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Planning vs. dynamic control: Resource
allocation in corporate clouds

Andreas Wolke, Martin Bichler, Thomas Setzer

Abstract—Nowadays corporate data centers leverage virtualization technology to cut operational and management costs. Virtual-
ization allows splitting and assigning physical servers to virtual machines (VM) that run particular business applications. This has
led to a new stream in the capacity planning literature dealing with the problem of assigning VMs with volatile demands to physical
servers in a static way such that energy costs are minimized. Live migration technology allows for dynamic resource allocation, where
a controller responds to overload or underload on a server during runtime and reallocates VMs in order to maximize energy efficiency.
Dynamic resource allocation is often seen as the most efficient means to allocate hardware resources in a data center. Unfortunately,
there is hardly any experimental evidence for this claim. In this paper, we provide the results of an extensive experimental analysis of
both capacity management approaches on a data center infrastructure. We show that with typical workloads of transactional business
applications dynamic resource allocation does not increase energy efficiency over the static allocation of VMs to servers and can even
come at a cost, because migrations lead to overheads and service disruptions.

Index Terms—capacity planning, resource allocation, IT service management
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1 INTRODUCTION

Cloud computing has been popularized by public clouds
such as Amazon’s Elastic Compute Cloud1 and nowa-
days several Infrastructure-as-a-Service (IaaS) providers
offer computing resources on demand as virtual ma-
chines (VMs). However, due to data security and other
concerns, today’s businesses often do not want to out-
source their entire IT infrastructure to external providers.
Instead, they set up their own private or corporate
clouds to manage and provide computational resources
efficiently in VMs [1]. These VMs are used to host trans-
actional business applications for accounting, marketing,
supply chain management, and many other functions to
internal customers where once a dedicated server was
used. In this paper, we focus on corporate clouds hosting
long-running transactional applications in VMs. This
environment is different to public clouds, where some
VMs are being deployed while others are undeployed
continuously.

Server virtualization offers several advantages such
as faster management and deployment of servers or
the possibility to migrate VMs between different servers
if required. Arguably the strongest motivation for IT
service managers is increased energy efficiency through
higher hardware utilization and fewer active servers.
Overall, active servers are the main energy consumer
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in data centers besides cooling facilities. Energy usage
already accounts for up to 50% or more of the total op-
erational costs of data centers [2]. It is predicted to reach
around 4.5 percent of the whole energy consumption
in the USA [3]. A recent report from the United States
Environmental Protection Agency revealed that idle servers
still use 69-97% of total energy of a fully utilized server,
even if all power management functions are enabled [4].

1.1 Static vs. Dynamic Resource Allocation

Virtualization allows for co-hosting of applications on
the same physical server running a hypervisor, which
ensures resource and software isolation of applications.
A central managerial goal in IT service operations is to
minimize the number of active virtualized servers while
maintaining service quality, in particular response times.
In the literature, this problem is referred to as server
consolidation [5], [6], [7] or workload concentration [8]. This
is a new type of capacity planning problems, which is
different from the queuing theory models that have been
used earlier for computers with a dedicated assignment
of applications [9]. Server consolidation is also different
from workload scheduling where short-term batch jobs of a
particular length are assigned to servers [10]. Workload
scheduling is related to classical scheduling problems,
and there is a variety of established software tools such
as the IBM Tivoli Workload Scheduler LoadLeveler or
the open-source TORQUE Resource Manager. In con-
trast, workload concentration deals with the assignment
of long-running VMs with seasonal workload patterns
to servers. Consequently, the optimization models and
resource allocation mechanisms are quite different.

Workload concentration aims for a static (resource)
allocation of VMs to servers over time [11], [12], [13],
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[5]. Based on the workload patterns of VMs an alloca-
tion to servers is computed such that the total number
of servers is minimized. This approach lends itself to
private clouds, where there is a stable set of VMs and
predictable demand patterns.2 After the deployment of
VMs on servers monitoring tools are used to detect
unusual developments in the workloads and migrate
VMs to other servers in exceptional cases. However, the
assignment of VMs to servers is intended to be stable
over a longer time horizon. At the core of these static
allocation problems are high-dimensional NP -complete
bin packing problems, and computational complexity
is a considerable practical problem. Recent algorithmic
advances allow solving very large problem sizes with
several hundred VMs using a combination of singular-
value decomposition and integer programming tech-
niques [6].

Live migration allows moving VMs to other servers
reliably during runtime. This technology is available
for widely used hypervisors such as VMware’s ESX
[14], Xen [15], and Linux’s KVM and it promises fur-
ther efficiency gains. Some platforms such as VMware
vSphere, or the open-source projects OpenNebula3 and
Ovirt4 provide virtual infrastructure management and
allow for the dynamic allocation of VMs to servers [16].
They closely monitor the server infrastructure to detect
resource bottlenecks by thresholds. If such a bottleneck
is detected or expected to occur in the future, they take
actions to dissolve it by migrating VMs to different
servers. Also, software vendors advocate dynamic re-
source allocation and provide respective software solu-
tions for virtualized data centers [17]. We will refer to
such techniques as dynamic resource allocation or dynamic
control, as opposed to the static allocation of VMs.

Nowadays, many managers of corporate clouds con-
sider moving to dynamic resource allocation [18] and
there are various products available by commercial or
open-source software providers to dynamically consoli-
date the VMs. Also, several academic papers on virtual
infrastructure management using dynamic resource allo-
cation illustrate high energy savings [8], [19], [20], [21],
[22]. Dynamic resource allocation is less of a topic in
public clouds where new VMs are being deployed and
others are undeployed frequently. In such environments
live migration is typically not needed, because new VMs
are allocated to physical servers with low utilization,
for example after VMs have been undeployed. How-
ever, when hosting long-running business applications in
corporate clouds, dynamic resource allocation promises
autonomic resource allocation with no manual interven-
tion and high energy efficiency due to the possibility to

2. Such an environment is different from public clouds, where VMs
are sometimes reserved for short amounts of time for experimental
purposes, or some applications exhibit very unpredictable demand as
it is the case for high-traffic order entry systems that need to scale
rapidly. Among the fast majority of applications run in enterprises,
such applications are the exception rather than the rule.

3. opennebula.org
4. ovirt.org

respond to workload changes immediately.
For IT service managers it is important to understand

if, and how much, dynamic resource allocation can save
in terms of energy costs compared to static allocation. In
this article, we want to address the question: Should man-
agers rely on dynamic resource allocation heuristics or rather
use optimization-based planning for capacity management
in private clouds with long-running transactional business
applications? Surprisingly, there is little research guiding
managers on this question (see Section 2).

Much of the academic literature is based on simu-
lations, where the latencies, migration overheads, and
the many interdependencies of VMs, hypervisors, the
network, and server hardware are difficult to model. The
external validity of such simulations can be low. There-
fore, experiments are important for the external validity
of results. Experiments are costly, however. The set-up
of a lab infrastructure including the hardware, bench-
mark workloads, management and monitoring software
is time consuming and expensive, which might explain
the lack of experimental research results to some degree.

1.2 Contribution and Outline
The main contribution of this paper is an extensive exper-
imental evaluation of static and dynamic resource allocation
mechanisms. More specifically, we implemented a lab in-
frastructure with physical servers and a comprehensive
management and monitoring framework. We use bench-
mark business applications such as SPECjEnterprise5

to emulate real-world business applications and model
workload demand based on a large set of utilization
traces from an IT service provider. Our goal is to achieve
external validity of the results, but at the same time
maintain the advantages of a lab environment, where the
different resource allocation mechanisms can be tested
and experiments can be analyzed and repeated with
different workloads. Our experiments analyze different
types of static and dynamic resource allocation mecha-
nisms including pure threshold-based controllers, which
are typically used in software solutions, but also ones
that employ forecasting. We will use server hours used
or alternatively the average number of servers used as a
proxy variable to measure energy efficiency.

