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a b s t r a c t

Resource allocation strategies in virtualized data centers have received considerable
attention recently as they can have substantial impact on the energy efficiency of a data
center. This led to new decision and control strategies with significant managerial impact
for IT service providers. We focus on dynamic environments where virtual machines need

been analyzed and used to place virtual machines upon arrival. However, these placement
heuristics can lead to suboptimal server utilization, because they cannot consider virtual
machines, which arrive in the future. We ran extensive lab experiments and simulations
with different controllers and different workloads to understand which control strategies
achieve high levels of energy efficiency in different workload environments. We found
that combinations of placement controllers and periodic reallocations achieve the highest
energy efficiency subject to predefined service levels. While the type of placement
heuristic had little impact on the average server demand, the type of virtual machine
resource demand estimator used for the placement decisions had a significant impact on
the overall energy efficiency.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Modern data centers are increasingly using virtualiza-
tion technology and provide virtual machines (VMs) for
their customers rather than physical servers. Actually, IT
service managers worldwide ranked virtualization and
server consolidation as one of their top priorities in the
recent years [1,2]. We focus on IaaS (Infrastructure-as-a-
Service) as the most basic cloud-service model, in which IT
service providers offer computers or virtual machines as a
service to their customers. In virtualized data centers of
IaaS providers, many VMs are allocated on a single server
where dedicated servers were required before. VMs can be
com (C. Pfeiffer),
allocated and deallocated within seconds using nowadays
migration technology in VM hypervisor software.

With the adoption of virtualization technology the demand
for new physical servers decreased while the demand for VMs
has grown considerably. At the same time, server administra-
tion costs increased as many virtual machines need to be
managed [3]. This leads to new resource allocation problems,
which require decision support and ultimately automation to
bring down administration costs and achieve high energy
efficiency. While there has been a substantial literature on
capacity planning and business models [4–6], the literature on
dynamic resource allocation in clouds in combination with
incoming and outgoing VMs has received less attention. In
particular, there is little experimental literature comparing
different methods with respect to their energy efficiency in a
lab environment, despite their potentially high impact on the
total cost of IT service provisioning [4,7]. Most research is based
on discrete event simulations only.
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Today, cloud management tools such as OpenStack1 and
Eucalyptus2 are used in many IaaS cloud environments for
resource allocation. Incoming VMs are placed on servers via
simple bin packing heuristics and remain there until they are
deallocated. Such heuristics have also been analyzed in the
academic literature (see Section 2). Because such placement
heuristics do not consider future allocation and deallocation
requests, servers might be underutilized and operated at a
low energy efficiency.

VM live-migrations allow to move VMs between servers
during runtime. The technology has matured to a state where
it is a viable option not only for emergency situations [8], but
also for routine resource allocation tasks. At this point, none
of the existing cloud management tools uses reallocation
after the initial placement in their resource allocation strate-
gies. Rather they rely on the original placement decisions
using simple bin packing algorithms.

In contrast to previous research we contribute results of
an extensive set of lab experiments covering an effective
runtime of more than 100 days. Lab experiments are expen-
sive as they require a dedicated infrastructure to run con-
trolled experiments including specific VM management,
monitoring, and metering tools. Also, a single experiment
takes several hours. However, the experiments provide us
with adequate estimates for system latencies and migration
costs, which we use afterwards for the simulation of larger
infrastructures. The parameter estimates from our lab experi-
ments lead to high external validity of our simulations, which
would be difficult to parametrize otherwise.

Technically, our lab infrastructure closely resembles a
private IaaS cloud that one would find in small to medium
sized enterprise environments. In addition a proprietary
cloud manager and monitoring solutions were developed
in order run controlled experiments that allow a proper
analysis. The very same controller software was used for
the simulations. Workload traces were simulated from log
data in real-world data centers from industry partners.
In addition, we used wide-spread benchmark applications
such as SPECjEnterprise3 to emulate real enterprise appli-
cations.

There are many possibilities how reallocation controllers
can be implemented and combined with placement algo-
rithms. We systematically analyzed a large variety of resource
allocation strategies in different workload environments in
simulations as a first step. In particular, we analyzed different
resource allocation strategies, simple placement controllers
based on bin packing, and advanced controllers combining
placement and reallocation algorithms for server consolidation
and high energy efficiency. We will refer to such combined
resource allocation strategies as reallocation controllers. While
placement controllers have been the focus of prior literature,
the efficiency gains of reallocation controllers is the focus of
this study. In a second step, we compared selected placement
and reallocation controllers in lab experiments on a physical
data center infrastructure. These lab experiments allowed us to
derive results on various efficiency and quality-of-service
1 https://www.openstack.org/.
2 https://www.eucalyptus.com.
3 http://www.spec.org/jEnterprise2010/.
metrics with high external validity, because we do not need
to make estimates about migration overheads or system
latencies. The scope and scale of the experiments is beyond
what has been reported in the literature, and the results
provide tangible guidelines for data center managers.

We found that reallocation controllers have a substan-
tial positive impact on the energy efficiency of a data
center. We achieved the highest energy efficiency with
placement controllers computing a very dense allocation
from the start. In case of overload in such allocations, VMs
were migrated later. If the placement decisions were based
on the actual demand on a server rather than the reserva-
tions for the VMs on a server, the density of the packing
could be increased and therefore also the energy efficiency
of the servers. Interestingly, the type of bin packing
heuristic for the initial placement had little impact on
the energy efficiency. Periodic reallocation by reallocation
controllers, however, had substantial impact on the energy
efficiency overall.

In Section 2, we discuss related literature. Section 3 introduces
the experimental setup, while Section 4 describes the results.
Finally, Section 5 provides a summary and conclusions.

2. Related work

Our research draws on different literature streams. First,
wewill introduce relevant literature on bin packing problems,
as this is the fundamental problem for the VM placement.
Next we will discuss the literature on static allocation and on
dynamic allocation algorithms, where VMs arrive and depart
continuously. There is significant research on power distribu-
tion in cloud data centers [9], which we consider comple-
mentary to our work.

2.1. Bin packing

The bin packing problem has been subject of extensive
theoretical research. A wide selection of heuristics based
on different packing strategies exists [10]. The bin packing
problem that needs to be solved for VM placement
decisions can be solved by well known heuristics like
Next-Fit, First-Fit, Best-Fit, or many others. Vector bin
packing algorithms can be used if multiple resources such
as CPU and memory need to be considered over time [4].

Coffman [11] analyzed dynamic bin packing where new
items arrive and existing ones depart. He proves a compe-
titive ratio that compares fully dynamic on-line packing
heuristics with optimal solutions for the offline problem.
The competitive ratio was improved successively, most
recently by Wong et al. [12] to a value of 8/3. Of course,
competitive ratios are worst case bounds and average
results are typically better than this.

Finally, Ivkovic et al. [13] introduced fully dynamic bin
packing where items can be reallocated before placing a
new VM on a server. Their algorithm is 5/4-competitive.
This theoretical analysis indicates that there are gains from
reallocation from the worst-case perspective assumed in
the theoretical literature. It is interesting to understand, if
reallocation has a positive impact on the average utiliza-
tion in a data center and the order of magnitude of these
differences on average in a controlled lab experiment.

https://www.openstack.org/
https://www.eucalyptus.com
http://www.spec.org/jEnterprise2010/
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2.2. Static and dynamic allocation

A number of papers have addressed the problem of
server consolidation where a set of VMs is allocated to a
minimal set of servers in order to increase resource
utilization. Sometimes VMs can be migrated between
servers over time, but the set of VMs is stable as it is often
the case in corporate data centers.

