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Combinatorial auctions address the fundamental problem of allocating multiple items in the presence of
complex bidder preferences including complements or substitutes. They have found application in public
and private sector auctions. Many real-world markets involve the sale of a large number of items, limiting
the direct application of combinatorial auctions due to both computational intractability for the auctioneer
and communication difficulty for the bidders. More specifically for the latter, an enumerative XOR bidding
language (widely discussed in the literature and used in recent government spectrum auctions) grows too
quickly to be practical. Market designs for large markets with many items and similar incentive properties
have previously received little attention in the literature. We introduce an auction design framework for
large markets with hundreds of items and complex bidder preferences. The framework comprises compact
bid languages in a sealed-bid auction and methods to compute second-price rules such as the Vickrey-Clarke-
Groves or bidder-optimal, core-selecting payment rules. The latter have been introduced in spectrum auctions
worldwide as a means to encourage incentives for truthful bidding, but at the same time avoid some problems
of the Vickrey-Clarke-Groves mechanism. We discuss compact bidding languages for TV ads markets and
volume-discount procurement auctions, and investigate the resulting winner-determination problem and the
computation of core payments. For realistic instances of the respective winner determination problems, very
good solutions with a small integrality gap can be found quickly, though closing the integrality gap to find
marginally better solutions or prove optimality can take a prohibitively large amount of time. Our subsequent
adaptation of a constraint-generation technique for the computation of bidder-optimal core paymants to this
environment is a new, practically viable paradigm by which core-selecting auction designs can be applied to
large markets with potentially hundreds of items.
Key words : TV ads, core-selecting auction, market design

1. Introduction
Electronic markets allow market participants to express rich information about their preferences
for different goods or services beyond a price quote for individual items only. It is easy for an
auctioneer to elicit complementarities, synergies, or volume discounts for large volumes of items.
More comprehensive information about cost structures or utility functions of market participants can
increase allocative efficiency and lead to higher economic welfare.
In recent years, a growing body of literature in the management sciences is devoted to the design

of such smart markets (Gallien and Wein 2005), with combinatorial auctions (CAs) emerging as
a pivotal example (Cramton et al. 2006). A CA allows bidders to bid on combinations of items,
offering protection against the well-known “exposure problem” present in simultaneous auctions for
heterogeneous items, in which a bidder is exposed to winning too few complementary goods to realize
synergies at a high price, or too many items which she considers substitutes at a high cost. Logistics
markets have used combinatorial auctions for a long time (Caplice 2007), industrial procurement is a
large field of application (Bichler et al. 2006), energy exchanges are using bundle bidding in day-ahead
markets (Meeus et al. 2009), and more recently spectrum auctions across the world have started
using combinatorial auction designs (Cramton 2013). The market design has a profound effect in all
of these cases on bidder behavior and efficiency, and many market designs originated from academic
research.
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Mechanism design and auction theory provide a basic framework to think about strategies and
efficiency of auctions, but the design of multi-item markets has led to many new problems com-
plementary to those discussed in microeconomics. For example, the computational complexity of
allocation problems in multi-item markets has been a topic of interest in operations research and
computer science (Lehmann et al. 2006). The information systems literature has made contributions
on decision support, pricing, and information feedback (Xia et al. 2004, Adomavicius and Gupta
2005, Bichler et al. 2009), the analysis of bidder behavior (Scheffel et al. 2011, Adomavicius et al.
2012), as well as the design of markets for specific domains (Guo et al. 2007, Bapna et al. 2007).
Combinatorial auctions have been used for increasingly large markets. For example, in some spec-

trum auctions there are around 100 licenses for sale, i.e., 2100 packages which is in the order of
1.267× 1030. As a comparison, 3× 1023 is the number of stars in the observable universe. It is clear
that larger bidders can only specify a small proportion of their bids of interest. Note that the win-
ner determination problem for auctions with a fully expressive XOR bid language treats missing
package bids as if a bidder had no value for the package. Recent lab experiments have shown that
this “missing bids problem” can already lead to substantial efficiency losses, even with a much lower
number of possible packages compared to a simultaneous multi-round auction where bids can only be
submitted on individual items (Bichler et al. 2013b). In a simultaneous multi-round auction the bids
are additive (OR bid language) and for each package there is an estimate of the valuations for this
package, which is just the sum of the bids on the individual items. This allows for higher efficiency
in larger markets than some combinatorial auction designs, even though bidders cannot express their
complementarities without the risk of winning only parts of a bundle of interest and having to pay
more than this subset of items is worth to the bidder. CA designs therefore face a natural trade-off
between the efficiency gains of allowing bids on packages and the efficiency losses due to missing
bids. This observation has caused a debate on the design of spectrum auctions, but the debate goes
beyond this application and asks the question how large markets with many items can be designed
such that bidders are incentivized and able to express their preferences truthfully and auctioneers
achieve allocations with high efficiency.
Our paper provides a contribution to the design of large markets with dozens or hundreds of items.

In general, the term “large markets” can be used to refer to those in which the number of packages
in a fully enumerative XOR bid language is more than a few hundred bids, making it clear that
bidders cannot be expected to submit bids on all possible packages. Simplification was suggested as
a theoretical concept to reduce the message space without losing efficient equilibria Milgrom (2010),
but apart from this there was little research in the design of large markets. We outline a framework
which includes the design of compact bid languages and computational techniques to determine
VCG and bidder-Pareto-optimal core payments, which provide incentives for bidders in a sealed-bid
auction to submit their preferences truthfully.
The potential applications of this approach are numerous, ranging from the allocation of a large

number of resources with potentially varying quality, such as the capacity on flexible manufacturing
machines, the procurement of a large number of raw materials, or the sale of both TV and internet
banner advertisement with varying quality in terms of customer reach. To prove the computational
applicability to realistic markets, we focus on two particular markets of interest: multi-item procure-
ment auctions with economies of scale and discounts for large quantities of each item, and markets for
TV advertising slots. We emphasize that the techniques we propose are quite general and applicable
to a number of markets, but since they involve heuristics, it is necessary to show that the methods
function effectively on a few realistic implementations, in terms of size and complexity.
The procurement context involves several types of raw materials that need to be procured, where

the procurement manager needs hundreds or thousands of tons of each. Such markets could be
organized as a combinatorial procurement auction where bidders can win one out of many package
bids they submit. But with only 10 material types (items) and 6 units of each, however, a bidder
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faces more than 284 million packages to consider under an XOR bidding language, which requires a
unique bid for any package that might be won in order to verify full efficiency. Similarly, markets for
television advertising slots involve the sale of air-time in hundreds of different time-slots, weekly or
biweekly, where bidding advertisers have differing preferences over slots, based on varying audience
demographics and firm-specific needs for sufficient ad reach or coverage. While these are only examples
of large markets, the size of these markets, in terms of the large number of distinct interrelated goods
and heterogeneity of bidder preferences, prohibits the application of existing combinatorial auction
designs, making it a good testbed for the methods proposed here.

1.1. Compact Bid Languages and Allocation Rules
First, we will discuss compact bid languages for the allocation rule as a remedy for efficiency losses
due to missing bids. Several generic logic-based bid languages have been discussed in the literature
on combinatorial auctions (Boutilier and Hoos 2001). But for large markets like the ones discussed
here, even these could require too many bids to be submitted. Often, prior knowledge about bidder
preferences and market nuances allow for compact bid languages with a very low number of parame-
ters that bidders need to specify in order to describe their preferences. For the procurement markets
discussed here, the various discount policies which are regularly used in pricing can be elements of
a bid language as described in Goossens et al. (2007) or Bichler et al. (2011), who substantially
extend the expressiveness of a bid language for markets with economies of scale and scope. These bid
languages follow established market practices and bidders do not need to change their established
discount policies. In a similar way, we will introduce a bid language for TV ads markets, which is
natural to media agencies, allowing them to express their preferences with a few parameters only by
describing substitutes in a succint way. Such domain-specific bid languages require adequate opti-
mization models to compute cost-minimal allocations in procurement or revenue-maximal allocations
in forward TV ad auctions.
Advanced mixed integer programming solvers allow for the computation of allocations of large TV

ads markets with hundreds of ad slots and procurement markets with dozens of items and several
quantity schedules to near-optimality. Although such near-optimal solutions can typically be found
in minutes, finding (or proving) the exact solution might take hours or even be intractable. This is
a wide-spread pattern in combinatorial optimization. An integrality gap of a few percent would be
considered acceptable in the types of large-scale private-sector markets that we discuss in this paper.
Even the recent design of incentive auctions for the Federal Communications Commission in the USA
includes allocation problems that are too large and difficult to be be solved to full optimality.1

1.2. Payment Rules
Second, we will discuss payment rules to encourage truthful bidding in large markets. The celebrated
Vickrey-Clarke-Groves (VCG) payment rule charges each bidder the harm they cause to other bidders,
and ensures that the dominant strategy for a bidder is to bid her true valuation of the items. The VCG
outcome can be “outside the core” leading to low revenue and possibilities for shill bidding among
other problems (Ausubel and Milgrom 2006). Intuitively, VCG provides discounts to ensure that an
individual cannot benefit from unilateral deviation from truth-telling, but the resulting discounts
can be so large that payments are absurdly low and remain manipulable by groups of bidders. For
example, Ausubel and Milgrom (2006) provide a classic setup where VCG payments total zero for
two bidders, despite a competitor’s bid to pay the seller a large amount for their combined winnings,
and show that these payments of zero can be achieved through group manipulation or the use of
false-name (i.e., shill) bids. This occurs when the first two bidders bid $M for their disjoint respective
bundles of interest, with a losing competitor offering exactly $M for the union of these bundles.

