
A Truthful-in-expectation Mechanism for the
Generalized Assignment Problem

Salman Fadaei and Martin Bichler

Department of Informatics, TU München, Munich, Germany
salman.fadaei@in.tum.de, bichler@in.tum.de

Abstract. We propose a truthful-in-expectation, (1 − 1
e
)-approximation

mechanism for the generalized assignment auction. In such an auction, each
bidder has a knapsack valuation function and bidders’ values for items are
private. We present a novel convex optimization program for the problem
which makes a maximal-in-distributional-range (MIDR) allocation rule.
The presented convex program contains at least (1 − 1

e
) ratio of the op-

timal social welfare. We show how to implement the convex program in
polynomial time using a fractional greedy algorithm which approximates
the optimal solution within an arbitrarily small error. This leads to an
approximately MIDR allocation rule which in turn transforms to an ap-
proximately truthful-in-expectation mechanism. From an algorithmic point
of view, our contribution has importance, as well; it outperforms the ex-
isting optimization algorithms for the GAP in terms of runtime while the
approximation ratio is comparable to the best given approximation.

Keywords: Generalized assignment problem, truthful-in-expectation, mech-
anism design, convex optimization

1 Introduction

In algorithmic mechanism design, the mechanism designer wishes to solve an op-
timization problem, but the inputs to this problem are the private information
of the self-interested players. The mechanism designer must thus design a mecha-
nism that solves the optimization problem while encouraging the agents to reveal
their information truthfully. The game-theoretic solution concept of truthfulness
guarantees that an agent is better off truthfully interacting with the mechanism
regardless of what the other agents do.

The well-known Vickrey-Clarke-Groves (VCG) technique provides truthfulness
as well as social welfare maximization. The VCG technique however is applicable
when the optimal social welfare can be computed efficiently. Yet, in many cases in-
cluding our problem optimizing social welfare is computationally intractable and
this makes the VCG technique inapplicable. Usually, when faced with compu-
tational intractability, computer scientists turn to approximations or heuristics.
Unfortunately, the VCG technique cannot be applied to approximate solutions [1].

The best for a mechanism designer is to devise a computationally efficient
and truthful mechanism with an approximation factor that (very closely) matches

2 Fadaei, Bichler

the best one known for the problem in which the underlying data is publicly
known. In many cases it has been shown that it is impossible to achieve the same
approximation factor in incentive-compatible mechanisms [2, 3, 4, 5, 6].

From an algorithmic point of view, the generalized assignment problem (hence-
forth GAP) has been studied extensively in the literature. Chekuri and Khanna
[7] made it explicit that the algorithm of Shmoys and Tardos [8] can be adapted
to give a 2-approximation. Later Fleischer et al. [9] improved the factor to 1− 1

e .
Using a reduction to submodular maximization subject to a matroid constraint,
Calinescu et al. [10] achieved a ratio of 1 − 1

e − o(1) without using the ellipsoid
method which was pivotal in [9]. An algorithm due to Feige and Vondrák [11]
yields an approximation factor of 1 − 1

e + ρ, ρ ≤ 10−5 which is the best given
approximation ratio for the GAP. Chakrabarty and Goel [12] gave the best known
hardness result, showing that it is NP-hard to approximate GAP to any factor
better than 10

11 .

We observe that all aforementioned algorithms consist of two algorithms, a
relaxation algorithm and a rounding algorithm. This type of algorithm usually
cannot constitute a truthful mechanism, since the rounding component is not
predictable. For instance, suppose x is a fractional feasible solution with social
welfare more than y, i.e.

∑
i vi(x) >

∑
i vi(y). However, the relation might be

different when the rounding procedure r is applied to the fractional solutions:∑
i vi(X) <

∑
i vi(Y), where X ∼ r(x) and Y ∼ r(y). This violates the MIDR

property.

In order to devise truthful mechanisms, Dughmi et al. [13] propose an ap-
proach which optimizes directly on the outcome of the rounding algorithm, rather
than on the outcome of the relaxation algorithm. Since the rounding procedure is
embedded into the objective function, this approach is not always computation-
ally tractable. Yet, assuming that the optimization problem can be solved effi-
ciently, this approach always leads to an MIDR algorithm. MIDR or maximal-in-
distributional-range is the only known general approach for designing randomized
truthful mechanisms. An MIDR algorithm fixes a set of distributions over feasible
solutions (the distributional range) independently of the valuations reported by
the self-interested players, and outputs a random sample from the distribution
that maximizes expected (reported) welfare [14].

Lavi and Swamy [15] proposed a general method for deriving MIDR mecha-
nisms from linear programming relaxations. They solve the relaxed problem in
the first step and then they use a very special rounding method (convex decom-
position) to obtain the randomized integral allocation. Although they are also
using the common composition of relaxation and rounding algorithms, their spe-
cial rounding procedure produces an expected allocation which is always identical
to the scaled down input to the rounding algorithm, component-wise, and this
interestingly guarantee truthfulness-in-expectation. In contrast to the approach of
[13], it is straightforward to design a truthful mechanism using this framework,
however it is not obvious how to apply the framework to the settings where bidders
have private structured valuations such as submodular functions.

