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Bidders in larger ascending combinatorial auctions face a substantial coordination problem, which has

received little attention in the literature. The coordination problem manifests itself by the fact that losing

bidders need to submit non-overlapping package bids which are high enough to outbid the standing winners.

We propose an auction format, which leverages the information that the auctioneer collects throughout the

auction about the preferences of individual bidders and suggests prices for the members of losing bidder

coalitions, which in total would make a given coalition winning. We model the bidder’s bundle selection

problem as a coordination game, which provides a theoretical rationale for bidders to agree to these prices,

and highlights the role of the auctioneer in providing relevant information feedback. Results of extensive

numerical simulations and experiments with human participants demonstrate that this type of pricing sub-

stantially reduces the number of auction rounds and bids necessary to find a competitive equilibrium, and

at the same time significantly increases auction efficiency in the lab. This rapid convergence is crucial for

the practical viability of combinatorial auctions in larger markets.
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1. Introduction

The need to buy or sell multiple objects arises in areas such as industrial procurement, logistics,

and government allocation of spectrum licenses or other assets. It is a truly fundamental problem

and, due to the advances in modern computing and communication capabilities which allow to

adopt advanced auction mechanisms in increasingly broader and larger-scale online settings, the

theory on how multiple indivisible objects should be allocated via an auction has enjoyed renewed

interest in recent years (Krishna 2002, Cramton et al. 2006, Bichler et al. 2010). One of the key

goals in this research literature is to develop mechanisms that achieve high (allocative) efficiency.

Allocative efficiency measures whether the auctioned objects end up with the bidders who have

the highest valuations for them, representing a measure of social welfare.
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In this paper we aim to design highly efficient ascending combinatorial auctions. Among the

problems that make this goal hard to achieve, the coordination of bidders is a key problem that

has been largely underexplored in prior work. Specifically, the currently losing bidders have a

task of identifying individually profitable and collectively complementary item bundles to bid on

from a exponentially-sized set of all possible bundles (and determine appropriate bid prices for

them), which together stand a chance of becoming a winning bid set in the next round. Identifying

such bundle bids is possible either via a large number of auction rounds or requires a highly non-

trivial coordination among coalitions of losing bidders, which is difficult without appropriate price

feedback. We address this challenge by proposing a coalitional pricing rule, which is able to draw

on the data that the auctioneer collects about bidders preferences throughout the auction and, as a

result, helps currently losing bidders to coordinate. The proposed combinatorial auction mechanism

exhibits substantially improved convergence and increased efficiency in lab experiments.

1.1. The Need for Ascending Combinatorial Auctions

Combinatorial auctions are among the most general types of multi-object market mechanisms, as

they allow selling (or buying) a set of heterogeneous items to (or from) multiple bidders. Bidders

can specify package (or bundle) bids, i.e., prices are defined individually for subsets of items that

are auctioned (Cramton et al. 2006). The price is only valid for the entire bundle, and the bid is

indivisible. For example, in a combinatorial auction a bidder might be willing to buy a bundle,

consisting of items A and B, for a bundle price of AC100, which might be more than the sum of

the item prices for A (AC30) and B (AC50) that the bidder is willing to pay, if items are bought

individually. The ability to submit bundle bids allows the bidders to express their economic prefer-

ences precisely, which is valuable in settings where bidders may have superadditive (or subadditive)

valuations, i.e., when the bidder’s valuation of the entire bundle is higher (or lower) than the sum

of individual item valuations, as in the above example. We will refer to a bidding language as a set

of allowable bid types (e.g., bundle bids or bids on individual items only) in an auction. If bidders

can win multiple bids, this is referred to as an OR bidding language. If they can only win a single

bid at most, then it is a XOR bidding language.

In simultaneous multi-object auctions where only individual item bids are allowed, bidders incur

the risk that they may end up winning only a subset of items from their desired bundle, and that

they may end up paying too much for this subset. This is called the exposure problem (Rothkopf

et al. 1998). While bidding on bundles in combinatorial auctions solves this problem, the design

of these auctions leads to several types of complexity. One type of complexity is computational

complexity when determining an optimal allocation. Other types of complexity are strategic com-

plexity for bidders, and communication complexity. Strategic complexity describes the difficulty
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for bidders to find an optimal bidding strategy, while communication complexity describes the

number of messages (i.e., price announcements and bid submissions) which need to be exchanged

between the auctioneer and the bidders in order to determine the efficient allocation. It has been

shown that the communication complexity to find the efficient solution in combinatorial auctions

is exponential with respect to the number of items (Nisan and Segal 2006).

Computational complexity is manageable in real-world applications with a low number of items,

bidders, and submitted bids; e.g., a winner determination problem with 20-30 items and 10 bidders

can typically be solved in seconds. In terms of strategic complexity, one possible solution is to use

the Vickrey-Clarke-Groves (VCG) mechanism, which achieves efficiency in dominant strategies,

i.e., bidders cannot increase their payoff by deviating from a truthful revelation of their valuations.

Unfortunately, VCG is rarely used due to a number of practical problems (Ausubel and Milgrom

2006b). In particular, in many markets bidders are simply reluctant to reveal their true valuations

to an auctioneer in a single-round sealed-bid auction, and they prefer an ascending (multi-round)

auction format which is more transparent and conveys information about the competition in the

market. In a recent paper, Levin and Skrzypacz (2014) write that dynamic auctions have an

advantage in multi-item settings, because bidders can gradually find out how their demands fit

together. This property is important but not necessarily given in all multi-item auction designs.

1.2. Inefficiency in ascending combinatorial auctions

As a result, much recent research has focused on ascending multi-object auctions, i.e., generaliza-

tions of the single-item English auction where bidders can outbid each other iteratively. However,

it was recently shown that no ascending multi-object auction format can be incentive-compatible

for general types of bidder valuations when modeled as a Bayesian game (Sano 2012, Goeree and

Lien 2013). In other words, with sufficient prior information about other bidders and allowing any

type of valuations, it is always possible that a bidder may profit from not bidding truthfully up

to his valuation. Let’s consider a simple example with two identical items and three bidders. One

“global” bidder is only interested in the bundle of two items, while each of the two “local” bidders

wants only one of the items. If the local bidders together are stronger than the global bidder (i.e.,

the sum of their one-item valuations is higher than the global bidder’s two-item valuation), then

they could always try to free-ride on each other. Suppose that the global bidder has a valuation of

$10 for the two-item bundle, and each local bidder has a valuation of $8 for their item of interest.

One local bidder could drop out at a price of $2.5, such that the other local bidder is forced to

bid up to $7.5 to become winning. Sano (2012) has shown that, without complete information but

having prior distributional information about bidder valuations in a Bayesian game, a local bidder

might drop out too early resulting in the auction being inefficient in equilibirium. In any case, this
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and similar types of manipulations are only possible with sufficient prior information about other

bidders’ valuations.

In many real-world markets, the information set available to bidders is quite different from

markets modeled under complete information or as Bayesian games with single-minded bidders.

Bidders are interested in multiple packages, and it is unknown to a bidder which packages are

of interest to his competitors. Also, the common prior assumption in Bayesian games, which has

long been a concern in game theory (Wilson 1987), is particularly troublesome in combinatorial

auctions with exponentially many possible packages a bidder can bid on. Bidders would need to

have the same prior distributions for all possible packages, which is unrealistic in all but very

small combinatorial auctions. In addition, in many auctions in procurement or on the Internet, the

number of competitors is unknown, and there can always be a new bidder throughout the auction.

Bid shading is less of a concern in such environments.

Even if bidders do not shade their bids due to a lack of prior information about others’ valuations,

this does not automatically lead to efficient outcomes because of the communication complexity

of combinatorial auctions. If bidders do not bid on all bundles of positive value to them, but only

a small subset thereof, then the auction may not end with an efficient outcome. This restricted

bundle selection has been experimentally shown to be the biggest barrier to efficiency across auction

formats (Scheffel et al. 2012).

Due to the exponential growth of possible bundles, even in combinatorial auctions with only 20

items bidders would not be able to reveal over a million possible bundle valuations, i.e., to submit

all possible bundle bids. Recent combinatorial auctions used for spectrum sales had 100 licenses

simultaneously on sale. It is clearly impossible to enumerate all the exponentially many bundles

for a bidder. Finding promising bundles, i.e., bundles that stand a chance of becoming winning

when combined with the bids of other bidders, becomes the central strategic problem of bidders in

such auctions, which has largely been ignored in the game-theoretical literature on combinatorial

auctions. This coordination problem requires different theoretical models.

1.3. Contributions and outline

The main contribution of this work is to propose an auction format that leverages the bidding

information that the auctioneer collects throughout an ascending auction about losing, but high-

revenue coalitions. We select such high-revenue coalitions and propose ask prices to the members

of each coalition such that together they can outbid the current winning coalition. This new type

of pricing rule is called “coalitional winning level (CWL).” The auctioneer can provide such prices

based on the bids that he collected in past rounds, and he can distribute the additional amount

needed to make the losing coalition winning in a fair manner using the cost-sharing rule based
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on the Shapley value (Dehez 2007). In particular, we show that such a cost-sharing rule not only

satisfies fairness axioms, but also results in a cost sharing among the bidders in a coalition that is

in the core, i.e., it does not create incentives to deviate for a subset of the bidder coalition.

In this work, we are focusing on markets where bidders typically do not have reliable prior

information about other bidders’ valuations or the number of their competitors. The coordination

problem introduced earlier is the central strategic challenge for bidders in such markets. Bidders

have an exponential number of packages to chose from, but want to coordinate on competitive

equilibrium in a low number of rounds.

We introduce a stylized game-theoretical model of the strategic problem of bidders, which helps

understand the role of the auctioneer aiding coordination in a CWL auction. In contrast to earlier

game-theoretical models in this field, we allow bidders to be interested in multiple packages. Thus,

the assumptions in our model highlight the coordination problem of bidders rather than the free-

rider problem. We focus on markets without reliable prior distributional information, so that we

can restrict our attention to the bidder’s decision problem in a single bidding round. It can be

shown that the auctioneer in this auction model acts like a third party in a correlated equilibrium.

This analogy provides an explanation why rational bidders accept a CWL ask price for a package,

even when the given package does not maximize absolute payoff in the given round based on

minimum bid prices. In other words, acting on the information feedback provided by the auctioneer

is a rational strategy for bidders even in a complete information model, where bidders have full

information about other bidders’ valuations which they could possibility use to manipulate. Also,

in an online combinatorial auction in the field, without prior distributional valuation information

and with hundreds of packages to bid on, the ask prices (CWLs) of the auctioneer provide a helpful

recommendation how complementary bids of losing bidders can become winning in the next round.

Our experimental results show that the the CWL auction has significantly higher efficiency, and

at the same time communication with the auctioneer is substantially reduced compared to ascend-

ing auction designs from prior literature. In our experiments we do not see free-riding behavior,

i.e., the bidders indeed take advantage of ask prices to coordinate. This rapid convergence of the

auction increases the practical applicability of the mechanism to a broad set of application settings.

The paper is structured as follows. In Section 2, we discuss related literature. In Section 3, we

introduce the auction format and describe theoretical properties. Section 4 presents the experimen-

tal design, while Section 5 summarizes the results of the numerical simulations. These simulations

provide an indicator for the outcome of such auctions with truthful bidders who bid on their payoff-

maximizing bundles in each round. In Section 6 we summarize and discuss the findings of our lab

experiments, before concluding the article with Section 7.
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2. Related literature

Let us briefly survey the relevant literature in this section. As mentioned earlier, the well-known

Vickrey-Clarke-Groves (VCG) mechanism achieves efficiency in dominant strategies. Its central

limitation is that the auction outcome might not be in the core (Ausubel and Milgrom 2006b),

i.e., the winning coalition of bidders might have to pay less than what a losing coalition of bidders

was willing to pay. This is possible due to the Vickrey discount which the winning bidders are

given (Goeree and Lien 2013). We provide a simple example with two items (A and B) and three

bidders (1, 2, and 3) to make this apparent. Suppose bidder 1 only wants A for which he has

bid his value of AC7, bidder 2 only wants B for which he has bid his value of AC8, and bidder 3

only wants the package AB with a value of AC10. The auctioneer declares bidder 1 and 2 to be

winners and the maximum of total valuations of the sale to be AC15. In a VCG mechanism the

winners get a discount, which incentivizes truthful bidding. As a result, the Vickrey payment for

bidder 1 is AC10−AC8 = AC2 and that of bidder 2 is AC10−AC7 = AC3. Consequently, the auction

revenue is AC5, although bidder 3 was willing to pay AC10. In many applications, such as high-stakes

government auctions, such an outcome might be difficult to justify. Therefore, such high-stakes

auctions are typically conducted as open-cry ascending auctions, rather than sealed-bid events.