1 http://www.fcc.gov/topic/incentive-auctions

http://www.fcc.gov/topic/incentive-auctions
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Core-selecting auctions were introduced in recent years (Day and Raghavan 2007) to combat these
weaknesses of VCG. As a payment paradigm for multi-item markets in general, they were designed
to balance the incentives of bidders to reveal bids truthfully (achieved by making the bidders pay the
least amount possible) against the perceived fairness of payments (such that payments are adequately
large to preclude any set of losing bids from become winning). This auction design computes prices
that are “in the core” with respect to submitted bids, stating roughly that no coalition of bidders
could claim that their bids offered a mutually preferable outcome that would also raise seller revenue.
Thus in the example above, the winners will always combine to pay at least $M in a core-selecting
auction.
The game-theoretical properties of bidder-Pareto-optimal core (BPOC) auctions have been dis-

cussed extensively in the recent years (Day and Milgrom 2007, Goeree and Lien 2013), and core-
selecting auction rules have been adopted for spectrum license auctions around the world, including
Australia, Austria, Canada, Denmark, Ireland, Portugal, the Netherlands and the U.K. The approach
in these spectrum auctions has been to use a combinatorial clock auction (CCA) with bidding in
an iterative auction, in response to rising price clocks for each item, and finishing with a sealed-bid
core-selecting auction using all bids from these iterative rounds, as well as additional combinatorial
bids submitted in a sealed-bid round subject to activity rules. Thus, even if one were to argue to use
the CCA format as is used in spectrum auctions for our applications (though we do not) the auction-
eer would still need to run the winner-determination and core-pricing algorithm, and the algorithmic
contributions of this paper would still be relevant as the auction gets large.
Although BPOC payment rules are not strategy-proof, the incentives for manipulation can be

considered minimal in most large-scale markets, where typically neither the number of bidders nor
their exact preferences are known. Note that existing game-theoretical models assume that bidders
are all interested in only a single package and that all bidders know which packages their competitors
bid on, in order to keep the analysis tractable (Goeree and Lien 2013). Although these analyses are
insightful and illustrate situations where bidders would not bid truthful in equilibrium in a BPOC
auction, such information is rarely available in large real-world markets. The number of packages
that bidders could bid on, can serve as a proxy for how much information would be needed by a
bidder to profitably manipulate a market. Still, a simple pay-as-bid rule sets strong incentives for bid
shading, while the benefits of bid shading are greatly reduced under VCG or BPOC payment rules
in large markets with little or no prior distributional information. Recent lab experiments comparing
a BPOC payment rule with a pay-as-bid payment rule provide evidence for this hypothesis (Bichler
et al. 2013a).

1.3. Relationship to Approximation Mechanisms
Recent research in computer science has explored, if strategy-proofness can be maintained by giv-
ing up on optimal social welfare and using approximation algorithms with provable approximation
ratios on the quality of the allocation as an allocation rule (Lavi 2007). Unfortunately, in spite of
the theoretical value of results in this field, the approximation ratios of algorithms for most com-
binatorial optimization problems are often not acceptable for real-world market design and often
no such approximation algorithms are available for specific problems. The approximation ratio of
approximation algorithms to solve the winner determination problem in combinatorial auctions with
general valuations is O(

√
N) (Halldorsson et al. 2000), where N is the number of items. No strategy-

proof appoximation mechanism can have a better ratio than this algorithmic bound. This means
in an auction with 25 items only, the solution can be 5 times worse than the optimal solution in
the worst case. Randomized approximation mechanisms with the same approximation ratio have
already been found (Lavi and Swamy 2011, Dobzinski et al. 2012). However, the best deterministic
truthful approximation guarantee known for general combinatorial auctions is O( N√

logN
) (Holzman

et al. 2004). Note that much of the literature on approximation mechanisms relies on randomized
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mechanisms which also leads to somewhat weaker notions of truthfulness than strategy-proofness
with deterministic mechanisms.
We consider this literature as complementary to our research. While there are no provable guaran-

tees to solve certain problem sizes of combinatorial optimization problems, experiments typically lead
to high confidence about the problem sizes that can be solved in due time in practice. There is a huge
literature with various benchmark problems analyzing the empirical hardness of certain optimization
problems in operations research2, which practitioners rely on for scheduling, vehicle routing, or other
types of resource allocation problems. We do this as well. We also give up on strategy-proofness in the
strong sense. Strategy-proofness is a powerful but also restrictive concept, which is why we instead
focus on the weaker notion of core-selecting payments.
It is worth noting that the VCG mechanism is no longer strategy-proof if the allocation does not

necessarily maximize social welfare. The simple proof showing that the VCG mechanism leads to
a dominant strategy equilibrium for each individual bidder (see for example (Shoham and Leyton-
Brown 2011, p. 276)) relies on the argument that the auctioneer chooses the allocation that maximizes
the coalitional value based on the reported bids of all bidders. So, if the allocation cannot be computed
optimally, then also the VCG mechanism loses this strong game-theoretical properties.
Still, the basic concept of a second-price rule can encourage truthful bidding, because shading

one’s bids might not increase profit, but might in increase the risk of losing in the auction or getting
a less desired outcome. Note that the information a bidder would need to manipulate grows expo-
nentially in the number of items in a combinatorial auction. With many bidders and many items
but little distributional information about all possible combinations profitable manipulation becomes
almost impossible. The amount of information required by a bidder to profitably manipulate in a
specific auction could well serve as an alternative way to characterize markets, different from the
game-theoretical solution concepts that are typically used in auction theory. On the one hand, dom-
inant strategies restrict the auction designer to the VCG mechanism (Green and Laffont 1979), only
applicable with optimal allocation rules. On the other hand, Nash equilibria are computationally
hard to compute in general (Daskalakis et al. 2009), and Bayes-Nash equilibria of combinatorial
auctions require a very large number of distributional assumptions, rendering this solution concept
intractable in large markets as discussed in our paper. Given the lack of sufficient information about
other bidders’ valuations or the specific packages they are interested in, and the hardness of com-
puting Bayes-Nash equilibrium strategies in large markets, we argue that a second-price rule such
as in BPOC payments offer a compelling compromise, encouraging truthful bidding with substantial
discounts, rather than guaranteeing it.
The application of second-price payment rules such as BPOC or VCG rules with near-optimal

rather than exact solutions to the allocation problem in our framework is not without challenges,
however. For example, the coalitional value of a coalition without one of the winners (required to
compute the VCG payments) might return a higher value than the coalitional value with all bidders.
Our adaptation of a constraint-generation technique for the computation of BPOC payments from
Day and Raghavan (2007) to large-scale markets is a new, practically viable paradigm by which
core-selecting auction designs with good incentive properties can be applied to large markets. It is
the combination of the compact bid language and the payment rule that allows bidders to express
their complementarities, but at the same time sets incentives for truthful bidding. Our experiments
help understand how the near-optimality of the allocations impacts the payments of bidders. Overall,
this can be a recipe for many large-scale markets beyond the ones discussed in this paper.

2 see http://people.brunel.ac.uk/~mastjjb/jeb/info.html for different types of discrete optimization problems
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1.4. Contributions and Outline
In summary, our contributions are as follows: First, motivated by work with industrial partners, we
propose a compact bid language for the TV ads market. The TV ads application will be our leading
example as it provides a rich testbed to demonstrate our ideas with a realistic valuation model and
a type of winner-determination problem that would benefit most readily from the approach. The bid
language allows the expression of preferences for a large number of packages with a few parameters
only. The winner-determination problem in such markets is NP-complete and cannot always be
solved optimally. However, as is typical in many combinatorial optimization problems, near-optimal
solutions can be found within a few minutes for limited problem sizes, which is promising, but previous
algorithms for computing core payments break down when solutions are not exact. We therefore
propose two algorithms to deal with markets where the winner determination might not be solved to
optimality. The approaches are evaluated in an extensive set of experiments and their properties are
characterized. In addition to the TV ads market, we also analyze the two algorithms in the context
of volume-discount auctions in order to show that the basic framework and the results carry over to
other large markets.
Overall, we show that the dynamic reuse algorithm we develop is not too slow relative to the quicker

trimming algorithm, so that the time cost of computing more accurate and more fair outcomes should
not be out of reach for this or similar applications. Though the trimming algorithm is quicker and
generates more revenue for a fixed set of bids, its inferior efficiency and incentive properties make its
use harder to justify, particularly for government applications, where efficiency concerns naturally
dominate. The market design can serve as a template for other large markets with many items and
complex bidder preferences, an area of research with many applications but little attention in the
literature so far.
In the next section, we will discuss related work. Section 3 will introduce the market design

including the allocation and the pricing rules. In section 4.2, we propose two algorithms to deal with
non-optimal solutions to the winner-determination problem. Section 5 summarizes the results of our
experiments, and section 6 concludes with a summary and future outlook.