Some solutions to these static allocation problems
leverage bin-packing heuristics, others use mixed integer
programming (MIP) to find optimal or near-optimal solu-
tions [4,14,6]. Bobroff et al. [15] predict future resource
utilization by autoregressive forecasting models which are
used by bin-packing heuristics. pMapper [16] computes a
new allocation based on actual resource utilization mea-
surements and triggers iterative VM migrations to change
the allocation considering costs entailed with VM migra-
tions. Gmach et al. [5] proposed a fuzzy logic based
dynamic controller that load balances servers. Thresholds
on memory and CPU are used to detect overloaded servers.
The evaluation is based on a simulation.

So far, only a few authors evaluated their resource
allocation algorithms in lab experiments. Wood et al. [17]
proposed Sandpiper as a dynamic VM allocation approach
for load balancing VMs rather than minimizing total server
uptime. Migrations are triggered if server overload thresh-
olds are reached. For our experiments, we adapted Sand-
paper in one of the treatments such that it minimizes total
server uptime in addition to load balancing as described in
Section 3.1.2. Sandpiper was evaluated on a hardware
infrastructure, but not compared to alternative strategies
regarding energy efficiency.

vGreen [18] is another dynamic allocation approach
that leverages different controllers depending on the
resource considered. VMs on servers with low utilization
are moved to other servers heuristically such that some
servers can be turned off. vGreen was also evaluated in a
small test bed with 2 physical servers.

2.3. Fully dynamic allocation

The work discussed so far did not consider fully dynamic
scenarios where VMs arrive and depart over time, as it is the
focus of this paper. A few recent papers have focused on
related problems.

Calcavecchia et al. [19] proposed a two stage VM place-
ment strategy called backward speculative planning. Demand
risk is a metric characterizing the unfulfilled demand of VMs
running on a server. Incoming VMs are placed by a Decreas-
ing Best-Fit strategy on the server providing the minimal
demand risk after placing the VM, assuming that the new VM
was fully utilized in the past. VM migrations are only
triggered if unfulfilled demand exists and a threshold on
the number of migrations for a period is not exceeded.

Mills et al. [20] simulated initial placement strategies in
an IaaS environment without live-migrating VMs. For each
incoming VM, a cluster and a server are selected in this
order. Three cluster selection algorithms and 6 server
selection heuristics were evaluated in 32 workload sce-
narios. Workloads were generated randomly based on a
configuration of 6 parameters.
Both papers analyze VM resource allocation strategies
in fully dynamic scenarios. In addition, simple placement
policies such as the minimization of migrations or policies
allowing for growth have been compared in simulations
[21].While these papers are important first steps, we
extended these studies in important ways.

First, we analyze different strategies not only in simu-
lations, but also in lab experiments. This is expensive, but
important for the external validity of such experiments.
Our workload data used in the simulations and experi-
ments is based on monitoring data of actual enterprise
data centers, and VM arrival and departure rates are based
on statistics described by Peng et al. [22] based on multiple
data centers operated by IBM.

Second, we significantly increased the scale of the studies
and analyzed a large number of VM placement and realloca-
tion strategies separately and in combination to take interac-
tion effects into account. This allows us to make
recommendations for data center managers based on a large
number of treatment combinations. In particular, we can
shed light on the benefits of reallocation in fully dynamic
environments. While the number of possible heuristics to
allocate resources dynamically is huge, we argue that we
have considered the most prominent approaches discussed to
adequately reflect the state-of-the-art as well as new and
promising strategies for reallocation controllers.

3. Experimental setup

In what follows, we describe the experimental setup
and the technical infrastructure used for the experiments.

3.1. Technical environment

In our infrastructure VMs are created and removed
automatically by means of a network service. New VMs are
allocated and existing ones are removed continuously. VM
lifetimes vary between a couple of minutes and months.
We do not assume prior knowledge about the type or
applications running within VMs. An allocation request
includes the VM resource reservation and a reference to a
network attached disk. A reservation describes the size of a
VM in terms of allocated CPU cores, memory, network, and
disk capacity.

For a new VM allocation request, the cloud manage-
ment tool has to decide on which server the new VM
should be placed. This decision is taken by a placement
controller. Already running VMs might get migrated to
another server. Migrations are triggered by reallocation
controllers that either run in regular intervals or closely
monitor the infrastructure and respond to inefficiencies of
the current allocation.

In this paper, we attempt to analyze a wide variety of
controllers for placement and reallocation. The function-
ality of the controllers under consideration is outlined in
the following.

3.1.1. Placement controllers
Let us first introduce two ways how parameters for

placement controllers can be computed. We describe residual
capacity as the amount of unused resources on a server. It is
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expressed as a vector. Each component of the vector repre-
sents a resource like CPU or memory. There are two types of
residual capacity. Reservation-based residual capacity subtracts
VM resource reservations from a server's total capacity.
Demand-based residual capacity is the measured amount of
free resources on a server. Both can be used for placement
controllers. Interestingly, all available cloud management
tools that we are aware of (including OpenStack and Euca-
lyptus) use a reservation-based allocation, which guarantees
each VM its resource reservation. Many VMs are not utilized
to 100% of the capacity that was reserved leading to under-
utilized servers. Demand-based allocation leverages informa-
tion about the actual VM resource utilization and increases
server utilization by overbooking. However, they can only be
used in conjunctionwith reallocation controllers as otherwise
servers might get overloaded. Reallocation controllers miti-
gate overloaded servers using VM migrations.

Any-Fit placement controllers including First-Fit, Best-
Fit, Worst-Fit, and Next-Fit assign an arriving VMn to a
server [10]. These are regularly used in cloud management
software and based on established and simple bin packing
algorithms [23]: First-Fit iterates over the decreasingly
sorted server list by their load and picks the first one that
fits the VMn reservation. Best-Fit computes the delta of
residual capacity and VMn reservation vector norms and
picks the server with minimal difference that fulfills the
reservation. Worst-Fit works the same way but selects the
server with the maximum vector norm difference. Next-Fit
holds a pointer on a server. Each incoming VM is placed on
this server as long as its residual capacity allows for the
VMn's reservation. Otherwise, the pointer is moved to the
next server in a round-robin fashion until a feasible server
is found.

Apart from these standard algorithms, there have been
specific proposals for VM placement in the literature. Dot-
Product [24] is a First-Fit-Decreasing approach where
server weight is calculated by the dot product of server
residual capacity ŝ�1, and the reservation _s for VMn as
ŝ�1 � _s. Similarly, cosine is also a First-Fit-Decreasing algo-
rithm [25] that uses the cosine as a weight function:
cos ðŝ�1

; _sÞ. L2 [24] leverages First-Fit-Increasing with the
difference of the vector norms as a weight J ŝ�1 J� J _s J .
3.1.2. Reallocation controllers
Reallocation controllers are executed regularly and

trigger VM migrations in order to re-optimize the alloca-
tion. We found two approaches in the literature to com-
pute a schedule of reallocations over time. DSAPP
describes an optimization model to compute an optimal
schedule of reallocations over time and it was introduced
by [4,26]. Alternatively, KMControl and TControl are two
heuristics proposed by [17] for the Sandpiper system. In
the following, we will briefly describe these controllers
such that the paper is self-contained, but refer the reader
to the original papers for details.

