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Abstract. Approximating the optimal social welfare while preserving
truthfulness is a well studied problem in algorithmic mechanism design.
Assuming that the social welfare of a given mechanism design prob-
lem can be optimized by an integer program whose integrality gap is at
most α, Lavi and Swamy [1] propose a general approach to designing
a randomized α-approximation mechanism which is truthful in expec-
tation. Their method is based on decomposing an optimal solution for
the relaxed linear program into a convex combination of integer solu-
tions. Unfortunately, Lavi and Swamy’s decomposition technique relies
heavily on the ellipsoid method, which is notorious for its poor practical
performance. To overcome this problem, we present an alternative de-
composition technique which yields an α(1 + ϵ) approximation and only
requires a quadratic number of calls to an integrality gap verifier.

Keywords: Convex decomposition, Truthful in expectation, Mechanism
design, Approximation algorithms

1 Introduction

Optimizing the social welfare in the presence of self-interested players poses two
main challenges to algorithmic mechanism design. On the one hand, the social
welfare consists of the player’s valuations for possible outcomes of the mech-
anism. However, since these valuations are private information, they can be
misrepresented for personal advantage. To avoid strategic manipulation, which
may harm the social welfare, it is important to encourage truthful participa-
tion. In mechanism design, this is achieved through additional payments which
offer each player a monetary incentive to reveal his true valuation. Assuming
that the mechanism returns an optimal outcome with respect to the reported
valuations, the well known Vickrey, Clarke and Groves (VCG) principle [2–4]
provides a general method to design payments such that each player maximizes
his utility if he reports his valuation truthfully. On the other hand, even if
the player’s valuations are known, optimizing the social welfare is NP-hard for
many combinatorial mechanism design problems. Since an exact optimization
is intractable under these circumstances, the use of approximation algorithms
becomes necessary. Unfortunately, VCG payments are generally not compatible
with approximation algorithms.
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To preserve truthfulness, so called maximal-in-range (MIR) approximation
algorithms must be used [5]. This means there must exist a fixed subset of out-
comes, such that the approximation algorithm performs optimally with respect
to this subset. Given that the players are risk-neutral, the concept of MIR algo-
rithms can be generalized to distributions over outcomes. Together with VCG
payments, these maximal-in-distribution-range (MIDR) algorithms allow for the
design of randomized approximation mechanisms such that each player max-
imizes his expected utility if he reveals his true valuation [6]. This property,
which is slightly weaker than truthfulness in its deterministic sense, is also re-
ferred to as truthfulness in expectation.

A well-known method to convert general approximation algorithms which
verify an integrality gap of α into MIDR algorithms is the linear programing
approach of Lavi and Swamy [1]. Conceptually, their method is based on the
observation that scaling down a packing polytope by its integrality gap yields
a new polytope which is completely contained in the convex hull of the original
polytope’s integer points. Considering that the social welfare of many combi-
natorial mechanism design problems can be expressed naturally as an integer
program, this scaled polytope corresponds to a set of distributions over the out-
comes of the mechanism. Thus, by decomposing a scaled solution of the relaxed
linear program into a convex combination of integer solutions, Lavi and Swamy
obtain an α-approximation mechanism which is MIDR.

Algorithmically, Lavi and Swamy’s work builds on a decomposition technique
by Carr and Vempala [7], which uses a linear program to decompose the scaled
relaxed solution. However, since this linear program might have an exponential
number of variables, one for every outcome of the mechanism, it can not be solved
directly. Instead, Carr and Vempala use the ellipsoid method in combination
with an integrality gap verifier to identify a more practical, but still sufficient,
subset of outcomes for the decomposition. Although this approach only requires
a polynomial number of calls to the integrality gap verifier in theory, the ellipsoid
method is notoriously inefficient in practice [8].