2. BPOC Auctions
In this section, we want to provide further background on auctions with bidder-Pareto-optimal pay-
ment rules as they are central to the paper. The concept of the core has a long history in economics,
and indeed a mechanism that selects a core outcome based on submitted preferences was the founda-
tion for the 2012 Nobel Prize in Economics, though that stable-matching market involved allocations
that do not allow for monetary transfers. The extension of these ideas to the auction context (with
payments) began indirectly in the work of Parkes and Ungar (2000), Ausubel and Milgrom (2002)
with explicit computation of core outcomes and formal treatment of the core-selecting approach
coming later in Day and Milgrom (2007), Day and Raghavan (2007), and Day and Cramton (2012).
Core-selecting auctions have been suggested as an alternative to the VCG mechanism, which suffers
from a number of problems such as low seller revenue (Ausubel and Milgrom 2006). VCG solutions
outside the core, where a subset of bidders has indicated to be able to pay more than what the
winners paid, is often seen as undesirable.
Day and Raghavan (2007) showed that under semi-sincere bidding strategies and perfect informa-

tion, every BPOC price vector forms a Nash equilibrium. Thus, assigning BPOC payments based
on bids being true values only makes a bidder pay what she should have bid in equilibrium if she
had expertly anticipated the true values (and bids) of others. Day and Milgrom (2007) show that
bidder-pareto-optimality implies optimal incentives for truthful revelation over all core-selecting auc-
tions, among other supporting results, including decreased vulnerability to false-name bidding and
collusive behavior relative to other auction formats discussed in the literature, in particular the VCG
mechanism. Day and Raghavan also note that total-payment minimizing BPOC points are further
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resistant to certain forms of collusion with side-payments, and this minimum revenue condition has
been implemented in all core-selecting spectrum auctions to date. Selecting a BPOC point is further
supported by the fact that if the truth-revealing VCG vector is in the core, then any BPOC algorithm
will produce VCG as its output.
A core-selecting auction only provides a dominant strategy if the VCG outcome is in the core.

Goeree and Lien (2013) actually show that no Bayesian incentive-compatible core-inducing auction
exists when the VCG outcome is not in the core. In specific settings, where the VCG outcome
is outside the core, the equilibrium bidding strategy is to shade bids below one’s true valuation,
speculating that the reduced bid can lower one’s payment without affecting the bundle of goods
awarded. Simple threshold problems where multiple local bidders only interested in one item compete
against a global bidder, who is interested in all items, provide an illustrative example. Local bidders
could try to free-ride on each other. However, Bayesian analyses of such markets assume that bidders
are interested in a single item and they know what other bidders bid on and have commonly known
prior distributions available about other bidders’ valuations for their bundles of interest. In large TV
ads markets, such information is not available to bidders and bidders are multi-minded. Often bidders
do not even know how many competitors there are in the market, making speculation quite risky.
The same assumptions hold in procurement markets such as the volume-discount auctions analyzed
in this paper. In such situations manipulation comes at a high risk of winning nothing.
A potential alternative to the approach proposed here is the use of proxy agents bidding in multiple

rounds of an ascending auction until an equilibrium is reached, as in the ascending proxy auction
(Ausubel and Milgrom 2002) or iBundle (Parkes and Ungar 2000). Unfortunately, this approach
requires a very large number of auction rounds (unless the problem size is quite small) and the
auctioneer needs to solve a winner-determination problem in each round (Schneider et al. 2010). By
trying to avoid unnecessary winner-determination optimizations, constraint generation after a sealed-
bid auction is a more effective and practical method for price-generation, especially when considering
cases of hard winner-determination problems.

3. Compact Bid Languages and Allocation Problems
The TV ad-slot market will serve as the main example in our paper, which shares many of the features
of other large markets for the sale of spectrum licenses, in logistics, or in industrial procurement.
Also, we will briefly review volume-discount auctions designed for industrial procurement, in order
to illustrate that the framework outlined in this paper can easily be applied to other large-scale
markets. For this latter setting, we are able to find exact solutions in our computational experiments
for smaller instances, allowing for direct benchmarking against optimality. These benchmarks are
provided to demonstrate the approach, but clearly we propose the near-optimal approach to be
relevant in practice to larger instances where exact optimality is out of reach.

3.1. TV Ads Markets
In what follows, we provide a brief overview of the essential requirements. Parts of the advertisement
capacity of a typical TV station are sold via specially-negotiated, large, long-term contracts of about
a year, and are not considered in our study. We focus instead on the sale of the remaining ad-slot
inventory to specific marketing campaigns that run in the short-term, which in Europe are typically
sold via posted prices, in advance of airing. Prices for different slots can range from 6 000€ up to
50 000€ for a duration of 30 seconds, and are set by the TV station based on historical demand.
Buyers are large media agencies, who purchase a set of slots with the intent to procure the best slots
for each of their customers’ campaigns. The number of agencies in a particular market depends on the
country and the particular station, but a typical short-term market for a TV station in Germany, for
example, consists of approximately 50 media agencies, booking slots for several hundred customers
in a particular channel.
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Because the amount of air-time filled by long-term customers varies, the length of a slot available
in the short-term market can vary between 2 and 5 minutes, while the length of an ad also varies
considerably, lasting up to 1 minute. For a particular channel in the markets we investigated, there
are on the order of 150 short-term slots available during the program per week.
Different slots have a different reach for different customer segments or the population overall.

The reach of a particular slot varies over time, but there are estimates based on historical panel
data available to clients of the media agencies. Clients use reach per segment (based on gender,
age, or other demographics) or per population to determine their willingness-to-pay for different
slots. Clearly, the value of some slots, such as those during the finals of the national soccer league,
may be difficult to estimate and their valuation varies considerably depending on the target market
of an advertiser. Apart from these high-value slots, there is also typically a segment of low-value
slots, which are also difficult to price as the demand is hard to predict. This difficulty in demand or
valuation prediction together with limited supply suggests that an auction market would outperform
the existing posted-price mechanism.
The allocation of TV ad slots can be modelled as a multi-knapsack problem, in which each time-slot

i in the set I = {1,2, . . . ,N} is treated as a knapsack with a maximum capacity/duration of ci, which
cannot be exceeded. As mentioned above, each slot can potentially hold a number of ads, though
some may have been previously allocated to larger customers, so we assume that ci reflects only
short-term capacity in the current market, making for a potentially heterogeneous list of ci values,
even for a TV station with slots of the same size when considering all ads aired. We also assume that
each slot i has a reservation value or minimum price per unit time ri, which reflects the station’s
ability to off-load excess capacity at a low price to existing customers if needed. Station call signs
and other brief announcements can also be used to fill any excess unused time.
Each bidding advertiser k in the set K = {1,2, . . . ,K} has an ad of duration dk to be shown

repeatedly (at most once per time slot) if she wins a bundle of time-slots in the auction. To ensure
adequate reach, each bidder specifies an abstract “priority vector” or “weight vector” Wk, containing
an arbitrary weight value wik for each timeslot. These “weights” conveying “strength of priority” could
specifically represent the expected viewership, expected viewership of a particular demographic, or
viewership weighted by expected sales, etc., reflecting the advertiser’s performance metric of choice.
She can then bound the total priority value in the auction outcome to be greater than or equal to a
minimum amount in order to qualify bids of various levels.
Thus after specifying the priority vector and ad duration, a bidder places one or more tuples

(wmin
j , bj) containing the desired sum of priority values wmin

j necessary to justify a monetary bid bj .
At most one of the bids placed by a bidder can win, making the bidding language an XOR of “weight
threshold levels.” For example, if the bidder sets the priority weights wik at the expected viewership
of each slot i, the XOR structure lets her set an exact price for any particular price-point of interest.
She can set a price for a total of wmin

j = 1 million viewers, a price for wmin
j = 2 million viewers, etc.,

regardless of which slots are chosen to reach this total viewership. This price-point structure reflects
the ability of the language to represent the fundamental complementarity in this type of market;
a small number of ad-slots (or small reach, etc.) may have little or no value, but several of them
together are worth more than the sum of the parts.
The set Jk contains all bid indexes j by a bidder k, and the superset J is defined as J :=

⋃
k∈K Jk.

We assume these bids are submitted in a sealed-bid format, consistent with the timing of Google’s
auction, in which bids were submitted once to a proxy. In such markets, it is not practical for media
agencies to participate in an ascending auction every week or two. After the bids are submitted, the
market is cleared at a particular point in time, and the allocation is determined for some period for
a time (e.g., two weeks) in the future.
Formulation WD maximizes the value of accepted bids given that: ad durations do not exceed

capacity in any slot (1a); the bid values are not less than the seller’s reservation values (1b); the
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priority threshold level wmin
j of a bid j is met if and only if that bid is accepted (1c,d); at most one

bid j is accepted for each bidder k (1e). Decision variables xij and yj indicate time if slot i is assigned
to bid j and bid j itself is accepted, respectively, while M is a sufficiently large positive constant
parameter. WD(K) indicates that all bidders k ∈K are included. Later we will also refer to WD(C)
for a coalition C ⊂K, which indicates the same formulation but with all bids made k 6∈C set to zero.
Overall, we will use the term coalitional value to describe the objective function value of formulation
WD.

