course organizers is

unlikely because they did not have information about student preferences and therefore, we assume that all participants

revealed their true preferences.

3.1. Two-Sided Preferences

Table 3: Summary of Two-Sided data sets

Name
Matching

#Students #Courses
Total

Ties
Incomplete lists

instance capacity Students Courses

TS1 HRT 539 26 575 3 3

TS2 HRT 113 6 72 3 3

TS3 HRT 557 38 459 3 3

TS4 HRT 27 6 59 3 3

TS5 HRT 88 12 116 3 3

TS6 HRT 689 36 726 3 3 3

TS7 HRT 662 39 637 3 3 3

TS8 HRT 314 13 292 3 3 3

TS9 HRT 27 13 94 3 3 3

TS10 HRT 57 9 86 3 3 3

TS11 HRT 18 3 36 3 3 3

TS12 HRT 636 40 758 3 3 3

TS13 HRT 595 41 549 3 3 3

TS14 HRT 105 11 110 3 3 3

TS15 HRT 78 16 253 3 3 3

TS16 HRT 731 40 775 3 3 3

TS17 HRT 733 43 753 3 3 3

TS18 HRT 426 14 264 3 3 3

TS19 HRT 99 4 44 3 3 3

For the group of two-sided matchings we collected 19 data sets from the registration for seminars and practical

courses for both bachelor and master students. Both students and course organizers could provide their preferences by
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Figure 2: Histograms of the length of preference lists in data set TS6

submitting a sorted list containing indifferences. The data sets were collected in the time period between June 2014

and March 2016. The characteristics of the data sets are described in Table 3. Seven data sets (TS2, TS3, TS7, TS8,

TS13, TS18, TS19) represent competitive matching instances, where the number of students exceeds the total course

capacity. In the data sets TS1 to TS5, all students are acceptable for course organizers, meaning that no incomplete

course organizer preference list exists.

Let us provide a few additional statistics on the distribution of preferences in data set TS6, which is representative

for other data sets as well. Figure 2 shows histograms of the length of the preference lists of students (a) and course

organizers (b) in data set TS6. The majority of students submitted preferences for one to four courses, marking

all other courses as unacceptable. One student submitted an empty preference list, meaning that all courses are

unacceptable, while one student gave preferences over 19 courses. 29 out of 36 course organizers in TS6 did not mark

any student as unacceptable. Two course organizers submitted preference lists of length 630, meaning that 59 students

were unacceptable.
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3.2. One-Sided Preferences

For matchings with one-sided preferences we collected nine data sets from the registrations to tutorials for both

bachelor and master students in the period between October 2012 and October 2015. Table 4 shows a summary of the

nine one-sided data sets. All data sets contain incomplete lists, meaning that students were able to mark courses as

unacceptable in their preference lists. All but two data sets (OS1 and OS2) contain ties.

Table 4: Summary of One-Sided data sets

Name
Matching

#Students #Courses
Total

Ties
Incomplete

instance capacity lists

OS1 CHA 136 8 136 3

OS2 CHA 418 47 429 3

OS3 CHAT 915 51 1080 3 3

OS4 CHAT 114 7 266 3 3

OS5 CHAT 156 6 180 3 3

OS6 CHAT 1035 39 1282 3 3

OS7 CHAT 522 21 626 3 3

OS8 CHAT 248 8 336 3 3

OS9 CHAT 106 5 130 3 3

Again, we describe one representative large data set. The histogram of the length of the preference lists of students

in data set OS3 is illustrated in Figure 3. It shows that the majority of students gave preferences over 10 to 15 tutorials,

while 6 students submitted preferences over all 51 tutorials.
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Figure 3: Histogram of the length of the preference lists of students in data set OS3

16



4. Results of Field Experiments

In what follows, we report on the main results of our analysis. All matching mechanisms were implemented in

Python 3.4.2 and run on a machine with a 2.6 GHz dual-core processor with 16 GB of RAM running OS X 10.11.3.

The IP Solver used in IP MAX HRT MESMA and MWOSMA was the open-source solver COIN CBC5 using the

PuLP6 LP modeler. For breaking ties we used multiple tie breakers for both students and course organizers. This

means that for every participant (student and course organizer) ties were broken independently. Since some of the

matching mechanisms depend on chance due to random tie breaking and may result in different outcomes in different

runs we repeatedly executed each mechanism. The results presented in the following sections show the average

metrics of 100 runs of each mechanism.

4.1. Two-Sided Matching

We applied the mechanisms described in Section 2.3 to the 19 data sets introduced in Section 3.1, assuming that

participants would also be truthful in mechanisms that are not strategy-proof. We will first analyze the results of a

single but representative data set (TS6) before we provide summary results of metrics for all 19 data sets for two-sided

matchings.

Table 5: Comparison of profiles for students in data set TS6. Absolute numbers and percentages in parenthesis.

Rank SOSM EADAM TTC ESMA WOSMA IP MAX HRT MESMA MWOSMA

1 492.4 (71.5) 514.2 (74.6) 525.0 (76.2) 498.2 (72.3) 514.0 (74.6) 490.0 (71.1) 491.0 (71.3) 498.0 (72.3)

2 81.9 (11.9) 68.2 (9.9) 51.5 (7.5) 81.5 (11.8) 70.0 (10.2) 93.0 (13.5) 92.0 (13.4) 89.0 (12.9)

3 24.0 (3.5) 18.2 (2.7) 15.6 (2.3) 23.2 (3.4) 21.8 (3.2) 36.0 (5.2) 36.0 (5.2) 34.0 (4.9)

4 12.8 (1.9) 11.3 (1.6) 10.5 (1.5) 11.8 (1.7) 10.8 (1.6) 20.0 (2.9) 20.0 (2.9) 18.0 (2.6)

5 2.7 (0.4) 2.3 (0.3) 2.3 (0.3) 2.4 (0.4) 2.2 (0.3) 6.0 (0.9) 6.0 (0.9) 6.0 (0.9)

6 0.3 (0.0) 0.1 (0.0) 0.1 (0.0) 0.1 (0.0) 0.0 (0.0) - - -

8 0.1 (0.0) 0.0 (0.0) - 0.1 (0.0) - - - -

9 0.4 (0.1) 0.3 (0.0) 0.3 (0.1) 0.3 (0.0) 0.2 (0.0) 3.0 (0.4) 3.0 (0.4) 3.0 (0.4)