In this work, we propose an alternative decomposition technique which does
not rely on the ellipsoid method and is general enough to substitute Carr and
Vempala’s [7] decomposition technique. The main component of our decompo-
sition technique is an algorithm which is based on a simple geometric idea and
computes a convex combination within an arbitrarily small distance ϵ to the
scaled relaxed solution. However, since an exact decomposition is necessary to
guarantee truthfulness, we slightly increase the scaling factor of the relaxed solu-
tion and apply a post-processing step to match the convex combination with the
relaxed solution. Assuming that ϵ is positive and fixed, our technique yields an
α(1 + ϵ) approximation of the optimal social welfare but uses only a quadratic
number of calls to the integrality gap verifier, with respect to the number of
positive components in the relaxed solution vector.

It turns out that our method has interesting connections to an old algorithm
of Von Neumann reproduced by Dantzig [9] 1. At first sight, similarities in the

1 We thank the anonymous referee of WINE 2014 who pointed us to this paper.
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sampling and geometric techniques used in both algorithms can be observed.
However, Von Neumann’s algorithm may sample fractional points whereas our
setting requires integral points. Due to these more involved constraints, a direct
usage of Von Neumann’s technique in our setting is impossible.

2 Setting

Integer programming is a powerful tool in combinatorial optimization. Using
binary variables to indicate whether certain goods are allocated to a player, the
outcomes of various NP-hard mechanism design problems, such as combinatorial
auctions or generalized assignment problems [1, 11], can be modeled as integer
points of an n-dimensional packing polytope X ⊆ [0, 1]n.

Definition 1. (Packing Polytope) Polytope X satisfies the packing property
if all points y which are dominated by some point x from X are also contained
in X

∀x, y ∈ Rn
≥0 : x ∈ X ∧ x ≥ y ⇒ y ∈ X.

Together with a vector µ ∈ Rn
≥0 which denotes the accumulated valuations

of the players, it is possible to express the social welfare as an integer program of
the form maxx∈Z(X)

∑n
k=1 µkxk, where Z(X) denotes the set of integer points in

X. Using the simplex method, or other standard linear programming techniques,
an optimal solution x∗ ∈ X of the relaxed linear program maxx∈X

∑n
k=1 µkxk

can be computed efficiently for most mechanism design problems. Note that for
combinatorial auctions, where the dimension of X grows exponentially with the
number of available goods, special attention is necessary to preserve compu-
tational feasibility. One possible approach is the use of demand queries which
yields an optimal solution in polynomial time and with a polynomial number of
positive components [1].

The maximum ratio between the original program and its relaxation is called
the integrality gap of X. Assuming this gap is at most α ∈ R≥1, Lavi and

Swamy [1] observe that the scaled fractional solution x∗

α can be decomposed
into a convex combination of integer solutions. More formally, there exists a

convex combination λ from the set Λ = {λ ∈ RZ(X)
≥0

|
∑

x∈Z(X) λx = 1} such

that the point σ(λ), which is defined as σ(λ) =
∑

x∈Z(X) λxx, is equal to x∗

α .
Regarding λ as a probability distribution over the feasible integer solutions, the
MIDR principle allows for the construction of a randomized α-approximation
mechanism which is truthful in expectation.

From an algorithmic point of view, the main challenge in decomposing x∗

α is
the computation of suitable integer points. Since the size of Z(X) is typically
exponential in n, it is intractable to consider the entire polytope. Instead, Carr
and Vempala [7] propose the use of an approximation algorithm A : Rn

≥0 →
Z(X) which verifies an integrality gap of α to sample a more practical, but still
sufficient, subset of integer points.
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Definition 2. (Integrality Gap Verifier) Approximation algorithm A veri-
fies an integrality gap of α if the integer solution which is computed by A is at
least α times the optimal relaxed solution for all non-negative vectors µ

∀µ ∈ Rn
≥0 : α

n∑
k=1

µkA(µ)k ≥ max
x∈X

n∑
k=1

µkxk.