A Truthful-in-expectation Mechanism for the Generalized Assignment Problem 3

1.1 Our Results and Techniques

Despite all the impossibility results in the field of algorithmic mechanism design,
in this paper we present a truthful-in-expectation randomized mechanism for the
GAP.

In order to achieve a MIDR, we directly optimize over the outcome of the
rounding procedure, rather than on the outcome of the relaxation algorithm. To
this end, we formulate the GAP as a convex optimization problem where the objec-
tive function equals the expected value of the rounding procedure. This is similar
to the technique used in [13] for finding a truthful-in-expectation mechanism for
players whose valuations are of a special type of submodular functions. We notice
that our technique allows to guarantee non-negativity of payments and individual
rationality ex post, while in [13], these important properties are provided only ex
ante.

Although, our formulation for the GAP is convex, unfortunately we are not able
to solve the convex optimization program exactly, yet we are able to approximate
it within an arbitrarily small error, in the sense of an FPTAS. This in fact leads
to an approximate MIDR as mentioned in the following.

Theorem 1. There is a (1− ε)-MIDR allocation rule that achieves a (1− 1
e − ε)-

approximation to the social welfare in the generalized assignment problem, for any
ε > 0.

It has been shown in [16] how to transform an approximately MIDR allocation
rule to an approximately truthful-in-expectation mechanism. Taking into account
this black box transformation, we immediately conclude that

Theorem 2. There is a (1 − ε)-truthful-in-expectation mechanism that achieves
a (1 − 1

e − ε)-approximation to the social welfare in the generalized assignment
problem, for any ε > 0.

We remark that our result has algorithmic importance, as well. It has advan-
tages over the existing optimization algorithms in terms of runtime. Our algorithm
does not employ the ellipsoid method as in [9]. Moreover, the algorithm improves
over that of [10] since in the algorithm of [10], in each iteration, a random sam-
pling is required to compute the gradient of the function at the current point
which increases runtime. Actually in [10], the gradient of the function is calcu-
lated by taking the average of (mn)5 independent samples, where m and n are
the number of items and bidders, respectively. However, we use a novel objective
function which is specified exactly, rather than by random sampling, therefore it is
possible to calculate the gradient of the objective function explicitly, thus greatly
improving the runtime of the algorithm.

2 Preliminaries

In the generalized assignment problem (GAP), there are n bidders and m items.
Let I and J denote the set of bidders and items, respectively. Let vij denote the

4 Fadaei, Bichler

value of bidder i for item j. Each bidder i has a different weight wij for each
item j and has a limited capacity Ci. Let Fi denote the collection of all feasible
assignments to bidder i , i.e. ∀S ∈ Fi :

∑
j∈S wij ≤ Ci. Every item can be assigned

to only one bidder.
We assume bidders’ valuations for items are private while weights and capaci-

ties are publicly known.
An allocation (S1, . . . , Sn), where Si ⊆ J denotes the subset assigned to bidder

i, is feasible if ∀i ∈ I : Si ∈ Fi and {Si}i∈I are mutually disjoint. The knapsack
valuation is defined as gi : 2J → R≥0 such that gi(S) = max

T⊆S,T∈Fi

∑
j∈T

vij . Notice,

∀S ∈ Fi : gi(S) =
∑
j∈S vij . With an slight abuse of notation, we sometimes use

gi(S) instead of gi(Si), where S = (S1, . . . , Si, . . . , Sn). The social welfare obtained
from a feasible allocation (S1, . . . , Sn) is

∑
i∈I gi(Si).

Due to the revelation principle, we limit ourselves to direct revelation mech-
anisms. Every mechanism has two main components: an allocation rule and a
payment rule. The allocation rule A is a function which maps a reported valua-
tion v = (v1, . . . , vn) to an allocation (S1, . . . , Sn), where ∀i : vi = (vij)j∈J . The
payment rule is a function from reported valuations to a required payment from
each bidder. Let pi denote the payment rule function for bidder i.

Definition 1 (Maximal in Distributional Range (MIDR)). Given reported
valuations v1, . . . , vn, and a previously-defined probability distribution over feasible
sets R, a MIDR returns an outcome that is sampled randomly from a distribution
D∗ ∈ R that maximizes the expected welfare Ex∼D[

∑
i gi(x)] over all distributions

D ∈ R.

Analogously, we define (1− ε)-MIDR as follows.

Definition 2 ((1−ε)-MIDR). Given reported valuations v1, . . . , vn, and a previously-
defined probability distribution over feasible sets R, a (1 − ε)-MIDR returns an
outcome that is sampled randomly from a distribution D∗ ∈ R that (1 − ε)-
approximately maximizes the expected welfare Ex∼D[

∑
i gi(x)] over all distributions

D ∈ R.

