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Abstract: Much has been written about word of mouth and customer behavior. Telephone call detail rec-

ords provide a novel way to understand the strength of the relationship between individuals. In this paper, 

we predict using call detail records the impact that the behavior of one customer has on another custom-

er’s decisions. We study this in the context of  churn (a decision to leave a communication service pro-

vider) and cross-buying decisions based on an anonymized data set from a telecommunications provider. 

Call detail records are represented as a weighted graph and a novel statistical learning technique, Markov 

Logic Networks, is used in conjunction with logit models based on lagged neighborhood variables to de-

velop the predictive model. In addition, we propose an approach to propositionalization tailored to predic-

tive modeling with social network data. The results show that information on the churn of network neigh-

bors has a significant positive impact on the predictive accuracy and in particular the sensitivity of churn 

models. The results provide evidence that word of mouth has a considerable impact on customers’ churn 

decisions and also on the purchase decisions, leading to a 19.5% and 8.4% increase in sensitivity of pre-

dictive models. 
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1 Introduction 

The churn rate refers to the proportion of contractual customers or subscribers who leave a service pro-

vider during a given time period. It is a possible indicator of customer dissatisfaction, cheaper and/or bet-

ter offers from the competition, more successful sales and/or marketing by the competition, or reasons 

related to the customer life cycle [4, 19, 56]. Customer lifetime value is affected by acquisition cost, cus-

tomer retention, and margin, and several studies show that customer retention is the most important fac-

tor, with a significant impact on the financial performance of a company [19, 22]. Neslin et al. [50] show 

that the accuracy of churn prediction models matters and that just using one method rather than another 

can easily amount to changes in profit in the hundreds of thousands of dollars. Accurate churn prediction 

is a prerequisite for effective customer retention activities. It is estimated that in the year 2000, the indus-

try average of monthly cellular churn rate was 2.2% in the U.S. [3]. According to a Yankee Group report, 

the weighted average churn rate of all carriers in North America was 2.6% at the end of 2002. In Western 

Europe, the situation was similar with 2–3% monthly churn rates [23]. According to Mattison [47], wire-

less providers are experiencing annual churn ranging from 25% in Europe to over 30% in the U.S. and 

48% in Asia. 

Churn prediction aims to determine the background stimulators and characteristics of potential 

churners, and predict whether a customer has a high or low risk of switching supplier. This is often mod-

eled as a classification problem [50]. Given a training and a test data set, analysts can compare different 

models based on overall accuracy (or error rate), or their lift curves on the test data set [46]. Among those 

customers who exhibit a high churn likelihood, marketers want to intervene to retain those who have a 

high ”customer lifetime value” (CLTV) [64] as well as those who could influence the  churn decision 

making behavior of other customers [40]. This influence is exercised via word of mouth (WOM), and 

might also be important for buying decisions as the literature indicates [5]. WOM refers to the informal 

communication between customers about a product or service.  In this paper, we estimate the effects of 
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WOM on churn. We use customers’ anonymized call detail records as a way of modeling WOM. Alt-

hough we cannot observe the content of the communication among customers, we use the intensity of the 

communication as an observable variable for latent WOM  

For comparison, we also analyze the impact of WOM on a specific purchase decision based on 

anonymized customer calling records of a mobile phone provider. The mobile phone carrier sells games 

to be played on handsets as a service and it appears that customers who purchase these games are highly 

connected. The analysis of game downloads and the impact of WOM on this buying decision provides 

another context to study the effect of WOM.  The comparison between these contexts  illustrate that the 

impact of WOM can be quite different for purchase and for churn decisions. 

1.1 Statistical relational learning 

Traditionally, classification has focused on attribute-value learning where each example or instance can 

be characterized by a fixed set of attributes [57]. Econometric discrete choice models also fall into this 

category. In machine learning terms, the hypothesis language is propositional logic and the learning algo-

rithms are referred to as propositional learners [38]. In industries such as the telecommunications sector or 

for many online social networks, data about the customer network is available. A research study that was 

conducted by Keaveney [26] showed that 75% of defecting customers tell their negative experiences to at 

least one other person. Information about the communication partners of a customer and their decisions to 

churn might, therefore, improve the prediction of a customer’s churn likelihood.  