DSAPP: The DSAPP controller gets executed every 60 s.
Each time it recomputes the allocation of VMs to servers
according to the optimization problem shown in Eq. (1).
Let us discuss the underlying mixed integer program used
in the controller.
Suppose we are given a set of servers iA I and VMs jA J.
A server's size is denoted by ŝi describing its resource
capacity, e.g. CPU or available memory. The total planning
horizon is divided into two discrete periods tAf1;2g, the
current one xij1 and the upcoming one xij2. Values for xij1
are passed as a parameter to the model. yiAf0;1g tells
whether a server i is active in period 2. _uj2 describes the
expected CPU utilization of VM j during period 2. The
allocation matrix xijt of period t indicates whether VM j is
assigned to server i. Migrations of VMs from period 1 to 2
are indicated by slack variables z�ij for outgoing and zþij for
incoming ones. The objective function minimizes the sum
of total server operation costs ĉ and migration costs c�j ,
cþj . The first constraint makes sure that each VM is
allocated in the next period. The second constraint
enforces upper bounds on the capacity of each server.
Constraints three and four set the variables zþij and z�ij
used in the objective function if a VM is incoming or
outgoing:

min ∑
I

i ¼ 1
ˆcyi2 ∑

I

i ¼ 1
cþj z

þ
ij þ ∑

I

i ¼ 1
c−j z

−
ij

 !

s:t

∑
I

i ¼ 1
xij2 ¼ 1; ∀j∈j

∑
I

j ¼ 1
̇uj2xij2≤ˆsiyi; ∀i∈j

−xij1 þ xij2−zþij ≤0; ∀i∈I; ∀j∈j

xij1 þ xij2−z−ij≤0; ∀i∈I; ∀j∈j

yi; xijtz
−
ij∈f0;1g; ∀i∈I ∀j∈j∀t∈f1;2g

ð1Þ

After each execution, the new allocation xij2 is imple-
mented and the migrations are triggered. A migration
scheduler ensures that each server is running only one
migration in parallel, either an outgoing or an incoming
one. As many live-migrations as possible are executed in
parallel without overloading servers or their network
interfaces.

For parametrization, server operation costs and migra-
tion costs are estimated by execution period and average
migration duration. In our lab experiments, the execution
period was 60 s while live-migrations took 25 s on average
which provides values for the parameters ĉ ¼ 60 and
cþj ¼ c�j ¼ 12:5 in the objective function.

KMControl and TControl: The controllers used in Sand-
piper [17] provide an alternative heuristic to recompute
the allocations in order to balance load across servers. We
extend these controllers in the following way.

The controller is executed periodically every 5 min.
There are three phases: (1) detect and mark overloaded
and underloaded servers; (2) compute server and VM load
rankings; (3) mitigate overloaded and underloaded servers
by migrations.

KMControl and TControl differ in phase one: KMControl
checks if M out of the last K server CPU utilization
measurements ûit are above an threshold To or below Tu
to mark a server i as overloaded or underloaded. TControl
is based on a single-sided t-test that compares the mean of
the M recent utilization measurements starting at time t



Fig. 1. Sample of a VM arrival and departure schedule.

Table 1
Five schedule instances are generated for each of the four schedule
configurations.

Schedule config. Arrival time Lifetime

1 A1 L1
2 A1 L2
3 A2 L1
4 A2 L2
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against To and Tu: Torð1=MÞP ûiðt�Mþ1Þ;‥; ûitgrTu. If H0

is rejected at a p-level of 0.001, a significant difference is
assumed and a server is either marked as overloaded or
underloaded.

Phase two computes a volume (VOL) and a volume-size
ratio (VSR) (Eq. (2)) for each server and VM according to
[17] with ur denoting the utilization of resource r and smem

the memory capacity of a server or VM individually. Both
computations are performed for physical servers and VMs.
Servers are sorted by VOL in decreasing order so that
servers with a high resource utilization are found at the
top:

VOL¼ 1
∏8 rð1�urÞ ð2Þ

VSR¼ VOL
smem ð3Þ

Phase three triggers migrations such that underloaded
servers are emptied and overloaded ones are relieved. VMs
running on an overloaded or underloaded server are sorted
by their VSR in a decreasing order. VM migration overhead
depends on the combination of memory size and utilization.
VSR puts memory size into perspective of utilization. To
reduce migration costs, VMs with a low memory size
compared to utilization are considered first for migration.

3.2. Experimental design

For our experiments we generated schedules of VM
arrivals and departures that we could evaluate with
different controllers. This allows for a fair comparison of
different controller combinations. A schedule defines arri-
val and departure times as well as VM reservations
(illustrated in Fig. 1).

There are many possible schedules that one could
explore in experiments. A single lab experiment takes
13–15 h. Due to time restrictions a large number of
schedules was analyzed by simulations first (see http://
cloudcontrol.in.tum.de/) and a subset was then analyzed in
the lab. These schedules vary lifetime, inter-arrival time,
and resource reservations of VMs.

Inter-arrival times were taken from Peng et al. [22],
who published cumulative density functions (CDF) for
inter-arrival times of VMs. Data originated from real world
measurements in enterprise data centers operated by IBM.
Our schedules leverage two CDFs, one with short (A1) and
one with longer inter-arrival times (A2).

Lifetimes are based on two CDFs as well. L1 is a CDF of
VM life-time over all data centers, L2 is a mixture of CDFs
for unpopular, average, and popular VMs with probabilities
(0.2, 0.6, 0.2). Both, VM inter-arrival- and life-times are
scaled by factor 30 to keep the total time for a lab
experiment below 15 h. Table 1 provides an overview of
the schedule configurations in our experiments.

Five schedule instances were generated for each sche-
dule configuration shown in Table 1. A schedule runs up to
20 VMs in parallel. Three VM sizes were used in the
experiments: Small VMs (S) are configured with 1 vCPU
core and 2 GByte of memory. Medium sized VMs (M) have
2 vCPU cores and 4 GByte of memory. Large ones (L) are
assigned 3 vCPU cores and 6 GByte of memory. VM sizes
are picked based on probabilities ðS;M; LÞ ¼ ð0:6;0:3;0:1Þ
for each new VM in a schedule.

While the demand patterns for our VMs are represen-
tative and based on real-world demand traces, there can
also be VMs with specific demand patterns. In particular, if
a VM has regular demand peaks such as batch jobs that are
executed every 15 min, this can trigger frequent migra-
tions. Such VMs should be treated differently and allocated
to dedicated servers with enough capacity to handle these
demand peaks without migrations. Monitoring systems
are able to detect such specific demand patterns. These
topics are outside the scope of our analysis. For long-
running VMs where the controller can learn regular
demand patterns, algorithms have been developed to deal
with regular demand patterns [6].
3.3. Hardware infrastructure

The architecture of our hardware infrastructure is
shown in Fig. 2. It consists of six identical servers and 90
VMs of three sizes described in the previous section.
Fedora Linux 16 is used as operating system with KVM
as hypervisor. Each server is equipped with a single Intel
Quad CPU Q9550 2.66 GHz, 16 GByte memory, a single 10k
disk and four 1GBit network interfaces.