For these reasons, during the recent years there has been an increasing interest in core-selecting

auctions (Day and Milgrom 2008), i.e., auctions where there cannot be a losing coalition of bidders

that together could have outbid the winners based on their submitted bids.

iBundle (Parkes and Ungar 2000), the ascending proxy auction (APA) (Ausubel and Milgrom

2006a), and dVSV (de Vries et al. 2007) are examples of ascending core-selecting auction formats

which provide allocatively efficient solutions when bidders follow a straightforward bidding strat-

egy, i.e., when they truthfully bid on their payoff-maximizing bundle(s) in each round until the

prices stop because a bidder becomes winning. If bidder valuations are buyer submodular, then this

strategy is even an ex post Nash equilibrium, which is a strong solution concept where bidders do

not need to reason about other bidders’ valuations. Buyer submodularity requires that, if a bidder

is added to a smaller coalition, then he adds more to the overall revenue than if added to a larger

coalition with more bidders (Parkes 2006).

Note that super-additive valuations violate buyer submodularity. In the above example with

three bidders, the third bidder has super-additive valuations since both items are complements

for him (i.e., he does not want each item individually, only their combination), thus violating

buyer submodularity. Also, it is easy to see that it is not an ex post Nash equilibrium strategy

to bid truthfully until the price clock stops or the valuation is reached in this example. Bidder

1 might drop out before his price for one unit stops increasing for his one item and he might

free-ride on bidder 2, who then needs to outbid bidder 3 in an ascending auction. In such cases,
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only a Bayesian Nash equilibrium is possible, which requires prior distributional information about

other bidders’ valuations. In this market, when bidders only have prior distributions about the

valuations, the Bayes-Nash equilibrium strategy can even lead to non-bidding of the local bidders,

and consequently, to inefficient outcomes (Sano 2012, Guler et al. 2016). We will refer to the family

of efficient ascending multi-object auctions, which allow for an ex post Nash equilibrium at least

for buyer submodularity, as bidder-optimal ascending core-selecting (BACS) auctions.

Adomavicius and Gupta (2005) introduce deadness (DLs) and winning levels (WLs) both as

pricing rules and information feedback to bidders in combinatorial auctions and evaluate them in

the lab (Adomavicius et al. 2013). Deadness levels are the lowest prices above which a bid can still

potentially become winning in any future auction state (depending on the arrival of complementary

bids from other bidders), winning levels are prices above which a bid would immediately become

winning. Petrakis et al. (2013) showed that ascending combinatorial auctions with deadness levels

as ask prices (the DL auction) belong to the above family of BACS auctions and share the same

ex post Nash equilibrium strategy as BACS auctions.

BACS auctions can be thought of as algorithms designed to provide an exact solution to a

hard computational problem. However, they typically lead to a huge number of auction rounds

(Schneider et al. 2010), and lab experiments provide evidence that human bidders substantially

deviate from straightforward bidding (Scheffel et al. 2011) so that efficiency is no longer guaranteed.

More recent experimental research shows that restricted bundle selection due to the exponential

growth of bundles is the main reason for inefficiency in combinatorial auctions (Scheffel et al. 2012,

Bichler et al. 2013), while bid shading is much less of an issue. Rather than shading their bids

optimally, bidders in such auctions are primarily concerned with finding the right bundle which,

together with the bids of other bidders, will end up in a winning coalition. We will refer to this

problem as the “coordination problem” and to markets with little or no distributional information

about bidder valuations as “online” markets. We use the term online markets related to the concept

of online algorithms or online mechanisms from the literature in computer science (Parkes 2007).

Our proposed combinatorial auction mechanism is different from the ones mentioned above. In

particular, the auctioneer targets losing coalitions by proposing coalitional winning levels (CWLs)

as ask prices to the members of these coalitions, which would allow them to jointly outbid the

currently winning coalition. The semantics of CWLs is intuitive for bidders and provides guidance

in what is arguably the central problem that bidders face in each round of a combinatorial auction

with many items: the selection of promising bundles, which stand a chance of becoming winning

together with the bids of other bidders.
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3. The auctions

In what follows, we will briefly describe the DL auction as a representative of BACS (i.e., bidder-

optimal ascending core-selecting) auctions. We will then introduce the proposed CWL auction

and discuss some theoretical underpinnings of such an auction. Before we do this, we provide an

example of different pricing rules as they have been discussed in the literature to better illustrate

the different approaches.

3.1. An introductory example with different pricing rules

The following example extends the one used by Petrakis et al. (2013) to illustrate DLs. We compare

CWLs with iBundle, DLs, WLs, and an auction format with linear ask prices, RAD (Kwasnica

et al. 2005).

bundles AB BC AC B C
bids 22∗1,162 243 204 75 8∗6
DL 221, 162 243 204 75 86
WL 221, 222 303 234 105 86
iBundle 221, 172 253 214 85 86
RAD 22 24 14 16 8
CWL 221, 222 303 21.54 8.55 86

Table 1 Example with six bids and different ask prices.

The top two rows of Table 1 describe six bids from different bidders (i.e., bidders 1 to 6),

submitted on subsets of three items (A, B, and C). In this example we will assume that at this

point in the auction, bidders are only interested in those bundles for which they have submitted

bids so far.

The bottom five rows of Table 1 describe bundle prices in different auction formats at this stage

in the auction (i.e., after 6 bids have been submitted). Subscripts indicate bidders, i.e., 221 indicates

a bid of AC22 from bidder 1. Ask prices have subscripts only if they differ among bidders in this

example. Asterisks denote the provisional winning bids. In this example, we assume a XOR bid

language, where each bidder can win at most one bundle. For such languages, it is known that DLs

and WLs for a given bundle may have different values for different bidders, i.e., their computation

needs to be personalized (Petrakis et al. 2013). Losing bidders need to bid higher than these values

by a minimum bid increment. As mentioned earlier, the WL for a given bundle describes the lowest

bid price above which a submitted bid would instantly become winning, i.e., without needing any

new complementary bids from other bidders. However, it is clear from the example that bidders 4

and 5 could possibly become winning even at lower prices than their currentWLs, if they coordinate

and form a coalition, indicated by prices in bold type. Ask prices in iBundle (Parkes and Ungar
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2000) are in line with DLs, but they add a bid increment (AC1) for losing bids. Linear programming-

based heuristics for computing linear prices (i.e., where a bundle price is simply a sum of individual

item prices) such as RAD (Kwasnica et al. 2005) are an alternative. Unfortunately, RAD prices

can be lower than a losing bid (see the RAD ask price on AC for bidder 4) or unnecessarily much

higher than the sufficient winning bid (see the RAD ask price on B for bidder 5) (Bichler et al.

2009).

In an online market, bidders typically start out bidding on their highest valued packages in order

to find out if this package can become winning together with the bids of others. After the winner

determination, the auctioneer can evaluate which losing bidders would, in combination, achieve

high revenue and have a potential to outbid the current winning coalition. CWLs can be seen as a

way to derive personalized and non-linear ask prices in-between DLs and WLs designed to quickly

find a competitive equilibrium, i.e., a state where there is no coalition of bidders that can outbid

the currently winning coalition of bidders at these ask prices, as defined below.

Definition 1 (Competitive Equilibrium, CE (Parkes 2006)). Prices α and allocation

X∗ are in competitive equilibrium if allocation X∗ maximizes the payoff of every bidder and the

auctioneer revenue given prices α. The allocation X∗ is said to be supported by prices α in CE.

It has been shown that competitive equilibrium and the core, mentioned in Section 2, refer

to the same concept in multi-object auctions (Bikhchandani and Ostroy 2002). CWLs are a way

to find such prices such that, at the end of an ascending auction, there is no coalition of losing

bids who could make themselves better off. CWLs leverage the information that is available about

losing coalitions during the auction and provide tailor-made prices to bidders in these coalitions,

i.e., proposals on how they can jointly outbid the currently winning coalition. The coalition of

bidders 4 and 5 in our example would only need to increase their bids by a combined AC3 plus

increment in order to become winning. Both bidders would become winning, if bidder 4 bids above

AC21.5 and bidder 5 bids above AC8.5, for example. The proposed CWL feedback is designed to help

coordinating bidders who form a high-revenue coalition, and it is particularly useful if bidders are

interested in many packages. In what follows, we will describe DLs and WLs in a more formal way

before we introduce CWLs and their properties.

3.2. The DL auction

We will first introduce the necessary notation and then describe the DL auction as an example of

a BACS auction. There is set K of m indivisible items indexed with k, which are auctioned among

set I of n bidders. Let i, j ∈ I denote the bidders and vi : 2
K→R denote a value function of bidder

i, which assigns a real value to every subset S ⊆K of items. The bundle that is assigned to bidder

i in allocation X is denoted as Xi ⊆K. We denote X = (X1, ...,Xn) as an allocation of the m items
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among bidders, with Xi ∩Xj = ∅ for every i ̸= j, with i, j ∈ I. A coalition is defined as a set of

bidders whose bids constitute a feasible allocation. A winning coalition is the coalition of bidders

whose bids constitute the revenue maximizing allocation, and a losing coalition is any coalition

except the winning coalition. In other words, a bidder can be a member of the winning coalition

and, at the same time, be a member of multiple losing coalitions, based on the bids he submitted.

We denote a losing coalition L, and the set of all losing coalitions L. Let Γ denote the set of all

possible allocations, then XL ∈ Γ denotes an allocation of items among a losing coalition L∈L.

The social welfare of an allocation X = (X1, ...,Xn) is
∑

i∈I vi(Xi), and an efficient allocation

X∗ maximizes social welfare among all allocations X, i.e. X∗ ∈ argmaxX

∑
i∈I vi(Xi). The revenue

maximizing allocation, X, is such that X ∈ argmaxX

∑
i∈I bi(Xi), where bi is the bid price of bidder

i for the bundle assigned to him in allocation X.

We focus on ascending combinatorial auctions (CAs), which consist of different rounds and where

an ask price αi(S) is available for each bundle S and each bidder i in each round. A round defines

a certain time period during which the auctioneer collects new bids from bidders and at the end

of which a new allocation and new ask prices for the next round are computed. The DL auction

uses the XOR bidding language, i.e., at most one bundle bid from a given bidder could be winning

at any given time. Let Bt denote the bids submitted in round t ∈ N, and X
t
denote the revenue

maximizing allocation after round t, based on the set of all bids B submitted in the auction so far.

Note that in theory a round could close after each new bid submitted, such that t may also refer

to a single bid. In our experiments each bidder can submit multiple bids in a round. Bt
l denotes

the set of all losing bundle bids, even losing bids from a winning bidder (because a winning bidder

can only win at most one bundle, but may well submit multiple bids in each round), after round

t. ϵ describes a minimum bid increment per round. We next define deadness levels as ask prices:

Definition 2. The deadness level, DL, of a bundle S for bidder i at round t, DLt(i,S), is the

minimal price that bidder i has to overbid to maintain a chance to win S at some future round

t′ > t.

So DLs are the highest prices at or below which a bid cannot become winning in any future

auction state. Therefore, they constitute a lower bound for acceptable new bids. The DL auction

uses only DL ask prices (i.e., DL + epsilon) and belongs to the family of BACS auctions, as was

shown in Petrakis et al. (2013). Algorithm 1 outlines the DL auction.

As shown in Algorithm 1, the DL auction is conducted in a round-based ascending format. The

auction begins with ask prices of 0. At the start of each subsequent round, each bidder is given the

following information: ask prices on all bundles he has bid on so far in the auction (but can request

ask prices of any other bundles on demand, if desired) and information whether he is currently

winning any bundle he has previously bid on. This is the only information made available to each
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bidder, and he does not know anything else about other bidders, including the bundles they have

bid on so far, or if they are winning some bundles. A bidder can then submit as many bids as he

likes in this round. However, the bids need to be higher than or equal to the respective ask prices.

A bid higher than the ask price is called a jump bid. When all bidders finish submitting new bids,

the round closes and a new allocation with the current winning coalition as well as new ask prices

are computed. The auction terminates when no new bid is submitted in a round, and winning

bidders pay what they bid.

Algorithm 1: The DL auction algorithm

Result: X and bid prices bi(X i)
1 Initialization
2 for i=1 to n do
3 foreach S do αi(S)← ϵ
4 Xi←∅
5 end
6 termination ← false
7 t← 0
8 B←∅
9 while (¬ termination) do

10 t← t+1
11 Bidders submit bids Bt where each bi(S)∈Bt satisfies bi(S)≥ αi(S)
12 if (Bt = ∅) then termination ← true
13 else
14 B←B ∪Bt

15 Compute X
t ∈ argmaxX

∑
i∈I bi(Xi)

16 foreach bi(S)∈Bt
l do αi(S)←DLt(i,S)+ ϵ

17 end
18 end

We have also implemented two additional auction rules: an activity rule to incentivize bidders

to stay active from the start, and the possibility for bidders to submit a so-called “last-and-final

bid,” which helps to avoid small efficiency losses due to bid increments. Both are described below

and complete our description of the DL auction.