In this paper, we aim to improve models for predicting churn and buying decisions by leveraging 

network information. In contrast to traditional classification methods, we take into account the infor-

mation about who a customer calls – i.e., a customer’s neighbors in the communication graph derived 

from the call detail record data. We interpret these graphs as social networks. These networks can be 

stored in a relational data model. While propositional learners find patterns in a given single relation, 

statistical relational learning algorithms (also called multi-relational data mining) aim at finding patterns 
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in multiple relations such as in relational databases [11]. Statistical relational learning is a relatively 

young field and there is still only limited empirical evidence on the performance of respective learners.  

There are two fundamentally different approaches to analyzing multi-relational data. Proposition-

alization describes methods that transform a relational representation of a learning problem into a proposi-

tional (feature-based or attribute-value) representation. In the context of social networks, this would mean 

using summary statistics of lagged neighbor covariates as predictors. For example, this could be the mean 

churn rate of neighbors, or their average call volume in a previous time period. This requires the construc-

tion of features (attributes) that capture relational properties. This representation can then be analyzed 

with traditional propositional methods, such as decision tree learners or logit models. Alternatively, statis-

tical relational learning algorithms estimate models on multi-relational data (also known as multi-

relational data mining, MRDM). Most statistical relational learning algorithms come from the field of 

inductive logic programming (ILP) [41] and derivatives. ILP systems dealing with classification tasks 

typically adopt the covering approach of rule induction systems [63]. ILP suffers from the high computa-

tional complexity of the task because the algorithm has to search all the relations and all the relationships 

between the relations [30]. Other MRDM techniques that are not based on logic formalisms [15, 35] have 

been proposed, but they suffer from similar problems and are not yet suitable for large data sets that typi-

cally need to be analyzed in marketing and Customer Relationship Management (CRM) settings.  

Markov logic networks (MLNs) have recently been suggested as a significant step forward in this 

field [9]. The method draws on Markov Random Fields and ILP and is able to handle larger data sets 

compared to earlier ILP implementations such as FOIL [53]. The analysis of social network data is one of 

the potential application fields of MLN [55], although we do not know of any application of MLNs to 

large social networks to date. The need to consider  network effects in customer modeling as well as the 

use of new machine learning methods has been discussed in the literature (see Gupta et al. [22] for an 

example). 
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1.2 Contribution of this paper 

The prediction of customers’ churn or buying decisions is important to marketers, in particular in service 

industries. In this paper, we analyze whether WOM has an impact on customer behavior or not. Based on 

the data set, we analyze if customer churn or game purchasing decisions of individuals in previous peri-

ods have an impact on the churn or purchase decisions of their neighbors, i.e., other customers whom the 

target customer interacted with either via a voice call, short message service (SMS), or multimedia mes-

sage service (MMS). We compare the predictive accuracy of MLNs to that of a standard discrete choice 

model ignoring social network information, and a propositionalization approach, i.e., a logit model with 

aggregate information about the social network of a customer. Propositionalization applied to social net-

work data describes a way to include lagged neighbor covariates as predictors of a discrete choice model. 

It has been discussed in general, but we do not know of related work on social network data. The analysis 

is based on anonymized calling data from a telecom provider. 

Our contributions are as follows: First, we develop a Markov logic network for the churn and 

purchase prediction in a large-scale customer network. This is the first paper where MLNs are applied to 

data from a large-scale social network. Second, we propose and evaluate an approach to propositionaliza-

tion addressing the specific needs of social network data. Third, we provide results comparing MLNs and 

propositionalization with a traditional logit model ignoring information about communication neighbors 

as a benchmark. The logit model resembles the type of models that are often used in CRM [50].  We 

found the churn behavior of a customer’s neighbor has a significant positive impact on predictive accura-

cy (+8%) and sensitivity (+20%) of churn models, which provides evidence that the intensity of commu-

nication can be used as an observable variable for WOM. We are not aware of any other work that esti-

mates the effect of WOM on churn from call data. Interestingly, the effect on sensitivity in our analysis of 

purchase of games was lower than that of churn (a 8.46% vs. a 19.57% increase in sensitivity), although 

such customers are much more connected. These results do not necessarily carry over to other products or 

industries, but they provide evidence for the effect that WOM can have in specific industries. 
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In the following section we discuss churn and the related WOM literature. Section 3 provides an 

overview of statistical relational learning and propositionalization. Section 4 introduces the research de-

sign and the data, and Section 5 summarizes the results. Finally, Section 6 provides a summary and con-

clusions. 