Our main result is that with typical workloads of
business applications, static resource allocation leads to
higher energy efficiency compared to dynamic allocation
with only a modest level of overbooking. This is partly
due to migration overheads and response time peaks
caused by live migration. The result is robust with
respect to different thresholds, even in cases where the
workloads are changed significantly after the planning
stage. We also implemented a simulation to cover larger
scale scenarios, which uses the very same control al-
gorithms as in the lab. We took great care to reflect
system-level particularities found in the lab experiments
and used parameters estimated from data in the lab.

5. http://www.spec.org
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Interestingly, the efficiency of static allocation in larger
settings increases in larger environments with several
hundred VMs because the optimization can better lever-
age complementarities in the workloads and find more
efficient allocations. The result is a clear recommendation
to use optimization for capacity planning and use live
migration only exceptionally.

Even though the overhead caused by live migration
has been discussed [2], the impact on different resource
allocation strategies has not been shown so far, but it is of
high importance to IT service operations. Live migration
algorithms are very efficient nowadays and the main
result of our research carries over to other VM managers
as we will show, because memory always needs to be
transferred from one physical server to another.

2 RELATED WORK

In what follows, we will revisit the literature on static
and dynamic resource allocation in virtualized data cen-
ters. Note that there is substantial literature on power
management in virtualized data centers including CPU
frequency and voltage scaling, which we consider or-
thogonal to the analysis in this paper.

2.1 Static Resource Allocation
Research on static server consolidation assumes that the
number and workload patterns of servers are known,
which turns out to be a reasonable assumption for the
majority of applications in most corporate data centers
[6], [11], [12], [13], [5]. For example, email servers typi-
cally face high loads in the morning and after the lunch
break when most employees download their emails,
payroll accounting is often performed at the end of the
week, while workload of a data warehouse server has
a daily peak very early in the morning when managers
access their reports.

The workload concentration problem is to assign VMs
with seasonal workloads to servers such that the number
of servers is minimized without causing server over-
loads. For example, Speitkamp et al. [5] show that server
consolidation considering daily workload cycles can lead
to 30-35% savings in servers compared to simple heuris-
tics based on peak workloads. Mathematical optimiza-
tion can be used to solve the server consolidation prob-
lem and the fundamental problem described in the above
papers can be reduced to the multidimensional bin-
packing problem, a known NP -complete optimization
problem. The approach often does not scale to real-world
problem sizes. A recent algorithmic approach combining
singular-value decomposition and integer programming
allows to solve large instances of the problem with
hundreds of VMs [6]. In this paper, we will use the
optimization models from Speitkamp and Bichler [5] and
Setzer and Bichler [6] to determine a static allocation of
VMs to servers. In contrast to earlier work, we actually
deploy the resulting assignments on a physical data
center infrastructure such that the approach faces all

the challenges of a real-world implementation. This is
a considerable extra effort beyond simulations only, but
it provides evidence of the practical applicability.

2.2 Dynamic Resource Allocation

Live migration is nowadays available for widely used
hypervisors such as VMware’s ESX [14], Xen [15] as
well as Linux’s KVM and allows migrating a VM during
runtime from one server to another. The algorithms
are based on the tracking of memory write operations
and memory transfers over the network that requires
significant CPU and network capacity [23].

The technology allows for dynamic resource allocation
without the need for planning and static assignments.
All commercial and open-source approaches that we are
aware of rely on some sort of threshold-based controller.
It monitors the server infrastructure and is activated
if certain resource thresholds are exceeded. VMs are
migrated between servers in order to mitigate the thresh-
old violation. VMware’s Distributed Resource Management
[24] and Sandpiper [25] are good examples for such
systems. Gulati and Holler [24] and Ardagna et al. [21]
motivate the need for workload prediction in order to
avoid unnecessary migrations. In our experiments, we
use both, simple threshold-based or reactive controllers
and such that employ forecasting to reduce the number
of back-and-forth migrations due to demand peaks.

So far there is little understanding of the benefits
of dynamic resource allocation, however. According to
recent surveys [18] many companies are awaiting mar-
ket maturity before adopting the approach for business
critical systems. A number of authors have recently
proposed software frameworks for virtual infrastructure
management and provide simulation results which in-
dicate additional energy savings with dynamic resource
allocation [8], [19], [20], [21], [26].

The work presented in Issarny and Schantz [26] is
closely related to this paper. The authors propose pMap-
per, an energy aware VM placement and migration ap-
proach. The authors compare VM placement algorithms
with respect to achievable energy savings in simulations.
Some of their findings already indicate that static place-
ment can have advantages over dynamic approaches.
pMapper considers migration costs for placement deci-
sions, and such costs are also considered in our dynamic
controllers.

In contrast to prior work, we compare static and dy-
namic resource allocation with respect to average server
demand in lab experiments using empirical data center
workload traces. We argue that the external validity of
lab experiments is much higher than that of simulations,
and it constitutes an important complement to pure
simulation studies. The simplifications of a simulation
model of complex IT infrastructures always bares the
risk of ignoring relevant system latencies or uncertainties
in migration overheads and durations.
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3 EXPERIMENTAL INFRASTRUCTURE

We will now describe the hardware and software in-
frastructure used to conduct the experiments. First, we
discuss the resource allocation mechanisms that we stud-
ied. Then, we describe the hardware infrastructure, the
workloads, and the overall experimental design.

3.1 Resource allocation mechanisms

In our experiments we will distinguish between several
types of resource allocation mechanisms: static resource
allocation, reactive, and proactive control mechanisms.
Static resource allocation is executed once at the be-
ginning of an experiment. It calculates a VM to server
allocation, e.g. by using a simple round robin algorithm
or a mathematical program to solve the underlying op-
timization problem [5]. Dynamic allocation mechanisms
run continuously during the experiment to reallocate
VMs. Reactive controllers use utilization thresholds only,
while proactive controllers employ forecasting to detect
overload situations that lead to VM migrations. We
implemented three types of static resource allocation
mechanisms: a) Round Robin b) Optimization c) Opti-
mization with overbooking and two types of dynamic
controllers: d) Reactive and e) Proactive to be used in the
experiments. These mechanisms will now be discussed
in detail.

3.1.1 Round robin
The round robin allocation is a simple heuristic to allo-
cate VMs to servers a priori, before starting an experi-
ment, and should serve as an example for a heuristic as
typically used in practice. First, a number of servers is
determined by adding the maximum resource demands
of the VMs and then dividing by the server capacities.
This is done for each resource individually and then
the number of required servers is rounded to the next
integer. Then the VMs are distributed in a round robin
manner to the appropriate number of servers.