The VM disk files are located on two separate NFS
storage servers as qcow2 files. The first one is equipped
with an Intel Xeon E5405 CPU, 16 GByte memory and three
1GBit network interfaces in a 802.3ad LACP bond. The
second storage server has a Intel Xeon E5620 CPU,
16 GByte memory and three GBit network interfaces in a
LACP bond. Disks are set up in a RAID 10 configuration.

http://cloudcontrol.in.tum.de/
http://cloudcontrol.in.tum.de/


Fig. 2. IaaS environment that supports simulations and experiments.
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Both, the network and storage infrastructure had sufficient
capacity such that they did not result in bottlenecks.

A Glassfish4 application server with the SPECjEnter-
prise20105 (SPECj) application and a MySQL database
server were installed on each VM. SPECj was chosen
because it is widely used in industry to benchmark
enterprise application servers. It is designed to generate
a workload on the underlying hardware and software that
is very similar to the one experienced in real world
business applications.

Two additional servers are used as workload drivers.
Each one is equipped with an Intel Core 2 Quad Q9400
CPU with 12 GByte main memory and two 1GBit network
interfaces in an LACP bond. A modified version of the Rain6

workload framework is used to simulate varying workload
scenarios.

Rain simulates a varying amount of users over time.
This user demand is specified by a set of 32 time series
that describe the workload for a given time in values
0rxtr1. Depending on the VM size, the time series is
multiplied with 100 (S), 150 (M), and 200 (L). The resulting
time series describes the number of users to simulate by
Rain over time on a single VM.

A monitoring system called Sonar7 captured relevant
resource utilizations in three second intervals of servers
and VMs. All relevant metrics such as CPU, memory, disk
and network utilization are monitored. Rain drivers
reported three second averages of the response time for
each service individually. Sonar allows a complete replica-
tion of an experiment for analytical purposes.

3.4. Focus variables of the experiment

Our primary objective is to minimize the total server
operation hours subject to a service quality above 99%. In the
following, we discuss how we measure server operation hours
and server demand of an experiment. Assume a list of VM
allocation and deallocation requests L¼ ðq1;…; qt ;…; qτÞ with
4 http://glassfish.java.net/
5 http://www.spec.org/jEnterprise2010/
6 https://github.com/yungsters/rain-workload-toolkit
7 https://github.com/jacksonicson/sonar
qt ¼ ðat ;ntÞ describes the arrival time at and the number of
running servers nt. Each request can affect nt as shown in Fig. 3.
Besides that, VM migrations might also affect nt. In this case,
requests are logged at the beginning and at the end of each live-
migration to ensure that the number of running servers is
correct during migrations.

Total server operation hours (OH) is the area under the
curve and average server demand ðSDÞ is the server
demand divided by operation time as shown in the
following equation:

OH¼
Xτ�1

t ¼ 1

nt atþ1�atð Þ

SD ¼ OH
aτ�a1

ð4Þ

CPU utilization serves as a metric for a server's energy
consumption that can be predicted by Eq. (5), ûA ½0;1�
being the CPU utilization, and P the energy demand in
watts [27]:

Pidleþ ûðPbusy�PidleÞ ð5Þ
Tests on one of our servers (2 Intel Xeon CPUs, 64 GB

RAM, 6 disks, 2 PSUs) yielded power consumption values
for Pidle ¼ 160 W when idling and Pbusy ¼ 270 W when the
server was at 100% CPU utilization. Based on Eq. (5),
energy consumption at û ¼ 0:30 is 193 W. Consolidating
two such servers to a single one with an aggregated load of
û ¼ 0:60 would yield energy savings of forty percent (41%),
and energy consumption drops from 386 to 226 W.

Fan [27] found that for CPU intensive workloads,
dynamic voltage scaling (DVS) can decrease a server's
energy demand by more than 20% depending on the
application and the aggressivity of the algorithm. For our
scenario, we assume an aggressive DVS configuration with
50% reduction on CPU's energy demand (see Equation 5
[27]). Both servers with û ¼ 0:3 will now consume 176 W
each, a saving of 8% due to DVS. DVS cannot be applied to
the consolidated server as its utilization is above 50%. Still,
consolidating those two servers with active DVS to a single
one without DVS reduces energy consumption by 36%.
Hence, energy savings achieved by consolidation of VMs to
a lower number of servers are considerable, even if DVS is
enabled.

4. Results

The experiments compare different combinations of
placement and reallocation controllers. Due to the large
number of possible controller combinations one can ana-
lyze, we first conducted simulations and ranked them
based on core metrics: migrations, average, and maximum
server demand. Subsequent experiments in the lab were
then conducted on the most promising controllers.

4.1. Simulation study

Simulations were conducted for all combinations of 5
allocation controllers with their demand- and reservation-
based implementation as well as 4 reallocation controllers
including scenarios without reallocation.

http://glassfish.java.net/
http://www.spec.org/jEnterprise2010/
https://github.com/yungsters/rain-workload-toolkit
https://github.com/jacksonicson/sonar


Fig. 3. A datapoint is recorded with each event qt at time at the server
demand nt changes.
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A simulation was conducted for each of the 20 sche-
dules described in Section 3.2. The simulation framework
and the schedules used in these simulations are described
in http://cloudcontrol.in.tum.de/.

Controllers are named by an approach similar to the
Kendall notation with three variables separated by a slash,
e.g. D/FF/KM. The first element declares if a demand (D) or
reservation (R) based placement controller was used. The
placement controller used is described in the second
element with FF¼First-Fit, BF¼Best-Fit, WF¼Worst-Fit,
DP¼Dot-Product, L2¼L2. Additionally, a reservation based
RD¼Random controller was tested for control purpose,
resulting in 11 combinations of demand and reservation
based placement controllers. The dynamic controller is
described in the last element with KM¼KMControl,
TC¼TControl, DP¼DSAPþ , and – if no dynamic controller
was used. In total, 44 controller combinations were eval-
uated, considering this 4 dynamic controllers.

Based on the simulations, controllers are ranked using
the MRR (Mean Reciprocal Rank) metric. An MRR rank is
computed by Eq. (6). Larger values indicate better rank-
ings. MRR was used because it is not entirely fair to sort
controllers based on their average server demands or
normalized values for average and maximum server
demand. Normalizing migrations is not an option as there
are no upper bounds on migrations. MRR ranks controllers
individually for each metric and aggregates these into an
overall ranking:

MRR cð Þ ¼ 1
jPj � jQ j

X
pAP

X
qAQ

1
Rcpq

ð6Þ

For each controller cAC and schedule instance qAQ ,
three ranking values pAP exist: migrations (MG), average
(SD), and maximum server demand (⌈SD⌉).

Rankings Rcpq are calculated for each metric and sche-
dule separately. For each schedule instance, controllers are
sorted in increasing order by a metric (MG, SD, ⌈SD⌉). A
controller's list position gives its ranking. In total, each
controller is assigned jPj � jQ j rankings.

Controllers are sorted by the MRR ranking over all metrics
in Table 2. Some combined controllers using placement and
dynamic controllers seem to be equally good than controllers
without dynamic strategy, still pure static controllers out-
performed all dynamic controllers by the MRR ranking.
Obviously, placement-only controllers do not trigger VM
migrations. This is an advantage in the combined ranking as
they get the best possible score on the migrations metric.
Despite this advantage, they often performed worse than
combinations of placement and dynamic controller for the
MRR rankings SD and ⌈SD⌉.