In general, ascending multi-object auctions can enforce different types of activity rules. In our

experiments, we used an activity rule in line with earlier experiments in the combinatorial auction

literature (Scheffel et al. 2012). If a currently losing bidder in round t does not submit any new

bids in round t+1, then he is not allowed to bid in any future rounds t′ > t. All his previous active

bids will still be considered relevant for the auction, but he may not submit any new bid again for

the auction. This activity rule does not apply to currently winning bidders, as their inactivity does

not necessarily imply that they are not interested in the auction any more. We have used this soft

activity rule in both the DL and the proposed CWL auction.

In addition, it is possible to have a situation, where the new ask price αi(S) is too high for a
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bidder because the bid increment was too big. In this case, the DL auction allows for a last-and-

final bid between these bounds (i.e., between the bidder’s last bid on the package and the new ask

price αi(S)) (Parkes 2006). Suppose bidder i has submitted a bid of AC18 on bundle AB in round

t. In the next round t+1, he sees that he has not won AB, and the new ask price for AB, based

on the DL plus an increment, is AC22. Assuming the bidder’s true valuation for AB is AC20, then

he can now submit a last-and-final bid of AC20−ϵ, where ϵ is a profit margin he wants to achieve.

However, after this round he would not be able to bid on AB anymore.

We described the key details of the DL auction, and will now turn to one of the main properties

satisfied by the DL auction, as it is related to the straightforward bidding strategy.

Definition 3. A straightforward bidder i only bids ask prices on his demand set Di = {S ⊆K :

vi(S)−αi(S)≥ vi(S
′)−αi(S

′),∀S′ ⊆K} in each round, i.e., on those bundles which maximize his

payoff, based on given ask prices.

Importantly, in the DL auction format, straightforward bidding is an ex post equilibrium if

bidders’ valuations are submodular (Parkes 2006, Petrakis et al. 2013). This is because with such

valuations the auctions end up in VCG prices for the winners, and bidders do not have an incentive

to shade their bids (Parkes 2006). Unfortunately, straightforward bidding also leads to a large

number of auction rounds as all losing package valuations get elicited from all bidders via minimum

bid increments in each round. While this process allows to prove efficiency of the allocation, the

number of bids that need to be submitted by bidders is beyond what human bidders can be

expected to do, except in auctions with only very few items. Schneider et al. (2010) have shown

using numerical simulations that, with straightforward bidding, even small auctions with only 9

items can easily lead to 150 and more auction rounds. With 10 minutes per round this would lead

to 25 hours, which would be unacceptable in most applications.

3.3. Coalitional winning levels

In addition to deadness levels (DLs), Adomavicius and Gupta (2005) also defined winning levels

(WLs) as a form of information feedback to bidders. WL + ϵ is the minimum bid price for a

bidder on a bundle, such that this bundle bid becomes winning at round t+1, if no other bid was

submitted. As indicated in the introduction, WLs can be prohibitively high for small bidders in

larger auctions with many items, since WLs reflect an amount a bidder needs to bid to become

winning unilaterally, i.e., without the help of any new bids of other bidders.

The coalitional winning level (CWL) extends the concept of a WL ask price from an individual

bidder to a group of losing bidders. It is an ask price that would make a losing coalition winning,

if accepted by all members of the coalition. This is valuable feedback for overcoming coordination

problems inherent to all combinatorial auctions, as illustrated in the following example.
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Example 1. Consider four small bidders, each one bidding AC10 on a different single item, and

a large bidder bidding AC100 on the bundle containing all four of these items. The valuation of

each small bidder for their respective single item is AC50. By definition, the WL ask price faced

by each small bidder is AC70 +ϵ for the desired item, indicating the scenario where each small

bidder competes with the large bidder individually. The WL-based ask price is higher than the

small bidders’ valuations; as a result, the small bidders would not bid anymore, and the efficient

allocation is not achieved. For comparison, the CWL for the losing coalition is AC100 in total. So

if, for example, each small bidder in the coalition receives an individual CWL ask price of AC25+ ϵ

and bids on it, the coalition would outbid the large bidder. Finally, the DL of each bidder would

be AC10 only, as each bidder could become winning at AC10 if the other small bidders outbid the

large bidder.

Example 1 illustrates that the spread between DLs (here AC10) and WLs (here AC70) can be very

large. In examples with many items and bidders being interested in many bundles, CWLs can give

bidders useful information about bundles for which complementary bids exist. In addition, they

can help bidders focus on a few (rather than all) of their bundles with positive valuations (i.e.,

where the bidder valuation for a bundle is higher than its current ask price).

Let L denote a coalition of losing bidders, where bidder i desires the bundle Si, with Si ∩Sj = ∅
for all i, j ∈L. Denote the collection of the desired bundles as SL =

∪
i∈LSi.

Definition 4. The coalitional winning level, CWL, of coalition L for the desired bundles SL

at a particular round t is the minimal price that the coalition must bid in aggregate to win these

bundles at auction state t+ 1: CWLt(L,SL) = minΣi∈Lbi(Si), so that Si ∈X
t+1∀i ∈ L, assuming

all new bids of this coalition come in the next round, i.e., t+1.

In this definition we assume that only the losing bidders i∈L submit bids in round t+1, so that

X
t+1

describes the revenue maximizing allocation in round t+ 1. The CWL value for any losing

coalition L can be computed as follows:

CWLt(L,SL) =CAP t(K)−CAP t(K, SL). (1)

CAP t(K) denotes the optimal value of the winner determination problem (CAP ), and

CAP t(K, SL) the optimal value of CAP in which each bidder i∈L wins his desired bundle Si ∈ SL

for free. There is substantial literature on the computational hardness of CAP (Leyton-Brown

et al. 2006), but instances of up to 20-30 items and 10 bidders can typically be solved in seconds.

The computation of CWLs in Equation 1 can easily be derived from the proof for WLt(i,S) =

CAP t(K)−CAP t(K, Si) in Petrakis et al. (2013), where the desired bundles SL of all bidders i∈L
are treated as if they were one single bundle Si of one single losing bidder i. Similar computations

have also been described by Adomavicius and Gupta (2005).
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3.4. Computing individual CWLs

Once CWLt(L,SL) is computed for losing coalition L, we still face the question of how to distribute

this price among members of L. Let us denote CWLt
i(L,Si) as the amount that transforms the

CWLt(L,SL) to individual ask prices for every member i of losing coalition L. Here, Si describes

the package assigned to bidder i∈L. There are different ways how bidders in a coalition can share

the additional amount ∆t =CWLt(L,SL)−Σi∈Lbi(Si) that is needed to outbid the current winning

coalition. One could think of many cost sharing functions ∆t
i = gi(∆

t) to distribute ∆t among the

bidders i∈L such that Σi∈L∆
t
i =∆t. For example,

• ∆t
i =∆t× |Si|

|SL| based on the bundle size |Si| of a bundle Si within a coalition;

• ∆t
i =∆t× bi(S)

Σi∈Lbi(S)
based on the level of the bid prices bi(S) within a coalition;

• ∆t
i =∆t× 1

|L| based on the number of members in a coalition (a.k.a. uniform distribution).

These heuristic cost sharing functions are simple because their calculations require only a few

simple arithmetic operations. Aside from computational simplicity, a fair division of ∆t among

the bidders i ∈ L would be a natural design goal. The Shapley value is arguably the most well-

known solution concept for coalitional games (Dehez 2007), and it is considered fair, as it satisfies a

number of fairness axioms including symmetry and additivity (Shoham and Leyton-Brown 2009).

Let’s briefly review the Shapley value. Let L be a coalition of |L| bidders, and M ⊆ L be some

sub-coalition. Let w(M) denote the coalitional value of M that needs to be distributed among its

members. Coalitional value can also be the cost that a coalition has to bear. The Shapley value θi

provides a unique distribution (among the players) of the value generated by the coalition of all

bidders i∈L and is defined as:

θi =
∑

M⊆L\{i}

|M |!(|L| − |M | − 1)!

|L|!
(w(M ∪{i})−w(M)) (2)

Overall, the Shapley value has a number of general properties, which are desirable. For example,

it distributes the total value of a coalition. Bidders with the same contribution to the coalitional

value get the same Shapley value. Bidders who do not contribute to the coalitional value get a zero

Shapley value. However, if designed appropriately as a convex game, there are two properties of

our coalitional game that make the Shapley value particularly desirable.

In super-additive games with w(L∪L′)≥w(L)+w(L′) and L∩L′ = ∅, where L and L′ are two

losing coalitions, the Shapley value guarantees each participant a payoff of at least the amount

that he could achieve by not forming a coalition. An important subclass of super-additive games

are convex games. A game is convex if w(L ∪ L′) ≥ w(L) +w(L′)−w(L ∩ L′). For every convex

game, the core is nonempty, and the Shapley value is also in the core for convex games. This means
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that, based on the Shapley value, there cannot be a losing sub-coalition of M ⊂ L that can make

themselves better off as compared to a situation where all members of the coalition L accepted the

Shapley value. In other words, sub-coalitions do not have an incentive to deviate, and the coalition

can be considered stable as neither individuals nor groups of bidders in L have an incentive to

deviate.

Note that sharing a given ∆t =CWLt(L,SL)−Σi∈Lbi(Si) in a round among a losing coalition of

bidders is neither a convex nor a super-additive game. However, instead of distributing ∆t, one can

distribute the overall savings that the coalition experiences compared to the sum of the winning

levels of each bidder: Ψt =
∑

i∈LWLt(i,S)−CWLt(L,SL) =
∑

i∈LWLt(i,S)−
∑

i∈LCWLt
i(L,Si).

We require thatWLt(i,S)≥CWLt
i(L,Si) for all i∈L for sharing functions, where this is not always

satisfied. We can now use the Shapley value to derive Ψt
i from Ψt, and this game is super-additive

and convex as the following results show.

Lemma 1. The game of distributing Ψt(L) =
∑

i∈LWLt(i,S)−CWLt(L,SL) to individual bid-

ders i∈L is super-additive.

Lemma 2. The game of distributing Ψt(L) =
∑

i∈LWLt(i,S)−CWLt(L,SL) to individual bid-

ders i∈L is convex.

The proofs to both lemmata can be found in Appendix A. Let’s now define the Shapley value

(SV) based computation of individual CWLs.

Definition 5. A Shapley value based CWLt
i,SV(L,Si) is defined as WLt(i,S)−Ψt

i,SV, where

Ψt
i,SV =

∑
M⊆L\{i}

|M |!(|L| − |M | − 1)!

|L|!
(Ψt(M ∪{i})−Ψt(M)) (3)

In this definition, Ψt(M) is the total coalitional value or savings of coalition M . This leads to

the following proposition.

Proposition 1. Consider only the members i ∈ L of a losing coalition, who need to derive

individual CWLs from CWLt(L,SL). No sub-coalition M ⊂L can make itself better off as compared

to when all members of the coalition accepted CWLt
i,SV(L,Si) given that vi(Si)≥CWLt

i,SV(L,Si)

for all i∈ I.

Proof: Lemma 2 shows that the computation of CWLt
i,SV(L,S

L) constitutes a convex coali-

tional game. Every convex game has a nonempty core, and in every convex game the Shapley value

is in the core (Shoham and Leyton-Brown 2009, p. 394). Q.E.D.

Explaining the Shapley value and its properties to subjects in the lab takes a substantial amount

of time. Since it is important in an economic experiment that subjects fully understand the mech-

anism, in our experiments, we have therefore decided to use a cost-sharing rule based on a uniform

distribution for simplicity.
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3.5. The CWL auction

Based on the definition of CWLs, we will now describe the CWL auction. The auction process is

identical to Algorithm 1 and the DL auction, including the availability of last-and-final bids and

the activity rule. However, the ask prices are different. Instead of the computation of the DLs on

line 16 in Algorithm 1, CWLs are computed for some of the highest revenue coalitions which are

currently losing.

In case some members of a losing coalition do not accept the CWL, then this coalition would

also not become winning in the very next round, but the members (other than the ones who

submitted a last-and-final bid on a relevant package) can always update their bids in a new round.

All new bids from the previous round are taken into account at the end of the round, and they

can be the foundation for new coalitions to be built. Therefore, this process implicitly supports the

collaborative search for a competitive equilibrium.

There are some degrees of freedom in how the auctioneer selects losing coalitions. The auctioneer

could only select one or also a few disjoint losing coalitions in each round from the list of those

losing coalitions with high revenue. How many losing coalitions are selected in each round depends

on the size of the auction. Another implementation choice for the auctioneer is whether bidders

are required to respond to a CWL immediately (i.e., in the next round) or not. For example, in

order to proactively discourage free-riding behavior, the auctioneer may choose to select one losing

coalition in each round, and require a response from each member of this coalition. This strict rule

was not used in our experiments.

If more coalitions are provided with a CWL, we find that this can further reduce the number of

auction rounds. In our experiments, where we are restricted to smaller auctions, we computed a

CWL for every losing bi(S) ∈Bt
l . This specific implementation leads to the fact that sometimes a

given bid can be part of multiple coalitions. In order to determine minimal core prices and avoid

coalitions having to pay too much, conservatively we selected the minimum across these ask prices

across different coalitions: αi(Si)←minL∈LCWLt
i(L,Si)+ ϵ.