As it turns out, Carr and Vempala’s approach only requires a polynomial number
of calls to to A with respect to n. In particular, this implies that the number
of integer points in λ, which is defined as ψ(λ) = |{x ∈ Z(X) | λx > 0}|, is
polynomial as well. Observe that for sparse x∗, which are common in the case of
combinatorial auctions, it is only necessary to consider the subspace of positive
components in x∗. This is possible since no point in Z(X) which has a positive
component k can contribute to λ if x∗k is 0. In either case, the fact that Carr
and Vempala strongly rely on the ellipsoid method indicates that their results
are more of theoretical importance than of practical use.

3 Decomposition with Epsilon Precision

The first part of our decomposition technique is to construct a convex combina-
tion λ such that the point σ(λ) is within an arbitrarily small distance ϵ ∈ R>0

to the scaled relaxed solution x∗

α . Similar to Carr and Vempala’s approach, our
technique requires an approximation algorithm A′ : Rn → Z(X) to sample inte-
ger points from X. It is important to note that A′ must verify an integrality gap
of α for arbitrary vectors µ ∈ Rn whereas A, only accepts non-negative vectors.
However, since X satisfies the packing property, it is easy to extend the domain
of A while preserving an approximation ratio of α.

Lemma 1. Approximation algorithm A can be extended to a new approximation
algorithm A′ which verifies an integrality gap of α for arbitrary vectors µ.

Proof. The basic idea of A′ is to replace all negative components of µ by 0 and
run the original integrality gap verifier A on the resulting non-negative vector,
which is defined as ξ(µ)k = max({µk, 0}). Exploiting the fact that X is a packing
polytope, the output of A is then set to 0 for all negative components of µ. More
formally, A′ is defined as

A′(µ)k =

{
A(ξ(µ))k if µk ≥ 0

0 if µk < 0.

Since A′(µ)k is equal to 0 if µk is negative and otherwise corresponds to
A(ξ(µ))k, it holds that

n∑
k=1

µkA′(µ)k =
n∑

k=1

ξ(µ)kA′(µ)k =
n∑

k=1

ξ(µ)kA(ξ(µ))k.
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Furthermore, since X only contains non-negative points, maxx∈X

∑n
k=1 ξ(µ)kxk

must be greater or equal to maxx∈X

∑n
k=1 µkxk. Together with the fact that

A verifies an integrality gap of α for ξ(µ) this proves that A′ verifies the same
integrality gap for µ

α
n∑

k=1

µkA′(µ)k = α
n∑

k=1

ξ(µ)kA(ξ(µ))k ≥ max
x∈X

n∑
k=1

ξ(µ)kxk ≥ max
x∈X

n∑
k=1

µkxk.

⊓⊔

Once A′ is specified, algorithm 1 is used to decompose x∗

α . Starting at the
origin, which can be expressed trivially as a convex combination from Λ due to
the packing property of X, the algorithm gradually improves σ(λi) until it is
sufficiently close to x∗

α . For each iteration of the algorithm, µi denotes the vector

which points from σ(λi) to x∗

α . If the length of µi is less or equal to ϵ, then σ(λi)

must be within an ϵ-distance to x∗

α and the algorithm terminates. Otherwise, A′

samples a new integer point xi+1 based on the direction of µi. It is important
to observe that all points on the line segment between σ(λi) and xi+1 can be
expressed as a convex combination of the form δλi+(1− δ)τ(xi+1), where δ is a
value between 0 and 1 and τ(xi+1) denotes a convex combination such that the
coefficient τ(xi+1)xi+1 is equal to 1 while all other coefficients are 0. Thus, by
choosing λi+1 as the convex combination which minimizes the distance between
the line segment and x∗

α , an improvement over the current convex combination
is possible. As theorem 1 shows, at most ⌈nϵ−2⌉ − 1 iterations are necessary to
obtain the desired ϵ-precision.