Fig. 4 shows a heatmap of the average server demand
for each controller and schedule. Controllers are sorted by
their MRR ranking on average server demand only, not
considering other metrics as for Table 2. Darker areas
indicate high values and bright ones low values.

In the heatmap the controllers can be clustered following
the type of controller combination. Controllers without
dynamic strategy performed worst and are found on the
left-hand side (Reservation Static). Demand-based controllers
outperformed reservation-based ones. Controllers leveraging
some kind of dynamic strategy usually delivered a higher
allocation density. Again, combined controllers that leverage
demand-based placement controllers outperformed
reservation-based ones (Reservation þ Dynamic and Mostly
Reservation þ Dynamic vs. Demand þ Dynamic).

Reservation-based controllers performed worst because
they are most conservative. Reservations do not reflect the
actual resource demand of a VM. Adding a dynamic controller
overall improved allocation density. Using a demand-based
instead of a reservation-based controller takes advantage of
the actual resource demand and achieves a denser allocation
in the first place. Again, adding a dynamic controller
improved allocation density. This combination performed
even slightly better as a combination of reservation-based
and dynamic controllers. Reasons are, demand-based con-
trollers achieve a denser allocation right after placement and
they achieve a denser allocation faster than reservation-based
ones due to less VM migrations.

With respect to VM migrations, controllers without
dynamic strategy did not trigger any migrations and per-
formed best. Demand-based controllers consistently triggered
less migrations than reservation-based ones. Demand-based
controller combinations outperformed reservation-based
ones for the same reason as before. Leveraging VM demands
leads to a denser allocation in the first place. Fewer or even
zero migrations are required to establish a dense allocation
after allocating a new VM.

Table 3 summarizes the average server demand and
number of VM migrations clustered by the controller type.
This provides additional evidence that demand-based
placement controllers lead to a superior VM allocation in
contrast to reservation-based ones, and that combining
them with dynamic controllers reduces the number of
migrations substantially in contrast to reservation based
placement controller combinations.

Overall, simulations suggest that combinations of demand-
based placement with dynamic controllers are most efficient.

4.2. Controller selection for lab experiments

We perform lab experiments in order to understand if the
main results of the simulations carry over. In addition, the lab
experiments provide information about response times and

http://cloudcontrol.in.tum.de/


Table 2
MRR – average MRR ranking of all metric MRR rankings (migrations, average, and maximum server demand), SD – average server demand, ⌈SD⌉ –

maximum server demand, MG – average number of VM migrations. Standard deviation of average simulation results is reported in parentheses.

MRR rankings Average simulation results

Controller MRR SD ⌈SD⌉ MG SD ⌈SD⌉ MG

D/WF/– 0.52 0.04 0.52 1.00 3.33 (0.37) 5.30 (0.57) 0.00 (0.00)
D/BF/– 0.48 0.03 0.45 0.95 3.34 (0.45) 5.42 (0.61) 0.00 (0.00)
D/L2/– 0.48 0.03 0.44 0.95 3.36 (0.44) 5.47 (0.61) 0.00 (0.00)
D/FF/– 0.47 0.03 0.42 0.95 3.37 (0.44) 5.53 (0.51) 0.00 (0.00)
D/DP/– 0.47 0.03 0.41 0.95 3.39 (0.46) 5.58 (0.51) 0.00 (0.00)
R/RD/– 0.46 0.03 0.36 1.00 4.10 (0.43) 6.00 (0.00) 0.00(0.00)
R/WF/– 0.46 0.03 0.36 1.00 4.52 (0.35) 6.00 (0.00) 0.00 (0.00)
R/FF/– 0.46 0.03 0.36 1.00 4.53 (0.45) 6.00 (0.00) 0.00 (0.00)
R/DP/– 0.46 0.03 0.36 1.00 4.52 (0.39) 6.00 (0.00) 0.00 (0.00)
R/BF/– 0.46 0.03 0.36 1.00 4.54 (0.38) 6.00 (0.00) 0.00 (0.00)
R/L2/– 0.46 0.03 0.36 1.00 4.57 (0.36) 6.00 (0.00) 0.00 (0.00)
D/L2/DP 0.44 0.46 0.73 0.12 2.31 (0.20) 4.65 (0.49) 13.05 (3.35)
D/BF/TC 0.42 0.26 0.85 0.14 2.44 (0.36) 4.35 (0.81) 10.75 (2.43)
D/L2/TC 0.42 0.31 0.80 0.14 2.43 (0.37) 4.45 (0.69) 10.80 (2.84)
D/BF/KM 0.40 0.09 0.79 0.33 2.60 (0.30) 4.50 (0.69) 5.30 (2.11)
D/FF/TC 0.40 0.29 0.78 0.15 2.44 (0.35) 4.50 (0.69) 10.40 (2.39)
D/WF/TC 0.39 0.20 0.82 0.14 2.43 (0.32) 4.40 (0.68) 10.60 (2.44)
D/L2/KM 0.39 0.07 0.71 0.39 2.70 (0.34) 4.70 (0.66) 4.60 (1.70)
D/FF/KM 0.38 0.08 0.69 0.36 2.64 (0.31) 4.70 (0.57) 4.75 (1.68)
D/FF/DP 0.38 0.31 0.68 0.13 2.37 (0.35) 4.75 (0.44) 12.45 (3.52)
D/DP/KM 0.36 0.06 0.66 0.38 2.76 (0.37) 4.80 (0.70) 4.75 (1.71)
D/BF/DP 0.35 0.28 0.66 0.13 2.34 (0.22) 4.80 (0.52) 13.00 (3.43)
D/DP/TC 0.35 0.12 0.80 0.14 2.49 (0.35) 4.45 (0.69) 10.70 (2.27)
D/WF/DP 0.35 0.26 0.67 0.14 2.42 (0.33) 4.85 (0.75) 12.75 (4.34)
D/DP/DP 0.35 0.27 0.65 0.14 2.45 (0.37) 4.85 (0.75) 12.45 (3.83)
D/WF/KM 0.35 0.05 0.66 0.34 2.75 (0.36) 4.80 (0.52) 5.05 (1.70)
R/RD/TC 0.24 0.08 0.56 0.08 2.67 (0.36) 5.20 (0.52) 17.85 (3.31)
R/RD/DP 0.21 0.10 0.44 0.10 2.63 (0.42) 5.70 (0.47) 15.70 (3.87)
R/L2/DP 0.21 0.08 0.46 0.10 2.75 (0.61) 5.70 (0.47) 18.95 (5.84)
R/WF/DP 0.21 0.07 0.46 0.09 2.72 (0.62) 5.70 (0.47) 19.80 (5.05)
R/FF/DP 0.21 0.08 0.46 0.08 2.74 (0.48) 5.70 (0.47) 19.60 (5.07)
R/RD/KM 0.21 0.04 0.43 0.15 3.22 (0.40) 5.75 (0.44) 10.60 (2.58)
R/BF/DP 0.20 0.08 0.46 0.07 2.64 (0.40) 5.70 (0.47) 20.85 (3.87)
R/DP/DP 0.20 0.07 0.46 0.08 2.82 (0.54) 5.70 (0.47) 19.05 (4.87)
R/WF/TC 0.19 0.04 0.47 0.06 2.91 (0.38) 5.70 (0.47) 23.95 (2.95)
R/WF/KM 0.18 0.03 0.37 0.13 3.74 (0.48) 5.95 (0.22) 11.40 (3.12)
R/FF/TC 0.18 0.04 0.42 0.06 2.90 (0.36) 5.70 (0.47) 23.75 (4.54)
R/DP/KM 0.18 0.03 0.36 0.14 3.78 (0.42) 6.00 (0.00) 11.55 (2.91)
R/L2/KM 0.18 0.03 0.36 0.14 3.65 (0.44) 6.00 (0.00) 11.90 (2.88)
R/L2/TC 0.17 0.04 0.42 0.06 2.91 (0.35) 5.75 (0.44) 23.10 (3.86)
R/FF/KM 0.17 0.03 0.36 0.13 3.71 (0.46) 6.00 (0.00) 11.40 (2.68)
R/BF/TC 0.17 0.04 0.42 0.06 2.94 (0.39) 5.75 (0.44) 24.25 (3.48)
R/DP/TC 0.17 0.04 0.41 0.06 2.87 (0.33) 5.80 (0.41) 24.55 (4.12)
R/BF/KM 0.17 0.03 0.36 0.12 3.73 (0.37) 6.00 (0.00) 12.25 (2.17)
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service level violations of each controller, which cannot be
obtained by simple simulations. Experiments were conducted
with the following controller combinations:
�
 Good performing controllers in simulations
○ First Fit Demand with KMControl (D/FF/KM)
○ L2 Demand with KMControl (D/L2/KM)
○ Worst Fit Demand without reallocation (D/WF/–)
�

Poor performing controllers in simulations
○ Worst Fit with TControl (R/WF/TC)
○ Worst Fit with KMControl (R/WF/KM)
Controller combinations for experiments were chosen
to cover a set of good and poor performing controllers
based on the MRR ranking shown in Table 2. We selected
D/FF/KM and D/L2/KM as they performed well for average,
maximum server demand, and migrations. R/WF/TC and R/
WF/KM represent poor performing controllers. In each
case two controllers were picked to see whether they
perform similarly well in experiments as suggested by
simulations. Considering all metrics and data center
requirements there is no clear winner. In addition D/WF/
– was tested because it performed best according to the
global MRR ranking if migrations are a limiting factor and
average server demand is less of a concern.

Experimental results can be found in Tables 4 and 5. For
each controller and schedule configuration, there is one result
line. It describes the average experimental results over 5
schedule instances of one schedule configuration. Differences



Fig. 4. Heatmap of average server demand over controllers and schedule instances.

Table 3
Statistics for results clustered by the controller type. SD and MG –

average server demand and migrations, σSD and σMG – standard
deviation for average server demand and VM migrations, ΔSD and
ΔMG – difference between min and max values.

Cluster SD σSD ΔSD MG σMG ΔMG

Reservation Static 4.46 0.42 2.03 0.00 0.00 0.00
Demand Static 3.36 0.42 1.70 0.00 0.00 0.00
Reservation þ Dynamic 3.07 0.60 2.80 17.81 6.27 28.00
Demand þ Dynamic 2.51 0.35 1.81 9.43 4.30 18.00
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between min and max results are reported in square brackets
while variances are reported in parentheses.

For migrations, we found that combinations of
reservation-based placement and reallocation controllers
triggered more migrations than ones using demand-based
placement controllers. This confirms simulation results
and can be explained by the higher resource demands of
reservation-based controllers. Demand-based controller
combinations consistently triggered more migrations than
pure static controllers and less than reservation-based
combinations.

Service quality could be maintained by almost all
controller combinations except D/L2/KM which fell below
a desired level of 99% service quality for all schedule
configurations. For some schedule configurations control-
ler combinations R/WF/TC and D/WF/– also fell below a
service quality of 99%.

Average server demand showed that D/FF/KM delivered
the best performance and consistently required the least
number of servers while maintaining the desired service
level. Overall R/WF/KM had the highest average server
demand and the highest peak server demand. These
results are in line with simulation results. All other
controllers can be found between D/FF/KM and R/WF/KM.

Server CPU utilization varied between 20% and 45%
depending on the controller configuration and remained
well below 70%. Average memory as a second constraining
resource remained below a 50% utilization level for all
controller combinations. A reason for this low average CPU
utilization was that most VMs were only utilized below
30% on average. In order to increase overall server CPU
utilization many VMs would have to be allocated to a
single server. However, this was not possible due to a fixed
memory limit for all VMs on a server, which was set to 85%
of its total capacity to keep enough space for the hypervi-
sor as shown in Fig. 5. Server utilization increased to 90%
and above during times with higher workload on the VMs.

CPU utilization will also be low if there are too few VMs
to fully utilize a single or all active servers. For example an
average CPU utilization of 50% is caused if two servers are
active, one running at 80% and the second one at 20%
utilization. Average utilization cannot be increased
because resource limitations prevent a migration of the
VM on the second server to the first one, and there are not
enough VMs available.

Average response time of operations was slightly sen-
sitive to denser allocations. For the two controllers D/FF/
KM, R/WF/TC, and D/L2/KM that produced the lowest
average server demand, average response time was
slightly increased compared to other controllers. However,
the difference is not significant due to the high variance in
the response times. Interestingly, D/L2/KM yielded the
highest response times and worst service quality while
delivering low average and maximum server demands
without triggering too much migrations.

Table 6 summarizes experimental results over all sche-
dules for each controller. While the numbers are slightly
different, the ranking of controllers is in line with the
simulation results. Average server demand was generally a
bit lower as predicted by simulations while more VM
migrations were triggered. Demand-based controllers
always triggered less migrations than reservation-based
controllers as already found for simulations.

5. Conclusion

Much research on resource allocation in virtualized
data centers has focused on efficient heuristics for the
initial placement. Typically, bin packing heuristics are used
in wide-spread cloud management tools like OpenStack or



Table 4
Experimental results on placement and dynamic controllers. (þ/�) – based on simulation results, either a poor or good performing controller. Control –
controller combination with notation [(D)emand- or (R)eservation-based]/[placement controller]/[dynamic controller], Sched – VM allocation/deallocation

schedule configuration, SD – average server demand, ⌈SD⌉ – maximum server demand, CPU – average CPU load, MEM – average memory load, RT –

average response time (ms), ⌈RT⌉ – maximum response time (ms).