10 0.0 (0.0) - - - - - - -

∞ 74.5 (10.8) 74.5 (10.8) 83.6 (12.1) 71.3 (10.4) 70.0 (10.2) 41.0 (6.0) 41.0 (6.0) 41.0 (6.0)

Table 5 describes the profiles for the eight matching mechanisms executed on data set TS6. For example, 525.0

students on average are assigned to their first choice using TTC. Furthermore, 83.6 students on average are not matched

(∞) using TTC, which is maximum compared to the other mechanisms. The numbers in parentheses denote the

percentage of all students. Table 5 shows that TTC results in the rank-maximal profile, because most students are

5http://www.coin-or.org/projects/Cbc.xml, last accessed on March 31st, 2016
6https://github.com/coin-or/pulp, last accessed on March 31st, 2016
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matched to their first choice course. Regarding the AUPCR metric, however, MWOSMA shows the best results since

it performed best regarding the entire profile including the number of unmatched students.
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Figure 4: Comparison of profiles for courses in data set TS6

A similar set of profiles can be computed for the course organizers. The profiles for course organizers for data set

TS6 can be found in detail in the Appendix A.1. Figure 4 illustrates the cumulated profiles for course organizers as

profile curves from which the AUPCR metric is computed. For instance, about 470 students are assigned to rank 20

or lower using ESMA.

Table 6: Comparison of popularity for students in data set TS6

EADAM TTC ESMA WOSMA IP MAX HRT MESMA MWOSMA

SOSM J (0.0, 25.6) J (31.3, 62.4) J (0.0, 9.0) J (0.0, 27.2) I (48.8, 45.8) I (48.5, 46.5) J (45.2, 49.5)

EADAM J (35.1, 44.8) I (22.3, 5.4) J (12.0, 13.3) I (64.5, 39.8) I (63.6, 39.9) I (58.1, 40.5)

TTC I (58.2, 34.4) I (47.6, 38.9) I (84.4, 53.1) I (83.4, 53.1) I (78.9, 53.8)

ESMA J (3.1, 21.4) I (50.8, 40.0) I (50.4, 40.6) I (46.8, 43.7)

WOSMA I (61.7, 35.2) I (60.7, 35.3) I (54.7, 35.8)

IP MAX HRT J (0.0, 1.0) J (0.0, 10.0)

MESMA J (0.0, 9.0)

Table 6 describes the popularity regarding students in data set TS6. For example, 48.8 students on average prefer

the SOSM matching to the IP MAX HRT matching, while only 45.8 students on average prefer the IP MAX HRT

matching to the SOSM matching. Thus SOSM is more popular than IP MAX HRT in this application. SOSM is more

popular than MESMA as well, but the difference is smaller (48.5 − 46.5 = 2.0) than compared to IP MAX HRT and
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SOSM (48.8 − 45.8 = 3.0). The reason for this is that MESMA improves on the IP MAX HRT matching. When

comparing IP MAX HRT and MESMA that MESMA is more popular than IP MAX HRT with one student prefering

the MESMA matching to the IP MAX HRT matching. The improvement of this student also becomes evident in the

comparison of the profiles of these two mechanisms, where one more student is matched to her first choice using

MESMA (see Table 5).

In terms of popularity, IP MAX HRT is dominated by all other matching mechanisms, while TTC dominates all

other mechanisms in TS6.

It is now interesting to look at summary statistics across all data sets to better understand the trade-offs. We

will first look at the AUPCR metric for students and for course organizers to estimate the cost of strategy-proofness.

Thereafter, we will consider the average ranks of all mechanisms, the sizes, their popularity, and the runtimes to

compute them.

Table 7 shows the AUPCR for students, which is highest for MWOSMA in all but three (TS2, TS18, TS19) of

the 19 data sets. In TS2 and TS18 EADAM achieves the highest AUPCR, while TTC results in the best AUPCR in

TS19. These three data sets (TS2, TS18, TS19) represent the most competitive matching instances of all data sets and

thus lead to slightly different results. Note that all EADAM, ESMA and WOSMA show better results than SOSM

regarding AUPCR, because they all improve efficiency of the SOSM matching. The same holds for the MESMA and

MWOSMA compared to IP MAX HRT. Overall, MWOSMA results in the highest average AUPCR of 89.70% (see

bottom row in Table 7).

We also report the results of a one-sided Wilcoxon signed-rank test to see if the differences in the ranks of different

matching mechanisms are statistically significant (at a significance level of 5%). The results are shown in Table 8. The

test supports the findings of the AUPCR. For example EADAM shows significantly better results than IP MAX HRT

in one of the 19 data sets, whereas IP MAX HRT is significantly better in four of the 19 data sets. In the remaining 14

data sets no statistically significant result can be observed. Table 8 indicates that MWOSMA performs best compared

to the other mechanisms because it computes significantly better results in many data sets and no other mechanism

shows significantly better results than MWOSMA in any data set.

The sizes of the matchings are shown in Table 9, and the results are in line with those of the AUPCR. All

IP MAX HRT, MESMA and MWOSMA result in the maximum matchings, because they optimize the cardinality

of the matchings. Table 9 also illustrates, that ESMA and WOSMA can increase the size of the SOSM matching. The

last row shows the average of the size compared to the maximum size. Note that TTC results in the smallest average

matching with 94.39% of the maximum size.

The average rank (see Table 10) is an alternative metric to compare different matchings. It does not consider the

entire profile curve and yields different results. Typically, either EADAM, TTC or WOSMA result in the best (lowest)

average rank across all mechanisms for the different data sets. The median rank is almost always 1 for our data sets.