2 Related Literature on Churn and WOM 

There are different strands of literature that are relevant to this paper. In this section we discuss related 

literature on churn and WOM. One of the central steps of customer churn management is to determine the 

reasons for churn and to predict the potential churners. One approach is customer satisfaction surveys 

[47]. Call quality, pricing options, coverage area, customer service, and image are important factors of 

customer satisfaction that impact the duration of a customer relationship [4]. However, such surveys may 

fail to find the real reasons of churn and they may even be misleading in some cases. Kon [36] found that 

in one specific survey, 80% of the churners had described their satisfaction level as either “satisfied” or 

“very satisfied” within the 12 months before their switching. Reichheld emphasizes the danger of this 

“satisfaction trap” and states that “What matters is not what customers say about their level of satisfaction 

but whether the value they felt they’ve received will keep them loyal” [54].  

Several authors emphasize the role that word of mouth (WOM) plays for a customer’s churn or 

buying decision. WOM has extensively been studied in the marketing literature [2, 5, 20, 21, 40, 62, 65, 

66]. Studies have shown positive WOM to be an outcome of high customer satisfaction [59]. There is also 

a relation between customer tenure and the tendency of customers to engage in word of mouth. For exam-

ple, East et al. [12] found that the recommendation (positive word of mouth) is the prevailing reason for 

switching services and that the recently acquired customers recommend more frequently than the existing 

(long-term) ones. An empirical study which targets the German energy sector shows that the switchers 

give more positive WOM about their new supplier in comparison to the ones who stay. Another finding of 
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the same study is that the referral switchers (i.e., the ones who are affected by WOM in their switching 

decision) tend to give even more WOM than any other switchers [65].  

In addition, a huge body of literature has emerged on the analysis of social networks. Recent re-

search on marketing applications has focused on models for simulating the spread of information in a 

social network [8, 24, 34, 61] or suggests techniques to maximize influence in social networks [27]. 

Leskovec et al. [45] analyze the data of an online incentivized viral marketing program, in which the re-

tailer uses a recommendation referral program. Here, customers could generate recommendation e-mails 

upon purchase of an item and both the sender and the receiver of the email receive a 10% discount or 

credit upon the receiver purchasing the same item through a referral link. This allowed the measurement 

of explicit WOM recommendations. They propose a simple model for the propagation of recommenda-

tions in the network.  

Dasgupta et al. [6] have recently looked at churn prediction based on networked customer data. 

The authors study the evolution of churners in an operator’s network of pre-paid customers and the pro-

pensity of a subscriber to churn out of a service provider’s network depending on the number of ties 

(friends) that have already churned. In pre-paid networks there is typically little information available 

about the customers. Therefore, they focus only on the network topology and use a spreading activation-

based technique to predict potential churners based on assumptions on how influence propagates in the 

network. In their discussion they encourage the use of the so-called collective classification for respective 

churn prediction tasks, which uses node-level attributes and link information, an approach that we pur-

sued in this paper. We focus on post-paid customers, which allows us to leverage information about cus-

tomers as is typically done in churn prediction [1, 13, 44, 49, 58]. For example, Neslin et al. [50] found 

that logit models and decision tree learners performed best in a tournament on churn prediction with dif-

ferent models from 33 participants. Those methods have already performed well in earlier comparisons 

with a wider variety of data sets [48] and is also used in our paper as a benchmark. In summary, much of 

the literature in social network analysis focuses on the topology of networks, but does not leverage addi-

tional attributes of nodes and edges available in most applications. 