Definition 3 ((1−ε) truthful-in-expectation). A mechanism is (1−ε)-approximately
truthful-in-expectation for the GAP problem if, for every bidder i, (true) valuation
function vi , (reported) valuation function v′i, and (reported) valuation functions
v−i of the other bidders,

E[gi(A(vi, v−i))− pi(vi, v−i)] ≥ (1− ε)E[gi(A(v′i, v−i))− pi(v′i, v−i)].

The expectation in (3) is taken over the coin flips of the mechanism.

Our goal is to find an allocation rule and a payment rule which constitute
a truthful-in-expectation mechanism for the GAP that approximates the social
welfare as much as possible.

A Truthful-in-expectation Mechanism for the Generalized Assignment Problem 5

3 MIDR Allocation Rule for the GAP

We optimize directly over the expected value of the allocation produced by the
rounding algorithm. We let the relaxed feasible set be R as follows. Given a vector
x ∈ {0, 1}I×2J , let xi,S indicate whether subset S is assigned to player i.

R =
{
x ∈ [0, 1]I×2J

|∀i :
∑
S∈Fi

xi,S ≤ 1;∀i ∈ I, ∀S ∈ Fi : xi,S ≥ 0
}
.

In effect, in R one randomized feasible set is assigned to each bidder i. The
sets assigned to different players may overlap, however in the rounding step, as we
explain next, each item is assigned only once. We wish to maximize the expected
value of the rounded allocation over range R. This leads to an MIDR allocation,
since we maximize over a range which is independent of the players’ private in-
formation. Let call the rounding algorithm as rgreedy. Algorithm 1 presents the
desired MIDR algorithm.
Algorithm 1: MIDR allocation rule for the generalized assignment problem.
Data: v = (vij)i∈I,j∈J .
Result: Feasible allocation (S1, . . . , Sn).
1. Let x∗ maximize E(S1,...,Sn)∼rgreedy(x)[

∑
i∈I gi(Si)] over x ∈ R.

2. Let (S1, . . . , Sn) ∼ rgreedy(x∗).

Proposition 1. Algorithm 1 is an MIDR allocation rule.

As we show in the following, interestingly, this optimization problem is tractable.
We attempt to explain step by step how to implement Algorithm 1 and how good
the outcome of the algorithm is. We first start explaining the rounding procedure.

3.1 Greedy Rounding

We choose a rounding algorithm which preserves a good ratio of the fractional
solution while it returns a feasible allocation in which each item is assigned only
once. We first define helper function φ(·) which maps a point in R to a point in
[0, 1]I×J . Let φ : R → [0, 1]I×J be such that y = φ(x) iff ∀i ∈ I, ∀j ∈ J : yij =∑
S:j∈S xi,S .
The rounding procedure called greedy rounding has two steps. In the first

step, given a point x ∈ R it finds another point x′ ∈ R such that ∀i ∈ I, ∀j ∈ J :
y′ij = 1− e−yij , where y = φ(x) and y′ = φ(x′). In the second step, the rounding
procedure assigns subset S to bidder i with probability x′i,S while resolving conflicts
as explained in the algorithm.

To do the first step, we propose Algorithm 2. Algorithm 2 takes a point x ∈ R
and the desired vector y′ ∈ [0, 1]I×J , where y′ � φ(x) and returns another point
x′ ∈ R such that y′ = φ(x′).

6 Fadaei, Bichler

Algorithm 2: An oblivious method for finding a dominated point in R.
Data: x ∈ R, y′ ∈ [0, 1]I×J such that y′ � φ(x).
Result: x′ ∈ R such that y′ = φ(x′).
Initialize x′ := x; δ = φ(x′)− y′, where δ ∈ [0, 1]I×J .
foreach bidder i do

foreach item j do
1. repeat

Choose x′i,S:j∈S > 0, arbitrarily;
if x′i,S < δij then

δij := δij − x′i,S ;
if S \ {j} 6= ∅ then x′i,S\{j} := x′i,S\{j} + x′i,S ;
x′i,S := 0.

else
x′i,S := x′i,S − δij ;
if S \ {j} 6= ∅ then x′i,S\{j} := x′i,S\{j} + δij ;
δij := 0.

until δij = 0.;

return x′.
The following lemma confirms that Algorithm 2 returns the desired outcome.

Lemma 1. Suppose x ∈ R with polynomially-many xi,S > 0, y′ ∈ [0, 1]I×J , and
y′ � φ(x). If we call Algorithm 2 on x and y′, it returns x′ ∈ R such that φ(x′) = y′

with only polynomially-many x′i,S > 0.

Proof. If the algorithm terminates we will have ∀i ∈ I, ∀j ∈ J : δij = 0, and
therefore y′ = φ(x′). Thus, we only need to show that the algorithm terminates
in polynomial time and x′ has polynomially-many positive components. We show
it for one bidder and one item and since the number of items and bidders is
polynomial, we obtain the desired conclusion.