Table 11 describes the popularity of the different mechanisms, i.e., the students’ point of view comparing the

outcome of two different matchings. It shows in how many data sets one mechanism is more popular than another
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Table 7: Comparison of AUPCR for students for two-sided data sets

SOSM EADAM TTC ESMA WOSMA IP MAX HRT MESMA MWOSMA

TS1 92.54% 92.82% 91.28% 93.21% 93.39% 97.72% 98.27% 98.40%

TS2 79.82% 87.69% 87.28% 83.18% 85.94% 82.18% 85.42% 87.50%

TS3 89.77% 90.43% 89.37% 90.29% 90.65% 94.26% 94.64% 95.09%

TS4 68.83% 69.16% 69.14% 69.73% 69.65% 74.69% 75.93% 75.93%

TS5 90.63% 90.96% 90.60% 91.25% 91.42% 93.94% 95.17% 95.36%

TS6 88.45% 88.58% 87.35% 88.94% 89.21% 92.95% 92.95% 93.01%

TS7 86.31% 86.67% 85.87% 86.78% 87.04% 94.89% 94.98% 95.01%

TS8 91.25% 92.43% 89.86% 92.26% 93.22% 94.20% 95.26% 95.94%

TS9 48.41% 48.41% 48.41% 48.41% 48.41% 50.43% 50.43% 50.43%

TS10 95.29% 95.31% 95.26% 95.34% 96.36% 97.47% 97.47% 97.47%

TS11 80.56% 80.56% 81.33% 80.56% 83.33% 83.33% 83.33% 83.33%

TS12 92.36% 92.43% 91.40% 92.85% 93.18% 97.04% 97.11% 97.11%

TS13 82.66% 83.19% 81.74% 83.58% 83.68% 87.90% 88.47% 88.74%

TS14 83.19% 83.67% 82.37% 83.89% 84.20% 87.27% 87.53% 88.05%

TS15 97.88% 97.88% 97.92% 97.88% 99.27% 99.60% 99.60% 99.68%

TS16 88.43% 88.53% 87.51% 88.92% 89.20% 93.45% 93.45% 93.48%

TS17 85.30% 85.49% 84.12% 85.92% 86.38% 92.20% 92.20% 92.20%

TS18 90.03% 95.33% 94.59% 93.82% 94.61% 90.58% 94.40% 95.16%

TS19 74.81% 86.47% 87.50% 82.55% 83.43% 73.30% 81.82% 82.39%

Avg. 84.55% 86.11% 85.42% 85.76% 86.45% 88.28% 89.39% 89.70%

one. For example EADAM is more popular than WOSMA for students in four of the 19 data sets, while WOSMA

is more popular than EADAM in 14 of the 19 data sets. In the remaining data set they are equally popular. In total,

WOSMA is more popular than all other mechanisms in most of the cases.

The runtimes reported in Table 12 are consistent with the theoretical complexities. The runtimes are all within

seconds except for IP MAX HRT, MESMA and MWOSMA in TS6 and TS16, where the integer program took more

than six hours to solve to optimality. All other data sets took significantly less time, often only seconds or minutes.

We’ll provide an overall summary of AUPCR, popularity, average rank, and average size in Table 20.
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Table 8: Comparison of one-sided Wilcoxon signed-rank tests for students for two-sided data sets

EADAM TTC ESMA WOSMA IP MAX HRT MESMA MWOSMA

SOSM (0, 12) (0, 3) (0, 13) (0, 14) (0, 5) (0, 9) (0, 10)

EADAM (0, 0) (4, 0) (0, 3) (1, 4) (0, 6) (0, 6)

TTC (0, 0) (0, 1) (1, 5) (0, 7) (0, 7)

ESMA (0, 9) (0, 5) (0, 5) (0, 8)

WOSMA (2, 0) (0, 1) (0, 1)

IP MAX HRT (0, 10) (0, 11)

MESMA (0, 4)

Table 9: Comparison of sizes for two-sided data sets

#Students Capacity SOSM EADAM TTC ESMA WOSMA IP MAX HRT MESMA MWOSMA

TS1 539 575 505.26 505.26 497.02 507.48 507.38 538.00 538.00 538.00

TS2 113 72 72.00 72.00 72.00 72.00 72.00 72.00 72.00 72.00

TS3 557 459 422.76 422.76 417.69 423.95 424.26 449.00 449.00 449.00

TS4 27 59 22.83 22.83 22.69 22.99 22.93 26.00 26.00 26.00

TS5 88 116 82.06 82.06 81.78 82.24 82.25 87.00 87.00 87.00

TS6 689 726 614.52 614.52 605.38 617.67 619.01 648.00 648.00 648.00

TS7 662 637 559.49 559.49 554.40 561.20 561.81 622.00 622.00 622.00

TS8 314 292 279.02 279.02 271.03 280.20 280.91 292.00 292.00 292.00

TS9 27 94 13.41 13.41 13.41 13.41 13.41 14.00 14.00 14.00

TS10 57 86 54.87 54.87 54.92 54.87 55.29 56.00 56.00 56.00

TS11 18 36 14.50 14.50 14.71 14.50 15.00 15.00 15.00 15.00

TS12 636 758 591.68 591.68 584.82 594.60 596.19 623.00 623.00 623.00

TS13 595 549 463.31 463.31 455.39 466.26 466.04 499.00 499.00 499.00

TS14 105 110 90.24 90.24 88.71 90.70 90.65 96.00 96.00 96.00

TS15 78 253 76.60 76.60 76.64 76.60 77.66 78.00 78.00 78.00

TS16 731 775 652.60 652.60 644.88 656.04 657.29 692.00 692.00 692.00

TS17 733 753 634.58 634.58 624.05 638.41 641.26 690.00 690.00 690.00

TS18 426 264 264.00 264.00 264.00 264.00 264.00 264.00 264.00 264.00

TS19 99 44 44.00 44.00 44.00 44.00 44.00 44.00 44.00 44.00

Avg. 95.12% 95.12% 94.39% 95.40% 95.74% 100.00% 100.00% 100.00%
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Table 10: Comparison of average ranks for students for two-sided data sets