It is interesting to point out that finding the minimum minL∈LCWLt
i(L,Si) can be directly

computed as part of the computation of winning levels WLt(i,S) =CAP t(K)−CAP t(K, Si). The

result of CAP t
i (K, Si) returns the highest-revenue coalition with bidder i winning Si. This provides

all information necessary to compute the minL∈LCWLt
i(L,Si) for any of the cost sharing functions

to compute individual CWLs described in the previous subsection.

Selecting the lowest possible CWLt
i for each bidder comes at a cost. In some cases, a coalition

might not win even if all members agree to the CWL ask prices. In other words, we intentionally

avoid that bidders pay more than what would have been necessary to win at the potential expense

of additional auction rounds. In contrast, if the highest CWL for a bundle across all coalitions, i.e.,
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maxL∈LCWLt
i(L,S

L
i ) was selected, then it could happen that members of the coalition pay more

than what is necessary to become winning. In the simulations, the additional number of auction

rounds caused by our proposed conservative pricing rule was very low, which is why we use it in

our experiments.

3.6. Bidding strategy and bundle selection

A bidding strategy in an auction involves two decisions in each round: which packages to bid on

and how high a bidder should bid on the selected packages. Straightforward bidding (see Definition

3) is one such strategy, were bidders always bid on the package maximizing (absolute) payoff at

the ask prices. We have discussed that in a DL auction straightforward bidding is an ex post

equilibrium at least for some types of valuations. Bidding straightforwardly would take hundreds

of auction rounds (Schneider et al. 2010), and bidders with a positive cost for participating in a

round are unlikely to bid straightforwardly. Moreover, straightforward bidding was not reported in

earlier experiments (Scheffel et al. 2012, Adomavicius et al. 2013); in contrast, the authors describe

jump bidding and different forms of bundle selection.

In a CWL auction, an auctioneer aids the coordination of bidders by adequate information

feedback. Although this coordination avoids unnecessary auction rounds, a losing coalition needs

to outbid the winning coalition such that the process still leads to a competitive equilibrium. First,

let us provide an illustrative example on how the information feedback in a CWL auction can help

reduce the number of auction rounds.

Example 2. Consider the sale of 18 pieces of land (A−R) on a shore line. One developer (bidder

1) needs three adjacent pieces of land for a small hotel, while the other developer (bidder 2) plans

for a large resort and needs 15 adjacent pieces. Both compete against bidder 3, who is interested

in all 18 pieces of land. Let’s assume that, in the first round, bidder 1 submits XOR bids of AC3

on bundles A−C, D−F , G− I, J −L, M −O and P −R for which he has the same preference,

while bidder 2 bids on A−O for AC9, and bidder 3 on A−R for AC20. The CWL for bidder 1’s bid

on P −R will be AC7, while the CWL for bidder 2’s bid will be AC13 (using uniform distribution

sharing rule for simplicity). In contrast, the CWL for all other bundle bids for bidder 1 will be AC20.

Therefore, the CWL information can serve as a signal that, right now, bidder 1 can focus on bundle

P −R. In contrast, with only DLs available, bidder 1 could not see the difference of P −R to his

other five bundles of interest and might bid on other bundles (i.e., all DLs would be AC3), which

cannot become winning given the valuations. He could be trying to bid on these other packages over

multiple rounds and increase the ask prices, but the allocation would not change. Furthermore, if

WL information is available, the WL for P −R on the other hand would be AC11, which indicates

the entire cost that is needed to outbid bidder 3 without taking into account possible coalitions.
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In the absence of reliable prior distributional information about the valuations of competitors in

an online market, a rational bidder will not submit a last-and-final bid below the CWL, because

he does not have sufficient information to decide whether the bid is just high enough such that he

becomes winning in expectation.

To further emphasize this issue, in this section we use a simple complete-information model that

highlights the strategic problem of bidders within a single round. The coordination problem for

bidders within a round is far from trivial if the auctioneer just provides DL prices, as we have

shown in Example 2. We use our stylized model to highlight (and provide the intuition for) the

key strategic difficulty that bidders face in these auctions, and the role that the auctioneer plays

in a CWL auction in aiding coordination of losing bidders.

3.6.1. A complete information model: We model the strategic situation as a complete-

information coordination game (Cooper 1999),1 where bidders need to bid on complementary

packages that together are high enough to outbid the current set of winners. In other words, bidders

can realize mutual gains, but only by making mutually consistent decisions. As is typical in the

auction literature, we assume a trusted auctioneer and refer to this environment as the complete

information CWL auction model. Example 3 with two bidders and three items helps us illustrate

the model.

Example 3. Suppose that the auctioneer in a CWL auction selects a single losing coalition L

with two losing bidders 1 and 2 (row and column players, respectively, in Table 2) and three items

(A,B,C). Both bidders are symmetric in that they are interested in the same two packages AB

and C, and have identical valuations for them: AC8 for AB and AC4 for C. The losing bidders are

interested to become winning in the next round. The two bidders have both bid on AB for AC4 and

C for AC1 in previous rounds, but have been outbid by bidder 3 with a bid in round t on ABC for

AC8, which is his valuation. In this auction the losing bidders can either submit a minimum bid,

which is their last bid on a package plus a bid increment (i.e., the DL auction ask price), or they

bid on the CWL recommended by the auctioneer. With a bid increment of AC0.5, both bidders

need to bid at a minimum AC4.5 for AB and AC1.5 for C, which would not make them winning in

the next round.

Table 2 shows the payoff matrix of the normal-form game with complete information in round t.

If the two losing bidders do not outbid the winning coalition with their bids, the payoff in the next

round is zero. If both bidders increase their bid by AC2 there are two Nash equilibria with a positive

payoff. Without coordination, there is a mixed Nash equilibrium in this round, in which each player

1 Multi-object auctions are often modeled as complete information games to understand the special case where a
bidder has all possible information to manipulate auction outcomes (Bernheim and Whinston 1986, Ausubel 2006,
Day and Milgrom 2008).
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b(AB) = 6 b(C) = 3 b(AB) = 5 b(C) = 2 · · ·
b(AB) = 6 0,0 2,1* 0,0 0,0
b(C) = 3 1,2 0,0 0,0 0,0
b(AB) = 5 0,0 0,0 0,0 0,0
b(C) = 2 0,0 0,0 0,0 0,0
· · ·

Table 2 Payoff matrix of a normal-form coordination game with two losing bidders and two packages in round t.

bids on AB with a probability of 2/3 and C with a probability of 1/3. The expected payoff for

each bidder is AC2/3 as a result. Note that if the row bidder selects a strategy of one equilibrium

and the column bidder the strategy of another equilibrium, then the bids will not constitute an

equilibrium.

The auctioneer in a CWL auction resolves this equilibrium selection problem. For example, he

provides a CWL price (including the increment of AC0.5) of AC6 for AB to bidder 1 (the row player),

and AC3 for C for bidder 2 (the column player). The cell is marked with ”*” in Table 2. So, in

this coordination game, the auctioneer randomizes over both pure Nash equilibria and selects one

equilibrium from the set of all equilibria. If both players accept the CWL, then the payoff of the

row player is AC2 and the payoff of the column player is AC1, which is higher for both players than

their payoff in the mixed Nash equilibrium without the auctioneer. Therefore, it is in the interest

of bidder 2 to bid on C, although his absolute payoff would be higher in the equilibrium with him

bidding on AB. Of course, there can also be situations where there is a unique Nash equilibrium

such that this equilibrium maximizes payoff for all participants. In those cases it is even easier to

propose a CWL to a losing coalition.

The example only shows a part of the payoff matrix assuming bidders are only interested in

two packages and two prices. However, the payoff matrix would grow very large for any but small

auctions. The number of packages a bidder can bid on grows exponentially, and a bidder could

submit many prices for each of these packages starting with the DL ask price. This would lead

to a huge equilibrium selection problem, which further illustrates the difficulty of coordination in

ascending combinatorial auctions with DLs only. McLennan and Berg (2005) showed that the mean

number of all Nash equilibria in a bi-matrix game with only two players and z pure strategies for

each player grows exponentially in z. With more bidders and items and no prior knowledge about

the competitors, the likelihood of coordinating with all other bidders in a round goes to zero with

a growing number of bidders and items. If bidders want to become winning in the next round,

accepting a CWL maximizes their chances, because there are complementary bids of others.

3.6.2. Expected payoff maximization and coordinated equilibria: We will now formal-

ize the insights from Example 3 and show that the example describes a correlated equilibrium, a
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solution concept introduced by Aumann (1987), where the auctioneer fulfills the role of a trusted

party.

Definition 6 (Correlated Equilibrium). A correlated equilibrium is a probability distri-

bution {ps} on the space of strategy profiles that obeys the following conditions: For each player

i, and any two different strategies b, b′ of i, conditioned on the event that a strategy profile with b

as a strategy was drawn from the distribution, the expected utility of playing b is no smaller than

that of playing b′: ∑
s∈S−i

(πi
sb−πi

sb′)psb ≥ 0.

A strategy profile is a vector of strategies (i.e., bids) of all players. By S−i we denote the set of

strategy profiles of all players except for i. If s∈ S−i, sb denotes the strategy profile in which player

i plays b and all other players play s. The inequalities show that if a strategy profile is drawn from

the distribution {ps} and each player is told, privately, his or her own component of the outcome,

and if furthermore all players assume that the others will follow the signal, then the expected profit

of player i cannot be increased by switching to a different strategy b′.

In the complete information CWL auction model the auctioneer is a trusted party who random-

izes over the pure Nash equilibria, i.e., draws from the distribution {ps} in a correlated equilibrium.

For instance, this probability distribution could be 0.5 for each of the two Nash equilibria described

in Example 3. We draw on the correlated equilibrium concept in our model to show that a CWL

maximizes expected payoff for a bidder in this model (see Appendix A for the proof).

Proposition 2. Suppose a bidder wants to become a winner in a given round of the complete

information CWL auction model, then accepting a CWL for a package maximizes expected payoff

in a given round.

There might be packages with higher absolute payoff for a bidder in a round based on the

minimum bid price (i.e., based on the standard DL ask price), but the likelihood of winning them

is very low due to exponentially many packages and numerous possible prices for each package the

bidders can chose from.

The complete-information model is an abstraction to highlight the central strategic problem, and

is not meant to fully describe CWL auctions in reality. In the lab or in the field, the auctioneer does

not have complete information. However, the auctioneer can select high-revenue coalitions based

on estimates from the bid history, and historical bids often provide auctioneers with good signals

about the preferences bidders have for different bundles. Also, in our experiments, we implemented

the auctioneer to select more than a single coalition in each round to further speed up the auction.

Still, the correlated equilibrium is a useful analogy when thinking about the role of an auctioneer

and the value of the information he provides to the bidders throughout in a CWL auction.
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As outlined in the introduction, straightforward bidders are also able to coordinate in a DL

auction, and a competitive equilibrium arises. However, such a competitive equilibrium comes at

the cost of a huge number of auction rounds. In DL auctions with straightforward bidders, all

package values of losing bidders need to be revealed, and this might be an unrealistic assumption

given the exponential number of packages bidders can bid on. In contrast, CWL auctions can lead

to high efficiency in markets with many more objects, because bidders are able to coordinate more

effectively.

In the next section, we provide experimental results which demonstrate that bidders accept

CWLs and, as a consequence, the number of auction rounds is reduced substantially, while efficiency

is significantly higher than in a DL auction in the lab.

4. Experimental Design

Several ascending combinatorial auction formats have been analyzed in the past (see discussion in

Section 2). An experimental comparison with all of these formats would be beyond the scope of a

single paper. Because BACS auctions satisfy a strong solution concept (at least for a restricted set

of bidder preferences) and, in particular, because the DL auction is a BACS auction that has been

the focus of much recent research in IS, the DL auction represents a natural candidate to compare

against. In addition, the proposed CWL auction is an extension of the literature on DL auctions

(Adomavicius and Gupta 2005, Petrakis et al. 2013, Adomavicius et al. 2013).

In what follows, we will introduce three different bidder value models for which we compare the

DL and CWL auction formats. Another set of value models and the respective simulations are

described in Online Appendix D. They yield the same results and, due to space constraints, in

the main paper we only included those value models for which we conducted both computational

simulation and lab experiments with human participants.

4.1. Value Models

We use three different value models (VMs) in our experiments. These are the Threshold (Thr)

VM, the Mix VM, and the Symmetry (Sym) VM. The Sym VM is based on an earlier work by

Adomavicius et al. (2013) in their experimental studies on DL and WL. We added the Thr VM and

the Mix VM in order to understand if the results carry over to other environments. The Thr VM

models a threshold problem with a single global bidder and several local bidders only interested in

small packages. Such environments have received much attention, as they could lead to free-riding

behavior as outlined in the introduction.