Fix bidder i and item j. We consider one iteration in which x′i,S with j ∈ S is
chosen. Two cases can happen. First, x′i,S < δij . In this case, the number of positive
components in x′ does not increase, since xi,S becomes zero and at most another
positive component is added: x′i,S\{j}. Moreover, this case can happen as many
times as the number of xi,S > 0, where j ∈ S which are only polynomially-many
by assumption.

Second, x′i,S ≥ δij . In this case, only one new positive component may be
added: x′i,S\{j}. But, this case can happen only once for item j, as δij becomes
zero in this step.

Thus, in total for bidder i and item j, only one new positive component might
be included in x′ compared to x and the number of iterations is polynomial. This
completes the proof. ut

For the first step of the rounding algorithm, thus we call Algorithm 2 on inputs
x and y′ ∈ [0, 1]I×J where ∀i ∈ I, ∀j ∈ J : y′ij = 1− e−yij and y = φ(x), to obtain
the desired point in R. Notice, that y′ � y.

A Truthful-in-expectation Mechanism for the Generalized Assignment Problem 7

Now, we are ready to present the greedy rounding algorithm, rgreedy.

Algorithm 3: Greedy rounding algorithm, rgreedy.
Data: x ∈ R with polynomially-many xi,S > 0, v = (vij)i∈I,j∈J .
Result: Feasible allocation (S1, . . . , Sn).
1. Let y = φ(x). Let y′ ∈ [0, 1]I×J be such that y′ij = 1− e−yij . Invoke
Algorithm (2) with x and y′ as the inputs and let x′ be the result.
2. Independently for each bidder i, assign set S to i with probability x′i,S . If
some item j is assigned to more than a bidder, assign it to the bidder
among these bidders with the maximum value vij . Let Si be the set
assigned to bidder i.
return (S1, . . . , Sn).

In order to analyze the performance of the rounding algorithm, we define a
new function.

F : [0, 1]I×J → R≥0

F (y) =
m∑
j=1

n∑
i=1

(
vσj(i),j − vσj(i+1),j

)(
1− exp(−

i∑
k=1

yσj(k),j)
)
.

Where σj : I → I is a permutation on I such that vσj(i),j is decreasing (non-
increasing) when i runs from 1 to n, and vσj(n+1),j = 0.

Function F (·) is useful in explaining the quality of the rounding algorithm as
shown in the following.

Lemma 2. ∀x ∈ R : E
(S1,...,Sn)∼rgreedy(x)

[∑
i∈I

gi(Si)
]

= F (φ(x)).

Proof. Assume x ∈ R. Let x′ be the outcome of Step 1 of Algorithm 3. Let y = φ(x)
and y′ = φ(x′). We calculate the expected value achieved from the assignment of
item j in the integral allocation.

Fix item j. For simplicity, we assume that σj(i) = i. That means, bidders
with smaller indices have higher valuations for j. We find the expected value
returned from item j; for other items, the argument is similar. With probability
y′1j the set assigned to bidder 1 contains j thus j is assigned to 1. Recall that
y′1j =

∑
S:j∈S x

′
1,S . Therefore, with probability y′1j , the value of returned allocation

is v1j . With probability (1− y′1j)y′2j the set assigned to bidder 1 does not contain
the item and the set assigned to bidder 2 contains it and therefore item j is assigned
to bidder 2. This case leads to a returned value of (1− y′1j)y′2jv2j .

Continuing similarly for other bidders, the achievable expected value becomes
y′1jv1j + (1 − y′1j)y′2jv2j + . . . +

∏n−1
k=1(1 − y′kj)y′njvnj , which in turn equals to∑n

i=1(vij − vi+1,j)(1 −
∏i
k=1(1 − y′kj)). The equality of the two terms can be

observed by simply extending the latter. Taking into account that y′ij = 1− e−yij ,
and summing over all items we obtain the desired conclusion, using linearity of
expectation. ut

8 Fadaei, Bichler

Therefore, we need to optimize F (φ(x)) over x ∈ R. Optimizing F (φ(x)) over
x ∈ R is essentially the same as optimizing F (y) over y ∈ P, where

P =
{
y ∈ [0, 1]I×J | y = φ(x) & x ∈ R

}
.

Thus, what remains is to explain how to solve maxy∈P F (y), and the quality of
the solution.

3.2 The Approximation Ratio

We show the quality of the method by comparing maxy∈P F (y) to the optimal
solution to the configuration LP of the GAP.

The configuration LP of the GAP is as follows:

GAP-CLP:

max
∑

i∈I,S∈Fi

xi,Sgi(S)

∀j ∈ J :
∑

i∈I,S∈Fi:j∈S
xi,S ≤ 1,

∀i ∈ I :
∑
S∈Fi

xi,S ≤ 1,

∀i ∈ I, ∀S ∈ Fi : xi,S ≥ 0,

To be able to compare GAP-CLP to F (y), first we introduce a new variable
into the program and then we rearrange the objective function.