WD(K) = max
∑
j∈J

bjyj (WD)

subject to
∑
j∈J

dkxij ≤ ci ∀i∈ I, (1a)

dk
∑
i∈I

rixij ≤ bj ∀j ∈ J, (1b)∑
i∈I

wikxij ≤Myj ∀j ∈ J, (1c)

wmin
j −

∑
i∈I

wikxij ≤M(1− yj) ∀j ∈ J, (1d)∑
j∈Jk

yj ≤ 1 ∀k ∈K, (1e)

xij ∈ 0,1 ∀i∈ I, j ∈ J, (1f)
yj ∈ 0,1 ∀j ∈ J. (1g)

The priority vector Wk provides quite a bit of flexibility to the bidders in expressing their prefer-
ences over ad slots, and we propose that this novel bidding language could be relevant in a number
of other areas. Indeed, the language captured in this formulation is quite general and includes the
“k-of-singletons” expressions described in Hoos and Boutilier (2000), which were shown to be difficult
to express succinctly with more fundamental logical operators, and result in hard optimizations. For
example, a bidder in the ad slot auction might want his ad to be on the air at least five times within
one week between 8 and 10pm. That is, all ad slots between 8 and 10pm are substitutes, but the
bidder needs at least five of them, a complementarity valuation for a sufficient volume from a group
of substitutes. The priority-vector format would then have weights equal to one for the selected set
of substitute times and wmin

j = 5 playing the role of the k-term in Hoos and Boutilier (2000).

Theorem 1. The decision version of the WD problem is strongly NP-complete.

The proof is by reduction from the multiple knapsack problem and it can be found in the Appendix.
The decision version of the multiple knapsack problem is stronglyNP-complete (Chekuri and Khanna
2006). While weakly NP-complete problems may admit efficient solutions in practice as long as
their inputs are of relatively small magnitude, strongly NP-complete problems do not admit efficient
solutions in such cases. Unless P = NP , there is no fully polynomial-time approximation scheme
(FPTAS) for strongly NP-complete problems (Garey and Johnson 1979). Even if we cannot hope
for FPTAS, we can get near-optimal solutions with standard mixed-integer programming solvers for
practically relevant problem sizes as we will show.

3.2. Volume-Discount Auctions
Volume discounts are in wide-spread use in markets with economies of scale. Davenport and
Kalagnanam (2000) were among the first authors to discuss volume-discount bids in an auction.
Their bid language requires suppliers to specify continuous supply curves for each item. They apply
discounts only to additional units above a threshold of a specific price interval. In contrast to these
incremental volume-discount bids, Goossens et al. (2007) proposed tiered bids, which they refer to
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as total-quantity bids. The latter are valid for the entire volume of goods purchased after a cer-
tain quantity threshold. For example, a supplier charges $4 per unit for up to 1500 units, but only
$2.50 per unit for the entire quantity if the purchasing manager were to buy 1500-2000 units. In
practice, suppliers employ various types of such discount policies in different settings. In addition
to volume-discount bids and total-quantity bids one can find lump-sum rebates on total spend and
such discounts can be based on the quantity or spend of one or a few items that are being auctioned
off. Bichler et al. (2010) introduced a comprehensive bid language which allows for different types of
discount policies including volume-discount bids, total-quantity bids, and lump-sum rebates. They
propose a mixed integer program to solve problems of up to 30 suppliers, 30 items, and 5 quantity
schedules to near-optimality in less than 10 minutes. Due to space limits we refer the interested
reader to Bichler et al. (2010) for a detailed description of the bid language and the experimental
setup and results. Even though such near-optimal solutions were always possible with these problem
sizes, proving the optimality of a solution was typically intractable and even after hours there would
be a small integrality gap. This phenomenon is wide-spread in combinatorial optimization overall. In
our experiments, we will use the compact bid language introduced by Bichler et al. (2010) and their
experimental setup to compute VCG and BPOC payments for near-optimal allocations.

4. Payment Rules
If we can only aim for near-optimal solutions, not for exact solutions to the winner determination
problem, some computational issues can arise. For example, the objective function value of the best
allocation with one winner excluded might be higher than that of the best allocation with all bidders
included when computing VCG payments. We will first revisit BPOC payments before we discuss
different algorithms how to compute them with near-optimal solutions to the winner determination
problem. We will use the terms payments and prices interchangably.

4.1. Bidder-Pareto-Optimal Core Payments
We will determine BPOC payments in the following treatment, and compare them to the VCG
payments in our experiments. The approach of using constraint generation to find the coalitions
defining the core was designed to work in any context where the winner-determination problem
could be solved exactly. Here, we quickly reiterate that approach before extending it to situations of
nearly-optimal winner determination in the next section.
The approach discussed in the literature is to find core prices by iteratively creating new price

vectors pt and then checking at each iteration t, whether there is an alternative outcome which
generates strictly more revenue for the seller and for which every bidder in this new outcome weakly
prefers to the current outcome. If such a coalition exists, the alternative winning coalition C is called
a blocking coalition, and a constraint is added to a partial representation of the core in payment space
until no further blocking coalitions can be found. In order to discover the most violated blocking
coalition Ct relative to the current payments at iteration t the WD is extended as in the separation
problem SEPt.

z(pt) =max
∑
j∈J

bjyj −
∑
k∈W

(b∗k− ptk)γk (SEPt)

subject to
(1a)− (1g)∑
j∈Jk

yj ≤ γk ∀k ∈W,

γk ∈ [0,1] ∀k ∈W.

Here,W is the set of winners from the solution of WD(K), and b∗k represents bidder k’s winning bid.
If the sum of the current payments pt is less than the solution to (SEPt) then a violated core constraint
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has been found, and we must add a constraint to our partial representation of the core. Following
Day and Raghavan (2007) this partial representation is given in the following linear program to find
equitable bidder-Pareto-optimal (EBPO) payments, which is then solved to find the next tentative
set of payments pt+1 until no further constraints can be found.

θ(ε) = (EBPOt)
min

∑
k∈W

pk + εm

subject to
∑

k∈W\Cτ
pk ≥ z(pτ )−

∑
k∈W∩Cτ

ptk ∀τ ≤ t, (EBPOt.1)

pk−m≤ pvcgk ∀k ∈W,
pk ≤ b∗k ∀k ∈W,
pk ≥ pvcgk ∀j ∈W.

As in SEPt, b∗k is the winning bid for k; the parameters pvcgk = b∗k− (WD(K)−WD(K−k)) represent
VCG payments, and m represents a maximum deviation from VCG, which is minimized as a sec-
ondary objective after minimizing total payments3. We then use the value of each pk in the solution
for the next iteration (i.e., set pt+1

k = pk).

4.2. Core Payments with Nearly-Optimal Allocations
For many combinatorial optimization problems good solutions often can be found quickly, even
though finding a provably optimal solution may take a very long time. Figure 1 shows a typical
example of WD with 336 slots and 50 bidders, where a feasible solution with 95% optimality could
be reached within a few minutes. This is a common phenomenon in many combinatorial optimization
problems.

Figure 1 A typical instance showing the reduction of the integrality gap over time

Without the ability to guarantee an optimal solution quickly enough for a practical application, one
would naturally consider a provably high-quality solution that can be found quickly. Most industrial
mixed integer programming solvers (e.g., CPLEX, Gurobi) provide absolute and relative worst-case
optimality gap parameters, allowing the optimization routine to terminate if the optimality gap
(difference between the best feasible solution and the theoretical bound) falls below some target or
is a small enough percentage of the best feasible solution, respectively. For now, we leave the exact
specification of how a “good enough” approximate solution is qualified, but motivated by Figure 1,
the reader may assume a 5% optimality gap or an at-least-95%-optimal solution for concreteness. We
will thus write WDa for any qualified approximation of a WD value and consider an implementation

3 In practice these two minimizations can be handled as separate optimizations but they are presented here as a single
optimization using a sufficiently small ε for the sake of concise exposition.
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using these approximations in place of true WD values. Similarly, we will write za(pt) for separation
problem values found using nearly-optimal solutions.
Problems can arise, however, during the VCG and core price calculation when accepting these

approximate or nearly-optimal solutions. For example, under truly optimal solutions, with the stan-
dard assumption of free disposal, WD(K−k) is always at most the value of WD(K). But with a
series of nearly-optimal computations this is not guaranteed, opening the possibility that one might
compute an approximate VCG payment with b∗k − (WDa(K) −WDa(K−k)) > b∗k. Similarly, un-
der nearly-optimal computation the coalitional value of SEPt can be higher than the value of the
WD. If this happens, the newly generated constraint added to EBPOt can cause an infeasibility if∑
k∈W\Ct b

∗
k < za(pt)−

∑
k∈W∩Ct p

t
k. Two different solutions are presented to address this problem

that can potentially arise during computations.
4.2.1. The TRIM Algorithm With known b∗k values determining individual rationality (IR)

constraints (i.e., payments must not exceed bids), a natural first approach is to adjust each WD-based
result so that it fits into the IR region.
For the VCG prices this technique makes use of the fact that:

b∗k ≥ p
vcg
k ≥ 0 ∀k ∈W (2)

whereas for the (constant) RHS of the constraints in the EBPOt, we must always have:∑
k∈W\Cτ

b∗k ≥ z(pτ )−
∑

k∈W∩Cτ
pτk ∀τ ≤ t (3)

Thus our first algorithm4 is to simply trim the infeasibilities based on known bids, represented in
Algorithm 1 in the two steps using min functions.