In addition to the value models described in this section, in Online Appendix D we provide

numerical simulations with three additional value models, two with 18 and one with 9 items, which

resemble the ones used in lab experiments by Scheffel et al. (2011) and Goeree and Holt (2010).
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These value models are modeled after spectrum auction markets with regional licenses and real-

estate markets. There is no significant difference in efficiency the simulations, while the efficiency

of the CWL auctions is significantly higher than that of the DL auctions in the lab experiments. In

the lab and in simulations the number of bids and the number of auction rounds in CWL auctions

are substantially reduced.

4.1.1. The Threshold Value Model In this value model, we consider a market with a single

global bidder and two local bidders facing a threshold problem. They compete for 6 items labelled

A to F . The global bidder is defined to be single-minded and has interest only in the bundle

containing all 6 items. Each of the local bidders is interested in various bundles of smaller sizes, but

the experimental subjects did not know the specific bundles that were of interest to other bidders.

Bidders also did not have distributional information about the other bidders’ valuations before the

auction. They only knew that two local bidders were competing against a global bidder. The bidder

valuations for the individual bundles are drawn from uniform distributions based on pre-specified

intervals, which was not known by the bidders. Table 3 represents the basic bidder preferences and

value distributions for all bundles. This model is designed in such a way that the local bidders

could potentially overcome the threshold posed by the global bidder if they could coordinate and

form a coalition containing either the bundles ABCD from bidder 1 and EF from bidder 2, or the

bundles CDEF from bidder 1 and AB from bidder 2. Other combinations of package bids from

bidder 1 and bidder 2 did not stand a chance of winning if the global bidder bids up to his true

valuation.

Items A B C D E F
Global Bidder [60,65]

Local Bidder 1

[50,55]
[50,55]

[40,50]
[40,50]

[40,50]

Local Bidder 2

[20,30]
[20,30]

[20,30]
[20,30]

[20,30]

Table 3 Preference structure of the Threshold VM. Global bidder is interested in 1 bundle only, while local

bidder 1 and local bidder 2 are both interested in 5 different bundles each.
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4.1.2. The Mix Value Model Similarly to the Threshold model, the Mix value model was

designed to analyze the ability of two local bidders to enter into a successful winning coalition that

can outbid the global bidder. Compared to the Threshold value model, the two local bidders have

more bundles of interest, making a successful coalition more challenging.

In particular, we again have 6 items labelled A to F . The global bidder is only interested in the

bundle containing all 6 items. The local bidders are interested in all 6 items and all bundles of size

up to 4 items. For each local bidder, there exists a “preferred item” (which is chosen randomly)

that has a higher value for that bidder than other items. We introduce local complementarities by

implementing an additional (i.e., bonus) value of 10% for each adjacent item in a bundle.

The values for the individual bundles are randomly determined from different intervals, depend-

ing on the baseline draws for single-item valuations. In particular, for each bidder, we first deter-

mined the “preferred item”, for which the baseline draw is uniform from the range [90,110]. The

adjacent items to this preferred item then had valuations drawn uniformly in the range [40,60].

Their neighboring items next had valuations drawn uniformly in the range [20,30], while the last

remaining item, i.e., the item with the greatest distance from the preferred item, had valuation

drawn uniformly from [7,17]. Once these single-item valuations were drawn for each bidder, the

bundle valuations were computed, and a list of all valuations was provided to the subjects privately.

Figure 1 shows an example of baseline draws for a local bidder in this setting. In this example, the

bidder has a valuation of (90+45+20) ∗ 1.2 = 155 ∗ 1.2 = 186 for the bundle BCD, as this bundle

contains 2 adjacent neighbors and, therefore, gets 20% bonus. The number of bidders and the fact

that there are two local and a global bidder were common knowledge among bidders. However,

bidders did not know the preferred item for the other local bidders.

Figure 1 An example for the item valuations for a local bidder in the Mix VM
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4.1.3. The Symmetry Value Model This was one of the value models (Setup 1) used by

Adomavicius et al. (2013) to test and evaluate the impact of deadness and winning levels as price

feedback in the lab. It allows us to compare our result to theirs as it does not include random

draws. In the Sym VM, bidders have equal strength in their valuations and there is no threshold

problem as in Thr VM and Mix VM.

There are again 6 items labelled A to F , which need to be auctioned among three bidders. A

distinct item, designated the “preferred item”, is identified for each bidder participating in the

auction. This item has the highest value (100 monetary units) for the bidder, with the value of

each remaining item decreasing by 50% the further the item is from the preferred item. There are

complementarities among items by creating superadditive valuations for bundles with adjoining

items in them. This is accomplished by adding 10% to the additive valuation of the items for each

adjoining item in the bundle, as in the Mix VM. Adomavicius et al. (2013) motivated this setting

with the real-world scenario of real-estate properties around a lake, where local complementarities

arise. To preserve the symmetry between bidders, we picked the items A, C and E as preferred

items for each of the three bidders respectively, as in Adomavicius et al. (2013).

The identity of the preferred item is private information to each bidder. Bidders were not told how

many other participants were in their specific auction, as in Adomavicius et al. (2013). Furthermore,

while the rules for generating the valuations of the items were common knowledge, and each bidder

in an auction knew the distribution of his own values, participants had no explicit knowledge of the

valuations of other bidders as they did not know the respective preferred items of other bidders.

Figure 2 shows an example for the private valuations for all bidders. In this example, bidder 1

has a valuation of (100+ 50) ∗ 1.1+ 25 = 190 for the bundle ABE, as the bundle contains only 1

adjacent neighbor, and therefore gets 10% bonus.

Figure 2 An example for the item valuations for all bidders in the Symmetry VM, where preferred item for bidder

1 is A, for bidder 2 is C, and for bidder 3 is E
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4.2. Treatments

We have used a fully factorial design with the two treatment variables, the auction format and

the value model. Six sessions were conducted for each auction format in the Threshold, Symmetry,

and Mix value model. Every session only used one auction format, and every session consisted of

two waves with different value draws. During a session, the two waves were run in parallel with

two groups of students. Each wave consisted of three auctions, one for each of the value models

(i.e., Thr, Sym, and Mix). These three auctions were conducted sequentially, and in each wave we

used a different sequential order of these three auctions to level out learning aspects. We used the

same 12 waves for the first 6 sessions testing the DL auctions and for the last 6 sessions testing

the CWL auction to allow for better comparison. Table 4 provides an overview of the sessions and

waves in the experiments. In this table we consider the three VMs (Thr, Sym and Mix) together,

as the respective auctions are always conducted together in a wave. Overall, there were 12 auctions

per treatment combination (72 auctions in 6 treatments) and 72 total participants, each of which

having participated in 3 auctions.

Treatment AF VM # Sessions Auctions # Auctions # Participants # Participants
per Session per Auction

1 DL Thr
6 6 36 3 362 DL Sym

3 DL Mix
4 CWL Thr

6 6 36 3 365 CWL Sym
6 CWL Mix

72 72

Table 4 Treatments, sessions, and participants for the different test combinations.

The DL and CWL auction formats have been implemented as described in the previous section.

In all experiments we used the same user interface and round-based auction process. We displayed

WLs in the DL auction as additional information feedback (i.e., in addition to the ask prices based

on DLs) in order to allow for better comparison to Adomavicius et al. (2013). We used a round-

based auction process and did not determine the winners after every single submitted bid. Also, we

used an XOR bid language throughout, because this bid language is able to express any valuations,

i.e., it is fully expressive compared to an OR bid language (Nisan 2006). The bid increment was

15 Francs per item in the Mix and Symmetry VMs, and 3 Francs per item in the Threshold VM.

We used Francs as a name for our experimental currency. A bid increment of 3 Francs per item

means a bundle increment for a bundle containing three items is 9 Francs. We used a per-item

bid increment rather than a bundle bid increment because a per-item bid increment takes bundle

sizes into account when raising prices. Therefore, a per-item bid increment can help bidders more

effectively to focus on smaller and, thus, more coalition-prone bundles during an auction. Also, as

valuations in the Threshold VM are generally smaller than those in the other two VMs, we scaled

down the increment appropriately.
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4.3. Procedures for human subject experiments

All experiments were conducted from November 2012 to July 2013 with students at a major

European university. Each session started with a presentation in which we explained the auction

format to be used, the pricing rules, and the different value models in detail. This presentation was

also provided to students as a hand-out. Then subjects participated in one training auction to get

to know the auction environment, the software, and the user interface. Afterwards, we repeated

the main rules, and subjects were asked questions in a quiz to make sure they understood all rules

and were familiar with the auction procedure.

The number of auctions was announced in advance. The first auction round was not time-

restricted and only ended when every bidder announced they were ready to enter into the second

round. In all subsequent rounds, bidders had at most 5 minutes to place their bids. This was

perceived to be sufficient by the participants. Bidder roles (e.g., global vs. local) were randomly

assigned for each auction in order to alleviate earning differences across different bidders. Earnings

were calculated by converting the experimental payoff amounts to EUR by 3:1, i.e., bidders were

paid on their economic performance in the auctions. The resulting earnings were between the

minimum of AC5 (i.e., show-up fee) and the maximum of AC50 per subject across all waves. Average

earnings were AC29, and the average duration of a wave was 1 hour and 19 minutes without the

introductory part and without the training auction. This includes the time for breaks between

auctions. In Online Appendix E, we provide screenshots of the Web-based system used for the

auction.

5. Simulation results

In this section we present the results of numerical simulations based on two different bidding

strategies: (i) straightforward bidders (s), as described earlier in the paper, and (ii) heuristic bidders

(h). Heuristic bidders bid on 5 bundles in each round, where these bundles are randomly chosen

from among their 10 best (i.e., payoff-maximizing) bundles at that time. Heuristic bidders model

bidder behavior that is based on observations from lab experiments reported in prior literature

(Scheffel et al. 2012). It models a “trembling hand”, where bidders want to bid on their best

bundles by payoff, but they make small mistakes. We have chosen 10 bundles, because in Scheffel

et al. (2012) it was shown that bidders typically focus on a small set of bundles, independent of

the number of possible bundles in an auction. We have analyzed variations of these bidders, e.g.,

bidders who bid on their best three packages, but the differences were minor. For our analysis,

these artificial bidders serve as a baseline. In the lab experiments in the next section, we analyze

whether the differences between DL and CWL auctions carry over to the lab, where bidders are

heterogeneous and follow different strategies on how they select packages or how they use jump

bids.
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Throughout, we use allocative efficiency E as a primary aggregate measure for comparing

different auction mechanisms.2 In addition, we measure auctioneer’s revenue share R, which

shows how the resulting total surplus is distributed between the auctioneer and the bidders.3

Optimal surplus describes the resulting revenue of the winner-determination problem if all val-

uations of all bidders were available, while actual surplus considers the true valuations for those

packages of bidders selected by the auction. In contrast, auctioneer’s revenue used in the revenue

distribution describes the sum of the bids selected by the auction, not their underlying valuations.

Table 5 shows the efficiency results, averaged over all auction instances used in the lab experi-

ments. In particular, we simulated the two different agent bidding strategies described above for

each auction instance which was later used in the lab. The average of these simulated values is

then compared to results of the lab experiments using the three value models.

Efficiency AF Strategy Threshold VM Mix VM Symmetry VM

Simulation Results

DL s 100.0% 100% 100.0%
DL h 100.0% 99.1% 100.0%
CWL s 100.0% 99.8% 100.0%
CWL h 100.0% 98.9% 100.0%

Lab Results
DL 96.3% 97.2% 98.3%
CWL 100.0% 98.1% 100.0%

Table 5 Average efficiency achieved for all simulated bidder behavior and lab results.

Overall, efficiency was very high in both the simulations and the lab experiments. Only the

average efficiency in the Mix VM simulation was lower, as bidders had up to 56 bundles of interest,

which makes the coordination problem harder. The Symmetry and the Threshold VM had 100%

efficiency throughout, with the single exception of the DL auction in which the efficiency was

significantly worse in the lab for the Threshold and the Mix VMs, as compared to the simulations,

which might be due to the bundle selection and the jump bidding of bidders in the lab, which will

be described below.

Table 5 provides an initial comparison of efficiency results between all simulated agent behaviors

and real bidder behaviors in the lab. Although there are differences between the simulation and the

lab, these differences are minor at an aggregate level. As we will show, at an individual level, bidder

behavior with respect to bundle selection and jump bidding exhibit some differences compared

to the simulations. Table 6 shows a comparison of all aggregate simulation results including the

auctioneer revenue share, the number of rounds, and the number of bids submitted.