Let y ∈ [0, 1]I×J be such that ∀i ∈ I, ∀j ∈ J : yij =
∑
S∈Fi:j∈S xi,S . Using this

new variable we define polytope P ′ as in the following:

P ′ =
{
y ∈ [0, 1]I×J |

∀j ∈ J :
∑
i∈I yij ≤ 1; (1)

∀i ∈ I, ∀j ∈ J : yij =
∑
S∈Fi:j∈S xi,S ;

∀i :
∑
S∈Fi

xi,S ≤ 1;

∀i ∈ I, ∀S ∈ Fi : xi,S ≥ 0
}
.

We notice that P ′ ⊆ P since P ′ has an additional constraint (Constraint (1)).
Now, we rearrange the objective function of GAP-CLP to be a function of items
(y) rather than subsets, (x).∑

i∈I,S∈Fi

xi,Sgi(S) =
∑

i∈I,S∈Fi

xi,S
∑
j∈S

vij

=
∑

i∈I,j∈J
vij

∑
S∈Fi:j∈S

xi,S

=
∑

i∈I,j∈J
vijyij

A Truthful-in-expectation Mechanism for the Generalized Assignment Problem 9

We observe that solving GAP-CLP is equivalent to finding max
y∈P′

∑
i∈I,j∈J

vijyij .

Now, we are ready to compare maxy∈P F (y) with the optimal integral solution
to the GAP (denoted by OPT).

Lemma 3. maxy∈P F (y) ≥ (1− 1
e)OPT .

Proof. We observe that

max
y∈P

F (y) ≥ max
y∈P′

F (y) ≥ (1− 1
e

) max
y∈P′

∑
i∈I,j∈J

vijyij ≥ (1− 1
e

)OPT.

The first inequality holds since P ′ ⊆ P. The last inequality holds because
max
y∈P′

∑
i∈I,j∈J

vijyij in fact returns a solution to GAP-CLP which is obviously greater

than OPT .
For the second inequality, consider item j and y ∈ P ′. For simplicity, we assume

∀i : σj(i) = i. We have
∑n
i=1 yij ≤ 1, since y ∈ P ′. Considering the fact that

1− e−x ≥ (1− 1
e)x for x ∈ [0, 1], we obtain

(v1j − v2j)(1− e−y1j) ≥ (v1j − v2j)(1− 1
e)y1j

(v2j − v3j)(1− e−y1j−y2j) ≥ (v2j − v3j)(1− 1
e)(y1j + y2j)

. . .

(vn−1,j − vnj)(1− e−
∑n−1

k=1
ykj) ≥ (vn−1,j − vnj)(1− 1

e)(
∑n−1
k=1 ykj)

(vnj)(1− e−
∑n

k=1
ykj) ≥ (vnj)(1− 1

e)(
∑n
k=1 ykj)

Summing both sides, we obtain

n∑
i=1

(
vi,j − vi+1,j

)(
1− exp(−

i∑
k=1

yk,j)
)
≥
(
1− 1

e

)∑
i∈I

vijyij .

Obtaining this inequality for all items, and summing them up, we obtain the
desired conclusion. ut

Thus, what remains is to show how to maximize F (y) over y ∈ P which is the
topic of Section 3.3.

3.3 Solving the Convex Optimization Problem

We wish to solve maxy∈P F (y) which is essentially equivalent to the following
mathematical optimization problem:

10 Fadaei, Bichler

GAP-CONVEX:

maximize
m∑
j=1

n∑
i=1

(
vσj(i),j − vσj(i+1),j

)(
1− exp(−

i∑
k=1

yσj(k),j)
)

∀i ∈ I, ∀j ∈ J :
∑

S∈Fi:j∈S
xi,S = yij ,

∀i ∈ I :
∑
S∈Fi

xi,S ≤ 1,

∀i ∈ I, ∀S ∈ Fi : xi,S ≥ 0.

First, we show that GAP-CONVEX is a convex optimization problem. All
constraints in the program are linear thus we only need to show that the objective
function, F (y), is concave/convex which is shown by the following theorem.

Lemma 4. F (y) is a concave function.

Proof. The function is concave, since it is weighted sums of functions which are
compositions of the concave function 1−e−x with affine function x→

∑i
k=1 yσj(k),j .

ut

It is also possible to see the concavity of the function by observing that the
second partial derivatives of the function are not positive. We calculate second
partial derivatives in Lemma 7.

We also need to show that P is a packing polytope which is to prove for every
y, y′ ∈ [0, 1]I×J if y ∈ P and y′ ≺ y, then y′ ∈ P.

Lemma 5. Polytope P is a packing polytope.

Proof. Suppose y is in P. This implies that there exists x ∈ R such that y = φ(x).
Assume y′ ∈ [0, 1]I×J and y′ ≺ y. To show that y′ ∈ P, we must prove that there
exists x′ ∈ R such that y′ = φ(x′).