3.1.2 Optimization and Overbooking
We used the Static Server Allocation Problem (SSAPv)
[5] to compute an optimal static server allocation. We
will briefly introduce the corresponding mixed integer
program, which is also a basis for the algorithms used
in [6].

min
S∑
s=1

csys

s.t.
S∑
s=1

xsd = 1, ∀d ≤ D
D∑
d=1

rdktxsd ≤ mskys, ∀s ≤ S,∀k ≤ K,∀t ≤ T

ys, xsd ∈ {0, 1}, ∀s ≤ S, ∀d ≤ D
(1)

The program assigns D VMs d = 1, . . . , D to S servers
s = 1, . . . , S, while considering K different physical
server resources k = 1, . . . ,K such as CPU with values
between 0 and 100 for a dual-core VM. The amount
of resources required by a domain (i.e., a VM) in an
interval t = [1, . . . , T ] is described by rdkt while the
capacity of a server is denoted by msk e.g., 200 for a
quad-core server. In scenarios with overbooking, server
resource capacities msk are increased beyond the actual
server capacity. For our experiments server capacity was
overestimated by 15% (230), a value that was determined
by experimentation. This accounts for the reduction of
variance by adding the demand of multiple variables
and leads to higher utilization with little impact on the
service level, if the overbooking is at the right level.

The binary decisions variable ys indicates if a server s
is assigned to at least one VM and xsd is a binary variable
that describes if VM d is assigned to server s. With cs as
costs of a server s, the objective function minimizes total
server costs. The first set of constraints ensures that each
domain is allocated to one of the servers, and the second
set of constraints ensures that the aggregated resource
demand of multiple domains does not exceed a server’s
capacity per host server, time interval, and resource type.

The optimization model was implemented using the
Gurobi branch and cut solver. It requires the resource
capacity of the servers as well as the workload traces
as input. For the experiments, the parameters were set
in accordance with the hardware specification of the
data center infrastructure. Workload traces from a real-
world data center were used to calculate the allocations
(see Section 3.3 for more details). Various constraints are
possible e.g., by covering scenarios where VMs must or
must not be placed on the same server [5].

For larger problem instances, the mathematical pro-
gram (1) can not be solved any more as the large number
of capacity constraints and dimensions to be considered
renders this task intractable. Here, we refer to a dimen-
sion as the utilization of a resource by a VM in a time
interval, i.e., an unique tuple (k,t) corresponding to a
particular row in the constraint matrix. Hence, a column
in the constraint matrix corresponds to the workload
trace of a VM for different resources. This means, the
entries in a column describe a VM’s utilization for K
server resources in T time slots on S servers.

Setzer and Bichler [6] describe an algorithm based
on truncated singular value decomposition (SVD) which
allows solving larger problems as well with near-optimal
solution quality. An evaluation of the SVD-based ap-
proach using workload data from a large data center
has shown that this leads to high solution quality, but
at the same time allows for solving considerably larger
problem instances of hundreds of VMs than what would
be possible without data reduction and model transform.
In our simulations, we will apply this approach to derive
static server allocations with large problem sets of 90
VMs or more.
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3.1.3 Reactive control
The reactive controller is a dynamic mechanism aimed
at migrating VMs so that the number of servers is
minimized and server overload situations are counter-
acted. A migration is triggered if the utilization of a
server exceeds or falls below a certain threshold. The
controller balances the load across the servers similar to
the mechanism described by Wood et al. [25]. Algorithm
1 illustrates the actions taken in each control loop.

The controller uses the Sonar6 monitoring system to
receive the CPU and memory load of all servers and
VMs in a three-second interval. The data is recorded
and stored in a buffer for ten minutes. Overload and
underload situations are detected by a control process
running every five minutes.

The function FIND-VIOLATED-SERVERS marks a
server as overloaded or underloaded if M = 17 out of
the last K = 20 CPU utilization measurements are above
or below a given threshold Toverload or Tunderload. The
thresholds are important as the response times depend
on the utilization. An underload threshold of 40% and
an overload threshold of 90% was chosen based on
extensive preliminary tests described in Section 5.4.

Data: Servers S and VMs V
CONTROL(S, V)

vsrv ← FIND-VIOLATED-SERVERS(S) ;
UPDATE-VOLUME-VSR(S, V) ;
foreach s ∈ vsrv do

vms ← VMS-ON(s) ;
SORT-BY-VSR(vms, DESC) ;
for v ∈ vms do

t ← FIND-TARGET(v, S\{s}) ;
if t 6= NULL then

// Block servers for 30 seconds after
migration end

MIGRATE-AND-BLOCK(s, v, t, 30) ;
go to next s ∈ vsrv ;

end
end

end
Algorithm 1: Reactive controller

Overloaded and underloaded servers are marked and
handled by offloading a VM to another server. A VM
on the marked server has to be chosen in conjunction
with a migration target server. Target servers are chosen
based on their volume = 1

1−cpu ∗
1

1−mem . Here, we follow
a procedure introduced by Wood et al. [25]. VMs are
chosen based on their vsr = volume

mem ranking which
prioritizes VMs with a high memory demand but low
volume. Both, the server volume and VM vsr values are
calculated by the function UPDATE-VOLUME-VSR.

The algorithm tries to migrate VMs away from the
marked server in ascending order of their vsr. The
function VMS-ON determines all VMs running on the
source server and the function SORT-BY-VSR is used to
sort them by vsr.

For each VM in this list, the algorithm described by
function FIND-TARGET in Algorithm 2 searches through
the server list to find a migration target server. For

6. https://github.com/jacksonicson/sonar

overloaded servers, migration target servers with low
volume are considered first, while target servers with a
high volume are considered first for underloaded source
servers. A server is a viable migration target if the 80th
percentile of the last K utilization measurements for the
server lsrv plus the ones of the VM lvm are lower than
the overload threshold and if the target server is not
blocked from previous migrations.

Only one migration is triggered at a time for each
server, either an incoming or outgoing one. The mi-
gration process itself consumes resources like CPU and
memory. Resource utilization readings used to decide
about triggering migrations must not be not influenced
by this overhead. Therefore, servers involved in a live
migration are blocked for 30 seconds after the end
of a live migration. The block time is described as
a parameter of the MIGRATE-AND-BLOCK function.
Subsequently they are re-evaluated for overload and
underload situations. For a similar reason, the controller
halts its execution during the first 2 minutes of its
execution to fill its utilization measurement buffers. For
the experiments the optimization algorithm described in
Section 3.1.2 was used to calculate the initial allocation.

FIND-TARGET(v, S)
foreach s ∈ S do

if IS-BLOCKED(s) then
continue ;

end
// Percentile over the last K measurement values
lsrv ← PERCENTILE(s.load[-K:0], 80) ;
lvm ← PERCENTILE(v.load[-K:0], 80) ;
if (lsrv + lvm) < Toverhead then

return s
end

end
Algorithm 2: Find target server in reactive control
mechanism.

3.1.4 Proactive control
The proactive controller extends the reactive one by a
time series forecast to avoid unnecessary migrations. A
migration will only be triggered if the forecast suggests
that the overload or underload continues and is not only
driven by an unforeseen spike in the demand. A forecast
on time series yt is computed if a threshold violation is
detected using double exponential smoothing [27] with
the data forecast equation St = αyt+(1−α)(St−1+bt−1)
and trend forecast equation bt = γ(St − St−1) + (1 −
γ)bt−1 with 0 ≤ α, γ ≤ 1. Parameters were set to b1 =
y2 − y1, α = 0.2, and γ = 0.1. We evaluated different
forecasting methods such as autoregressive models (AR),
using mean as forecast or simple exponential smoothing,
but double exponential smoothing came out best (see
Section 5.4). As the differences among several forecasting
techniques on the average server demand were small,
we will only report on those experiments with double
exponential smoothing.