Algorithm 1: Core Price Calculation – TRIM
Solve: WDa(K);
for j ∈W do

Solve: WDa(K−k);
pvcgk ← min(b∗k, b∗k− (WDa(K)−WDa(K−k)));

p1← pvcg;
θ0←

∑
k∈W pvcgk ;

while true do
Solve: SEPt;
if za(pt)≤ θt− then

Break: ‘core’ price vector found;

Generate RHS of new constraint: αt← min
(∑

k∈W\Ct b
∗
k, za(pt)−

∑
k∈W∩Ct p

t
k

)
;

Add constraint
∑
k∈W\Ct pk ≥ αt to EBPO;

pt, θt← Solve: EBPO;
if (Ct, θt) = (Ct−, θt−) then

Break: no better price vector possible;
Iterate: t← t+ 1;

4 In all algorithmic implementations that follow, we assume that all feasible integer solutions are stored by the
optimizer and used to generate bounds on subsequent optimizations using alternate objective functions.
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4.2.2. The REUSE Algorithm An alternative to trimming infeasibilities is based on the ob-
servation that whenever an infeasibility is found, the validity of expressions (2) and (3) imply that an
update can be made to an approximate WD value, from a previously best-known feasible solution to
a new tentatively-optimal feasible solution. To implement this change, the storage of any value based
on a winner-determination solution can no longer be treated as constant, and must be regenerated
at each iteration based on current WDa values. This includes VCG price estimations and the RHS
values for generated core constraints, whose definitions must be reformulated based on current WDa

values.
Thus our second approach is to store a list of all discovered WDa(C) values, reusing all coalitions

found so far and reformulating the entire separation problem and EBPO problem at each iteration,
noting that the set of relevant core constraints, and indeed the set of winners itself, may be changing
as new information becomes available. Whenever we run WDa (the first time, to compute each VCG
price, and inside each run of SEP) we get a new collection of feasible bids, representing a coalition
of bidders, and we check these values against our current list of coalitions and WDa values. If the
coalition has not been found before, our list is extended to include it as among the “potentially
important” coalitions to consider. If any superset coalition has been listed previously but with a lower
coalitional value, we can update it to the current WDa(C) value, as a new better approximation has
been found.
Because we will now store the blocking coalitions Ct and its value instead of z(pt) after each SEPt

has been solved, we are forced to work with a reformulation of core constraints based on WDa values
rather than separation levels. For a general winner-determination problem (i.e., with respect to any
alternative bidding language) the core constraints can be expressed with the alternative, equivalent
expression which can be derived by substitution:∑

k∈W\Cτ
pk ≥WD(Cτ )−

∑
k∈W∩Cτ

b∗k ∀τ ≤ t (EBPOt’.1)

Using this formulation of the core, we can generate a constraint in EBPO for any Cτ found so far
using the current best-approximation WDa(Cτ ) in place of WD(Cτ ). For bidding languages with
only one relevant bid bk per bidder (as it is the case in the scenarios presented in section 5), this
constraint can be further simplified, resulting in the following formulation (4) in place of EBPOt’.1.∑

k∈W\Cτ
pk ≥

∑
k∈Cτ\W

bk ∀τ ≤ t (4)

This new set of constraints provides an intuitively pleasing interpretation of core constraints in the
TV-ad context: Any subset of winners pays enough to match the counter-offer including a set of
losing bidders that would otherwise benefit the seller, a direct analogue to second-prices.
While it is not guaranteed that each stored coalition Ct provides a potential maximally-violated

coalition at the end of the constraint generation process, the addition of all constraints found at
any point drastically improves the overall performance of the algorithm in comparison to having to
completely rebuild a set of blocking coalitions after a change in W . That is, it is better to re-use
potentially redundant constraints than to start over, looking for relevant constraints from scratch
each time the set of winners is updated. Also, since the core-pricing is computed as an LP (without
integer constraints) it is not computationally expensive to have redundant constraints.
The formulation of the separation problem as an altered WD problem has the additional benefit

that all feasible solutions remain feasible for a WD or SEPt instance. MIP solvers store feasible (in-
teger) bases internally, and if the separation problem is implemented as the same problem instance
with some changes to objective coefficients, all feasible bases (stored as a branch-and-bound tree)
remain feasible and thus provide immediate bounds on the SEPt problem, making efficient use of
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all information found by the solver. This makes it progressively more difficult to find relevant fea-
sible solutions. Therefore, in our experimental evaluation we allowed for longer time limits on the
optimization routine for later SEPt instances.
Algorithm 2 as presented below keeps a list Coalitions, each element being a list of winners under

some feasible integer solution to WD. For each coalition C ∈Coalitions we also store the best known
value val(C), which can be revised as the algorithm progresses. Further, for ease of exposition, these
algorithms refer to the winning bidders from the most recent optimization run as optwinners, and
the sum of the (actual, i.e., unaltered) bids of these winners is given as bidsum.

Function Core Price Calculation – REUSE – UpdateCoalitions(optwinners, bidsum)
for C ∈Coalitions do

if C ⊇ optwinners and val(C)< bidsum then
val(C)← bidsum;
if C =K then

W ← optwinners;
EBPO ← null;
reset← true;

for k ∈W do
pvcgk ← b∗k−val(K)+val(K−k);

The difference in the quality of the TRIM and REUSE approaches, in terms of closeness to core-
selecting prices, can be described as follows. Let ζtC represent the amount that the final prices pt
and allocation xt violate the core-defining constraint (with respect to submitted bids) indexed by
coalition C. Let trimt denote the amount “trimmed” in the final iteration of the TRIM algorithm,
i.e., trimt = max(0, zα(pt)−

∑
k∈W∩Ct p

t
k−

∑
k∈W\Ct b

∗
k). Finally, let gapt represent the final absolute

optimality gap when solving SEPt. Theorem 2 provides simple bounds on possible deviation from
optimality-based core-selecting prices. This result indicates that the optimality gap (in absolute
rather than relative terms) of the final separation measures the potential for violation of core-selection
under a nearly-optimal approach, with any trimming performed by the TRIM algorithm translating
one-to-one into further potential for core violation.

Theorem 2. For a fixed set of bids, ζtC ≤ gapt ∀ C ⊆ K under REUSE, while ζtC ≤ gapt +
trimt ∀ C ⊆K under TRIM.

Proof. Core constraints are most often written as
∑
k∈C πk ≥ WD(C), where C here must include

the seller and π represents each player’s payoff. Suppose such a constraint is violated and replace
payoffs with surplus for bidders (i.e., b∗k−ptk) and total payments for the seller. We get that for some
positive value ζtC : ∑

k∈C
ptk + ζtC = WD(C)−

∑
k∈C

(b∗k− ptk)

Under the REUSE algorithm this expression becomes:

za(pt) + ζtC = z(pt,C)

because the final separated cut must be tight, and where z(pt,C) represents the true value of the
separation objective function evaluated at the feasible solution implied by WD(C). But since that
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Algorithm 2: Core Price Calculation – REUSE
Solve: WDa(K);
Coalitions←{K};
val(K) ← bidsum;
W ← optwinners;
t← 0;
EBPO ← null;
reset← false;
while true do

if EBPO = null then
ComputeVCG:
for k ∈W do

Solve: WDa(K−k);
Coalitions←Coalitions∪{K−k};
val(K−k) ← WDa(K−k);
UpdateCoalitions(optwinners, bidsum);
if reset= true then

Break k loop;

pt← pvcg;
θt←

∑
k∈W ptk;

if reset= true then
reset← false;
Continue;

Solve: SEPt(pt);
if z(pt)≤ θt then

Break: ‘core’ price vector found;
Coalitions←Coalitions∪{optwinners};
val(optwinners) ← bidsum;
UpdateCoalitions(optwinners, bidsum);
if reset= true then

reset← false;
Continue;

if EBPO = null then
build EBPO with constraints EBPOt’.1 for all C ∈Coalitions with val(C) as a best
approximation of WD(C);

else
add constraint EBPOt’.1 to EBPO with C = optwinners and with val(C) as a best
approximation of WD(C);

pt+1, θt+1← Solve: EBPO;
Iterate: t← t+ 1;

same feasible solution was a candidate when solving SEPt approximately, by the definition of the
optimality gap we must have:

za(pt) + gapt ≥ z(pt,C)
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with the desired result for REUSE following by substitution. The result follows analogously for TRIM,
with the difference that the second line becomes:

za(pt)− trimt + ζtC = z(pt,C)

5. Experimental Evaluation
In this section we examine the solution quality of the presented algorithms under constrained com-
putation time. Using the simulations provided below, we analyzed a number of primary attributes
to measure overall performance, such as allocative efficiency, revenue, and speed. In order to directly
compare the quality of the generated prices, a series of secondary metrics were computed. These
values allow a comparison of how much a bidder could possibly gain by shading his bid by comparing
the ratios of the bids to the BPOC prices and to the VCG prices, respectively.
• Primary metrics

1. The relative efficiency in terms of the coalitional value achieved by the set of winners computed
after a restricted time compared to that of the optimal allocation (E)

2. The relative overall revenue based on the computed payments compared to that in the optimal
allocation (R)

3. The duration of the computation (D)
• Secondary metrics

4. The ratio of the the BPOC payments pk to the bids bk (core/bid)
5. The ratio of the VCG payments pvcgk to the bids bk (bid/vcg)
6. The ratio of the the VCG payments pvcgk to the BPOC payments pk (vcg/core)
Figure 2 provides values of different instances for the maximum revenue and the sum of payments

achieved with TRIM and REUSE. These absolute values are difficult to compare because the instances
are based on different value draws. As we are interested in the comparison between the performance
of the algorithms across different instances, we require a baseline for a sensible comparison of different
payment schemes. A potential baseline is the optimal revenue of the winner determination problem,
against which we could compare the value of the winning coalition after a restricted solving time,
the VCG payments and the solutions by TRIM or REUSE. In the volume discount auction, we
could select instance sizes for which we could compute the optimal solution with more time allotted.
Achieving optimality took a prohibitively large amount of time for the TV ads market experiments,
however. All instances could be solved to near-optimality, but not to optimality in several hours.
For these experiments, we used the objective function value or optimal revenue of the best linear
programming relaxation (LPR) of the winner determination problem as an upper bound for the
optimal integer solution.
An example of a typical instance of WD is shown in Table 1. REUSE runs longer and generates

less revenue than TRIM, but is more efficient. The TRIM technique, on the other hand, often results
in pay-as-bid pricing where bids and payments coincide. We will see that this pattern emerges also
in a larger set of experiments.