 8 

Apart from this, there has been an active community focusing on machine learning techniques 

and predictive modeling for networked data, in particular research in statistical relational learning [7, 9, 

10, 14-17, 55]. This literature does not explicitly discuss predictive modeling based on social network 

data, but networks can be analyzed in a multi-relational data model so that the techniques are potential 

candidates for churn prediction based on customer networks. We discuss this approach in more detail in 

the next section. 

3 A Brief Review of Statistical Relational Learning and Propositionalization  

Conventional discrete choice models and data mining algorithms are defined for analyzing data in a single 

relation only [31, 32]. Statistical relational learning (SRL) has been an emerging research topic in the data 

mining community in recent years. “SRL attempts to represent, reason, and learn in domains with com-

plex relational and rich probabilistic structure” [18, p. 4]. There are two main strands in the literature. One 

approach is to develop relational learning extensions of existing machine learning algorithms so that they 

can handle the instances directly in a multi-relational representation without any transformation. The se-

cond approach is to convert the multi-relational representation of data into a single table [38]. Following 

Kramer [37], we understand propositionalization as a transformation of multi-relational learning prob-

lems into attribute-value representations, i.e., into a single table amenable for conventional data mining 

methods, also referred to as propositional learners. 

3.1 Statistical Relational Learning and Markov Logic Networks 

Most propositional learners are based on statistical learning methods such as decision trees, neural net-

works, and generalized linear models. In contrast, approaches that learn from multiple interrelated tables 

are referred to as multi-relational approaches, as the patterns they find are expressed in the relational for-

malism of first-order logic. Most SRL algorithms come from the field of inductive logic programming 

(ILP). ILP aims at inductively learning relational descriptions (in the form of logic programs as a restrict-
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ed first-order logic) from examples and background knowledge [28, p. 6]. In contrast to propositional 

logic, first-order logic allows for predicates (i.e., properties of objects or relations) and quantification. 

Based on the known background knowledge and a set of examples represented as a logical database of 

facts, an ILP system derives a hypothesized logic program. Unlike many other machine learning ap-

proaches, ILP has traditionally dealt with multi-relational data. ILP tools can be applied directly to multi-

relational data to find first-order rules from relational data. However, much of the art of ILP lies in the 

appropriate selection and formulation of background knowledge to be used by the selected ILP system. 

Therefore a considerable amount of expert knowledge is required. In addition, ILP algorithms suffer from 

the high computational complexity of the task because the algorithm has to search over all the relations 

and all the relationships between the relations [30].  

SRL is an approach to combine the power of both ILP and statistical learning [17]. It attempts to 

learn and reason from complex relational and probabilistic structures. There have been a number of ad-

vances in SRL including conditional random fields [60], relational dependency networks [51], Bayesian 

logic programs [29], relational association rules, regression trees in first-order logic, and relational deci-

sion trees [7]. 

Markov logic networks (MLN) have become very popular in statistical relational learning recently 

[55]. MLNs are a collection of formulas from first-order logic, to each of which a weight is assigned. In 

other words, it describes a probabilistic logic. Ideas from estimating Markov networks are then applied to 

learn the weights of the formulas. The vertices of the MLN graph are atomic formulas, and the edges are 

the logical connectives used to construct the logical formula. A Markov network is a model for the joint 

distribution of the properties of underlying objects and relations among them. A detailed description of 

MLNs can be found in Richardson and Domingos [55]. The authors explicitly mention collective classifi-

cation (i.e., classification on multiple relations) and social network analysis as potential applications of 

MLNs. In our analysis, we use Alchemy (http://alchemy.cs.washington.edu/), an open source software 

tool for learning MLNs from data.  

http://alchemy.cs.washington.edu/
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3.2 Propositionalization 

There are two main approaches to propositionalization in the literature, logic-oriented and database-

oriented literature. Logic-oriented propositionalization constructs features from relational background 

knowledge and structural properties in terms of first-order rules. Some systems are based mainly on logic 

programming in order to construct the attributes of the final table and so represent a logic-oriented ap-

proach. SINUS and its previous version LINUS by Lavrac can be mentioned as examples of logic-

oriented approaches [42], as well as RSD systems [67]. These systems construct clauses to derive binary 

features for propositional learners. This approach performs well on structurally complex but small prob-

lems [42, 43]. Business databases present different challenges than those found in the classical showcase 

areas of ILP and logic-based propositionalization, such as molecular biology or language learning [39]. 