The proactive controller extends the reactive one only
slightly by modifying the function FIND-VIOLATED-
SERVERS as shown in Algorithm 3. For each server a
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load forecast is computed using one minute of utilization
measurements. If the forecast and M out of K mea-
surements pass a threshold an overload or underload
situation is detected. We will see that the proactive
control mechanisms cannot reduce the number of servers
significantly as compared to static allocation via opti-
mization, but they cause additional migrations. There are
ways to penalize the migrations in proactive or reactive
control mechanisms, but this would lead to an even
higher server demand, which is why we did not consider
such approaches further in this paper.

FIND-VIOLATED-SERVERS(S)
for s ∈ S do

// Forecast
lfcst ← FORECAST(s.load) ;
lsrv ← s.load[-K:0] ;
// Count all server load measurements greater

than Toverload

ocrt ← LEN(s.load[s.load > Toverload]] ;
ucrt ← LEN(s.load[s.load < Tunderload]] ;
s.mark = 0 ;
if ocrt > M and lfcst > Toverload then

s.mark = 1 ;
end
else if ucrt > M and lfcst < Tunderload then

s.mark = -1 ;
end

end
Algorithm 3: Proactive controller uses a forecast to
detect violated servers

3.2 Hardware infrastructure
The hardware infrastructure we use to conduct the ex-
periments consists of six identical servers and 18 VMs.
Fedora Linux 16 is used as operating system with KVM
as hypervisor. Hu et al. [28] show that KVM provides
currently among the most efficient migration algorithms
in terms of down time and migration time, which is why
we have chosen it for the experiments. Each server is
equipped with a single Intel Quad CPU Q9550 2.66 GHz,
16 GByte memory, a single 10,000 rpm disk and four
1GBit network interfaces. A VM is configured with two
virtual CPU cores, 2 GByte memory, a single network in-
terface and a qcow2 disk file as block storage device. All
VMs and images were created prior to the experiment
execution.

The VM disk files are located on two separate NFS
storage servers that get mounted by all hypervisor
servers. The first one is equipped with an Intel Xeon
E5405 CPU, 16 GByte memory and three 1GBit network
interfaces in a 802.3ad LACP bond. The second storage
server is equipped with a Intel Xeon E5620 CPU, 16
GByte memory and three GBit network interfaces also
in a LACP bond. Both used a RAID 10 write back
configuration with enabled disk and onboard caches
and a stripe size of 128 KByte. During each experiment
we monitored the Linux await, svctime, and avgqu-sz
metrics that did indicate a healthy system. We used a HP
ProCurve Switch 2910al-48G with a switching capacity
of 176 Gbps, sufficient to handle traffic on all ports in
full-duplex operation.

A Glassfish7 application server with the SPECjEnter-
prise20108 (SPECj) application and a MySQL database
server9 is installed on each VM. SPECj was chosen
because it is widely used in industry to benchmark
enterprise application servers. It is designed to generate
a workload on the underlying hardware and software
that is very similar to the one experienced in real world
business applications.

Two additional servers are used as workload drivers.
Each one is equipped with an Intel Core 2 Quad Q9400
CPU with 12 GByte main memory and two 1GBit net-
work interfaces in an LACP bond. A modified version
of the Rain10 workload framework is used to simulate
varying workload scenarios based on the three sets of
workload traces MIX1-3 as described in the following
section.

3.3 Workload
We leveraged a set of 481 raw server workload traces
from a large European data center. The traces contain
CPU and main memory usage in a sampling rate of five
minutes over a duration of ten weeks. The servers were
running enterprise applications like web servers, appli-
cation servers, database servers, and ERP applications.
Autocorrelation functions showed that seasonality on a
daily and weekly basis is present in most of the traces
as it has also been found in related papers [29] [5].

Out of all raw workload traces we sampled three
distinct sets (MIX1, MIX2, MIX3) with 18 traces each.
The first one comprises traces with low variance, while
the second one consists of traces with high variance and
many bursts. The third set is a combination of the first
and second one, generated by randomly sampling nine
traces from MIX1 and MIX2 without replacement.

The selected workload traces were then used to model
demand for our experiments. The average resource uti-
lization for one day was used as a demand pattern in an
approach described by Speitkamp and Bichler [5]. Values
of each demand pattern were normalized to a range
of [0, 1] by taking its maximum value over all demand
patterns in a set of MIX1-3 as a reference.

Examples of MIX1 demand patterns are shown in
Figure 1. Their shape does not indicate short-term bursts
or random jumps. However, there can of course be an
increased demand in the morning, evening, or during
the operational business hours of a day compared to
historical workloads. MIX2 in contrast exhibits peaks
and is not as smooth as MIX1.

Each demand pattern was leveraged by a workload
driver to simulate application users on a VM running
the SPECj benchmark application. The number of sim-
ulated users changes according to a demand pattern
that is assigned to each VM. During that process CPU

7. http://glassfish.java.net/
8. http://www.spec.org/jEnterprise2010/
9. http://www.mysql.com
10. https://github.com/yungsters/rain-workload-toolkit



7

0

100

200

0

100

200

M
IX

1
M

IX
2

0 2 4 6

Time [h]

D
e

m
a

n
d

 [
#

 u
s

e
r]

Fig. 1. Three sample workload demand traces for MIX1
and MIX2. Each describes the number of users that are
simulated on a VM over 24 hours.

and memory consumption of the VM was monitored.
This monitored workload trace was ultimately used to
parametrized our optimization models and simulations.

All demand patterns used by our experiments are
provided online 11 for reproducibility of the experiments.

The measured workload traces describe the VM uti-
lization in values between [0, 100] on each logical CPU.
Each VM uses 2 CPU cores while a server has 4 CPU
cores. Therefore, we will assume the capacity of one
server by 200 capacity units in the default optimization
scenario and 230 units in the overbooking scenario.

In addition, we conducted a second set of experiments
where we took the workload mixes MIX1-3 to determine
an allocation, but added noise to the workload traces
which were then used to evaluate the resource alloca-
tion mechanisms. This should be a scenario, where the
demand and consequently the workload traces changes
significantly from those used to compute the initial
allocation, and describe a challenging scenario for static
resource allocation. Different patterns of noise were
added to the original time series to simulate an increased
demand in the morning or a reduced demand from 7
p.m. to 12 p.m.

Each modified workload trace was changed by scaling
the values linearly using factors [0.8, 1.3] and shifting
it by [−30,+30] minutes. Shifting does not alter the
length of the trace. Elements which are moved beyond
the traces end are re-inserted at the beginning. Table 1
describes the average difference between the default and
modified workload traces for MIX1-3 versus MIX1m-
3m. The table shows the difference of the mean of
the original and the modified workload mix. Modified
workloads contain more peak demands as shown by the
90th percentile. Spearman correlation coefficient shows

11. https://github.com/jacksonicson/times

TABLE 1
Pairwise comparison of the workload traces

Metric MIX1 MIX2 MIX3
mean(x̄0, .., x̄n) −mean(ȳ0, .., ȳn) 4.29 5.57 5.58

mean(p50x0
, .., p50xn

) −mean(yp500 , .., yp50n ) 2.60 5.40 5.05
mean(p90x0

, .., p90xn
) −mean(yp900 , .., yp90n ) 15.61 13.71 11.68

mean(σx0 , .., σxn ) −mean(σy0 , .., σyn ) 6.46 6.01 4.94
mean(corr(x0, y0), .., corr(xn, yn)) 0.29 0.46 0.33

Pairwise comparison of the workload traces for MIX1-3 with
the corresponding traces of MIX1-3m. All workload traces in
the default mix are depicted by xi and yi is used for the
modified workload traces. The 50th percentile of a time series
is indicated by p50xi

.

slight similarities for MIX1 and MIX3 with their modified
counterparts. There is a higher correlation for MIX2
which is mostly due to the volatile nature of the work-
load.