Algorithm 1 Decomposition with Epsilon Precision

Input: an optimal relaxed solution x∗, an approximation algorithm A′, a precision ϵ
Output: a convex combination λ which is within an ϵ-distance to x∗

α

x0 ← 0, λ0 ← τ(x0), µ0 ← x∗

α
− σ(λ0), i← 0

while ∥µi∥2 > ϵ do
xi+1 ← A′(µi)
δ ← argminδ∈[0,1] ∥x

∗

α
− (δσ(λi) + (1− δ)xi+1)∥2

λi+1 ← δλi + (1− δ)τ(xi+1)
µi+1 ← x∗

α
− σ(λi+1)

i← i+ 1
end while
return λi

Theorem 1. Algorithm 1 returns a convex combination within an ϵ-distance to
the scaled relaxed solution x∗

α after at most ⌈nϵ−2⌉ − 1 iterations.

Proof. Clearly, algorithm 1 terminates if and only if the distance between σ(λi)
and x∗

α becomes less or equal to ϵ. Thus, suppose the length of vector µi is still
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x∗

α

σ(λi)

σ(λi+1)

zi+1

xi+1

µi+1

µi

hyperplane

Fig. 1. Right triangle between the points x∗

α
, σ(λi

x) and zi+1

greater than ϵ. Consequently, approximation algorithm A′ is deployed to sample
a new integer point xi+1. Keeping in mind that A′ verifies an integrality gap of
α, the value of xi+1 must be greater or equal to the value of x∗

α with respect to
vector µi

n∑
k=1

µi
kx

i+1
k =

n∑
k=1

µi
kA′(µi)k ≥ max

x∈X

n∑
k=1

µi
k

xk
α

≥
n∑

k=1

µi
k

x∗

α
.

Conversely, since the squared distance between σ(λi) and x∗

α is greater than ϵ2,
and therefore also greater than 0, it holds that the value of σ(µi) is less than
the value of x∗

α with respect to vector µi

0 <

n∑
k=1

(x∗k
α

− σ(λi)k

)2

⇐⇒ 0 <
n∑

k=1

((x∗k
α

)2

− 2
x∗k
α
σ(λi)k + σ(λi)2k

)
⇐⇒

n∑
k=1

(x∗k
α
σ(λi)k − σ(λi)2k

)
<

n∑
k=1

((x∗k
α

)2

− x∗k
α
σ(λi)k

)
⇐⇒

n∑
k=1

µi
kσ(λ

i)k <
n∑

k=1

µi
k

x∗k
α
.

As a result, the hyper plane {x ∈ Rn |
∑n

k=1 µ
i
kxk =

∑n
k=1 µ

i
k
x∗
k

α } separates
σ(λi) from xi+1, which in turn implies that the line segment conv({σ(λi), xi+1})
intersects the hyperplane at a unique point zi+1.

Since the hyperplane is orthogonal to µi, the points x∗

α , σ(λix) and zi+1

form a right triangle, as figure 1 illustrates. Furthermore, the altitude of this
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triangle minimizes the distance from the line segment conv({σ(λi), xi+1}) to x∗

α
and therefore corresponds to the length of new vector µi+1. According to the
basic relations between the sides in a right triangle, the length of µi+1 can be
expressed as

∥∥µi+1
∥∥
2
=

√√√√ ∥∥µi
∥∥2
2

∥∥x∗

α − zi+1
∥∥2
2∥∥µi

∥∥2
2
+
∥∥x∗

α − zi+1
∥∥2
2

.

Unfortunately, the exact position of zi+1, depends on the implementation A′.
To obtain an upper bound on the length µi+1 which does not rely on zi+1, it is
helpful to observe that the altitude of the triangle grows as the distance between
zi+1 and x∗

α increases. However, since both points are contained in the standard
hyper cube [0, 1]n, the square of this distance is at most n