Whereas the latter often involves highly complex structural elements, perhaps requiring deep nesting and 

recursion, business databases are usually structurally simpler. 

RELAGGS is a database-oriented approach to propositionalization, which was developed by 

Krogel and Wrobel [39]. A wide range of aggregation functions is used when joining relevant tables. For 

numerical values, minimum, maximum, average, and sum operations are used. For nominal attributes, 

each possible value of an attribute may be counted. Another example of database-oriented propositionali-

zation is the two-step transformation system (POLKA) of Knobbe et al. [35]. Like RELAGGS, POLKA 

constructs a single final table for propositional learners using joins and aggregate functions. Both methods 

differ in the way that a large number of relevant tables are joined. In our application, we have a simple 

relational schema with customers referencing their neighbors via call detail records, so that the join is 

straightforward. Krogel et al. [39] showed experimentally that database-oriented propositionalization 

performed better than ILP-based systems both in speed and accuracy. Similar results were found in [38, 

39].  
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4 Data and Research Design 

4.1 Data for the Churn Prediction 

For our analysis, we had available anonymized historical data for about 120,000 customers and their call 

detail records for the time period from January to October 2008. The sample consists of all target and 

non-target customers from a selected geographic region and all their neighboring customers in the call 

graph. Information about whether and when a customer churned was available. Here, a churner (or posi-

tive) is defined as a customer who gives notice about their intent to cancel the contract and does not re-

voke his decision by extending his contract at some point afterwards. A non-churner (or negative) is a 

customer who does not give notice at any time. Note that there are customers who give notice and con-

duct a contract extension afterwards, i.e., they do not churn in the end. In our data, 6,800 customers told 

the phone provider that they wanted to cancel the contract (notification). Roughly 1,000 revoked their 

decision afterwards by extending their contracts. We knew for 645 customers that their contracts were 

deactivated and they definitely left the provider. For the remaining 5,135 customers the contracts were 

neither deactivated nor extended within the time frame of the available data. In this paper, we have decid-

ed to focus on predicting those customers who churned, i.e., left the service provider. We selected a data 

sample consisting of 2,645 customers containing 645 positives and 2,000 negatives. This was also about 

the size of data sets which could be handled by Alchemy. We were not able to run Alchemy effectively 

with much larger data sets. The negatives were selected such that they had positives as neighbors in the 

call graph. From those, the 2,000 with the highest communication levels were chosen. 

Each customer is described by about 70 attributes, from which we select the 32 best attributes 

based on a ranking by information gain. Attribute selection is a standard procedure in data mining [33]. 

These attributes included attributes on the usage of voice and different data services, number of callees, 

handset equipment, contract type, contract duration, and trends in usage; company interaction data, such 

as the number of contract extensions, tariff migrations, and interactions with the service center; and cus-
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tomer demographics, including age and gender. Some customer attributes are subject to change over time 

due to customer behavior (e.g., usage patterns), while some stay constant (e.g., gender).  

In addition to the attributes describing a customer, we had monthly aggregates of the call detail 

records available for the same time window of January to October 2008. The dataset contained monthly 

sums of call minutes, calls, short messaging service (SMS) messages, and multimedia messaging service 

(MMS) messages. Among the 2,645 customers in the subsample there are about 18,000 communication 

edges from January to October 2008. 600 edges could be found among the 645 positives, 9,500 among the 

2,000 negatives, and 8,000 edges with a churner and a non-churner involved in all ten months. For our 

analysis, we consider the average connection strength of the edges across all months. This results in 4,250 

edges in total, thereof 60 among the 645 positives, 2,050 among the 2,000 negatives, and 2,140 edges 

connecting a churner with a non-churner. Figure 1 (a) and (b) shows a visualization of connections be-

tween positives and customers with a game download in the test data set. The graphs could suggest that 

game downloading is contagious because there are many connections between persons downloading 

games, while this is less so in the case of churn, where there are typically only connections between a few 

pairs of churn customers. In our results section, we comment on the impact of neighbors downloading 

games on other neighbors’ purchase decision. 
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(a) Churn: positives only (b) Game: download positives only 