Example Instance REUSE TRIM Optimal Revenue (LPR)
Coalitional Value 46 073 899 44 590 749 50 387 546
Revenue 36 569 158 42 766 735 -
Runtime 2.8h 2.0h -
Median(pk/bk) 0.79 1.00 -
Median(pvcgk /bk) 0.58 1.00 -
Median(pvcgk /pk) 0.78 1.00 -

Table 1 Comparison of a representative experiment
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Figure 2 Coalitional values in different experiments

All experiments were run on Dual Socket Octo Core AMD Opteron 2.4GHz computers running
the Linux operating system with 8GB DDR2 RAM. All optimization problems were solved with
the Gurobi 5.5 mixed integer programming solver using the default parameters. The time limit for
each single optimization was set to 300 seconds for TRIM and REUSE unless stated otherwise. An
optimization describes the process of solving a single mixed integer program such as the initial WD,
the WD−j needed to compute the VCG payments, and the discovery of blocking coalitions in SEPt.
Overall, this can lead to a solution time of two to three hours for each experiment, because many of
these optimization problems need to be solved for a single experiment (see Example 1). A time limit of
300 seconds for one opitimzation problem allowed us to conduct a larger number of experiments and
get statistically significant results. For significance tests we will provide the p-values of a Wilcoxon
signed-rank test throughout.

5.1. Research Design for the TV Ads Market
For the generation of sample instances for the TV ads market we could draw on data from a booking
system of an industry partner. This provides us with a distribution of prices paid in this market.
We will briefly summarize the main characteristics of the generated data. The distributions of all
relevant random variables in the experiments can be found in Table 3.
• A typical campaign duration is from one to four weeks, averaging two weeks.
• An advertisement slot is 120 seconds long, but can be pre-filled before the auction starts due to

the existing booking system (effectively reducing capacity available in a slot).
• The duration of an ad is at most 40 seconds long.
• Up to 50 different bidders (media agencies) are interested in placing ads during the average

campaign time span.
• Each bidder has its own budget and target customer group which defines the slots he is interested

in.
• The reserve price per second during a particular time is set by the TV station, which puts different

slots into sets with different reserve prices.
Although the reported evaluation concentrates on a biweekly market (336 slots), a series of ex-

periments with 168 slots (one week) and 504 slots (three weeks) was also performed to verify the
robustness of the results presented here. The integrality gap was small in these cases as well (Ta-
ble 2). We will therefore only report the detailed results for experiments with the biweekly market
and 336 slots. The following parameters and distributions were used for the random variables of our
experiments (see Table 3).
The Normal distributions are truncated to an interval [0; 2µ]. The Poisson distribution models

the frequency of the six discrete reservation prices [1,2,5,10,50,75], which follows the empirical
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Slots Time Limit
300s 3600s

168 0.04% 0.01%
386 0.10% 0.01%
504 0.20% 0.02%

Table 2 Average integrality gaps for 168, 386, and 504 ad slots after 300 and 3600 seconds

Name Parameters Distribution
{µ;σ} or {λ}

I Number of slot 336 -
J Number of bids 50 -
K Number of bidders 50 -
ci Slot duration {60; 30} Normal
ri Slot reserve price steps (in €/s) [1, 2, 5, 10, 50, 75] {1.2} Poisson
dk Ad duration {20; 10} Normal
βj Bid base price (in €/s) {50; 25} Normal
wminj,rel Min

∑
of campaign priorities (in %) {30; 20} Normal

- correlation of priority to slot reserve price - Linear
- distribution of priorities around the priority/price value - Normal

Table 3 Parameters for the experiments

distribution that we observed in the field. The bid base price βj can be interpreted as how much a
bidder would spend at a maximum to obtain the right to reach one priority point with his ad for
one second. The actual bid price for a campaign is then computed as bj = dkβjw

min
j . This means, for

the bid price we multiply the duration of the ad, the base price of the bidder for one viewer, and the
minimum reach or viewership the bidder wants to achieve. Based upon the parameters of Table 3 we
generated 20 scenarios used in our experiments.

5.2. Results of the TV Ads Market Experiments
We will first report the relative efficiency E, revenue R, and duration D in minutes in Table 4.
The REUSE algorithm is able to improve the winning coalition if a coalition of bidders with higher
revenue is found and therefore the REUSE efficiency is higher than TRIM’s (p-value: 0.00). However,
the actual revenue R generated by the payments from the REUSE algorithm is consistently lower
than that of TRIM (p-value: 0.00), despite the fact that a higher coalitional value was achieved.
REUSE+ describes the results of running the REUSE algorithm with a time limit of 3600 seconds for
the first winner determination problem and 600 seconds for every subsequent optimization prolem.
This helps understand the impact of allowing for a longer computation time. This impact is low as
the numbers in Table 4 show, illustrating that even twice the computation time has little impact on
efficiency and revenue.
In order to understand why the overall revenue is significantly higher for TRIM in spite of the lower

efficiency, we compared the ratios between the bids submitted and the resulting VCG and BPOC
payments. Table 5 provides an overview of the average secondary metrics across all experiments. The
ratios were all significantly higher for TRIM than for REUSE (p-value < 0.001).
In addition to these aggregate secondary metrics, we provide a more detailed summary in Figure 3,

where a single frame groups an algorithm and a metric. For each algorithm and metric, we aggregated
the individual (i.e., bidder-wise) ratios for all bidders in small box plots. In each of the frames of
Figure 3, the light grey area of the box plot marks the interquartile range for a specific metric and
the line the median for one of the 20 experiments. This provides an overview of the ratio distribution
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Iteration TRIM REUSE REUSE+ Optimal (LPR)
E R D E R D E R D E R D

1 0.93 0.78 115 0.95 0.65 290 0.96 0.60 580 1.00 - -
2 0.90 0.83 105 0.93 0.70 225 0.93 0.72 890 1.00 - -
3 0.88 0.68 95 0.89 0.67 205 0.91 0.65 480 1.00 - -
4 0.97 0.65 95 0.97 0.66 310 0.98 0.65 410 1.00 - -
5 0.94 0.78 105 0.96 0.63 245 0.96 0.65 460 1.00 - -
6 0.89 0.85 85 0.92 0.73 150 0.94 0.68 450 1.00 - -
7 0.91 0.76 75 0.92 0.66 100 0.93 0.71 340 1.00 - -
8 0.90 0.76 100 0.92 0.70 245 0.92 0.67 490 1.00 - -
9 0.93 0.92 105 0.97 0.71 205 0.98 0.71 390 1.00 - -
10 0.92 0.81 105 0.95 0.66 245 0.96 0.66 560 1.00 - -
11 0.93 0.79 90 0.96 0.65 185 0.97 0.66 400 1.00 - -
12 0.89 0.85 110 0.94 0.68 295 0.95 0.65 480 1.00 - -
13 0.95 0.80 85 0.95 0.75 120 0.96 0.77 330 1.00 - -
14 0.84 0.84 90 0.92 0.68 220 0.92 0.69 590 1.00 - -
15 0.91 0.66 95 0.91 0.64 195 0.93 0.63 680 1.00 - -
16 0.92 0.76 90 0.92 0.77 300 0.93 0.74 610 1.00 - -
17 0.92 0.78 100 0.93 0.73 170 0.94 0.67 470 1.00 - -
18 0.89 0.79 95 0.92 0.64 300 0.93 0.60 430 1.00 - -
19 0.84 0.83 60 0.88 0.74 90 0.90 0.71 370 1.00 - -
20 0.93 0.79 95 0.95 0.72 225 0.95 0.73 410 1.00 - -
µ 0.91 0.79 95 0.93 0.69 216 0.94 0.68 491 1.00 - -
σ 0.03 0.06 12 0.03 0.04 65 0.02 0.04 129 0.00 - -

Table 4 Efficiency E, revenue R, and duration D in minutes for the TV ads market experiments

Secondary Metrics TRIM REUSE
µ σ µ σ

core/bid 0.88 0.18 N 0.69 0.25 H
vcg/bid 0.75 0.31 N 0.39 0.29 H
vcg/core 0.84 0.30 N 0.53 0.37 H