We start from point y1 which is equal to y in all components except for one
component and in that component, y1 is equal to the corresponding component
in y′. In other words, assuming w.l.o.g. that y′k1 < yk1, we look at point y1 with
y1
ij = yij ∀(i, j) 6= (k, 1) and y1

k1 = y′k1. We show that y1 ∈ P. By induction,
subsequently, we can replace the role of y and y1 and repeat this argument by
looking at another point which is equal to y′ in one more component until we
reach to point y′ and show that y′ ∈ P.

To show that y1 ∈ P, we must prove that there exists x1 ∈ R such that
y1 = φ(x1). Let H be a set of subsets of items with the following properties.
H ⊆ Fk, ∀S ∈ H : 1 ∈ S,

∑
S∈H xk,S ≥ y1

k1 and there exists T ∈ H such that∑
S∈H\{T} xk,S < y1

k1. It is easy to observe that such set H exists.
We can now choose point x1 which is equal to x in all components but with the

following differences: x1
k,T = xk,T − d and x1

k,T\{1} = xk,T\{1} + d for T \ {1} 6= ∅,

A Truthful-in-expectation Mechanism for the Generalized Assignment Problem 11

where d =
∑
S∈H xk,S − y1

k1. Moreover, for every S ∈ Fk \ H, where 1 ∈ S, we
have x1

k,S = 0 and x1
k,S\{1} = xk,S\{1} + xk,S for S \ {1} 6= ∅. We show that x1 is

the required point: x1 ∈ R and y1 = φ(x1).
x1 ∈ R because ∀S ∈ Fk we have S \ {1} ∈ Fk and therefore if x1

k,S > 0
then S ∈ Fk. Moreover, it is easy to observe that

∑
S∈Fk

x1
k,S =

∑
S∈Fk

xk,S .
Furthermore, every component of x1 is non-negative. Actually, we only need to
show that x1

k,T is non-negative. By definition of H:
∑
S∈H\{T} xk,S − y1

k1 < 0,
adding xk,T to both sides we obtain d < xk,T , equivalently 0 < x1

k,T .
We also have y1 = φ(x1) since

∑
S∈Fk;1∈S x

1
k,S = (

∑
S∈H xk,S) − d = y1

k1 and
all other components in y1 remain equal to y. This completes the proof. ut

In order to solve the convex optimization problem, we present a fractional
greedy algorithm. Our algorithm gets arbitrarily close to the optimal solution.
Unfortunately, at this point we do not know how to solve the convex optimization
problem exactly. This is mostly because of the difficulty that arises from the expo-
nential number of variables in the convex program. Thus, we are able to implement
a (1− ε)-MIDR allocation rule, for any ε > 0.

Our fractional greedy algorithm looks like the local search algorithm presented
in [16]. However, since we are maximizing a different objective function over a
different polytope, we explain the algorithm completely. In every iteration of the
algorithm, we need to find y∗ ∈ P which maximizes y · ∇F (y) 1 over all y ∈ P.
Proposition 2 tells us that maximizing y ·v over all y ∈ P for every cost function v,
is equivalent to finding set S∗i ∈ Fi for every bidder i which maximizes

∑
j∈S∗

i
vij .

Proposition 2. max
y∈P

∑
i∈I,j∈J

vijyij =
∑
i∈I

max{
∑
j∈S

vij : S ∈ Fi}.

Proof.
max
y∈P

∑
i∈I,j∈J

vijyij = max
x∈R

∑
i∈I,j∈J

vij
∑

S∈Fi:j∈S
xi,S

= max
x∈R

∑
i∈I

∑
S∈Fi

xi,S
∑
j∈S

vij

=
∑
i∈I

max{
∑
j∈S

vij : S ∈ Fi}.

The first equality holds since for every y ∈ P, there exists x ∈ R where y = φ(x).
The last equality holds since if x ∈ R then

∑
S∈Fi

xi,S ≤ 1. ut

Finding max{
∑
j∈S vij : S ∈ Fi} is essentially solving a knapsack subproblem

for bidder i.
Now, we present the main algorithm. Let M denote max{vij : i ∈ I; j ∈ J}.

1 We remind the reader that ∇F , the gradient of F, is a vector whose coordinates are
the first partial derivatives ∂F

∂yij
. We denote by ∂F

∂yij

∣∣
y
the gradient coordinate (i, j)

evaluated at point y.

12 Fadaei, Bichler

Algorithm 4: Fractional greedy algorithm
Data: v = (vij)i∈I,j∈J , ε > 0.
Result: x ∈ R such that F (φ(x)) ≥ (1− ε) max{F (y)|y ∈ P}.
0. Initialize x := 0; y := 0. a Let δ = ε

8m2n2 .
1. Let u := ∇F (y); z := 0. b

2. foreach bidder i do
Find a set S∗i ∈ Fi such that∑
j∈S∗

i
uij > (1− ε) max{

∑
j∈S uij : S ∈ Fi} using the FPTAS for the

knapsack problem; set zij := 1 if j ∈ S∗i , otherwise zij := 0. Keep S∗i for
a possible update in the next step.