Figure 1: Visualization of selected connections (a) between positives, and (b) between  

game download customers 

We split the set of 2,645 customers in training and test datasets such that it was stratified with re-

spect to the number of positives and edge counts. Training and test data contained 1325 and 1320 custom-

ers, respectively. Positives were assigned according to their notification date; customers who notified 

before July 1, 2008 were assigned to the training data, while those who notified afterwards were assigned 

to the test data. Negatives were allocated to training and test data randomly, subject to a stratified distri-

bution of communication edges. In other words, training and test data contained about the same numbers 

of edges strictly among positives, strictly among negatives, and from positives to negatives. For all posi-

tives we used the attribute values (e.g., voice usage or number of callees) during the month in which they 

cancelled. For negatives we used the attribute values in the month of July as a representative month. 

4.2 Data for the Prediction of Game Download 

In this set of analyses, we focus on customers who download games either via HTTP or WAP. In the da-

taset there were 8,020 customers with a game download (i.e., positives). There were connections from 

these to 24,130 customers who did not download a game (i.e., negatives). In order to yield a manageable 
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dataset for Alchemy, we selected 1,500 positives and 1,500 negatives. For our analysis, we again consid-

ered the average connection strength of the edges across all months. Among the selected 3,000 customers 

there were 7,950 edges – 1,865 among positives, 2,127 among negatives, and 3,950 between both groups 

across all months.  

 The 3,000 customers were split into training and test data randomly subject to a stratified 

distribution of positives and negatives. Training and test data contained a similar amount of edges among 

positives, among negatives, and from positives to negatives. There were 1,950 and 2,020 communication 

edges in the training and test data, respectively, thereof 429 exclusively among download customers. In 

addition, there were 3,950 communication edges from customers in the training dataset to customers in 

the test dataset. From the 70 available customer attributes we selected again the 32 best ones based on 

information gain with respect to the target variable.  

4.3 Research Design 

To overcome the effect of unobserved factors such as churn due to unsatisfactory service, we compared 

MLN and propositionalization and benchmarked it against logistic regression on the same data set. More 

specifically, we compared the following settings (T): 

Setting Methods Relational attributes 

T1 Logistic regression  None 

T2 Logistic regression with  

propositionalization 

Call minutes and call counts  

T3 MLN Call minutes and call counts 

 

4.3.1 MLN Models 

In MLN, attributes can be represented as predicates of the form A(x,v), where A is an attribute, x is an 

object, and v is x’s value of A. The class attribute is described as C(x,v), where v is x’s class. In terms of 
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MLN, classification is the problem of inferring the truth value of C(x,v) for all x and v of interest (i.e., 

whether a customer churns) given all known attributes A(x,v), such as age or voice usage. In propositional 

classification, C(xi,v) and C(xj,v)  are assumed to be independent for all xi and xj given the known A(x,v). 

In our example, the churn of customer xi would be considered independent of the churn of other custom-

ers. In relational learning problems, more specifically in collective classification, dependencies between 

objects can be represented by relational predicates of the form R(xi, xj) (Richardson et al. 2009). 

We model the collective classification task in MLN using two types of rules. The first models the 

traditional relationship between an instance’s class and its attributes: A(x,v) => C(x,v), where => refers to 

a logical implication. In addition, we model an influence relationship between connected customers’ 

churn behavior saying that customer xj is likely to churn if customer xi did already and xi  and xj have 

called each other s times or s minutes, respectively, and vice versa. This is described in a rule C(xi,v)  

Connection(xi, xj, s) => C(xj,v), where Connection(xi, xj, s) represents a relation R(xi, xj) between xi and xj 

of strength s (either call minutes or call counts).  