∥∥x∗
α

− zi+1
∥∥2
2
=

n∑
k=1

(x∗k
α

− zi+1
k

)2

≤
n∑

k=1

1 = n,

which means that the maximum length of µi+1 is given by

∥∥x∗
α

− zi+1
∥∥2
2
≤ n

⇐⇒
∥∥x∗

α − zi+1
∥∥2
2∥∥µi

∥∥2
2
+

∥∥x∗

α − zi+1
∥∥2
2

≤ n∥∥µi
∥∥2
2
+ n

⇐⇒
∥∥µi

∥∥2
2

∥∥x∗

α − zi+1
∥∥2
2∥∥µi

∥∥2
2
+

∥∥x∗

α − zi+1
∥∥2
2

≤
∥∥µi

∥∥2
2
n∥∥µi

∥∥2
2
+ n

⇐⇒

√√√√ ∥∥µi
∥∥2
2

∥∥x∗

α − zi+1
∥∥2
2∥∥µi

∥∥2
2
+

∥∥x∗

α − zi+1
∥∥2
2

≤

√√√√ ∥∥µi
∥∥2
2
n∥∥µi

∥∥2
2
+ n

.

It is important to note that this upper bound on the length of µi+1, which is
illustrated in figure 2, only depends on the previous vector µi and the dimension
n. Solving the recurrence inequality yields yet another upper bound which is
based on the initial vector µ0 and the number of iterations i

∥∥µi
∥∥2
2
≤

∥∥µi−1
∥∥2
2
n∥∥µi−1

∥∥2
2
+ n

⇐⇒
∥∥µi

∥∥2
2

n
≤

∥∥µi−1
∥∥2
2∥∥µi−1

∥∥2
2
+ n

⇐⇒ n∥∥µi
∥∥2
2

≥ n∥∥µi−1
∥∥2
2

+ 1 ...
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x∗

α

σ(λ0)

σ(λ1)

σ(λ2)

σ(λ3)

σ(λ4)
σ(λ5) σ(λ6)

σ(λ7)

z1

z2

z3
z4

z5

z6

z7

√
n

Fig. 2. Upper bound on the distance between σ(λi) and x∗

α
for the first 7 iterations

=⇒ n∥∥µi
∥∥2
2

≥ n∥∥µ0
∥∥2
2

+ i

⇐⇒
∥∥µi

∥∥2
2

n
≤

∥∥µ0
∥∥2
2∥∥µ0

∥∥2
2
i+ n

⇐⇒
∥∥µi

∥∥
2
≤

√√√√ ∥∥µ0
∥∥2
2
n∥∥µ0

∥∥2
2
i+ n

.

Considering that the squared length of vector µ0, which corresponds to the
distance between x∗

α and the origin, is at most n

∥∥µ0
∥∥2
2
=

n∑
k=1

(x∗k
α

)2

≤
n∑

k=1

1 = n,

it follows that
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∥∥µi
∥∥
2
≤

√√√√ ∥∥µ0
∥∥2
2
n∥∥µ0

∥∥2
2
i+ n

≤
√

n2

ni+ n
=

√
n

i+ 1
.

Finally, this proves that the distance between σ(λi) and x∗

α must be less or equal
to ϵ after not more than ⌈nϵ−2⌉ − 1 iterations, at which point the algorithm
terminates

∥∥µ⌈nϵ−2⌉−1
∥∥
2
≤

√
n

1 + (⌈nϵ−2⌉ − 1)
≤ ϵ.

⊓⊔

At this point, it should be mentioned that the upper bound on the number of
iterations given in theorem 1 can be further refined with a simple modification of
A′. Due to the packing property ofX it is possible to set all components ofA′(µi)
which correspond to a component of value 0 in x∗ to 0 as well. Given that µ0 is
equal to x∗

α and all other µi+1 are defined recursively as the difference between
x∗

α and a convex combination of x∗

α −µi and A′(µi), every vector µi+1 must share
the 0 components of x∗. As a result, the new A′ preserves the approximation
ratio and algorithm 1 still works as expected. Furthermore, only integer points
from the subspace of positive components in x∗ are considered, which means that
the convergence of algorithm 1 depends on the number of positive components
in x∗ rather than n.