2 We measure efficiency as E = actual surplus
optimal surplus

× 100%

3 We measure measure auction revenue share as R= auctioneer’s revenue
optimal surplus

× 100%
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VM AF Strategy Efficiency Revenue No. of No. of
Share Rounds Bids

all DL s 100% 97.3% 100% 100%
all CWL s 99.9% 98.1% 37.0% 45.3%
all DL h 99.6% 96.4% 28.3% 93.6%
all CWL h 99.5% 97.8% 16.2% 44.3%

Threshold DL s 100% 99.1% 100% 100%
Threshold CWL s 100% 99.7% 40.9% 48.4%
Threshold DL h 100% 98.5% 32.0% 98.1%
Threshold CWL h 100% 99.1% 23.8% 58.5%

Mix DL s 100% 97.4% 100% 100%
Mix CWL s 99.8% 98.0% 31.8% 42.9%
Mix DL h 99.1% 96.5% 22.6% 90.1%
Mix CWL h 98.9% 97.8% 8.3% 30.6%

Symmetry DL s 100% 74.3% 100% 100%
Symmetry CWL s 100% 79.6% 50.8% 35.7%
Symmetry DL h 100% 71.3% 51.7% 82.2%
Symmetry CWL h 100% 82.6% 19.2% 38.9%

Table 6 Average measures of auction performance: aggregate and for each of the three value models

Threshold, Mix and Symmetry

The differences in efficiency between DL and CWL auctions across all simulations were insignif-

icant (t-test, α= 0.05). Differences in revenue were mostly significant but small. Most importantly,

however, although there are only small differences in efficiency and revenue between the DL and

CWL auctions, the communication between the auctioneer and the bidders in the CWL auction is

substantially reduced. The average number of rounds is significantly smaller in the CWL auction,

and so is the number of bids submitted throughout the auction. We normalized the numbers so

that the DL auction with straightforward bidders describes 100% of the rounds and number of bids.

Using these results as a conjecture, in the next section we investigate whether the same pattern

of auction outcomes emerges in the lab experiments. Online Appendix D presents the results of

a number of additional numerical simulations on larger value models, which are in line with the

results presented in this section.

6. Experimental Results

Next we will present our results of the lab experiments. First, we will look at the results at an

aggregate level, concentrating on the comparison of the two auction formats DL and CWL, using

metrics such as allocative efficiency and auctioneer’s revenue share as well as the number of bids

submitted and rounds required by the bidders. For the pairwise comparisons of aggregate metrics

we use the Wilcoxon rank sum test. In the second phase, we will analyze the bidders’ bundle

selection and jump bidding behavior during the auctions.
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Result 1: (High efficiency of the proposed CWL auctions) The allocative efficiency of

the CWL auction is significantly higher than that of the DL auction.

It is interesting to see that the efficiency of the CWL auction tends to be even higher than the

already high efficiency of the DL auction. We have fitted a regression model with efficiency as the

dependent variable and control for auction format, session, and value model. The coefficient for

the DL auction format is actually significant (p-value 0.003) and negative, while the different value

models did not have a significant influence on efficiency.

While we did not find signs of fatigue among the subjects in their responses after the auction or

in the bid data, an influence of fatigue on the results can always be an issue. Fatigue could help

explain lower efficiency in the DL auction, but the long auction durations in the DL auction are

actually also a concern for applications in the field.

The auctioneer’s revenue share of the CWL auction equals that of the DL auction in the Thr

VM, but is lower than the DL auction for the Mix and Sym VM. In the Sym VM bidders did not

have to outbid a large bidder and the preferred items were disjoint, such that they could coordinate

faster at lower prices. The aggregate results are presented in Table 7. Figure 3 provides box plots

of the efficiency and revenue share.

The auctioneer’s revenue share is higher in the numerical simulations compared to those in the

lab. This is due to the fact that, in the simulation, straightforward bidders reveal all valuations of

all losing bundle bids truthfully, often using last-and-final bids. Also, heuristic bidders in simulation

reveal their preferences to a large degree. In the lab, subjects typically want to get a payoff and

sometimes drop out of the bidding process for a bundle before they reveal their true valuation.

Note that the revenue share in the Sym VM is lower than in the other two value models. In

the Thr and Mix VMs the smaller bidders need to outbid the global bidder, who drives up prices,

which leads to a higher revenue share. In contrast, in the Sym VM, it can happen that bidders

coordinate very early leading to low prices and consequently a low revenue for the auctioneer. This

is also a reason for the higher variance in revenue in the Sym VM.

We have included the efficiency and revenue results from Setup 1 (Sym VM) in the experiments

by Adomavicius et al. (2013). Note that even though we used the same value model, the experiments

are not fully comparable because Adomavicius et al. (2013) used a continuous auction and a bid

increment of 1 monetary unit, i.e., not a round-based format with a bid increment of 15 monetary

units and last-and-final bids. They also used an OR bidding language instead of an XOR bid

language, but this should not matter in the experiments as the valuations in the Sym VM are

super-additive. We conjecture that the round-based auction process has advantages for convergence,

because bidders do not get updates in the prices and allocations continuously. Instead, they receive

new prices after each round. As this information does not change until the round is over, this might
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AF VM E R Avg. no. of Avg. Avg. bid Avg. time Avg. no. of
all bids bundles improvements (min.) rounds

DL Thr 96.3% 80.8% 30.0 4.9 8.5 14.7 8.3
CWL Thr 100.0% 80.8% 19.2 4.9 3.1 10.6 5.4

DL Mix 97.2% 89.8% 114.0 29.3 25.7 37.0 15.3
CWL Mix 98.1% 88.4% 83.8 29.3 10.9 25.3 9.4

DL Sym 98.3% 78.4% 166.6 31.4 22.6 45.8 13.6
CWL Sym 100.0% 63.8% 116.6 29.7 8.8 28.7 10.5

DLA Sym 93.5% 65.3% n.a. n.a. n.a. n.a. n.a.

Table 7 Average aggregate measures of auction performance in all eight combinations of auction formats and

value models. Superscript A refers to results from Adomavicius et al. (2013)

Figure 3 Left: Distribution of allocative efficiency in different treatment groups; Right: Distribution of revenue

share in different treatment groups.

lead to a more structured way of decision making. Adomavicius et al. (2013) analyzed an online

environment where bidders join throughout the auction and such a round-based mechanism might

not be possible. Detailed results of individual auctions can be found in Online Appendix B.

Result 2: (Fast convergence of the proposed CWL auctions) In the CWL auction, the

number of bids submitted, the time to finish the auction, and the number of rounds was substantially

lower than in the DL auction.

As in the numerical simulations, significantly less communication was required to achieve high

efficiency. We provide the average number of all bids per auction in Table 7. In addition, we

provide the average number of bundles that the small bidders bid on (Avg. Bundles), and their

average number of bundle bids improving a starting bundle bid throughout the auction (Avg. Bid
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Improvements). We exclude the big bidder, as he is only interested in one bundle and, thus, only

bids on and improves this one bundle. Interestingly, the number of Avg. Bundles is identical or

similar in all value models, meaning that in both auction formats small bidders bid on a similar

number of new bundles, mostly in the first rounds of the auctions. In contrast, the number of Avg.

Bid Improvements was much lower in the CWL auction than in the DL auction across all three

value models, suggesting that the CWL format enabled small bidders to improve their bundle bids

in a much more structured and focused way. Finally, we report the average auction duration time

in minutes and the average number of bidding rounds required – these numbers are significantly

higher in the DL auction. It is particularly interesting to see that the savings in the average time

increase with the complexity of the value models; i.e., the CWL format saves 4.1 minutes on average

in the Thr VM, 11.7 minutes in the more complex Mix VM, and 17.1 minutes in the Sym VM.

In the simulations, the number of bids in the CWL auctions was mostly less than half of those

submitted in the DL auction. The number of bids was also reduced substantially in the CWL

auctions in the lab, and CWL auctions took 64-74% of the bids in the DL auction. Differences

from the simulation can be explained by the use of jump bids in the DL auction and the deviations

from straightforward bidding – these characteristics are representative of human bidding behavior.

In both the numerical simulations and the lab experiments we used the same bid increments, and

last-and-final bids were available to mitigate the potential efficiency losses due to bid increments.

Finally, we look at the threshold problem posed by the big bidder in the value models Thr and

Mix.

Result 3: In the Thr VM, small bidders always find the efficient allocation in a CWL auction in

those auctions where a coalition of small bidders is efficient. In contrast, in the DL auction 40% of

these auctions are not efficient, i.e., in 40% of the DL auctions where a coalition of small bidders

should have won in the efficient allocation, the big bidder won instead. In the Mix VM, there was

no significant difference among the auction formats.

In Figure 4 we show the percentage of auctions where an efficient allocation favored a coalition

of small bidders. Of those auctions we show the percentage where a coalition of small bidders won

with the 100% efficient allocation or with an allocation that was not 100% efficient, and where

the threshold bidder (”big” bidder) won instead. There was a large number of possible allocations

with the small bidders winning in the Mix VM compared to the Thr VM. This is the reason why

the auctions never resulted in the 100% optimal solution in the Mix VM, but only in the solutions

that were close to optimal.

We will also report on bundle selection and jump bidding, because both describe bidder strategies

and both can influence the efficiency and revenue of an auction. Bundle selection in the lab varied
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Figure 4 Auctions where the small bidders won in a 100% efficient or an inefficient allocation, or they lost to

the large bidder, as percentages of the number of auctions where the small bidders should have won

in an efficient allocation.

a lot across bidders and was different from straightforward or heuristic bidder strategies used in

the simulations.

Result 4: In the Mix and Sym VMs with more than 50 or 60 bundles of interest resp., bidders

submitted bids on 20 to 25 packages in the auctions (median). The number of packages varied

significantly across bidders. A high payoff and a high valuation of a package relative to other bundles

have a positive impact on the likelihood of a bidder selecting relevant bundles in both auction

formats.

Figure 5 shows the number of bundles on which bidders submitted bids in all value models. While

in the Thr VM there are only five bundles of interest for the small bidders, and they typically bid

on all of them, the number of possible bundles of interest for small bidders in the Mix VM is 56,

and in the Sym VM it is 63 for all bidders, and bidders typically bid only on a subset of possible

bundles.

We also analyzed significant covariates for bundle selection using a logistic regression. For this,

we generated a table of all bundles with a positive payoff (i.e., relevant bundles) that a bidder could

have bid on in each round. The dependent variable describes whether a given relevant bundle has

been selected by the bidder or not (i.e., whether the bidder submitted a bid on a given bundle with

positive payoff). The model includes covariates such as the auction format, rank of a bundle by

valuation, and rank of a bundle by payoff in a round. We used bidder ID dummy variables to control
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Figure 5 Average number of bundles evaluated by small bidders relative to all possible numbers of bundles for

them, indicated by numbers in parentheses.

for fixed effects. We also control for the round of the auction, the number of the auction within

an experimental session, and the value model. All covariates were significant. The probability of a

bundle being selected decreases with a lower rank by payoff or a lower rank by valuation (Table 8).

In the Thr VM bidders have a higher likelihood to bid on a bundle, while in the Sym VM bidders

have a lower likelihood, compared to the Mix VM. This is induced by the comparatively low number

of bundles of interest (i.e., 5) in the Thr VM and vice versa in the Sym VM. Most importantly, there

are also significant bidder-specific idiosyncrasies, as the dummy variables for Bidder ID revealed.

Overall, payoff influenced the bid selection, but the analysis indicates that pure straightforward

bidding cannot fully explain the bidding behavior, and bidder idiosyncrasies matter. This is in line

with earlier experimental work on bidder idiosyncrasies in the bundle selection in BACS auctions

and the various factors influencing this selection (Scheffel et al. 2012).

Result 5: Bidders in the CWL auction explore more bundles in the initial rounds of the auctions,

but they submit fewer bids in later rounds.

Table 7 includes statistics on the average number of bundles that small bidders bid on (Avg.

bundles) and the number of bundle bids improving a starting bundle bid throughout the auction

(Avg. bid improvements). Figure 6 shows the average submissions of new bids and improved bids

for all three value models over time. This figure shows a consistent progress for bid submissions

both for the new bundles and the improved bids on the previous bundles. In all value models, new

bids are mostly submitted during the first 10-20% of the auction process, with bidders generally
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.011 0.151 -0.075 0.940
DL auction -0.747 0.197 -3.786 0.000

Rank by value -0.018 0.001 -17.344 0.000
Rank by payoff -0.010 0.001 -7.396 0.000
Auction round -0.219 0.005 -40.596 0.000

Auction no. in session -0.073 0.027 -2.704 0.007
Sym VM -0.231 0.045 -5.152 0.000
Thr VM 1.055 0.077 13.664 0.000

Bidder ID ... ... ... ...
Null deviance: 35533 on 68386 deg. of freedom

Residual deviance: 29451 on 68303 deg. of freedom
AIC: 29619

Table 8 Logistic regression of the bidder’s likelihood to bid on a bundle.

Figure 6 Average bid submission progress during the auction in the Thr, Mix and Sym VM.

submitting new bids for more rounds in the CWL auction compared to the DL auction. Much of

the coordination takes place in these initial rounds. In contrast, bidders in the CWL auction need

to submit fewer bids on bundles that they have already bid on (i.e., improved bids “Imp”) and

bidding is more focused.

Bidders were allowed to submit bids that are higher than the ask price in both auctions. Such

jump bids represent a possibility to signal about high-valued packages, which can become part of a

coalition of winning bidders. We wanted to understand how bidders use jump bidding (because high

jump bids could impact revenue and also efficiency) and whether we can find differences between

the two auction formats.