#Courses SOSM EADAM TTC ESMA WOSMA IP MAX HRT MESMA MWOSMA

TS1 26 1.333 1.256 1.263 1.261 1.206 1.546 1.403 1.368

TS2 6 2.211 1.738 1.763 2.009 1.844 2.069 1.875 1.750

TS3 38 1.961 1.689 1.679 1.852 1.732 2.401 2.218 2.105

TS4 6 2.114 2.091 2.062 2.084 2.077 2.346 2.269 2.269

TS5 12 1.337 1.294 1.301 1.282 1.262 1.598 1.448 1.425

TS6 36 1.299 1.245 1.209 1.286 1.252 1.421 1.420 1.400

TS7 39 1.675 1.514 1.521 1.583 1.513 2.101 2.064 2.053

TS8 13 1.585 1.424 1.414 1.501 1.403 1.753 1.616 1.527

TS9 13 1.328 1.328 1.328 1.328 1.328 1.357 1.357 1.357

TS10 9 1.091 1.089 1.102 1.086 1.059 1.071 1.071 1.071

TS11 3 1.000 1.000 1.014 1.000 1.000 1.000 1.000 1.000

TS12 40 1.288 1.258 1.239 1.275 1.241 1.376 1.347 1.353

TS13 41 1.842 1.584 1.597 1.651 1.583 2.351 2.094 1.972

TS14 11 1.353 1.291 1.275 1.317 1.272 1.500 1.469 1.406

TS15 16 1.054 1.054 1.054 1.054 1.048 1.064 1.064 1.051

TS16 40 1.380 1.333 1.320 1.369 1.319 1.513 1.512 1.500

TS17 43 1.633 1.539 1.515 1.582 1.541 1.886 1.923 1.891

TS18 14 2.396 1.654 1.757 1.865 1.754 2.318 1.784 1.678

TS19 4 2.007 1.541 1.500 1.698 1.663 2.068 1.727 1.705

Avg. 1.573 1.417 1.416 1.478 1.426 1.723 1.614 1.573

Table 11: Comparison of popularity for students for two-sided data sets

EADAM TTC ESMA WOSMA IP MAX HRT MESMA MWOSMA

SOSM (0, 16) (1, 15) (0, 16) (0, 18) (10, 8) (6, 12) (0, 18)

EADAM (3, 13) (13, 3) (4, 14) (15, 3) (14, 4) (12, 6)

TTC (13, 3) (8, 10) (15, 3) (14, 4) (12, 6)

ESMA (0, 18) (15, 3) (11, 7) (6, 12)

WOSMA (16, 0) (15, 1) (13, 3)

IP MAX HRT (0, 15) (0, 16)

MESMA (0, 14)
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Table 12: Comparison of runtimes (in seconds) for two-sided data sets

#Students #Courses Capacity SOSM EADAM TTC ESMA WOSMA IP MAX HRT MESMA MWOSMA

TS1 539 26 575 0.018 1.268 0.241 7.020 0.750 79.545 88.580 80.589

TS2 113 6 72 0.004 0.337 0.011 0.117 0.044 5.339 5.564 5.395

TS3 557 38 459 0.021 8.127 0.227 5.109 0.844 68.384 73.862 68.775

TS4 27 6 59 0.001 0.009 0.002 0.008 0.004 0.312 0.349 0.335

TS5 88 12 116 0.002 0.026 0.014 0.128 0.013 1.937 2.169 1.947

TS6 689 36 726 0.017 2.401 0.364 7.444 0.505 24061 24345 24292

TS7 662 39 637 0.021 5.528 0.307 13.214 0.921 129.444 144.179 130.016

TS8 314 13 292 0.009 0.980 0.076 2.206 0.234 51.427 54.651 51.577

TS9 27 13 94 0.000 0.001 0.001 0.003 0.002 0.066 0.069 0.068

TS10 57 9 86 0.001 0.002 0.005 0.034 0.005 0.362 0.365 0.364

TS11 18 3 36 0.000 0.001 0.001 0.002 0.001 0.050 0.055 0.053

TS12 636 40 758 0.015 1.358 0.345 5.148 0.484 57.581 66.833 57.854

TS13 595 41 549 0.020 7.031 0.269 9.265 1.184 69.336 84.760 70.757

TS14 105 11 110 0.002 0.044 0.013 0.088 0.014 2.559 2.611 2.573

TS15 78 16 253 0.001 0.003 0.009 0.046 0.008 0.886 0.924 0.896

TS16 731 40 775 0.018 3.597 0.464 7.021 0.643 21547 21827 21748

TS17 733 43 753 0.021 6.454 0.399 13.598 1.091 550.366 623.715 587.004

TS18 426 14 264 0.034 8.125 0.112 4.921 1.019 130.306 134.276 131.940

TS19 99 4 44 0.003 0.201 0.008 0.126 0.053 2.662 2.758 2.714

23



4.2. One-Sided Matching

Next, we applied the mechanisms described in Section 2.4 to the nine data sets introduced in Section 3.1. Apart

from RSD, Pop-CHAT, ProB CHAT, MPO CHA, and MPO CHAT, we also report on WOSMA for one-sided match-

ing. Again, we will first analyze the results of a single but representative data set (OS3) to illustrate the metrics in

detail before we provide summary results of metrics for all data sets with one-sided matchings.

Figure 5 illustrates the profile curves for the different matching mechanisms. With ProB CHAT 685 students are

assigned to their first choice. Moreover, the right side of the figure shows the size of the matchings, since the profile

curves reflect the cumulated profiles. It indicates that MPO CHA and MPO CHAT result in the largest matchings,

because they optimize on the size of the matching. Detailed rank profiles for data set OS3 can be found in the
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Figure 5: Comparison of profiles for students in data set OS3

Appendix A.2.

Table 13 describes the popularity. Not surprisingly, Pop-CHAT is most popular among all mechanisms followed

by ProB CHAT.

Let us now discuss summary statistics across the different matching mechanisms and data sets. In terms of the

average AUPCR (see Table 14) Pop-CHAT, ProB CHAT, MPO CHA, and MPO CHAT all perform well. In most cases

ProB CHAT performs best.