Control Sched SD ⌈SD⌉ CPU MEM RT ⌈RT⌉

þ D/FF/KM 20 000 2.53 (0.17) 3.67 (0.58) 42 47 654.50 (49.86) 44 847
þ D/L2/KM 20 000 2.74 (0.27) 4.25 (0.96) 42 43 900.19 (187.90) 50 262
þ D/WF/– 20 000 3.15 (0.25) 4.75 (0.96) 33 39 617.55 (26.44) 23 045
� R/WF/KM 20 000 3.69(0.17) 6.00 (0.00) 32 34 637.24 (32.40) 36 326
� R/WF/TC 20 000 2.97 (0.27) 5.50 (0.53) 40 41 679.35 (87.81) 61 091

þ D/FF/KM 20 100 2.41 (0.39) 4.00 (0.82) 41 48 627.23 (52.04) 32 832
þ D/L2/KM 20 100 2.88 (0.51) 4.50 (0.58) 41 41 1427.40 (518.85) 61127
þ D/WF/– 20 100 3.38 (0.41) 5.25 (0.50) 28 35 616.68 (26.65) 21 060
� R/WF/KM 20 100 3.60 (0.66) 6.00 (0.00) 30 33 615.77 (50.38) 34 873
� R/WF/TC 20 100 2.77 (0.48) 5.75 (0.46) 39 42 641.82 (39.44) 46 271

þ D/FF/KM 20 200 2.29 (0.22) 4.50 (0.58) 38 43 662.26 (61.48) 44 190
þ D/L2/KM 20 200 2.34 (0.29) 4.25 (0.50) 42 43 1578.25 (611.89) 204 359
þ D/WF/– 20 200 2.97 (0.45) 4.75 (0.50) 28 35 635.31 (59.12) 28 491
� R/WF/KM 20 200 3.21 (0.26) 6.00 (0.00) 30 31 639.47 (31.31) 40 645
� R/WF/TC 20 200 2.63 (0.16) 5.43 (0.53) 37 37 674.82 (50.44) 58 384

þ D/FF/KM 20 300 2.38 (0.14) 4.00 (0.00) 41 48 670.62 (33.76) 59 608
þ D/L2/KM 20 300 2.68 (0.07) 4.33 (0.58) 41 45 1091.45 (152.11) 82 731
þ D/WF/– 20 300 3.29 (0.16) 5.00 (0.00) 28 36 644.83 (40.58) 31 294
� R/WF/KM 20 300 3.62 (0.15) 6.00 (0.00) 30 32 648.37 (25.09) 48 188
� R/WF/TC 20 300 2.78 (0.15) 5.25 (0.46) 39 42 686.48 (34.21) 46 496

Table 5
Experimental results on placement and dynamic controllers. (þ/�) –

based on simulation results, either a poor or good performing controller.
Control – controller combination with notation [(D)emand- or (R)eserva-
tion-based]/[placement controller]/[dynamic controller], O – total opera-
tion count, MG – average VMmigrations, SQ – service quality (percentage
of successful requests with a response time below 3 s).

Control O MG SQ

þ D/FF/KM 2 460 676 07 [05/08] 99.12 (0.273)
þ D/L2/KM 2 399 470 06 [05/08] 95.52 (1.360)
þ D/WF/– 2 576 691 00 [00/00] 99.60 (0.100)
� R/WF/KM 2 634 552 20 [16/22] 99.61 (0.049)
� R/WF/TC 2 555 583 26 [25/27] 97.70 (0.814)

þ D/FF/KM 2 528 618 08 [06/09] 99.48 (0.095)
þ D/L2/KM 2 210 333 06 [04/07] 91.66 (2.033)
þ D/WF/– 2 535 460 00 [00/00] 99.49 (0.139)
� R/WF/KM 2 535 183 19 [16/21] 99.50 (0.121)
� R/WF/TC 2 522 725 27 [24/29] 99.18 (0.200)

þ D/FF/KM 1 923 776 07 [04/09] 98.77 (0.316)
þ D/L2/KM 1 672 268 06 [04/09] 94.58 (1.515)
þ D/WF/– 1 932 057 00 [00/00] 99.21 (0.204)
� R/WF/KM 1 931 438 20 [17/24] 99.16 (0.217)
� R/WF/TC 1 849 433 27 [23/33] 98.68 (0.274)

þ D/FF/KM 2 365 682 09 [08/10] 99.23 (0.136)
þ D/L2/KM 2 270 676 07 [07/08] 97.30 (0.284)
þ D/WF/– 2 383 054 00 [00/00] 91.90 (3.625)
� R/WF/KM 2 370 031 19 [15/20] 99.38 (0.041)
� R/WF/TC 2 360 173 26 [24/29] 96.80 (0.928)

Fig. 5. Exemplary utilization of server CPU and memory for a single
experiment.

Table 6
Statistics over all experiments sorted by MRR ranking in experiments. SD
and MG – average server demand and migrations, σSD and σMG –

standard deviation for average server demand and VM migrations, ΔSD
and ΔMG – difference between min and max values.

Cluster SD σSD ΔSD MG σMG ΔMG

D/FF/KM 2.40 0.24 0.95 7.60 1.68 6
D/L2/KM 2.66 0.37 1.32 6.07 1.53 5
R/WF/TC 2.79 0.31 1.32 26.42 2.25 10
D/WF/– 3.20 0.34 1.37 0.00 0.00 0
R/WF/KM 3.54 0.38 1.53 19.59 2.43 9
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Eucalyptus. We could not find substantial differences in
the energy efficiency of different bin packing heuristics in
the placement controllers.

However, there were substantial differences in the
energy efficiency if additional reallocation controllers were
used. There was no substantial difference among the types
of reallocation controllers used, but whether one was used
or not had a considerable impact on the average server
number. Surprisingly, reallocation has not been a concern
in the related literature so far, nor is it used in cloud
management tools used in industry practice.
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In addition, the parameters used for the placement
algorithms have an impact on the average server demand.
Both simulation and experimental results indicate that a
controller should aim for a dense allocation from the start
for high energy efficiency. Demand-based placement con-
trollers lead to dense packing, because they take the actual
demand on a server into account and not the reserved
capacity. However, demand-based placement controllers
need to be used in conjunction with reallocation control-
lers to avoid overloads.

Nowadays, reservation-based placement controllers are
state-of-the-practice, which is probably due to risk con-
siderations of IT service managers. Our study shows that
combinations of demand-based placement controllers
with reallocation controllers actually lead to fewer migra-
tions than reservation-based placement controllers and
lower server demand, while maintaining service quality.

Overall, demand-based placement controllers in combina-
tion with a reallocation controller appear to be the most
energy-efficient solution. Experiments and simulations indi-
cate significant savings in average server demand of about
20% to 30% compared to placement-only control strategies.
Table B1
Factors and levels for schedule configuration sensitivity analysis.

Factor Low High

Lifetime (h) 1 6
Inter-arrival time (min) 5 20
VM launches 400 500
VM sizes 2x x
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Appendix A. Simulating IaaS cloud environments

A discrete event simulation framework resembles our
test bed infrastructure. Simulations were conducted on a
large number of different placement and reallocation
controllers. Promising setups were transferred to the
experimental infrastructure for further verification.
Experiments and simulations are based on the same soft-
ware framework so that controller implementations used
for experiments and simulations are identical. Therefore,
all software interfaces are either implemented to control a
physical or simulated infrastructure as shown in Fig. 2.

During an experiment, resource utilization data on all
VMs and servers is provided by the Sonar monitoring
system. For simulations, a workload driver component
replaces Sonar, simulating the CPU and memory utilization
readings. A time series is attached to each VM. For
simulations this time series describes the resource utiliza-
tion of the VM. For experiments a Rain workload driver
leverages the time series to vary the workload generated
on the VM which eventually causes a resource utilization
that is very similar to the original time series.