H,N: values are significantly lower or higher compared to other algorithm
Table 5 Average ratios for secondary metrics

for all 50 bidders. Finally, the solid line across the box plots in each frame marks the overall mean
of all ratios in all scenarios. What follows is a brief interpretation of these values.
The core/bid ratio for TRIM shows that the core prices are very close to the bid prices submitted,

different from the results seen in the second row in Figure 3 for the REUSE algorithm. Multiple
factors influence this high ratio for TRIM: As seen in section 4, the VCG payment vector sets the
lower bound for the BPOC payment computation. Because of the possibility to switch to coalitions
with a higher coalitional value, the VCG payment vector computed by the REUSE algorithm is always
at most as high as for the TRIM algorithm relative to the coalitional value of the respective winner
coalition. If the coalitional value computed with TRIM WDa(W ) is smaller than all WDa(W−k) for
all winners k, the VCG payments are equal to the winning bid prices. In contrast, REUSE would
switch the winning coalition in such a case, effectively increasing the difference between WDa(W )
and WDa(W−j). This in turn increases the VCG discount of individual bidders and hence decreases
the VCG payments for each bidder.
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Similarly, if a blocking coalition is found during the BPOC payment computation in TRIM, where
the coalitional value is higher than the coalitional value of the winning coalition at this point, then
this coalition remains blocking even if all BPOC payments of the winners are at their bid price.
In contrast, REUSE would switch the winning coalition, effectively raising the upper bound on the
BPOC payments. In the plots describing the vcg/bid ratio and those describing the core/bid ratio,
the values for TRIM are higher than those for REUSE. In many TRIM instances the median ratios
are 1.0, i.e., for most winners the VCG and BPOC payments correspond to their bid price.

Figure 3 Secondary metrics of the TV ads market experiments

The duration for the REUSE algorithm is significantly longer than for TRIM (p-value < 0.001),
even if each optimization run is restricted to the same limit of 300 seconds. The REUSE algorithm
updates the winning coalition 3.5 times on average, whereas the TRIM algorithm will always maintain
the initial coalition. Updating the winning coalition also initiates new VCG computations, which
explains why the REUSE algorithm takes 63% longer than the TRIM algorithm.

5.3. Research Design for the Volume Discount Auctions
In order to generate bid data for the volume discount auction format, we draw on the cost function
and the experiments base on Bichler et al. (2011). Being a procurement auction, all primary and
secondary metric ratios (i.e., the E, R, core/bid, vcg/bid, vcg/core) have to be reversed to allow an
easier comparison between the two auction formats. The multi-product cost function cs(x1, ..., xI)
used by Bichler et al. draws on econometric literature and it enables a systematic evaluation of
markets with different economies of scale and scope. Based on these cost functions incremental volume
discount bids are generated approximating the cost curve. We could fortunately use the very same
bid generation as described in Bichler et al. (2011). These bids serve as an input to the winner
determination problem.
We will briefly introduce the cost function and the main parameters. There are s ∈ S suppliers

competing for a fixed quantity Wi of one or more items i∈ I, and xi describes the quantity produced
of each item.
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cs(x1, ..., xI) =
∑
i∈I

Bi,s dxi/zie+
∑
i∈I

βi,s(xi/γi,s)ρ

The function allows us to model very different shapes with convex and concave sections. Bi,s
describes the item specific stepwise fixed cost of supplier s for item i. The parameter zi models the
capacity bound, after which an additional machine or plant is needed, adding an additional Bi,s fixed
costs. Note that with the inclusion of stepwise fixed costs, the cost functions are no longer continuous.
The term βi,s describes the slope of a variable cost function for product i, and the exponent ρ is
the nonlinear element in the cost function, representing economies (or diseconomies) of scale. The
distribution for ρ was truncated at zero such that only positive values were drawn. Parameter γi,s
moderates the economies of scale. A brief summary of all relevant variables and their distributions
can be found in Table 6.

parameter description µ σitem σsupplier
Bi,s Per item (stepwise) fixed costs 100.0 0.0 0.0
zi Capacity of production line 100% 0% 0%
ρ Power of the variable cost function 0.0 0.1 1.0
βi,s Slope of the variable cost function 1 000.0 0.0 0.0
γi,s Slope delay of the variable cost function 100.0 0.0 0.0

Table 6 Parameters of the cost curve cs(x1, ..., xI)

An example of an average cost function based on Table 6 can be found in Figure 4. The winner
determination problem minimizes total costs of the procurement manager and is formally described
in Bichler et al. (2011). This mixed integer program allows for various allocation constraints. The
only constraint used in our experiments was that a supplier could only win a certain percentage of
the volume of each item (20%, 40%, 60%, and 80%), but nothing in between. This requirement can
be found in the field where procurement managers try to avoid odd quantity splits.

Figure 4 Average costs for one unit produced and increasing quantity produced.

5.4. Results of the Volume Discount Auction Experiments
In each of our experiments 14 bidders submit volume discount bids for 8 items. We chose this problem
size because it is a realistic problem size, but at the same time the exact solution can be computed
within a few hours at most. No time constraints were imposed. This allows us to report the ratio
of the optimal (OPT) to the near-optimal integer solution as relative efficiency E, in contrast to
the TV ads problem where we could only use the LPR, because the optimal integer solution of the
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winner determination problem proved intractable for all but unrealistically small problem instances.
While the optimal allocation was indeed found for all instances, four out of the 40 experiments were
aborted due to out of memory exceptions during the BPOC payment computation, as seen in line
37 to 40 of Table 7. However, even in such cases the integrality gap of the near-optimal solution was
low in the order of 4% at most.
As in the previous section, the experiments with TV ads, the efficiency of REUSE is significantly

higher than for the TRIM algorithm (p-value: 0.00). Additionally, the efficiency of TRIM and REUSE
with a time limit of 300 seconds per optimization are significantly lower than the optimal efficiency
(p-value: 0.00). Also the results on revenue are in line with the TV ads market experiments: The
revenue achieved with REUSE is significantly lower than with TRIM.
The secondary metrics are illustrated in Table 8 and Figure 5 similar to what we have reported

for the TV ads market experiments in subsection 5.1. However, now we are also able to compare the
ratios of payment vectors using near-optimal solutions with those if the problems are solved optimally.
Note that in the optimal solution the core payment vector coincides with the VCG payments. We
conjecture that this is due to the fact that we did not have economies of scope in our cost functions.
Table 8 shows that again the ratios for TRIM are higher than those for REUSE. The difference is
again significant (p-value=0.00 for bid/core and the bid/vcg, p-value=0.02 for core/vcg), but not as
high as in the TV ads market experiments. This is because the integrality gap was lower for the
instance sizes chosen.
A comparison with the price vectors based on the optimal solution, OPT, shows that the core

payments achieved with TRIM are indeed very high. The difference of bid/core between TRIM and
OPT was significant (p-value < 0.001). The difference between the bid/core ratios of OPT and
reuse REUSE was not significant (p-value=0.4). The bid/vcg ratios of TRIM and OPT were not
significantly different (p-value=0.965). However, the core/vcg ratio was significantly higher for OPT
than for TRIM and REUSE (p-value < 0.03). This is because there was no difference in OPT, i.e., both
payment vectors coincided, while there was a difference with the near-optional winner determination
in TRIM and REUSE.
Figure 5 again provides a more detailed view of the secondary metrics. As we have seen in the

TV ads market experiments, bidders’ final BPOC and VCG payments are often as low as their bid
prices for the volume discount auctions if the TRIM algorithm is used. This phenomenon can also be
observed on an individual basis. As already seen in the last sections, the TRIM algorithm typically
ends in prices that are nearer to the bid price than necessary on an aggregate level. This is also
true, if one looked at the revenue gain or loss a bidder is exposed to, only because of the suboptimal
allocation and payment mechanism. An example of a typical instance can be seen in Figure 6. In it,
the first subgraph depicts the Euclidian distance between the allocated items in the optimal allocation
and an approximation. The lower graph shows the revenue gain or loss for each bidder. As already
seen in the previous figures, the REUSE algorithm is more efficient, i.e. and causes a lower revenue
loss, and sometimes even a revenue gain for some bidders, compare to the TRIM algorithm.
The availability of optimal solutions in the volume discount experiments allows comparing how the

allocation and the payments for individual bidders would differ in OPT, TRIM, and REUSE. These
differences are described in Figure 6 for a specific auction. The upper part of the figure describes how
the final allocation of TRIM or REUSE differs from the one in OPT by treating each of the bidder’s
allocation as a vector and computing the euclidian distance between the different allocations.
The lower part of Figure 6 shows how the payoff in TRIM or REUSE differs from the one in OPT.