4 Exact Decomposition

Although the convex combination λ which is returned by algorithm 1 is within
an ϵ-distance to x∗

α , an exact decomposition of the relaxed solution is necessary
to guarantee truthfulness. Assuming that an additional scaling factor of

√
nϵ is

admissible, the second part of our decomposition technique shows how to convert
λ into a new convex combination λ′′ such that σ(λ′′) is equal to x∗

α(1+
√
nϵ)

. Note

that this additional scaling factor depends on ϵ, which means that it can still
be made arbitrarily small. In particular, running algorithm 1 with a precision
of ϵ√

n
, instead of ϵ, reduces the factor to ϵ and yields a decomposition which

is equal to x∗

α(1+ϵ) . However, since this new precision is not independent of n

anymore, the maximum number of iterations is increased to ⌈n( ϵ√
n
)−2⌉ − 1,

which is quadratic in n. It is helpful to observe that the techniques which are
introduced in this chapter can be adapted easily to the subspace of positive
components in x∗. Hence, all complexity results carry over directly from n to
the number of positive components in x∗.

To adjust σ(λ) component-wisely, it is helpful to consider the integer points
ek ∈ {0, 1}n. For every dimension k, the kth component of ek is defined to be 1
while all other components are 0. Since X has a finite integrality gap and also
satisfies the packing property, all points ek must be contained in X.
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Lemma 2. The polytope X contains all points ek.

Proof. For the sake of contradiction, assume there exists a dimension k for which
ek is not contained in X. Since X satisfies the packing property, this implies that
there exists no point in X whose kth component is 1, in particular no integer
point. As a result, the optimal solution for the integer program with respect to
the vector ek must be 0

max
x∈Z(X)

n∑
l

ekl xl = max
x∈Z(X)

xk = 0.

Keeping in mind that X has an integrality gap of at most α, it immediately
follows that the optimal solution for the relaxed linear program with respect to
ek must also be 0

max
x∈X

n∑
l

ekl xl = max
x∈X

xk = 0.

However, this implies that the kth component of every point in X is 0, which
contradicts the fact that X is n-dimensional. ⊓⊔

Applying theorem 2, our decomposition technique uses the points ek to construct
an intermediate convex combination λ′ such that σ(λ′) dominates x∗

α(1+
√
nϵ)

.

Theorem 2. Convex combination λ can be converted into a new convex combi-
nation λ′ which dominates x∗

α(1+
√
nϵ)

.

Proof. According to lemma 2, the points ek are contained in Z(X). Thus, they

can be added to λ to construct a positive combination λ+
∑n

k=1 |
x∗
k

α −σ(λ)k|τ(ek)
which dominates x∗

α

σ
(
λ+

n∑
k=1

∣∣∣x∗k
α

− σ(λ)k

∣∣∣τ(ek)) = σ(λ) +
( n∑

k=1

∣∣∣x∗k
α

− σ(λ)k

∣∣∣ek)
≥ σ(λ) +

( n∑
k=1

(x∗k
α

− σ(λ)k

)
ek
)

= σ(λ) +
x∗

α
− σ(λ)

=
x∗

α
.

Since the sum over the additional coefficients
∑n

k=1 |
x∗
k

α −σ(λ)k| is equivalent
to the L1 distance between σ(λ) and x∗

α , it is bounded by the Hölder inequality

n∑
k=1

∣∣∣x∗k
α

− σ(λ)k

∣∣∣ = ∥∥∥x∗
α

− σ(λ)
∥∥∥
1
≤

∥∥∥1∥∥∥
2

∥∥∥x∗
α

− σ(λ)
∥∥∥
2
≤

√
nϵ.
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As a result, scaling down the positive combination by a factor of 1+
√
nϵ yields a

new positive combination which dominates x∗

α(1+
√
nϵ)

and whose coefficients sum

up to a value less or equal to 1. To ensure that this sum becomes exactly 1, the

coefficients must be increased by an additional value of
√
nϵ−

∑n
k=1 |

x∗
k

α −σ(λ)k|.
An easy way to achieve this is by adding the origin, which is trivially contained
in Z(X) due to the packing property of X, to the positive combination. Thus,
the desired convex combination λ′ corresponds to

λ+
∑n

k=1

∣∣x∗
k

α − σ(λ)k
∣∣τ(ek) + (√

nϵ−
∑n

k=1

∣∣x∗
k

α − σ(λ)k
∣∣)τ(0)

1 +
√
nϵ

.