Application requests (e.g. HTTP or CORBA queries) are
not simulated by the framework. Simulations are based on
resource utilizations of servers and VMs according to
predefined time series data. A time series describes the
workload over a certain time, e.g. 12 h. This time is
simulated in discrete 3 second steps. For each step the
VM utilization is determined using the time series data.
Server utilizations are calculated by summing up VM
utilizations. A server is over-subscribed if its CPU utiliza-
tion exceeds 100%.
Simulated service quality is calculated by dividing the
number of simulated time steps where a server was over-
subscribed and dividing it by the total number of simu-
lated time steps. Contrary, experimental service quality is
calculated dividing the number of failed or late HTTP
requests by the total number of triggered HTTP requests.

Rain accesses an IaaS network service to allocate and
deallocate VMs during an experiment. Simulations lever-
age an VM allocation driver substituting Rain. It directly
issues method calls to the IaaS service layer by using to the
same VM allocation schedules as used by Rain.

VM migrations are simulated by waiting a negative-
exponentially distributed time with μ¼ 3:29;σ ¼ 0:27. In
addition an increased CPU utilization of 8% is simulated on
both, the migration target and source server during the
migration. Parameters are based on findings of our
previous work.

Sonar closely monitors the whole infrastructure during
experiments. All server utilization measurements of all
monitored resources as well as all controller actions are
recorded by Sonar as well. An analysis step following each
experiment reads all relevant data from Sonar. It allows a
complete reproduction of an experiment. A set of core
metrics gets calculated: VM migrations, service quality,
average, and peak server demand, CPU, and memory
utilization.
Appendix B. VM arrival and departure schedules

Simulations and experiments are based on schedules of
VM arrivals and departures. A schedule is generated based
on four random variables.
�
 Lifetime of a VM (see black bars in Fig. 1).

�
 Inter-arrival time of the VMs.

�
 VM launches describes the total number of arriving VMs
(the total number of black bars in Fig. 1).
�
 VM sizes describes the VMs' resource demands.

Not all possible schedules could be evaluated, consider-
ing multiple levels for each variable. To cut the number of
schedules used for simulatiosn and experiments, we
analyzed which variables influence the performance of
controllers. A 2k fully factorial design was used to address
his question. Table B1 summarizes the factors and levels.
For each schedule configuration 25 schedules were gener-
ated randomly.

Each schedule was evaluated with nine different placement
controllers: First-Fit, Best-Fit, Worst-Fit, Dot-Product with a
demand based and reservation based implementation. A
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random controller was used as a control group. In total 16 �
25 � 9¼ 3600 simulations were conducted.

For each simulation the allocation efficiency of the
controller is calculated based on average and peak server
demand during the simulation and a lower bound esti-
mate. A dedicated ANOVA analysis for each controller
found lifetime and inter-arrival time as well as their
interaction effect significant in all cases, with levels of
po0:001. In rare cases, the factor launches was significant,
with level of po0:01. Q–Q plots and residual plots showed
no abnormalities.

Based on these findings we focused on schedules with
different levels for variables: inter-arrival tie and lifetime.
Appendix C. Reactive controller parametrization

A design of experiments approach (DoE) [28] was
chosen to find a good parametrization for KMControl and
TControl controllers. ANOVA and contour plots were used
to determine parametrization that minimize the average
number of servers while keeping migrations and service
level violations in a desired operation range.

The simulation framework as described in Appendix A
was used. Initially, all VMs are allocated to the servers in a
round robin approach where VM with index i is assigned
to server i mod n with n servers. Simulations were con-
ducted for a scenario size of 390 VMs. The number of VMs
in the infrastructure did not change during a simulation.

Metrics returned for each simulation were: migrations
(number of triggered live-migrations), servers (average
number of active servers), violations Tv (number of simu-
lation periods where server load was above 100%), and Ta

(total number of simulation periods). A service level is
calculated by 1�Tv=Ta. It is important to understand that
calculated service level differs from service levels of real
infrastructures as explained in Appendix A.

Simulations were conducted according to a 2k fully
factorial design. Factor levels are shown in Table C1 for
both controllers. Each factor is one controller parameter
and each treatment was replicated 20 times with different
CPU workload traces. In total, 640 simulations were con-
ducted for each controller, discarding invalid factor level
combinations for KMControl where kom.

The desired operation range of both controllers was
defined based on our experience with European data
center operators as follows: Service level above 95%, VM
migrations below 1:5 �m for m VMs, and minimal average
server demand.
Table C1
KM and TControl parametrization factors and levels.

KMControl TControl

Factor Low High Low High

Overload threshold, To 80 95 80 95
Underload threshold, Tu 10 40 10 40
Executing interval I (s) 60 900 60 900
k value 10 100 50 200
m value 8 80 – –

α – – 0.05 0.1
C.1. Results for KMControl

Initial ANOVA analysis over all simulations included all factors
and their interactions. All factorswere coded to design variables in
a range of ½�1;1�. Data was log-transformed as initial results
indicated heteroscedasticity in the residual plots and deviations
from the normality assumption. Some factors were found to be
significant at po0:05. A second linear ANOVA model for each
target variable was constructed based on significant factors only.
QQ-plots of the model residuals indicate a normal distribution
with slight deviation in the tails. Scatter plots of residuals vs. fitted
values did not show any patterns or heteroscedasticity. Contour
plots were generated based on the linear ANOVAmodels to find a
global optimal parametrization. Based on these plots we gained a
number of insights:
1.
 The average server demand can be decreased by
choosing a large To, a large Tu, and a large m in
conjunction with a small k. It is independent to the
interval length I.
2.
 VM live-migrations can be decreased by increasing To,
m, and I. However, k and Tu should be small. Especially
the demand for a small Tu is in contradiction with the
goal to decrease average server demand with a high Tu.
We chose the highest level for Tu so that the migration
constraint is satisfied in order to minimize average
server count.
3.
 Violations can be decreased by increasing To, I, and m
while decreasing Tu, and k. These requirements are
closely aligned with the requirements to achieve a low
number of migrations.
Based on the contour plots, we determined a controller
parametrization with To¼95, Tu¼27, k¼m¼ 65, and
I¼750.
C.2. Results for TController

The same analysis approach was chosen as for the
KMControl controller. Based on the contour plots for the
TControl controller we gained the following insights:
1.
 The average server demand can be decreased by
increasing both To and Tu thresholds and by decreasing
factors k and I.
2.
 Migrations can be minimized by increasing To, k and I
and TU should be minimized. Increasing To and k is in
contradiction with the goals to minimize average serve
demand. We choose values so that average servers is
minimized and migrations remain within the desired
operation range.
3.
 Violations are minimized by decreasing all factors
while To and Tu are the strongest contributors.
Based on the contour plots, we determined a controller
parametrization with To¼90, Tu¼25, k¼170, and I¼400.
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C.3. Differences KMController and TController

We conducted additional simulations to compare the
performance of both controllers. Both were configured
with the settings of the previous analysis. Comparison is
based on 20 simulations with a different set of workload
traces. Key metrics were average server demand, migra-
tions, and violations. For each metric the mean, medium,
maximum, minimum, first-, and third-quartile was
calculated.

For average server demand, we found TControl to
outperform KMControl significantly based on a two-sided
t-test at p¼0.007529. In all scenarios TControl was better
regarding server demand. Both controllers performed
equally good for migrations while TControl has a slight
tendency to trigger more migrations. A two-sided t-test
found significant differences at p¼0.01888. For a scenario
with 100 VMs over 20 simulation runs, KMControl per-
formed 136 migrations on median vs. 155 migrations for
TControl. We could not find significant differences for
violations between both controllers with p¼0.4264.
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