Also in this example, many bidders have a lower payoff in TRIM as the payments in this reverse
auction are lower in TRIM, which is indicated by a high bid/core ratio. The computational hardness
of these problems is such that such differences cannot be avoided. Still the overall efficiency of the
near-optimal solutions is very high in all experiments.
Table 9 provideds a summary of the primary metrics to compare TRIM and REUSE, showing

that the main results are the same in the TV ads market experiments and the volume discount
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Iteration TRIM REUSE OPT
E R D E R D E R D

1 0.96 0.90 2.21 0.97 0.85 3.06 1.00 0.88 100
2 0.92 0.90 2.56 1.00 0.77 2.22 1.00 0.86 195
3 0.99 0.83 3.06 1.00 0.77 2.56 1.00 0.85 47
4 0.99 0.82 2.21 0.99 0.82 2.39 1.00 0.84 56
5 0.95 0.86 2.72 0.99 0.74 2.72 1.00 0.79 62
6 0.99 0.80 2.41 0.99 0.80 2.04 1.00 0.85 42
7 0.99 0.77 2.21 0.99 0.73 2.22 1.00 0.78 62
8 0.99 0.82 2.90 1.00 0.80 2.22 1.00 0.84 86
9 0.85 0.85 2.38 0.98 0.82 2.56 1.00 0.91 61
10 0.97 0.81 2.56 0.97 0.80 3.23 1.00 0.80 125
11 0.99 0.78 2.04 0.99 0.78 1.87 1.00 0.79 44
12 0.96 0.91 2.21 1.00 0.80 2.22 1.00 0.82 42
13 1.00 0.76 2.89 1.00 0.78 3.06 1.00 0.87 70
14 0.97 0.83 2.22 0.97 0.81 2.22 1.00 0.80 43
15 1.00 0.74 2.89 1.00 0.74 2.73 1.00 0.77 37
16 0.96 0.88 2.89 1.00 0.78 2.22 1.00 0.80 108
17 0.98 0.88 2.55 1.00 0.85 2.39 1.00 0.89 144
18 0.99 0.74 2.55 0.99 0.75 2.55 1.00 0.76 77
19 1.00 0.77 2.21 1.00 0.79 2.55 1.00 0.82 53
20 0.98 0.78 2.38 1.00 0.74 2.90 1.00 0.80 68
21 0.99 0.82 2.21 0.99 0.82 2.21 1.00 0.83 77
22 1.00 0.79 3.57 1.00 0.77 2.72 1.00 0.81 183
23 0.99 0.81 3.57 1.00 0.73 2.55 1.00 0.83 53
24 0.99 0.79 2.56 0.99 0.79 2.39 1.00 0.82 52
25 1.00 0.77 2.90 1.00 0.73 2.55 1.00 0.81 46
26 0.97 0.90 2.56 0.99 0.86 2.38 1.00 0.86 37
27 0.99 0.80 2.56 0.99 0.82 2.38 1.00 0.82 41
28 0.94 0.85 3.06 0.99 0.80 3.23 1.00 0.81 89
29 0.98 0.78 2.21 0.99 0.77 2.21 1.00 0.76 73
30 0.98 0.91 3.23 0.99 0.85 2.38 1.00 0.85 75
31 0.90 0.90 2.56 0.99 0.85 2.56 1.00 0.83 57
32 0.99 0.75 2.38 1.00 0.75 2.73 1.00 0.78 35
33 0.95 0.86 2.72 1.00 0.78 2.21 1.00 0.82 71
34 0.98 0.84 2.38 0.99 0.81 2.89 1.00 0.82 41
35 0.97 0.76 2.89 1.00 0.71 3.07 1.00 0.77 68
36 0.99 0.78 2.55 1.00 0.73 2.38 1.00 0.79 50
37 0.99 0.76 2.62 0.99 0.77 2.63 1.00 - -
38 0.99 0.77 2.63 0.99 0.81 2.80 1.00 - -
39 0.96 0.85 2.93 0.99 0.79 3.12 1.00 - -
40 0.96 0.88 2.97 0.98 0.79 2.95 1.00 - -
µ 0.97 0.82 2.63 0.99 0.79 2.56 1.00 0.82 71
σ 0.03 0.05 0.36 0.01 0.04 0.34 0.00 0.04 38

Table 7 Efficiency E, revenue R, and duration D in minutes for the volume discount auction experiments.

auction experiments. Overall, if speed and revenue are primary concerns then TRIM may be the
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secondary metrics TRIM REUSE OPT
µ σ µ σ µ σ

bid/core 0.85 0.15 N 0.81 0.15 H 0.82 0.11
bid/vcg 0.80 0.18 N 0.72 0.16 H 0.82 0.11
core/vcg 0.93 0.13 N 0.90 0.14 H 1.00 0.00

H,N: values are significantly lower or higher compared to competing BPOC algorithm
Table 8 Average ratios for secondary metrics

Figure 5 Secondary metrics of the volume discount auction experiments

right approach. In other situations, where incentives for truthful bidding and high efficiency are a
concern, the REUSE algorithm is preferable.

6. Conclusions
The design of large-scale markets where bidders have complex preferences has been given little
attention in the literature as of yet. In several countries regulators sell dozens or hundreds of licenses
to telecom companies. The incentive auctions in the US are another example where complex bidder
preferences and allocation constraints lead to computationally hard allocation problems. Similar
examples can be found in many other domains including the sale of TV ads to media agencies
or multi-item and multi-unit industrial procurement auctions. Much research in market design has
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Figure 6 Difference in efficiency and revenue between OPT and TRIM or REUSE for all bidders in an auction

TRIM REUSE Baseline
µ µ µ

TV Ads Market LPR
Efficiency E 0.914 H ◦ 0.928 N ◦ 1.000
Revenue R 0.788 N - 0.680 H - -
Runtime (minutes) D 95 H - 222 N - -
Volume Discount Auction OPT
Efficiency E 0.988 H ◦ 0.994 N ◦ 1.000
Revenue R 0.807 N 0.786 H ◦ 0.818
Runtime (minutes) D 3 ◦ 3 ◦ 54

H,N: significant difference compared to the competing BPOC algorithm; ◦: significant difference to the
baseline

Table 9 Summary of the primary metrics comparing TRIM and REUSE

focused on ascending combinatorial auctions with a fully expressive XOR bid language and such
designs have recently been used for selling spectrum (Cramton 2013, Bichler et al. 2013b), and also
in logistics and procurement (Bichler et al. 2006). Such designs do not scale to large markets due to
the exponential growth in the number of package bids that can be submitted.
We describe an auction design framework using compact bid languages and payment rules which

incentivize truthful bidding. In markets where bidders have independent private values, which is
the standard assumption in auction theory, this can yield highly efficient allocations. Compact bid
languages can often draw on domain specifics and allow bidders to describe their preferences with a
low number of parameters that they have to specify as the TV ads market and the volume discount
auctions in this paper illustrate. Commercial off-the-shelf mixed integer programming solvers can now
solve large and realistic instances of such problems to near optimality on standard hardware, which
allows us to use such bid languages in real-world markets. Such compact bid languages, however,
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defy the ask pricing rules typically used in ascending combinatorial auctions (Scheffel et al. 2011),
but they can easily be used in sealed-bid auctions.
In sealed-bid auctions second price rules such as VCG or BPOC payment rules can be used to pro-

vide incentives for truthful bidding. In many markets, auctioneers would prefer core pricing to VCG
mechanisms, in order to avoid non-core outcomes where the bids of losing bidders are higher than
the payments of the winners. With the introduction of core-selecting auctions for spectrum licenses
in recent years, stake-holders have developed software to determine winners and core prices based
on the use of integer programming to solve a series of winner-determination problems. Extending
the use of this software to larger and more complex markets (such as the TV ads and procurement
contexts we address here) cannot be accomplished by merely specifying time limits or optimality-gap
thresholds to the solver engine, as it could for the more simple case of a single optimization problem.
Doing so would often result in an infeasible pricing problem. This general problem exists for all larger
markets with near-optimal winner determination.
We compared two potential algorithms for dealing with these infeasibilities, finding one faster and

higher revenue method (for a fixed set of bids) and one slower but more efficient method. Our results
show that the former TRIM algorithm may be suited to a fast-clearing market in which speculation to
lower bids is offset by uncertainty about the competition. For other applications, such as government
spectrum auctions the goal of public efficiency might outweight the computational costs and suggest
an advantage for the latter REUSE algorithm.
Further study may improve the application of core-selecting auction algorithms to large and com-

plex markets like the TV ads and volume-discount markets, but we have provided the first steps to
the extension of the core-selecting auction paradigm beyond provably-optimal winner-determination
settings. The paper shows that the overall auction design framework using compact bid languages and
second-price payment rules provides a computationally feasible approach to achieve high efficiency
in large-scale markets with dozens or hundreds of items.

Appendix
In this appendix, we provide the proof to Theorem 1.
Proof. The reduction is from the decision version of the strongly NP-hard multiple knapsack problem:

given a set of n items and a set of m knapsacks (m≤ n), with a profit bj and a weight dj for each item j,
and a capacity ci of each knapsack i, can you select m disjoint subsets of items so that the total profit of the
selected items exceeds a given target profit T , with each subset assigned to a knapsack, and the total weight
of any subset not exceeding the capacity of the assigned knapsack?
To see that this problem is a special instance of the WD problem, let the minimum price per unit ri = 0;

let each bidder only bid with a single bid (item) j with a bid price of bj , and each bidder’s priority vector
Wk = {1, . . . ,1} with a wmin

j = 1. This means, he wants his ad with a length (weight) dj to be assigned to one
out of all slots (knapsacks) i with a duration (capacity) ci. The multiple knapsack decision problem can be
answered affirmatively if and only if this specific WD instance has an optimal objective value greater than
or equal to T . The problem is in NP, because it is straightforward to check for a given solution, whether it
is correct. �
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