3. if z · ∇F (y) > 1
4εM then

update y := y + δz and for all i ∈ I update xi,S∗
i

:= xi,S∗
i

+ δ; go back to
Step 1.

return x.

a x ∈ [0, 1]I×2J

, y ∈ [0, 1]I×J .
b u, z ∈ [0, 1]I×J .

Lemma 6. Algorithm 4 returns x ∈ R such that F (φ(x)) ≥ (1− ε) max{F (y)|y ∈
P}.

Proof. Assume x ∈ R is the outcome of the algorithm. Let y = φ(x). Let z be the
calculated vector in the last iteration in Step 2 (i.e., z · ∇F (y) ≤ 1

4εM). We have
z · ∇F (y) ≥ (1− ε) maxw∈P w · ∇F (y) according to Proposition 2.

Let y∗ = arg maxy∈P F (y). We have, y∗ ∈ P, ((y∗ − y) ∨ 0) � y∗ 2 and P is
a packing polytope (Lemma 5), thus, (y∗ − y) ∨ 0 ∈ P. Therefore, z · ∇F (y) ≥
(1− ε)((y∗ − y) ∨ 0) · ∇F (y).

In the last iteration of the algorithm we have z ·∇F (y) ≤ 1
4εM , thus we obtain

F (y∗)− F (y) ≤ (y∗ − y) · ∇F (y)
≤ ((y∗ − y) ∨ 0) · ∇F (y)
≤ (1− ε)−1z · ∇F (y)
≤ 1

4εM(1− ε)−1

≤ ε · F (y∗).
The first inequality is because of the concavity of F . Therefore, when the

algorithm terminates F (y) ≥ (1− ε)F (y∗) and this completes the proof. ut

Lemma 7. In each iteration, the value of F (y) increases by at least ε2

64m2n2M .

Proof. The change in gradient has a certain upper bound when y changes by a
certain amount:

∂F

∂yij
=

n∑
l=i

(vlj − vl+1,j) exp(−
l∑

k=1
ykj) ≤

n∑
l=i

(vlj − vl+1,j) ≤ vlj ≤M.

2 x ∨ y denotes the coordinate-wise maximum, (x ∨ y)i = max{xi, yi}.

A Truthful-in-expectation Mechanism for the Generalized Assignment Problem 13

∣∣∣∣ ∂2F

∂yij2

∣∣∣∣ =
n∑
l=i

(vlj − vl+1,j) exp(−
l∑

k=1
ykj) ≤M.

For j 6= j′:

∂2F

∂yi′j′∂yij
= 0.

Finally, for i 6= i′:∣∣∣∣ ∂2F

∂yi′j∂yij

∣∣∣∣ =
n∑

l=max (i,i′)

(vlj − vl+1,j) exp(−
l∑

k=1
ykj) ≤M.

As ∂F
∂yij

has continuous derivatives, for any y′ such that ||y′ − y||∞ ≤ δ, we
obtain

∂F

∂yij

∣∣∣∣
y′
≥ ∂F

∂yij

∣∣∣∣
y

−
∑
i,j

|y′ij − yij |max
∣∣∣∣ ∂2F

∂yi′j′∂yij

∣∣∣∣ ≥ ∂F

∂yij

∣∣∣∣
y

− δmnM. (1)

As long as the algorithm continues we have z · ∇F (y) > 1
4εM . Thus,

F (y + δz) ≥ F (y) + δz · ∇F (y + δz)
≥ F (y) + δz · (∇F (y)− δmnM1)
≥ F (y) + δz · ∇F (y)− δ2m2n2M
≥ F (y) + δ · 1

4εM − δ
2m2n2M

where, 1 denotes the vector of all ones in [0, 1]I×J . The first inequality is because
of the concavity of F . The second inequality holds because of inequality (1), above.
The third inequality is because z · 1 ≤ mn.

Now, using δ = ε
8m2n2 , we obtain

F (y + δz) ≥ F (y) + ε2

64m2n2M.

ut

Lemma 8. After at most 64m3n2

ε2 iterations, Algorithm 4 terminates.

Proof. Since M denotes max{vij : i ∈ I; j ∈ J}, mM is an upper bound for OPT .
Moreover, based on Lemma 7, in each iteration the growth in value is at least

ε2

64m2n2M , the algorithm in 64m3n2

ε2 iterations, reaches the value of mM , which is
an upper bound on the best solution. This concludes the proof. ut

Thus, we achieve a (1− ε)-MIDR allocation rule that runs in polynomial time.
This concludes the proof of Theorem 1.