4 EXPERIMENTAL DESIGN AND PROCEDURES

We analyze five different resource allocation mechanisms
with the six workload mixes (MIX1-3 and MIX1m-3m)
described in the previous section. During an experiment
a number of core-metrics is recorded. The number of
VMs is not varied between the experiments, nor are
the threshold levels of the dynamic controllers varied.
Similar to real world environments, the settings for
reactive and proactive controllers are chosen based on
preliminary tests with the expected workload which are
described in Section 5.4.

Apart from the experiments, we also run simulations
with a larger number of servers and VMs to see, if the
results carry over to larger environments. We take great
care to run the simulations such that the same migration
overheads observed in the lab are taken into account.
The detailed interactions of the SPECj application and
application server are not simulated, instead the resource
demands are added at a particular point in time. For this
reason, we will only report the number of servers used,
the number of CPU oversubscriptions, and the number
of migrations. CPU oversubscriptions are calculated by
counting the number of time slots where the resource
demand of VMs is beyond the capacity of a server.
Obviously, simulations do not have the same external
validity than lab experiments, but they can give an
indication of the savings to be expected in larger data
centers.

In a startup phase 18 VMs are cloned from a template
with Glassfish and MySQL services installed. The initial
allocation is computed and the VMs are deployed on the
servers according to the respective resource allocation
mechanism. All VMs were rebooted to reset the operat-
ing system and clear application caches. A setup process
started the Glassfish and MySQL services, loaded a
database dump, configured the Rain driver with the
selected user demand traces and finally triggered Rain
to generate the load against the target VMs. This setup
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phase is followed by a 10 minutes initialization phase
during which the Rain drivers create their initial con-
nections to Glassfish and generate a moderate workload
that is equal to the first minute of the demand profile.
Then the reactive or proactive controllers are started and
the demand profile is replayed by Rain.

The Sonar monitoring system is used to capture rel-
evant information in three second intervals of server
and VM utilization levels. Each experiment takes six
hours, where all relevant metrics such as CPU, memory,
disk and network utilization are monitored. Additionally
all Rain drivers reported three second averages of the
response time for each service individually. This allows
a complete replication of a benchmark run for analytical
purposes. We report the average values of three identical
runs of an experiment to account for eventually varying
system latencies. Overall, the net time of experiments
reported below without the initialization phase was
more than 41 days.

5 RESULTS

In the following we will describe the results of our ex-
periments on the lab infrastructure as well as the results
of simulations to study the behavior of the allocation
mechanisms in larger environments.

5.1 Lab experiments with original workload mix
First we will describe the experimental results with the
workloads of MIX1, MIX2, and MIX3. We will mainly
report aggregated metrics such as the average and max-
imum response time of the services, operations per
second, the number of response time violations, and the
number of migrations of each six hour experiment for all
VMs and applications. The values in Table 2 are averages
of three runs of a six hour experiment with identical
treatments. Due to system latencies there can be differ-
ences between these runs. The value in round brackets
describes the variance and values in squared brackets
describe the highest and lowest value. Violations state
the absolute number of three-second intervals, where the
response time of a request was beyond the threshold of
three seconds. The service level indicates the percentage
of intervals without violations.

Across all three workload sets the static allocation
with overbooking had the lowest number of servers on
average. This comes at the expense of higher average
response times compared to other static controllers. The
maximum response time is worse for reactive systems
throughout. Almost all controllers achieve a service level
of 99% except for proactive (MIX1) with 98.46% and
overbooking (MIX2) with 97.85%.

The results of the optimization-based allocation were
comparable to dynamic controllers in terms of server
demand, the results of optimization with overbooking
always had the lowest server demand. The average
response times of the optimization-based allocation were
always lower than those of the dynamic controllers.

Reactive systems come at the expense of migrations,
which static allocation only has in exceptional cases such
as manually triggered emergency migrations. For all
experiments the total number of migrations was below
36 per experiment. On average a migration is triggered
every 3 hours per VM. Proactive control with time series
forecasting led to a slightly lower number of servers and
migrations compared to reactive control in case of MIX2
and MIX3 but triggered much more migrations for MIX1.

It is remarkable that the variance of the average re-
sponse time among the three identical experimental runs
increased for the reactive control strategies compared to
the static ones. Even minor differences in the utilization
can lead to different migration decisions and influence
the results. This seems to be counteracted by proactive
controllers which are more robust against random load
spikes due to their time series forecasting mechanisms.
We used a Welch test to compare the differences in the
response times of the different controllers at a signifi-
cance level of α = 0.05. All pairwise comparisons for the
different controllers and mixes were significant, except
for the difference of proactive and overbooking (MIX3).

Overall, the reactive and proactive control strategies
did not lead to a significantly higher efficiency com-
pared to optimization-based static allocations. Actually,
the migrations and the higher response times lead to a
clear recommendation to use optimization-based static
allocations with or without some level of overbooking
and avoid dynamic control in these environments. A
number of factors exist which can explain this result.
One is the additional overhead of migrations which
can also lead to additional response time violations.
This overhead might compensate advantages one would
expect from dynamic resource re-allocation. Some of the
migrations of the reactive controller are triggered by
short demand peaks and proof unnecessary afterwards.
One could even imagine situations, where a controller
migrates VMs back and forth between two servers as
their workload bounces around the threshold levels. A
proactive controller with some forecasting capabilities
can filter out such demand spikes in order to avoid
unnecessary migrations.

5.2 Lab experiments with modified workload mix
We wanted to see, if the results for the workload sets
MIX1-3 carry over to a more challenging environment,
where the actual demand traces during the experiment
differ significantly from those used to compute a static
allocation. The modified demand traces of the sets
MIX1m-3m were used in the workload drivers while
the static allocation was still computed with the original
workload traces MIX1-3. For this reason, the average
number of servers remained the same as for the first
experiments for all static controllers. The results of these
second experiments are described in Table 3.

One would expect that static allocations are much
worse in such an environment compared to their dy-
namic counterparts. Interestingly, the main result carries
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TABLE 2
Experimental results for various controllers

Controller Srv RT dRTe O
[sec] Olate Ofail Mig SQ

MIX 1
Round Robin 6 (0) 352 20186 (972) 151 (0) 138 (6) 12 (2) 0 [0/0] 99.89%
Optimization 6 (0) 330 17621 (3777) 151 (0) 137 (26) 8 (2) 0 [0/0] 99.89%
Overbooking 5 (0) 466 19103 (2811) 149 (0) 647 (181) 10 (4) 0 [0/0] 99.5%

Proactive 5.95 (0.07) 566 42012 (5958) 147 (2) 1990 (1609) 15 (5) 10.33 [9/12] 98.46%
Reactive 6 (0) 392 21501 (9386) 150 (1) 279 (25) 14 (1) 0.33 [0/1] 99.78%

MIX 2
Round Robin 6 (0) 388 17016 (15823) 81 (0) 289 (11) 5 (1) 0 [0/0] 99.78%
Optimization 4 (0) 467 16875 (7071) 80 (1) 637 (156) 6 (4) 0 [0/0] 99.51%
Overbooking 3 (0) 744 34498 (7538) 77 (0) 2783 (106) 5 (3) 0 [0/0] 97.85%