Since no popular matching exists for data set OS2, the values of Pop-CHAT for OS2 are missing.7

The results of the pairwise one-sided Wilcoxon signed-rank tests are illustrated in Table 15. It demonstrates that

ProB CHAT computes significantly better results than the other mechanisms in four of the nine data sets and is not

7For this reason, we removed the results of OS2 from all computations of averages reported in the paper.
8OS2 is omitted in the computation of the average in the last row.
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Table 13: Comparison of popularity for students in data set OS3

Pop-CHAT ProB CHAT MPO CHA MPO CHAT WOSMA

RSD J (120.9, 216.9) J (120.25, 216.05) I (215.15, 203.55) J (169.0, 218.1) J (11.15, 96.0)

Pop-CHAT I (105.0, 95.0) I (228.0, 127.85) I (184.0, 134.0) I (167.75, 127.0)

ProB CHAT I (227.95, 110.5) I (172.0, 110.0) I (164.5, 124.55)

MPO CHA J (48.6, 128.65) J (160.25, 231.3)

MPO CHAT J (167.8, 180.95)

Table 14: Comparison of AUPCR for one-sided data sets8

RSD Pop-CHAT ProB CHAT MPO CHA MPO CHAT WOSMA

OS1 91.77% 93.75% 94.67% 92.19% 92.37% 91.77%

OS2 85.06% - 92.10% 95.84% 96.08% 85.06%

OS3 92.26% 96.32% 98.21% 96.55% 97.27% 94.30%

OS4 96.29% 97.87% 97.87% 97.70% 97.87% 96.62%

OS5 97.59% 98.93% 98.93% 98.41% 98.82% 98.30%

OS6 92.69% 97.60% 98.14% 96.74% 97.25% 94.09%

OS7 94.73% 98.06% 98.70% 97.46% 97.81% 95.63%

OS8 96.89% 97.83% 98.03% 97.71% 97.78% 97.20%

OS9 96.60% 98.11% 98.11% 97.36% 97.55% 96.81%

Avg. 94.85% 97.31% 97.83% 96.77% 97.09% 95.59%

dominated in any data set.

Table 16 describes the average size of the matchings. It is remarkable, that ProB CHAT results in the largest

matching in eight out of the nine data sets. This is particularly interesting, because ProB CHAT only optimizes the

profile of the matching, in contrast to MPO CHA and MPO CHAT. Furthermore, the largest differences in size can be

observed in data set OS2. The last row shows the average of the size compared to the maximum size, with data set

OS2 being omitted in this computation.

Regarding the average rank (see Table 17) the ProB CHAT mechanism performs best, except for the data sets OS4

and OS9, where WOSMA results in the lowest average rank. The largest differences in the average rank metric can

observed with regard to data set OS2. This could be due to the large differences in the size of the matchings (recall

Table 16). The median rank was 1 in all applications.

9OS2 is omitted in the computation of the average in the last row.
10OS2 is omitted in the computation of the average in the last row.
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Table 15: Comparison of one-sided Wilcoxon signed-rank tests for one-sided data sets

Pop-CHAT ProB CHAT MPO CHA MPO CHAT WOSMA

RSD (1, 3) (0, 4) (0, 1) (0, 2) (0, 3)

Pop-CHAT (0, 4) (3, 1) (2, 1) (2, 1)

ProB CHAT (5, 0) (5, 0) (4, 0)

MPO CHA (0, 3) (0, 1)

MPO CHAT (0, 0)

Table 16: Comparison of sizes for one-sided data sets9

#Students Capacity RSD Pop-CHAT ProB CHAT MPO CHA MPO CHAT WOSMA

OS1 136 136 129.10 132 132 132 132.00 129.10

OS2 418 429 363.32 - 392 418 418 363.32

OS3 915 1080 867.85 898 914 914 914 882.50

OS4 114 266 111.03 113 113 113 113 111.34

OS5 156 180 154.51 156 156 156 156 155.14

OS6 1035 1282 984.10 1031 1031 1031 1031 994.05

OS7 522 626 501.71 519 519 519 519 505.00

OS8 248 336 242.79 245 245 245 245 243.28

OS9 106 130 104.46 106 106 106 106 104.57

Avg. 97.48% 99.78% 100.00% 100.00% 100.00% 98.00%

Both, Pop-CHAT and ProB CHAT are more popular compared to other mechanisms (see Table 18) with Pop-

CHAT being more popular than ProB CHAT in two of the nine data sets.

The average computation time is shown in Table 19. It is less than a minute for all mechanisms.
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Table 17: Comparison of average ranks for one-sided data sets10

#Courses RSD Pop-CHAT ProB CHAT MPO CHA MPO CHAT WOSMA

OS1 8 1.266 1.273 1.197 1.402 1.386 1.266

OS2 47 2.007 - 1.842 2.957 2.844 2.007

OS3 51 2.392 1.947 1.859 2.708 2.339 2.137

OS4 7 1.079 1.088 1.088 1.101 1.088 1.075

OS5 6 1.088 1.064 1.064 1.096 1.071 1.069

OS6 39 1.982 1.789 1.577 2.127 1.924 1.795

OS7 21 1.301 1.289 1.154 1.415 1.341 1.241

OS8 8 1.083 1.078 1.061 1.087 1.082 1.074

OS9 5 1.099 1.094 1.094 1.132 1.123 1.093

Avg. 1.41 1.33 1.26 1.51 1.42 1.34

Table 18: Comparison of popularity for one-sided data sets

Pop-CHAT ProB CHAT MPO CHA MPO CHAT WOSMA

RSD (0, 8) (0, 9) (8, 1) (4, 5) (0, 7)

Pop-CHAT (2, 0) (8, 0) (7, 0) (7, 0)

ProB CHAT (9, 0) (8, 0) (8, 0)

MPO CHA (0, 9) (0, 9)

MPO CHAT (1, 7)

Table 19: Comparison of runtimes (in seconds) for one-sided data sets

#Students #Courses Capacity RSD Pop-CHAT ProB CHAT MPO CHA MPO CHAT WOSMA

OS1 136 8 136 0.002 0.017 0.089 0.037 0.046 0.009

OS2 418 47 429 0.006 0.177 2.550 0.154 0.862 0.113

OS3 915 51 1080 0.014 2.458 33.852 0.522 36.009 39.512

OS4 114 7 266 0.001 0.022 0.077 0.037 0.039 0.011

OS5 156 6 180 0.002 0.026 0.080 0.049 0.044 0.015

OS6 1035 39 1282 0.015 1.359 34.468 0.568 16.079 18.329

OS7 522 21 626 0.006 0.220 1.867 0.168 2.198 1.824

OS8 248 8 336 0.003 0.076 0.188 0.063 0.076 0.027

OS9 106 5 130 0.001 0.016 0.075 0.018 0.035 0.018
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5. Summary and Conclusions

In this section, we summarize the results from the previous section and provide some conclusions. Again, we start

with two-sided matching mechanisms before we discuss one-sided matching mechanisms.

5.1. Two-sided Matching

Table 20 provides an overview of the theoretical and empirical properties of the two-sided matching mechanisms.