Result 6: Bidders submitted most jump bids in the first half of the auction rounds. There was no

significant difference in the proportion of jumps in both auction formats across the value models.

The bar chart in Figure 7 provides an overview regarding what proportion of jump bids was

submitted in the first, second, third, and fourth quarter of the auctions on average. It shows that

in both auction formats the majority of jump bids is submitted in the first quarter of the auction.
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Figure 7 Number of jumps in the the first to fourth quarter of the auction rounds.

We conjecture that bidders try to signal packages of high value in the early rounds and find bidders

interested in complementary packages this way. They submit fewer jump bids towards the end,

where bidders only focus on a few bundles that they are trying to win.

Overall, there was heterogeneity in the number of package bids a bidder selected in each round

and in the number of jump bids. The high efficiency in the auctions can be seen as an indicator

for robustness against these differences in bidding behavior.

We also ran some lab experiments with instances of a large value model with 18 items and found

qualitatively similar results. Efficiency was higher than 99% for the DL and CWL auctions, but

the number of bids and rounds in the latter were substantially reduced. Results are reported in

Online Appendix C.

7. Conclusions

The design of efficient multi-object auctions is a fundamental problem with many applications in

e-sourcing and other domains. Ascending combinatorial auctions do not require bidders to reveal

valuations on exponentially many packages as in sealed-bid auctions, but rather the allow bidders to

discover winning packages iteratively, which is preferred to sealed-bid auctions (such as the Vickrey-

Clarke-Groves mechanism) in many online markets. The main strategic challenge in ascending

combinatorial auctions is coordination: How can bidders find the right packages from a large

set of possible alternative packages, which together with bids of other bidders could become a

winning coalition? This type of coordination among losing bidders has largely been ignored, but it

is arguably a pivotal problem for bidders in larger online combinatorial auctions.
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Our approach leverages information about losing coalitions, which can be collected by the auc-

tioneer throughout the auction. Coalitional winning levels are provided in each auction round to

help losing bidders coordinate implicitly and outbid a coalition of standing winners. They provide

an implicit proposal on how much to bid in order to become winning jointly. Aside from a theo-

retical characterization of this auction format using intuitions from a complete information model

and the correlated equilibrium concept, the results of numerical simulations and corresponding

lab experiments with realistic value models indicate substantial savings in the number of auction

rounds and bids, and even higher efficiency in the lab. This type of information feedback helps

bidders coordinate with much less communication, which makes combinatorial auctions a viable

mechanism in many more practical applications. The results provide substantial contributions to

a recent stream of IS literature focusing on information feedback design in multi-object auctions.

We would like to note that the proposed auction mechanism has been designed with online

markets in mind, i.e., markets with little or no distributional information available publicly about

other bidders valuations and where rational bidders typically do not have incentives to deviate

from truthful bidding. The empirical performance of this auction format in numerous experiments

with real bidders provides evidence that the proposed coalition-based pricing mechanism indeed

facilitates the intended performance improvements, e.g., substantially accelerated convergence with

high efficiency. However, it has been well-documented that strategic bidder behavior does occur

in numerous settings (free-riding, jump bids, sniping, etc.), especially where some information

about valuations of other bidders is available or can be learned through repeated interactions.

For example, if bidders had precise information about the preferences of their competitors, then

strategic bidders have incentives to manipulate (unless the auctioneer uses a Vickrey-Clarke-Groves

mechanism). However, in a combinatorial auction with exponentially many packages and many

bidders, this would presume the availability of a lot of information. In summary, it is important

for an auctioneer to understand the information available to bidders in a market before deciding

on a specific auction format.
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Online Appendices
Appendix A: Proofs

Lemma 1: The game of distributing Ψt =
∑

i∈L
WLt(i, S) − CWLt(L,SL) to individual bidders i ∈ L is

super-additive.

Proof: Let K =CAP t(K) be the revenue achieved by the winning coalition at auction state t, i.e., the

threshold for any losing coalition at state t. The winning level of a single-minded bidder i∈L is WLt(i, S) =

K −Σj∈L\ibj , where bj are the bids. The coalitional winning level (CWL) of any losing sub-coalition L′ ⊆L

is CWLt(L′, SL′
) =K −Σj∈L\L′bj .

Super-additivity is defined as Ψ(L)≥Ψ(L′)+Ψ(L′′) ∀L′,L′′ ⊆L, L′∩L′′ = ∅. We dropped the superscript

t for brevity.

Now we have

Ψ(L′) =
∑
i∈L′

WLt(i,S)−CWLt(L′, SL′
) (4)

=
∑
i∈L′

(K −
∑
j∈L\i

bj)− (K −
∑

j∈L\L′

bj) (5)

= K(|L′| − 1)−
∑
i∈L′

∑
j∈L\i

bj +
∑

j∈L\L′

bj (6)

= K(|L′| − 1)− (|L′|
∑
j∈L

bj −
∑
j∈L′

bj)+
∑

j∈L\L′

bj (7)

= K(|L′| − 1)− |L′|
∑
j∈L

bj +
∑
j∈L

bj (8)

= (|L′| − 1)(K −
∑
j∈L

bj) (9)

Note that (K −
∑

j∈L
bj)≥ 0 as L is a losing coalition, and it is the same for Ψ(L), Ψ(L′′), and Ψ(L′). It

remains to show that |L| ≥ |L′|+ |L′′| − 1 which is true for all subcoalitions L′,L′′ ⊆ L, because L′ and L′′

are disjoint. Q.E.D.

Lemma 2: The game of distributing Ψt =
∑

i∈L
WLt(i,S)−CWLt(L,SL) to individual bidders i ∈ L is

convex.

Proof: Convexity is defined as Ψ(L) ≥ Ψ(L′) + Ψ(L′′)−Ψ(L′ ∩ L′′), ∀L′,L′′ ⊆ L. If L′ ∩ L′′ = ∅, then

Ψ(L′ ∩ L′′) = 0 and convexity reduces to super-additivity. Else assume |L′ ∩ L′′| > 0. Based on Lemma 1

it remains to show that (|L| − 1) ≥ (|L′| − 1) + (|L′′| − 1) − (|L′ ∩L′′| − 1), which is equivalent to |L| ≥

|L′|+ |L′′| − |L′ ∩L′′|= |L′ ∪L′′| which is true for all L′,L′′ ⊆L.

Proposition 2: Suppose a bidder wants to become a winner in a given round of the complete information

CWL auction model, then accepting a CWL for a package maximizes expected payoff in a given round.

Proof: The complete information CWL auction model can be described as a single-stage coordination

game Γ = (I,Σ, π), where bidders i ∈ I can submit bids for different bid amounts on exponentially many

packages. Σ are possible bids of the bidders for different packages, and π are the resulting payoffs. Suppose an

auctioneer selects a losing coalition L⊂I and provides a CWL to the members of this coalition i∈L, i.e., he
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recommends bidder i with value vi(Xi) for the package to submit a bid b= bi(Xi) such that vi(Xi)− b= πi
sb.

The auctioneer computes these equilibrium bids according to a probability {ps} such that

∑
s∈S−i

(πi
sb−πi

sb′)psb ≥ 0.

This is equivalent to a correlated equilibrium, and consequently the expected payoff of a bidder bidding

bi(Xi) in this round is higher than that of any other bid b′ = b′i(X
′
i). If there is one payoff-dominant Nash

equilibrium, then the auctioneer selects this equilibrium with certainty such that there is also no incentive

for bidders to deviate from this equilibrium. Q.E.D.

Appendix B: Detailed Results of Lab Experiments with the Three Main Value
Models

B.1. Auction results in the Threshold VM

The detailed results for the Threshold VM can be found in Table 9.

AF.VM Session Wave E(X) R(X) No. of New Improved Time Rounds
Bids Bids Bids (min.)

DL.Thr 1 1 100% 88.8% 27 5.0 7.0 22.5 8
DL.Thr 1 2 100% 83.7% 42 5.0 14.5 14.4 13
DL.Thr 2 1 100% 70.0% 33 5.0 9.5 13.3 8
DL.Thr 2 2 93.4% 77.3% 12 5.0 0.5 5.2 3
DL.Thr 3 1 84.2% 81.5% 29 5.0 8.5 11.3 5
DL.Thr 3 2 100% 84.8% 25 3.5 7.5 18.2 9
DL.Thr 4 1 100% 87.0% 41 5.0 14.0 26.0 9
DL.Thr 4 2 86.4% 82.0% 23 5.0 4.5 14.1 6
DL.Thr 5 1 91.9% 55.5% 29 5.0 8.0 8.2 7
DL.Thr 5 2 100% 81.5% 39 5.0 12.5 11.1 10
DL.Thr 6 1 100% 86.4% 26 5.0 5.5 18.5 12
DL.Thr 6 2 100% 90.6% 34 5.0 10.0 13.9 9
CWL.Thr 7 1 100% 80.9% 19 5.0 3.5 8.2 5
CWL.Thr 7 2 100% 82.3% 26 5.0 6.0 13.9 6
CWL.Thr 8 1 100% 82.4% 13 3.5 1.5 5.2 4
CWL.Thr 8 2 100% 80.2% 21 5.0 3.5 12.0 9
CWL.Thr 9 1 100% 97.1% 15 5.0 1.5 8.9 3
CWL.Thr 9 2 100% 77.5% 25 5.0 6.5 15.8 5
CWL.Thr 10 1 100% 70.5% 17 5.0 2.5 5.3 4
CWL.Thr 10 2 100% 67.4% 18 5.0 0.5 11.7 4
CWL.Thr 11 1 100% 81.3% 15 5.0 1.0 5.0 5
CWL.Thr 11 2 100% 87.0% 21 5.0 4.0 10.3 6
CWL.Thr 12 1 100% 84.0% 21 5.0 4.0 17.2 8
CWL.Thr 12 2 100% 79.3% 19 5.0 3.0 13.4 6

Table 9 Auction results for the Threshold VM
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B.2. Auction results in the Mix VM

The detailed results for the Mix VM can be found it Table 10. We omitted the results of Session 6, Wave

1, Mix VM in this table due to errors in bidding behavior (bidder inadvertently submitted bids which were

much higher than their valuations).

AF.VM Session Wave E(X) R(X) No. of New Improved Time Rounds
Bids Bids Bids (min.)

DL.Mix 1 1 98.5% 97.7% 126 20.0 40.5 53.4 27
DL.Mix 1 2 96.5% 85.5% 190 50.0 43.5 41.4 21
DL.Mix 2 1 98.1% 90.8% 64 13.0 17.0 34.9 8
DL.Mix 2 2 97.5% 95.9% 121 51.5 8.0 17.9 11
DL.Mix 3 1 100% 82.7% 47 13.0 8.5 26.9 10
DL.Mix 3 2 100% 97.4% 138 37.5 28.5 66.8 28
DL.Mix 4 1 95.6% 87.5% 101 17.5 31.0 30.7 12
DL.Mix 4 2 98.3% 87.9% 31 12.0 2.5 19.9 6
DL.Mix 5 1 96.9% 82.2% 134 39.0 26.0 27.8 11
DL.Mix 5 2 92.1% 84.1% 87 21.0 20.5 37.4 15
DL.Mix 6 2 96.2% 95.9% 215 47.5 56.5 50.0 19
CWL.Mix 7 1 99.4% 92.3% 136 39.5 27.0 39.2 13
CWL.Mix 7 2 100% 90.7% 81 32.0 7.0 14.0 5
CWL.Mix 8 1 97.4% 88.6% 60 14.5 13.5 25.1 14
CWL.Mix 8 2 97.5% 89.3% 99 43.5 5.0 31.6 16
CWL.Mix 9 1 100% 85.9% 96 26.5 20.0 24.8 6
CWL.Mix 9 2 100% 89.6% 58 23.0 4.5 39.4 10
CWL.Mix 10 1 95.6% 76.2% 31 11.5 2.0 13.4 7
CWL.Mix 10 2 100% 88.4% 48 19.0 4.5 13.6 6
CWL.Mix 11 1 98.5% 90.9% 50 19.0 1.5 17.1 9
CWL.Mix 11 2 92.1% 89.2% 48 19.5 3.0 17.9 5
CWL.Mix 12 1 99.9% 94.2% 126 50.0 11.5 22.8 6
CWL.Mix 12 2 96.2% 85.9% 172 53.5 31.0 44.6 16

Table 10 Auction results for the Mix VM

B.3. Auction results in the Symmetry VM

The detailed results for the Symmetry VM can be found in Table 11.

Appendix C: Detailed Results of Lab Experiments with an Additional 18-item
Value Model

Finally, we also ran another lab experiment with the large 18-item global-synergy value model (18GSVM)

with 7 bidders, which is based on a value model by Goeree and Holt (2010) used in their experiments. The

experimental design is consistent with the ones in the Section D.1 in the online appendix. Such experiments

are costly and it is difficult to determine the bid increments such that the DL auction actually terminates

in a reasonable time frame in the experiment. This is why we only report on a single experiment. Again,

consistent with our initial results, we found that, when comparing the DL with the CWL auction format,

the number of auction rounds was reduced substantially from 46 to 21, and efficiency was greater than 99%

in both cases. The Table 12 shows detailed results for this value model.
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AF.VM Session Wave E(X) R(X) No. of New Improved Time Rounds
Bids Bids Bids (min.)