Proactive 3.93 (0.2) 535 65337 (22243) 79 (0) 777 (184) 22 (17) 23 [16/34] 99.4%
Reactive 4.34 (0.18) 547 71153 (23498) 79 (1) 842 (359) 28 (23) 26.4 [18/36] 99.35%

MIX 3
Round Robin 6 (0) 377 12590 (2698) 107 (0) 111 (13) 8 (2) 0 [0/0] 99.91%
Optimization 5 (0) 347 11222 (1171) 107 (0) 73 (6) 8 (2) 0 [0/0] 99.94%
Overbooking 4 (0) 483 21387 (1515) 106 (0) 673 (143) 8 (2) 0 [0/0] 99.48%

Proactive 4.76 (0.16) 475 54636 (215) 106 (0) 545 (93) 12 (4) 14.33 [10/17] 99.58%
Reactive 4.85 (0.12) 505 59651 (9129) 105 (1) 635 (158) 19 (11) 17 [17/17] 99.51%

Experimental results on static vs. dynamic VM allocation controllers. Srv – average server demand, RT [ms] – average response time, dRTe [ms] – maximum
response time, O

[sec] – average operations per second, Olate – late operations count, Ofail – failed operations count, Mig – VM migration count, SQ [%] – service
quality based on 3 second intervals

over. The service levels were high and average response
times were low in all treatments. Again, we used a
Welch test to compare the differences in the response
times of the different controllers at a significance level
of α = 0.05. All pairwise comparisons for the differ-
ent controllers and mixes were significant, except for
overbooking to proactive in MIX1m (p = 0.01), reactive
to proactive in MIX2m (p = 0.87), and optimization
to reactive in MIX3M (p = 0.14). For overbooking in
MIX2m and MIX3m an increased average and maximum
response time with a service level degradation to 91.74%
and 96.37% was observed. Dynamic controllers showed a
service level degradation for MIX1m with 96.81% for the
reactive and 97.74% for the proactive controller. This can
be explained by the overall workload demand, which is
close to what the six servers were able to handle. The
average server utilization was 80% over the complete six
hours and all servers. As a result average response times
have increased for all controllers compared to the first
experiments. In this case even slightly suboptimal allo-
cations result in a degradation of service quality during
periods of high utilization which especially affects the
overbooking and dynamic controllers. The optimization-
based allocation in contrast still has a good service
quality above 99% with fewer servers and comparably
low average response times.

Comparing the throughput in operations per second
with the first experiments shows an increase for MIX2m-
3m. For MIX1m no increase could be found despite
the fact that the demand trace of MIX1m are increased
compared to MIX1 (see Table 1). Again, this is caused by
the server overload situations in the MIX1m scenario.

For MIX2m-3m the dynamic controllers showed a
similar behavior as for MIX2-3. The average response
time remained constant while the max. response times

were again increased compared to static controllers. In-
terestingly, the controllers were able to maintain a service
quality above 99% by an increased average server count.

For all workloads the dynamic controllers triggered
the same number or more migrations compared to the
first experiments. However, for MIX2m, the volatile
workload scenario, the migration counter of the reactive
controller was substantially increased with 45 migrations
on average while the proactive controller required only
20.5 migrations. Again, the variance in the average re-
sponse time tends to be higher for dynamic controllers.
Overall, even in scenarios where workload volatility
increases for all VMs, the static optimization-based al-
locations perform still well.

Another working paper of our group describes a
set of initial experiments on the same hardware, but
with an entirely different software infrastructure with
a different hypervisor (Citrix XenServer), a different
threshold for the reactive controller, different operating
systems, and a different workload generator [30]. While
the infrastructure was less stable and focused on the
evaluation of reactive control parameters, also these
initial experiments found that the static allocation and
a modest level of overbooking yielded low energy costs
and higher response times compared to reactive control.
These initial experiments used TUnderload thresholds of
20% and 30% and TOverload thresholds of 75% and 85%
for the reactive controller. However, efficient thresholds
depend on the workload and is certainly not an easy
task for IT service managers. Overall, this provides some
evidence that our main result carries over to different
implementations of the reactive controller, the thresholds
used, hypervisors, or different samples of the workload.

Note that the results hold during business hours of
a day or for data centers with customers in different
time-zones. In regional data centers, where all business
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TABLE 3
Experimental results for modified workload mixes MIX1m-3m.

Controller Srv RT dRTe O
[sec] Olate Ofail Mig SQ
MIX 1m

Round Robin 6 (0) 449 25087 (2911) 165 (0) 829 (105) 10 (3) 0 [0/0] 99.36%
Optimization 6 (0) 440 27080 (6945) 165 (0) 983 (81) 11 (5) 0 [0/0] 99.24%
Overbooking 5 (0) 618 27247 (4516) 160 (3) 2012 (369) 49708 (86071) 0 [0/0] 98.45%

Proactive 5.96 (0.07) 600 55370 (28537) 162 (2) 2928 (828) 858 (1692) 7.75 [4/13] 97.74%
Reactive 5.99 (0) 710 47025 (17355) 160 (0) 4133 (787) 20 (3) 14.33 [12/18] 96.81%

MIX 2m
Round Robin 6 (0) 375 13717 (5646) 101 (0) 368 (38) 5 (1) 0 [0/0] 99.72%
Optimization 4 (0) 441 20766 (8736) 101 (0) 366 (32) 6 (1) 0 [0/0] 99.72%
Overbooking 3 (0) 1401 60584 (11310) 90 (0) 10699 (128) 64 (95) 0 [0/0] 91.74%

Proactive 4.79 (0.03) 511 82047 (26877) 99 (0) 807 (127) 31 (21) 22 [20/25] 99.38%
Reactive 4.94 (0.05) 545 78349 (15210) 98 (1) 1095 (264) 338 (586) 45 [40/50] 99.16%

MIX 3m
Round Robin 6 (0) 382 18623 (4912) 128 (0) 179 (34) 10 (2) 0 [0/0] 99.86%
Optimization 5 (0) 486 25757 (3737) 127 (0) 1290 (83) 11 (2) 0 [0/0] 99%
Overbooking 4 (0) 823 31582 (1571) 123 (0) 4706 (200) 11 (2) 0 [0/0] 96.37%

Proactive 5.5 (0.16) 465 49300 (13668) 127 (1) 802 (415) 19 (5) 18 [12/24] 99.38%
Reactive 5.6 (0.03) 485 74017 (16339) 126 (1) 774 (317) 27 (18) 23.67 [18/33] 99.4%

Experimental results for mixes MIX1m-3m. Srv – average server demand, RT [ms] – average response time, dRTe [ms] – maximum response time, O
[sec] – average

operations per second, Olate – late operations count, Ofail – failed operations count, Mig – VM migration count, SQ [%] – service quality based on 3 second intervals
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Fig. 2. Histogram of the observed live migration time.

applications exhibit a very low utilization at night time,
it can obviously save additional energy to consolidate
the machines after working hours. Such nightly work-
load concentrations can be triggered automatically and
in addition to the static allocation.

5.3 Migration Overheads
During our experiments almost 1500 VM migrations
were triggered. Here, we want to briefly discuss the
resource overhead by live migrations, in order to better
understand the results of the experiments described
in the previous subsections. The mean live migration
duration was 28.73s for 1459 migrations with quartiles
17.98s, 24.03s, 31.77s, and 96.73s. It follows a log-normal
distribution with µ = 3.31 and σ = 0.27 as shown in
Figure 2.