The overview illustrates the trade-offs. All mechanisms, except for EADAM and TTC are stable. No mechanism is

Pareto efficient regarding students. However, ESMA, WOSMA, MESMA and MWOSMA are Pareto stable, meaning

that there is no stable matching which Pareto dominates the outcome. Only SOSM and TTC are strategy-proof.

However, in EADAM, ESMA, and WOSMA truth-telling is an ordinal Bayesian Nash equilibrium (indicated by the

square sign nin the Strategy-proofness column). IP MAX HRT, MESMA and MWOSMA are not strategy-proof.

Table 20: Summary of two-sided matching mechanisms for HRT

Matching Stability Pareto Strategy- Maximum Time Average More Average Average

mechanism efficiency11 proofness size complexity AUPCR(S) popular (S) rank (S) size

SOSM 3 712 3 7 O (|E|) 84.55% 1 1.573 95.12%

EADAM 713 3 n 7 O
(
|E|2
)

86.11% 5 1.417 95.12%

TTC 7 712 3 7 O (|E|) 85.42% 6 1.416 94.39%

ESMA 3 n14 n 7 O
(
|S |3 · Q

)
85.76% 3 1.478 95.40%

WOSMA 3 n14 n 7 O
(
|S |3 · |C|

)
86.45% 7 1.426 95.74%

IP MAX HRT 3 7 7 3 exponential-time 88.28% 0 1.723 100%

MESMA 3 n14 7 3 exponential-time 89.39% 2 1.614 100%

MWOSMA 3 n14 7 3 exponential-time 89.70% 4 1.573 100%

IP MAX HRT, MESMA and MWOSMA are designed to compute the maximum cardinality matching (see column

”Maximum size”) and thus allow computing the cost of strategy-proofness with respect to the size of a matching. The

column ”Average size” in Table 20 shows the differences in average size as a percentage of the maximum size, while

Table 9 shows details across all data sets. The average cost of strategy-proofness in terms of size is 4.88% across all

data sets compared with SOSM.

The ”Average AUPCR(S)” in Table 20 describes the average Area Under the Profile Curve Ratio for students.

With AUPCR as primary criterion MWOSMA, MESMA and IP MAX HRT are preferred to WOSMA, EADAM,

11Throughout, we mean Pareto efficiency for students.
12Due to random tie-breaking in presence of ties.
13The outcome is stable only if all residents consent to waive their preferences.
14Pareto stable: there is no stable matching which Pareto dominates the outcome
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ESMA, and TTC which are again preferred to SOSM. The ranking is correlated with the average size ranking. On

average the cost of strategy-proofness (while still maintaining stability) in terms of AUPCR for students is 4.28%,

which is the difference of MWOSMA to TTC, the best strategy-proof mechanism.

Popularity takes the point of view of the students and it gets to a different ranking. The column ”More popular (S)”

in Table 20 shows in how many comparisons one matching mechanism is more popular than another one. WOSMA

is more popular than all other seven mechanisms, while IP MAX HRT is dominated by all other mechanisms in terms

of popularity. We also report average rank, however, we argue that this metric is more difficult to interpret. If size

or AUPCR matter, it is also important to remember that the computation of the maximum cardinality matching is

NP-complete, which can become an issue for larger data sets, as we have seen in Table 12.

In summary, if one is willing to give up on strategy-proofness, but still wants weaker forms of truthfulness and

Pareto efficiency for students, then EADAM and WOSMA are close in terms of average size, average rank, and

popularity. All these metrics are improved compared to SOSM with random tie-breaking from the students point of

view. Both mechanisms satisfy a weaker form of incentive compatibility. Note that in EADAM the outcome might

become unstable with respect to the original preferences (n). IP MAX HRT, MESMA and MWOSMA are best in

terms of average size and AUPCR, but worse than TTC, EADAM and WOSMA in terms of popularity and average

rank. However, they are not incentive-compatible. Although, it might be hard to manipulate such mechanisms in

applications where participants have little prior information, incentive-compatibility might be very important in others.

5.2. One-sided Matching

Table 21 provides an overview of theoretical and empirical properties of one-sided matching mechanisms. WOSMA

and other mechanisms can be used for one-sided problems as well. All mechanisms, except for RSD and MPO CHA

are Pareto efficient when applied to CHAT instances. Only RSD is strategy-proof and in WOSMA truth-telling is

an ordinal Bayesian Nash equilibrium strategy (n). MPO CHA and MPO CHAT are designed for maximum size

matchings.

Table 21: Summary of one-sided matching mechanisms for CHAT

Matching Pareto Strategy- Maximum Time Average More Average Average

mechanism efficiency proofness size complexity15 AUPCR popular rank size

RSD 716 3 7 O (|E|) 94.85% 1 1.41 97.48%

Pop-CHAT17 318 7 7 O
((√

Q + |S |
)
|E|
)

97.31% 5 1.33 99.78%

ProB CHAT 3 7 7 O
(
min
(
z∗
√

Q,Q + z∗
)
|E|
)

97.83% 4 1.26 100%

MPO CHA 716 7 3 O
(√
|S | |E|

)
96.77% 0 1.51 100%

MPO CHAT 3 7 3 O ((|E| + |S | + |C|) |E|) 97.09% 2 1.42 100%

WOSMA 7 n 7 O
(
|S |3 |C|

)
95.59% 3 1.34 98.00%
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The cost of strategy-proofness in terms of size comparing RSD with these mechanisms is 2.52%.

In terms of the AUPCR metric ProB CHAT has the highest value, but this is not significantly different from

the other non-strategy-proof mechanisms. The cost of strategy-proofness in terms of the average AUPCR is 2.98%

comparing ProB CHAT with the strategy-proof RSD mechanism. In terms of popularity Pop-CHAT stands out as it is

more popular than all five other mechanisms. The average rank is lowest for ProB CHAT.

To sum up, if incentive compatibility and the AUPCR are an issue, WOSMA might be a candidate for one-

sided matching as it improves over RSD and is better in terms of average rank. Pop-CHAT and ProB CHAT can be

alternatives if manipulability is less of a concern.