DL.Sym 1 1 100% 84.2% 98 20.0 12.3 48.5 11
DL.Sym 1 2 100% 79.2% 242 48.0 32.0 61.5 16
DL.Sym 2 1 100% 71.7% 80 18.0 8.7 25.8 15
DL.Sym 2 2 100% 89.5% 343 56.3 42.7 68.8 13
DL.Sym 3 1 100% 74.5% 111 20.7 16.3 43.3 10
DL.Sym 3 2 100% 40.4% 174 50.0 8.0 37.4 7
DL.Sym 4 1 100% 88.0% 140 14.0 32.7 29.3 8
DL.Sym 4 2 100% 87.5% 148 28.3 20.3 47.6 13
DL.Sym 5 1 89.1% 77.2% 220 34.3 38.7 33.2 7
DL.Sym 5 2 100% 79.6% 191 23.3 40.3 60.4 31
DL.Sym 6 1 90.6% 80.7% 114 34.3 3.7 51.3 19
DL.Sym 6 2 100% 88.3% 138 29.0 15.0 42.4 13
CWL.Sym 7 1 100% 72.7% 81 19.7 7.3 18.1 3
CWL.Sym 7 2 100% 67.5% 121 31.3 9.0 35.0 12
CWL.Sym 8 1 100% 79.2% 94 21.7 9.3 30.4 26
CWL.Sym 8 2 100% 4.0% 36 9.7 2.3 15.9 11
CWL.Sym 9 1 100% 73.9% 136 35.3 9.7 24.7 6
CWL.Sym 9 2 100% 94.3% 130 28.0 15.3 25.3 6
CWL.Sym 10 1 100% 79.3% 128 23.3 19.3 40.4 9
CWL.Sym 10 2 100% 48.6% 165 44.0 8.0 40.2 7
CWL.Sym 11 1 100% 51.8% 49 13.0 3.3 19.9 14
CWL.Sym 11 2 100% 57.1% 114 32.3 5.3 21.6 7
CWL.Sym 12 1 100% 54.5% 154 54.3 9.3 34.3 6
CWL.Sym 12 2 100% 83.5% 191 44.0 7.3 38.2 19

Table 11 Auction results for the Symmetry VM

AF.VM Session Wave E(X) R(X) No. of New Improved Time Rounds
Bids Bids Bids (min.)

DL.18GSVM 1 1 99.3% 65.5% 713 41.4 40.1 148.3 46
CWL.18GSVM 1 2 99.8% 79.7% 586 43.3 28.0 73.7 21

Table 12 Auction results for the 18-item global-synergy value model

Appendix D: Simulation Studies with Three Additional Complex Value Models

In this online appendix, we provide the results of numerical simulations with three additional value models

which were different to those in the main part of the paper. Two value models have 18 items, one has

9 items. The two global-synergy value models (with 18 and 9 items respectively) are based on an earlier

work by Goeree and Holt (2010) and use global complementarities (GSVM). The last value model uses local

complementarities between 18 items (LSVM), modeled after a real-estate auction. We simulated 64 instances

of the GSVM and 160 of the LSVM.

D.1. The 18-Item Global-Synergy Value Model (18GSVM)

The global-SVM is based on the experiments in Goeree and Holt (2010) and involves seven bidders and 18

items. Figure 8 represents the bidders’ preferences. The six regional bidders (labeled 1 through 6) are each
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interested in four adjacent items of the national circle (consisting of items A through L) and two items of the

regional circle (consisting of items M through R) while for the national bidder (labeled 7) the twelve items

of the national circle are relevant. This information was common knowledge, but it was not known which

bidders were interested in a particular item. For example experimental subjects did not know that besides

bidder 7 also 3 and 4 were interested in item H.

M 

R  O 

N 

Q  P 

1,6  1,2 

4,5  3,4 

5,6  2,3 

Na#onal Circle  Regional Circle 

A, B 

K, L  E, F 

C, D 

I, J  G, H 

1,6  1,2 

4,5  3,4 

5,6  2,3 7 

Figure 8 Competition structure of the Global-SVM. Regional bidders 1-6 are interested in four items from the

national circle and two items from the regional circle. National bidder 7 is interested in all twelve items

from the national circle (Goeree and Holt 2010).

The values for the individual items are randomly determined. For the national bidder the baseline draw

distributions are uniform from the range [0,10] for items A-D and I-L and uniform from the range [0,20] for

items E-H. For regional bidders the baseline draw distributions are uniform from the range [0,20] for items

A-D, I-L and M-R and uniform from the range [0,40] for items E-H. These value distributions (not the actual

draws) were common knowledge among the experimental subjects. For comparison, we use the same draws

as in Goeree and Holt (2010), which the authors have kindly provided. For both bidder types the value of

items in a package increases by 20% (with two items), 40% (with three items), 60% (with four items), etc.

and by 220% for the package containing twelve items. For the computation of the complementarities the

identity of the items does not matter. For example, a bidders’ valuation of a package of items increases by

the same percentage independent of the adjacency of the items; this means, this is a value model in which

global complementarities apply.

Activity and purchase limits are such that regional bidders can bid on and acquire at most four items in

a single round, while the national bidder is able to acquire all his twelve items of interest. The number of

218− 1 = 262,143 possible packages for the national bidder did not allow for a pure straightforward strategy

in each round of the simulation. Therefore, the bidders were restricted with respect to the packages they

could select. From the national circle they only included packages containing both items on a vertex. This

means for example that a bidder only bids on packages including, say, both A and B, but not packages with

A alone, as both A and B are on the same vertex of the national circle. As a result, even straightforward

bidders in the DL auction could not achieve full efficiency. In order to be able to simulate a straightforward
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bidder, we designed a version of this value model with 9 items, wich allows us to analyze all possible packages

in each round in the 9-item global-synergy value model described next.

D.2. The 9-Item Global-Synergy Value Model (9GSVM)

Figure 9 represents the bidders’ preferences. The three regional bidders (labeled 1 through 3) are each

interested in four adjacent items of the national circle (consisting of items A through F) and one item of the

regional circle (consisting of items G through I) while for the national bidder (labeled 4) all six items of the

national circle are relevant.

Figure 9 Competition structure of the Global-SVM. Regional bidders 1-3 are interested in four items from the

national circle and one item from the regional circle. National bidder 4 is interested in all six items

from the national circle.

The values for the individual items are randomly determined. For the national bidder the baseline draw

distributions are uniform from the range [0,15] for items A,B,E,F and uniform from the range [0,30] for

items C,D. For regional bidders the baseline draw distributions are uniform from the range [0,20] for items

A,B,E,F and G,I,H and uniform from the range [0,40] for items C,D. For both bidder types the value

of items in a package increases every time by 20% with each additional item. For the calculation of the

complementarities the identity of the items does not matter, e.g. a bidders’ valuation of a package of items

increases by the same percentage independent of the adjacency of the items; i.e, this is a value model in

which global complementarities apply. Activity and purchase limits are such that regional bidders can bid

on and acquire at most three items in a single round, while the national bidder is able to acquire all his six

items of interest.

D.3. The 18-Item Local-Synergy Value Model (18LSVM)

The local-synergy value model consists of 18 items arranged quadratically and considers the scenario in which

complementarities are gained from spatial proximity. In this value model items are placed on a quadratic

map. The arrangement of items matters for the calculation of the complementarities, which only arise if the

items are neighboring.
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This model also contains two different bidder types: one national bidder, interested in all bundles consisting

of at least 7 items, and three regional bidders. Each regional bidder is interested in a randomly determined

preferred item and all horizontal and vertical adjacent items. This means that a regional bidder is interested

in three to five items. Examples are shown in Table 13, in which the preferred item of a regional bidder is

Q or K, and all gray shaded items in the proximity of the preferred item have a positive valuation. For each

bidder i we draw the valuation vi(k) for each item k in the proximity of the preferred item from a uniform

distribution. Item valuations for the national bidder are from the range [3,9] and for regional bidders from

the range [3,20].

A B C D E F
G H I J K L
M N O P Q* R

A B C D E F
G H I J K* L
M N O P Q R

Table 13 Local-SVM with the preferred items Q and K of two regional bidders. All their positive valued items

are shaded.

We assume that bidders experience only low complementarities on small packages, but complementarities

increase heavily with a certain amount of adjacent items. We further assume that adding items to already

large packages do not increase the complementarities anymore. The rationale for these assumptions is the

lack of economies of scale with small packages and a saturation of this effect with larger packages. Therefore,

complementarities are modeled based on a logistic function, which assigns a higher value to larger packages

than to smaller ones. Valuations used in the simulations are available on request.

D.4. Efficiency and Revenue

As in the main text of our paper, we analyze straightforward and heuristic bidding stragegies: two types of

straightforward bidders (sDL and sCWL) and two types of heuristic bidders, who randomly select 5 from their

best 10 bundles (hDL and hCWL). Table 14 summarizes the results of the simulations. The first observation

is that with last-and-final bids all auctions with the value models 9GSVM and 18LSVM were fully efficient.

This is not surprising for sDL, where there are proofs for full efficiency. It is, however, interesting to see that

even those auctions where the CWLs were used as ask prices yielded full efficiency. Differences in revenue

were significant (t-test, α= 0.05) but small.

As indicated earlier, in the 18GSVM value model the number of packages explored in each round was

reduced to keep the package selection tractable, which led to an efficiency loss in all auctions. However, the

differences in efficiency and revenue are hard to interpret due to the resulting randomness in the package

selection. Still the number of auction rounds and the number of bids was reduced substantially with CWL

auctions as compared to DL auctions.

Appendix E: Screenshots of Bid Submission

In this appendix we will provide selected screenshots to illustrate how a bidder in the experiments interacted

with the auction and what information feedback he received. Figure 10 shows the start of an auction, where

a bidder sees a list of all bundles for which he has positive valuations together with the valuations.
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VM AF Strategy Efficiency Revenue Rounds Number of
Bids

9GSVM DL sDL 100% 77.5% 100% 100%
9GSVM CWL sCWL 100% 68.2% 81.0% 14.7%
9GSVM DL hDL 100% 61.2% 178.8% 77.2%
9GSVM CWL hCWL 100% 64.7% 33.3% 18.6%

18GSVM DL sDL 97.87% 84.28% 100% 100%
18GSVM CWL sCWL 95.66% 76.71% 40.33% 39.02%
18GSVM DL hDL 98.00% 72.16% 36.37% 78.22%
18GSVM CWL hCWL 96.95% 76.64% 14.72% 33.99%

18LSVM DL sDL 100% 83.9% 100% 100%
18LSVM CWL sCWL 100% 83.5% 51.5% 25.7%
18LSVM DL hDL 100% 82.7% 108.3% 100.6%
18LSVM CWL hCWL 100% 84.7% 35.6% 36.5%

Table 14 Average measures of auction performance.

Figure 10 List of bundles with positive valuations for a bidder.

If a bidder decides to submit a bid and clicks “Submit Bid” for a bundle (in our example for the bundle

AB) in Figure 10, a window pops up, shown in Figure 11, where the bidder can submit a bid price on the

selected bundle. In the same window, he is shown whether he has already submitted a bid on this bundle in a

previous auction round and, if so, his last active bid price; his private valuation for the bundle; the ask price

(in bold) and the lower boundary for a last-and-final bid price if he chooses to submit one (also in bold).

Now let us assume the bidder has submitted two new bids in the first round of the auction, on the bundles

A and AB respectively. After he submitted these two bids a new list of active bundles is created for him

which is shown in Figure 12. There he sees for each of his bundles the bundle; his bidding status on this

bundle (“new” if he is bidding for the first time on this bundle in the current round, indicated in orange;

“winning” if his bid on a bundle in one of the previous rounds is winning in the current round, indicated in

green; or “losing” if his bid on a bundle in one of the previous rounds is losing in the current round, indicated

in red.), his active bid price, ask prices, his potential payoff after paying the ask price and a fix increment,

and finally his private valuation for this bundle.
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Figure 11 Window for bid submission on a package.

Figure 12 List of bundles a bidder has bid on in previous rounds or a bidder has bid on for the first time in the

current round.

Figure 13 then shows a screenshot to illustrate the next round. Our bidder has submitted two bids in the

first round, one for the bundle A and one for the bundle AB, both with prices at 1. In the current round

2, both active bundles are shown together with the information, that his bundle bid on A is winning, while

his bundle bid on AB is losing. Additionally, the CWL prices are shown as well as his potential gain when

winning at the current prices, which equals his private valuation minus CWL prices and the increment.
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Figure 13 The updated list of active bundles and bids of a bidder after he submitted some bids in the previous

round.