Live migration algorithms work by tracking the write
operations on memory pages of a VM which consumes
additional CPU cycles in the hypervisor [23]. Both, dy-
namic and reactive controllers triggered only one mi-
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Fig. 3. Live migration CPU overhead on the source-
server. All (gray) and servers with ≤ 85% load (black).

gration at a time for each server. For each migration
the mean CPU load for 60s before the migration and
during the migration was calculated. Both values were
subtracted which provides an estimate for the CPU
overhead of a migration.

On the source server an increased CPU load with a
mean of 7.88% and median of 8.06% was observed. Not
all deltas were positive as seen in Figure 3 which can be
explained by the varying resource demand during the
migration on other VMs running on the same server.
Only servers with a CPU utilization below 85% were
considered for the histogram. The gray histogram area
considers all migrations. In this case, many migrations
did not lead to a CPU overhead as utilization cannot
increased beyond 100%. For the target servers the CPU
utilization increased by 12.44% on average.

Network utilization is one of the main concerns when
using migrations. Similar to today’s data centers, all
network traffic was handled by a single network in-
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terface. Similar to CPU, we calculated the delta of the
network throughput before and during migrations. The
difference on the source and target server was close to
70 MByte/s. Benchmarks report a maximum throughput
of 110 MByte/s for a 1 GBit/s connection. This through-
put is not achieved as our measurements include some
seconds before and after the network transfer phase of
a migration. Also, a migration is not a perfect RAM to
RAM transfer as the algorithm has to decide on which
memory pages to transfer. The 95th percentile of our net-
work throughput measurements during a migration was
105 MByte/s which is close to the throughput reported
in benchmarks. Network overloads were ruled out due
to the use of a LACP bond with two 1 GBit/s connections
where one was dedicated for live migrations.

5.4 Sensitivity analysis
As in any experiment, there is a number of parameter
settings which could further impact the result. Especially,
for reactive and proactive control approaches parameters
such as the threshold levels for migrations were chosen
based on preliminary tests. In the following, we want
to provide sensitivity analysis in order to understand
the robustness of the results. We conducted experiments
varying the parameters: Tunderload, TOverload, K and M
variables for the dynamic controllers, as well as the
control loop interval. MIX2 was chosen because it entails
a high variability and it is better suited to dynamic
controllers. The results are described in Table 4.

Changing the threshold settings from Tunderload = 40
and TOverload = 90 to an Tunderload = 20 only results
in a less aggressive controller with a better performance
regarding migrations, violations and average response
time. This comes at the cost of an increased average
server consumption. Setting Tunderload = 60 made the
controller more aggressive. Average server consumption
could be minimized at the price of increased response
time, migrations and violations. The threshold settings
certainly depends on the type of workload used. They
need to be tuned for each situation and to the service
level requirements. For the experiments we chose a
middle way considering migrations and violations.

We decreased the control loop interval from 300 to
30 seconds with negligible impact on the metrics. The
average number of servers, violations and response time
are comparable to the results that we found in previous
experiments while the number of migrations was slightly
increased.

The K and M values describe for how long an over-
load situations has to last until a controller acts upon it.
Setting K = 50,M = 45 had a slightly positive effect on
all metrics except for the migration count. Changing it to
K = 10,M = 8 yielded a more aggressive controller with
more migrations. It triggered 60 migrations compared to
26.4 before without a positive effect on average server
consumption, which actually was increased.

In addition we tested different forecast settings for the
proactive controller. We used an auto-regressive model

(AR) instead of a double exponential smoothing. The
average server count, migration count, average response
time, and max. resp. time were on the same level as
for previous experiments. Setting M =∞ calculates the
AR forecast with all available utilization readings in the
controller. The average server count did not change but
a negative effect on the violation count was found.

Modifying the α = 0.2 and γ = 0.1 variables of the
double exponential smoothing (DES) had no significant
effect either. Increasing α = 0.5 yielded similar results
then the default configuration. γ = 0.3 resulted in more
violations and slightly increased average response times
without an effect on the average server count.

5.5 Simulations

We first wanted to understand how the results of our
simulations compare to those of lab experiments, con-
sidering the parameter settings and migration overheads
learned in the lab. In case simulations will yield com-
parable results, we want to understand, how the per-
formance metrics develop with growing environments
regarding more servers and VMs.

Our discrete event simulation framework consists of
a workload driver, a controller and a model. Servers
and VMs are stored in the model together with their
allocation. A unique workload trace is assigned to each
VM. The driver iterates over all VMs and updates their
current CPU load according to their workload trace in
three second intervals – the same frequency as utiliza-
tion measurements are received from Sonar during an
experimental run.

The framework does not reproduce the detailed in-
teractions of web, application, and database server in a
VM. It sums the workloads of all VMs to estimate the
utilization of a server at a point in time. Therefore, we
do not report response times or operations per second.
Instead we count the time slots with CPU overload, i.e.,
where the accumulated CPU load of a server exceeds its
capacity.

The controller is activated every five minutes and
triggers migrations according to the server load status.
The same model and controller implementations are
used as in the experiments. Migration time is simulated
using a log-normal distribution with the parameters
we experienced during the experiments (described in
Section 5.3). Additionally, a CPU overhead of 8% on
the source and 13% on the targed server was simulated
during migrations. For the simulations with MIX1-3 the
same utilization traces as for the experiments were used.

Table 5 shows the results of simulations with six
servers and 18 VMs to see if the results of the simulation
are comparable to those of the lab experiments. The
results reveal that the allocation of VMs to servers and,
hence, the total amount of allocated servers in the simu-
lations equals the amount computed in the experiments
for the same scenario when using static allocation. How-
ever, this does not hold for the number of servers needed
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TABLE 4
Experiments to test the sensitivity of reactive and proactive controller parameters.

Controller Srv RT dRTe O
[sec] Olate Ofail Mig SQ

MIX2 + Reactive Controller
K = 10,M = 8 4.42 (0.03) 564 75110 (14560) 79 (0) 930 (239) 37 (24) 40.67 [24/60] 99.28%
K = 50,M = 45 4.03 (0.11) 536 71797 (15188) 79 (0) 771 (367) 30 (12) 21.33 [16/29] 99.41%
TUnderload = 20 5.57 (0.73) 502 49194 (28580) 80 (0) 747 (382) 12 (11) 11.33 [9/15] 99.42%
TUnderload = 60 3.96 (0.1) 571 81481 (26900) 79 (0) 1001 (143) 46 (17) 43.33 [28/63] 99.23%

control interval = 30 4.22 (0.06) 584 72763 (14529) 78 (1) 803 (313) 47 (1) 39.33 [31/48] 99.38%
MIX2 + Proactive Controller

AR forecast 4.15 (0.25) 539 56599 (2138) 79 (0) 755 (155) 22 (7) 23.33 [20/29] 99.42%
AR forecast M = inf 3.78 (0.5) 641 58231 (22600) 78 (1) 1671 (1182) 12 (8) 19.33 [7/29] 98.71%

DES α = 0.2, γ = 0.3 3.91 (0.65) 650 57861 (21786) 78 (1) 1516 (1254) 25 (29) 22.33 [7/37] 98.83%
DES α = 0.5, γ = 0.1 3.85 (0.08) 533 72645 (30836) 78 (3) 674 (136) 37108 (64229) 21.33 [19/24] 99.48%

AR forecast = Autoregressive Model, DES = Double Exponential Smoothing. Srv – average server demand, RT [ms] – average response time, dRTe [ms] – maximum
response time, O