15z∗ is the maximal rank of an edge in a rank-maximal solution.
16Due to random tie-breaking in presence of ties efficiency is not guaranteed.
17There was no popular matching for OS2.
18As long as a popular matching exists.
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Appendix A. Results

Appendix A.1. Two-Sided Matching: Data Set TS6
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Appendix A.2. One-Sided Matching: Data Set OS3
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Table A.22: Comparison of profiles for course organizers in data set TS6

Rank SOSM EADAM TTC ESMA WOSMA IP MAX HRT MESMA MWOSMA

1 275.61 (37.96) 268.09 (36.93) 255.88 (35.25) 277.96 (38.29) 270.36 (37.24) 287.00 (39.53) 287.00 (39.53) 283.00 (38.98)

2 0.49 (0.07) 0.49 (0.07) 0.49 (0.07) 0.69 (0.10) 0.11 (0.02) 1.00 (0.14) 1.00 (0.14) 1.00 (0.14)

3 22.07 (3.04) 20.75 (2.86) 19.25 (2.65) 22.43 (3.09) 20.73 (2.86) 21.00 (2.89) 21.00 (2.89) 19.00 (2.62)

4 2.97 (0.41) 2.97 (0.41) 2.76 (0.38) 3.01 (0.41) 2.99 (0.41) 3.00 (0.41) 3.00 (0.41) 3.00 (0.41)

5 14.45 (1.99) 13.61 (1.87) 11.17 (1.54) 14.60 (2.01) 13.01 (1.79) 15.00 (2.07) 15.00 (2.07) 15.00 (2.07)

6 27.30 (3.76) 27.18 (3.74) 26.02 (3.58) 27.61 (3.80) 28.24 (3.89) 28.00 (3.86) 28.00 (3.86) 28.00 (3.86)

7 19.63 (2.70) 19.26 (2.65) 17.24 (2.37) 19.63 (2.70) 18.61 (2.56) 22.00 (3.03) 22.00 (3.03) 22.00 (3.03)

8 10.15 (1.40) 10.21 (1.41) 10.42 (1.44) 10.12 (1.39) 10.61 (1.46) 12.00 (1.65) 12.00 (1.65) 12.00 (1.65)

9 10.47 (1.44) 10.24 (1.41) 8.89 (1.22) 10.96 (1.51) 10.23 (1.41) 13.00 (1.79) 13.00 (1.79) 13.00 (1.79)

10 10.24 (1.41) 10.45 (1.44) 10.70 (1.47) 10.25 (1.41) 10.98 (1.51) 13.00 (1.79) 13.00 (1.79) 13.00 (1.79)

11 17.83 (2.46) 15.54 (2.14) 13.90 (1.91) 17.83 (2.46) 17.89 (2.46) 18.00 (2.48) 18.00 (2.48) 19.00 (2.62)

12 12.57 (1.73) 12.75 (1.76) 11.44 (1.58) 12.38 (1.71) 13.18 (1.82) 13.00 (1.79) 13.00 (1.79) 14.00 (1.93)

13 8.50 (1.17) 8.58 (1.18) 7.97 (1.10) 8.61 (1.19) 8.59 (1.18) 10.00 (1.38) 10.00 (1.38) 10.00 (1.38)

16 15.16 (2.09) 15.71 (2.16) 17.69 (2.44) 15.22 (2.10) 16.08 (2.21) 18.00 (2.48) 18.00 (2.48) 18.00 (2.48)

17 11.41 (1.57) 10.43 (1.44) 7.64 (1.05) 11.37 (1.57) 10.99 (1.51) 11.00 (1.52) 11.00 (1.52) 11.00 (1.52)

18 6.00 (0.83) 6.00 (0.83) 6.00 (0.83) 6.00 (0.83) 6.00 (0.83) 6.00 (0.83) 6.00 (0.83) 6.00 (0.83)

22 9.06 (1.25) 8.91 (1.23) 8.94 (1.23) 9.63 (1.33) 9.41 (1.30) 10.00 (1.38) 10.00 (1.38) 10.00 (1.38)

23 1.65 (0.23) 2.93 (0.40) 3.58 (0.49) 1.77 (0.24) 3.90 (0.54) 3.00 (0.41) 3.00 (0.41) 4.00 (0.55)

24 27.68 (3.81) 24.87 (3.43) 22.54 (3.10) 28.07 (3.87) 25.67 (3.54) 25.00 (3.44) 27.00 (3.72) 25.00 (3.44)

25 13.41 (1.85) 13.59 (1.87) 14.62 (2.01) 12.91 (1.78) 13.19 (1.82) 13.00 (1.79) 13.00 (1.79) 13.00 (1.79)

26 7.73 (1.06) 7.79 (1.07) 7.01 (0.97) 7.48 (1.03) 7.69 (1.06) 8.00 (1.10) 8.00 (1.10) 8.00 (1.10)

27 5.23 (0.72) 6.16 (0.85) 9.20 (1.27) 5.22 (0.72) 5.80 (0.80) 6.00 (0.83) 6.00 (0.83) 7.00 (0.96)

28 7.86 (1.08) 9.15 (1.26) 10.37 (1.43) 7.79 (1.07) 8.98 (1.24) 6.00 (0.83) 6.00 (0.83) 7.00 (0.96)

29 9.28 (1.28) 9.10 (1.25) 9.93 (1.37) 8.93 (1.23) 9.94 (1.37) 9.00 (1.24) 9.00 (1.24) 9.00 (1.24)

31 1.03 (0.14) 1.03 (0.14) 1.00 (0.14) 1.03 (0.14) 1.03 (0.14) 2.00 (0.28) 2.00 (0.28) 2.00 (0.28)

32 0.22 (0.03) 0.07 (0.01) 0.25 (0.03) 0.15 (0.02) 0.27 (0.04) - - -

34 5.37 (0.74) 5.54 (0.76) 5.96 (0.82) 5.37 (0.74) 5.19 (0.71) 5.00 (0.69) 5.00 (0.69) 5.00 (0.69)

36 2.12 (0.29) 2.18 (0.30) 1.21 (0.17) 2.20 (0.30) 2.21 (0.30) 3.00 (0.41) 3.00 (0.41) 3.00 (0.41)

38 - 1.61 (0.22) 2.96 (0.41) - - - - -

39 5.46 (0.75) 5.27 (0.73) 2.58 (0.36) 5.35 (0.74) 5.53 (0.76) 5.00 (0.69) 5.00 (0.69) 5.00 (0.69)