Remark. In order to use this algorithm as an optimization algorithm, one can
employ a simpler rounding algorithm. The simpler rounding requires only Step 2

14 Fadaei, Bichler

of Algorithm 3. For an optimization purpose, there is no need to also execute Step
1 of the greedy rounding algorithm. Thus, after finding a fractional solution x by
invoking Algorithm 4, we assign set S to each bidder i with probability xi,S and
resolve conflicts similar to the technique in the greedy rounding algorithm. This
improves the runtime for the optimization purpose.

4 Computing Payments

Supplementing the MIDR allocation rule of Section 3 with VCG payments yields a
truthful-in-expectation mechanism. We compute payments in order to also enforce
non-negative payments and individual rationality, ex post.

To compute the VCG fractional payment pFi for bidder i, we need to compute
two components: first, the Clarke pivot, hi(v−i), which is the best achievable social
welfare by bidders other than i, and second, the value gained by bidders other than
bidder i in the current fractional solution. We can calculate hi(v−i) by solving
GAP-CONVEX by also adding constraint xi,S = 0 for all S ∈ J . To compute
the value gained by other bidders in the fractional allocation, F−i(y∗), we set
∀j ∈ J : vij = 0 in F (y∗), assuming that y∗ is the outcome of Algorithm 4. We
notice that function F (y) is explicitly known to us and we can set vij to 0 in it.
Finally, pFi = hi(v−i)− F−i(y∗).

Example 1. Consider a setting in which two bidders (1 and 2) have valuations for
two items as follows: v11 = 8, v12 = 5 and v21 = 4, v22 = 10. In this case,

F (y) = (8−4)(1−e−y11)+4(1−e−y11−y21)+(10−5)(1−e−y22)+5(1−e−y12−y22).

Now, assume y∗1 = (0.6, 0.3) and y∗2 = (0.4, 0.7). Then,

F−1(y∗) = (0− 4)(1− e−0.6) + 4(1− e−1) + (10− 0)(1− e−0.7) + 0(1− e−1).

The value gained by bidder i in the fractional allocation is therefore wFi =
F (y∗)−F−i(y∗). Assuming that Si is the subset assigned to bidder i by the round-
ing procedure, we can compute the randomized payment for bidder i, pRi , satisfying
individual rationality and non-negativity of payments as follows.

pRi =
{

gi(Si)
wF

i

pFi if wFi > 0,
0 if wFi = 0.

Bibliography

[1] Nisan, N., Ronen, A.: Computationally feasible vcg mechanisms. In: Elec-
tronic Commerce: Proceedings of the 2 nd ACM conference on Electronic
commerce. Volume 17. (2000) 242–252

[2] Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of truthful com-
binatorial auctions. In: Foundations of Computer Science, 2003. Proceedings.
44th Annual IEEE Symposium on. (2003) 574 – 583

[3] Papadimitriou, C., Schapira, M., Singer, Y.: On the hardness of being truthful.
In: Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual
IEEE Symposium on, IEEE (2008) 250–259

[4] Dobzinski, S., Vondrák, J.: Communication complexity of combinatorial auc-
tions with submodular valuations. In: Proceedings of the Twenty-Fourth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SIAM (2013) 1205–
1215

[5] Dobzinski, S., Vondrák, J.: The computational complexity of truthfulness
in combinatorial auctions. In: Proceedings of the 13th ACM Conference on
Electronic Commerce, ACM (2012) 405–422

[6] Dughmi, S., Vondrák, J.: Limitations of randomized mechanisms for combi-
natorial auctions. Games and Economic Behavior (2014)

[7] Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the
multiple knapsack problem. SIAM Journal on Computing 35(3) (2005) 713–
728

[8] Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized
assignment problem. Mathematical Programming 62(1-3) (1993) 461–474

[9] Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approx-
imation algorithms for maximum general assignment problems. In: Proceed-
ings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm,
ACM (2006) 611–620

[10] Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone
submodular function subject to a matroid constraint. SIAM Journal on Com-
puting 40(6) (2011) 1740–1766

[11] Feige, U., Vondrak, J.: Approximation algorithms for allocation problems:
Improving the factor of 1-1/e. In: Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on, IEEE (2006) 667–676

[12] Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations
and improved lower bounds for submodular welfare maximization and gap.
SIAM Journal on Computing 39(6) (2010) 2189–2211

[13] Dughmi, S., Roughgarden, T., Yan, Q.: From convex optimization to random-
ized mechanisms: toward optimal combinatorial auctions. In: Proceedings of
the 43rd annual ACM symposium on Theory of computing, ACM (2011) 149–
158

16 Fadaei, Bichler

[14] Dobzinski, S., Dughmi, S.: On the power of randomization in algorithmic
mechanism design. In: Foundations of Computer Science, 2009. FOCS’09.
50th Annual IEEE Symposium on, IEEE (2009) 505–514

[15] Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear
programming. Journal of the ACM (JACM) 58(6) (2011) 25

[16] Dughmi, S., Roughgarden, T., Vondrák, J., Yan, Q.: An approximately
truthful-in-expectation mechanism for combinatorial auctions using value
queries. arXiv preprint arXiv:1109.1053 (2011)