[sec] – average operations per second, Olate – late operations count, Ofail – failed operations count, Mig – VM migration count, SQ [%] – service
quality based on 3 second intervals

TABLE 5
Simulations for MIX1-3

Controller Srv bSrvc dSrve Mig SQ
MIX 1

Optimization 6.00 6.00 6.00 0.00 100.00
Overbooking 5.00 5.00 5.00 0.00 84.71

Proactive 5.62 4.00 6.00 30.00 99.16
Reactive 5.74 5.00 6.00 34.00 98.99

RoundRobin 6.00 6.00 6.00 0.00 96.88
MIX 2

Optimization 4.00 4.00 4.00 0.00 100.00
Overbooking 3.00 3.00 3.00 0.00 90.56

Proactive 3.75 3.00 6.00 40.00 98.23
Reactive 4.22 3.00 5.00 33.00 98.63

RoundRobin 6.00 6.00 6.00 0.00 100.00
MIX 3

Optimization 5.00 5.00 5.00 0.00 100.00
Overbooking 4.00 4.00 4.00 0.00 95.31

Proactive 4.69 3.00 6.00 43.00 99.21
Reactive 5.02 4.00 6.00 35.00 98.64

RoundRobin 6.00 6.00 6.00 0.00 98.77

Srv – average server demand, dSDe – maximum server demand, bSDc –
minimum server demand, Mig – VM migration count, SQ [%] – service quality
based on 3 second intervals

by dynamic controllers although the average number of
servers closely matches the experimental results.

In terms of service quality, simulations could predict
the efficiency of allocation mechanisms that we observed
in experiments well. This is also due to the fact that we
could parametrize the simulations with values observed
in the lab. In contrast, simulations usually overestimated
the number of migrations triggered during experiments.
The reason for this is that in the lab the OS schedules
the requests, which results in a smoothing of workloads
over time. In the simulation the loads of different VMs
are added, leading to different migration decisions.

The comparison between simulation and experiment
show that simulation results need to be interpreted
with care, even if the same software infrastructure and
parameter estimates are used. While there are differences
in the number of servers used, the differences are small.
Hence, we use simulations as an estimator to assess how
the average server consumption will develop in larger
environments.

We examined scenarios up to 360 VMs and approxi-
mately 60 servers. As MIX1-3 only contain 18 utilization
traces each, new workload traces for the simulation are
generated from the set of 481 raw workload traces.
These traces were prepared as described in Section 3.3
and described as MIXSIM. The simulation results for
environments with 18, 90, 180, and 360 VMs are shown
in Table 6. For each treatment three simulations are con-
ducted and their mean value is reported. Each time the
set of workload traces assigned to the VMs is sampled
randomly from MIXSIM.

For the static server allocation problem, computational
complexity increases with the number of servers and
VMs. Optimizations with six servers are still solvable
with traces at a sampling rate of three minutes while
problem instances with 30 or more servers are only
solvable at a sampling rate of 1 hour without an opti-
mal solution within 60 minutes calculation time, which
leads to decreasing solution quality. The computational
complexity and the empirical hardness of the problem
was discussed by [5]. Hence, for larger problem sizes
of 60 VMs or more, we computed allocations based
on the algorithms introduced by Setzer and Bichler [6].
They leverage singular-value decomposition and com-
pute near-optimal solutions even for larger problem sizes
with several hundred VMs.

Figure 4 shows that with an increased number of
VMs the number of servers required increases in all con-
trollers, but that the gradient of the optimization-based
controllers is much lower. Consequently, the advantage
of optimization-based static allocation actually increase
with larger numbers of VMs.

6 CONCLUSION

Dynamic resource allocation is often seen as the next
step of capacity management in data centers promising
high efficiency in terms of average servers demand.
Unfortunately, there is hardly any empirical evidence
for the benefits of dynamic resource allocation so far.
In this paper, we provide the results of an extensive
experimental study on a real data center infrastructure.
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TABLE 6
Simulations for MIXSIM

Controller Srv bSrvc dSrve Mig SQ
Tiny (18 VMs)

Optimization 3.00 3.00 3.00 0.00 100.00
Overbooking 3.00 3.00 3.00 0.00 92.17

Proactive 3.06 3.00 3.10 1.90 99.93
Reactive 3.12 3.00 3.40 2.80 99.85

Small (90 VMs)
Optimization 13.00 13.00 13.00 0.00 98.84
Overbooking 11.50 11.50 11.50 0.00 86.88

Proactive 15.04 14.50 16.00 33.50 99.52
Reactive 15.13 14.50 16.00 41.50 99.57

Medium (180 VMs)
Optimization 30.00 30.00 30.00 0.00 99.86
Overbooking 27.00 27.00 27.00 0.00 96.99

Proactive 32.48 30.00 36.00 39.00 99.74
Reactive 32.65 29.50 36.50 62.50 99.64

Large (360 VMs)
Optimization 54.00 54.00 54.00 0.00 98.91
Overbooking 49.00 49.00 49.00 0.00 87.19

Proactive 59.58 57.00 62.20 82.20 99.79
Reactive 59.80 57.00 63.00 122.60 99.72

Srv – average server demand, dSDe – maximum server demand, bSDc –
minimum server demand, Mig – VM migration count, SQ [%] – service quality
based on 3 second intervals

We focus on private cloud environments with a stable
set of business applications that need to be hosted as
VMs on a set of servers. We leverage data from a large
IT service provider to generate realistic workloads, and
find that reactive or proactive control mechanisms do
not decrease average server demand. Depending on the
configuration and the threshold levels chosen they can
lead to a large number of migrations, which negatively
impact the response times and can even lead to network
congestion in larger scenarios. Simulations showed that
optimization-based static resource allocation provides
even better results compared to dynamic controllers for
large environments as possibilities to leverage workload
complementarities in the optimization increase with the
number of VMs.

Any experimental study has limitations and so has
this. First, a main assumption of the results in this
paper is the workload, which is characterized in the

supplemental material. We have analyzed workloads
with high volatility and even added additional noise in
the demand, and the results were robust. The results
do not carry over to applications that are difficult to
forecast. For example, order entry systems can expe-
rience demand peaks based on marketing campaigns,
which are hard to predict from historical workloads.
Also, sometimes VMs are set up for testing purposes and
are only needed for a short period of time. In such cases,
different control strategies are required and reactive
control clearly has its benefits in such environments.
Such applications are typically hosted on in a separate
cluster, and we leave the analysis of such workloads for
future research. Second, the experimental infrastructure
was small and the results for larger environments with
120 and more VMs are based on simulation. While simu-
lation has its limitations, we took great care that the main
system characteristics such as migration duration were
appropriately modeled. Also, the controller software was
exactly the same as the one used in the lab experiments.
Finally, one can think of alternative ways to implement
the reactive and proactive controllers. For example, ad-
vanced workload prediction techniques could be used
[31], [32]. We conjecture, however, that the basic trade-off
between migration costs and efficiency gains by dynamic
resource allocation will persist also with smarter control
strategies with similar workloads.

Although the study shows that with a stable set of
business applications static resource allocation with a
modest level overbooking would lead to the lowest
average server demand, we suggest that in everyday
operations, a combination of both mechanisms where
allocations are computed for a longer period of time and
exceptional workload peaks are treated by a dynamic
control mechanism should be put in place. We argue,
however, that such live migrations should be used in
exceptional instances only and capacity planning via op-
timization should be used as an initial means to allocate
VMs to servers, in environments with long-running and
predictable application workloads.
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