41 0.54 (0.07) 0.75 (0.10) 0.59 (0.08) 0.54 (0.07) 0.80 (0.11) 1.00 (0.14) 1.00 (0.14) 1.00 (0.14)

43 0.56 (0.08) 2.03 (0.28) 1.71 (0.24) 0.97 (0.13) 0.99 (0.14) - - -

47 - 0.02 (0.00) 0.86 (0.12) - - - - -

48 0.08 (0.01) 1.00 (0.14) 3.01 (0.41) 0.08 (0.01) 1.11 (0.15) - - 1.00 (0.14)

49 3.97 (0.55) 4.14 (0.57) 4.72 (0.65) 3.97 (0.55) 4.68 (0.64) 4.00 (0.55) 4.00 (0.55) 4.00 (0.55)

50 - 0.85 (0.12) 1.96 (0.27) - 0.11 (0.02) - - -

53 11.06 (1.52) 11.99 (1.65) 14.08 (1.94) 10.96 (1.51) 11.33 (1.56) 14.00 (1.93) 14.00 (1.93) 14.00 (1.93)

56 3.45 (0.48) 4.52 (0.62) 5.77 (0.79) 3.39 (0.47) 4.60 (0.63) 5.00 (0.69) 5.00 (0.69) 6.00 (0.83)

58 - 0.71 (0.10) 1.65 (0.23) - - - - -

60 12.57 (1.73) 11.09 (1.53) 10.14 (1.40) 12.03 (1.66) 10.55 (1.45) 13.00 (1.79) 11.00 (1.52) 11.00 (1.52)

62 - - 0.22 (0.03) - - - - -

63 - - 0.25 (0.03) - - - - -

67 - - 0.58 (0.08) - - - - -

75 - - 0.02 (0.00) - - - - -

81 4.51 (0.62) 4.10 (0.56) 4.21 (0.58) 4.42 (0.61) 4.07 (0.56) 5.00 (0.69) 5.00 (0.69) 5.00 (0.69)

82 3.82 (0.53) 4.58 (0.63) 5.07 (0.70) 3.81 (0.52) 5.20 (0.72) 5.00 (0.69) 5.00 (0.69) 4.00 (0.55)

89 4.00 (0.55) 4.00 (0.55) 4.00 (0.55) 4.00 (0.55) 4.00 (0.55) 4.00 (0.55) 4.00 (0.55) 4.00 (0.55)

93 9.01 (1.24) 12.71 (1.75) 13.86 (1.91) 8.93 (1.23) 14.16 (1.95) 11.00 (1.52) 11.00 (1.52) 13.00 (1.79)

631 - 1.56 (0.21) 4.86 (0.67) - - - - -

646 - 0.01 (0.00) 0.21 (0.03) - - - - -

∞ 111.48 (15.36) 111.48 (15.36) 120.62 (16.61) 108.33 (14.92) 106.99 (14.74) 78.00 (10.74) 78.00 (10.74) 78.00 (10.74)
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Table A.23: Comparison of profiles for students in data set OS3

Rank RSD Pop-CHAT ProB CHAT MPO CHA MPO CHAT WOSMA

1 577.85 (63.15%) 685.00 (74.86%) 685.00 (74.86%) 558.45 (61.03%) 611.00 (66.78%) 633.05 (69.19%)

2 54.15 (5.92%) 28.00 (3.06%) 61.00 (6.67%) 54.50 (5.96%) 50.00 (5.46%) 39.85 (4.36%)

3 52.20 (5.70%) 40.00 (4.37%) 50.00 (5.46%) 60.70 (6.63%) 57.00 (6.23%) 49.90 (5.45%)

4 36.00 (3.93%) 25.00 (2.73%) 31.00 (3.39%) 50.80 (5.55%) 49.00 (5.36%) 35.35 (3.86%)

5 39.20 (4.28%) 28.00 (3.06%) 27.00 (2.95%) 55.40 (6.05%) 53.00 (5.79%) 36.70 (4.01%)

6 42.60 (4.66%) 52.00 (5.68%) 23.00 (2.51%) 44.60 (4.87%) 38.00 (4.15%) 40.65 (4.44%)

7 19.30 (2.11%) 17.00 (1.86%) 7.00 (0.77%) 27.05 (2.96%) 15.00 (1.64%) 13.65 (1.49%)

8 11.60 (1.27%) 8.00 (0.87%) 12.00 (1.31%) 16.40 (1.79%) 8.00 (0.87%) 8.55 (0.93%)

9 8.05 (0.88%) 4.00 (0.44%) 5.00 (0.55%) 8.40 (0.92%) 7.00 (0.77%) 5.65 (0.62%)

10 7.55 (0.83%) 7.00 (0.77%) 1.00 (0.11%) 7.00 (0.77%) 6.00 (0.66%) 5.60 (0.61%)

11 4.70 (0.51%) 2.00 (0.22%) 8.00 (0.87%) 5.20 (0.57%) 2.00 (0.22%) 3.20 (0.35%)

12 4.60 (0.50%) 2.00 (0.22%) 1.00 (0.11%) 5.80 (0.63%) 4.00 (0.44%) 2.80 (0.31%)

13 2.60 (0.28%) - - 8.45 (0.92%) 6.00 (0.66%) 1.95 (0.21%)

14 1.95 (0.21%) - 2.00 (0.22%) 4.15 (0.45%) 2.00 (0.22%) 1.90 (0.21%)

15 0.95 (0.10%) - - 1.90 (0.21%) 2.00 (0.22%) 0.60 (0.07%)

16 1.50 (0.16%) - - 2.20 (0.24%) 1.00 (0.11%) 1.00 (0.11%)

17 1.40 (0.15%) - 1.00 (0.11%) 2.00 (0.22%) 2.00 (0.22%) 0.85 (0.09%)

18 0.50 (0.05%) - - - - 0.45 (0.05%)

19 0.70 (0.08%) - - 1.00 (0.11%) 1.00 (0.11%) 0.60 (0.07%)

20 0.10 (0.01%) - - - - 0.05 (0.01%)

21 0.15 (0.02%) - - - - 0.15 (0.02%)

22 0.20 (0.02%) - - - - -

∞ 47.15 (5.15%) 17.00 (1.86%) 1.00 (0.11%) 1.00 (0.11%) 1.00 (0.11%) 32.50 (3.55%)
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