⊓⊔

In the final step, our decomposition technique exploits the packing property
of X to convert λ′ into an exact decomposition of x∗

α(1+
√
nϵ)

. A simple but general

approach to this problem is provided by algorithm 2. Given a point x ∈ X which
is dominated by σ(λ′), the basic idea of the algorithm is to iteratively weaken
the integer points which comprise λ′ until the desired convex combination λ′′ is

reached. As theorem 3 shows, this computation requires at most |ψ(λ)|n+ n2+n
2

iterations.

Algorithm 2 From a Dominating to an Exact Decomposition

Input: a convex combination λ′, a point x which is dominated by σ(λ′)
Output: a convex combination λ′′ which is an exact decomposition of x

λ0 ← λ′, i← 0
for all 1 ≤ k ≤ n do

while σ(λi)k > xk do
y ← pick some y from Z(X) such that λi

y > 0 and yk = 1
if λi

y ≥ σ(λi)k − xk then
λi+1 ← λi − (σ(λi)k − xk)τ(y) + (σ(λi)k − xk)τ(y − ek)

else
λi+1 ← λi − λi

yτ(y) + λi
yτ(y − ek)

end if
i← i+ 1

end while
end for
return λi

Theorem 3. Assuming that σ(λ′) dominates the point x, algorithm 2 converts
λ′ into a new convex combination λ′′ such that σ(λ′′) is equal to x. Furthermore,

the required number of iterations is at most |ψ(λ′)|n+ n2+n
2 .

Proof. In order to match σ(λ′) with x, algorithm 2 considers each dimension
k separately. Clearly, while σ(λi)k is still greater than xk, there must exist at
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least one point y in λi which has a value of 1 in component k. If λiy is greater or

equal to the difference between σ(λi)k and xk, it is reduced by the value of this
difference. To compensate for this operation, the coefficient of the point y − ek,
which is trivially contained in X due to its packing property, is increased by the
same value. Thus, the value of σ(λi+1)k is equal to xk

σ(λi+1)k = σ(λi)k − (σ(λi)k − xk)τ(y)k + (σ(λi)k − xk)τ(y − ek)k

= σ(λi)k − (σ(λi)k − xk)

= xk,

which means that the algorithm succeeded at computing a matching convex
combination for x at component k. It should be noted that the other components
of λi+1 are unaffected by this update.

Conversely, if λiy is less than the remaining difference between σ(λi)k and

xk, the point y can be replaced completely by y − ek. In this case the value of
σ(λi+1)k remains greater than xk

σ(λi+1)k = σ(λi)k − λiyτ(y)k + λiyτ(y − ek)k = σ(λi)k − λiy > xk

Furthermore, the number of points in λi+1 which have a value of 1 at component
k is reduced by one with respect to λi. Considering that the number of points
in λi is finite, this implies that the algorithm must eventually compute a convex
combination λ′′ which matches x at component k.

To determine an upper bound on the number of iterations, it is helpful to
observe that the size of the convex combination can only increase by 1 for every
iteration of the for loop, namely if λiy is greater than the difference between

σ(λi)k and xk. As a result, the number of points which comprise a convex com-
bination during the kth iteration of the for loop is at most ψ(λ′) + k. Since this
number also gives an upper bound on the number of iterations performed by the
while loop, the total number of iterations is at most

n∑
k=1

(|ψ(λ′)|+ k) = n|ψ(λ′)|+
n∑

k=1

k = n|ψ(λ′)|+ n2 + n

2
.
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