4.3.2 Propositionalization of Social Network Data 

Propositionalization typically deals with multiple interrelated relations. On the one hand, the relational 

structure of social networks is easier as we are only interested in customers and their neighbors. On the 

other hand, there is typically more information on how people interact with each other, and consequently 

there are more possibilities of how connections among customers are modeled. An analyst can look at the 

number of voice minutes, calls, or SMS messages sent in a period of observation in order to determine a 

metric for closeness. If there are multiple periods, one might just look at average communication strength, 

assuming that links among customers are fairly stable, or weight more recent communication higher than 

that of previous periods. We have used different metrics for connection strength in our research design, as 

is described in the next section. 

After one decides how connection strength is measured, it is still unclear which neighbors are taken 

into account. One might look at the average churn rate of the closest k neighbors, the closest k% of the 
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neighbors, or all neighbors. A fundamental problem with database-oriented propositionalization has been 

referred to as degree disparity [25]. It describes the systematic variation in the distribution of the degree 

with respect to the target variable. Due to the degree disparity, any aggregated attribute may correlate 

highly with the target variable, although the target attribute and the individual, non-aggregated attribute 

are statistically independent from each other. For example, when taking the number of churn neighbors 

into account for churn prediction, a customer with a large number of neighbors would also have more 

churn neighbors than a customer with just a few neighbors. Finally, one can model different relational 

attributes such as average churn rate, churn rate weighted by connection strength, and/or aggregates of a 

number of additional relational attributes, such as the number of contract extensions of neighbors over 

time. 

In our results in the next section, we report on (i) the average churn rate of all neighbors, (ii) the av-

erage churn rate of the five “closest” neighbors according to connection strength, and (iii) the weighted 

churn calculated as the sum of positives weighted by connection strengths.  

5 Results 

In this section, we present the results of our study, comparing propositionalization approaches and MLN 

models for predicting the target variables churn and game download behavior. Starting with the former, 

we discuss the results of nine different settings and compare them with the baseline model, i.e., the results 

of the logistic regression. We have analyzed six settings (T) with propositionalization (T2.x) and three 

settings for MLNs (T3.x). For propositionalization, we analyze, first, the average churn rate of all neigh-

bors, based on the number of calls (T2.1) and the number of voice minutes (T2.2), second, the average 

churn rate of the five “closest” neighbors according to connection strength, based on the number of calls 

(T2.3) and the number of voice minutes (T2.4), and third, the weighted churn calculated as the sum of 

churning neighbors weighted by connection strength, based on the number of calls (T2.5) and on the 

number of voice minutes (T2.6). The difference among MLN settings is again the way in which connec-
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tion strength is measured. T3.1 and T3.2 include relational attributes representing the average connection 

strength between two customers, measured in number of calls and call minutes, respectively, and T3.3 

includes both. 

For each setting, we present and discuss (i) the model results, (ii) some standard metrics, and (iii) 

the Receiver Operating Characteristic (ROC). Due to confidentiality and privacy restrictions we only 

provide a summary of the model results. The resulting models for the logistic regression (benchmark 

model) as well as for all propositionalization settings showed that three groups of customer attributes 

were especially important: First, three attributes describing the duration of the actual and past contract 

periods; second, two attributes about the products and services a customer utilizes; and third, two revenue 

and usage-related attributes. In the logit model, all these seven customer attributes were significant, i.e., 

of those all but one variable about a customer’s utilized products were highly significant (<0.001).  

In contrast, for propositionalization settings T2.1 to T2.4 we found only five significant customer 

attributes in the respective logit model, of which several had lower statistical significance levels than in 

the benchmark model. Especially attributes about the past and present contract periods, which were all 

highly significant in the benchmark logit model, were here either less significant or not significant at all; 

one attribute remains as significant (<0.001), one was less significant than before (=0.001), and one 

turned out to be not significant at all. The propositionalized relational attribute describing the churn of 

neighbors in those settings showed high significance (<0.001). Results for propositionalization settings 

T2.5 and T2.6 are similar to those of the benchmark model with regard to customer attributes. The rela-

tional attributes, i.e. the weighted churn aggregates in those settings were significant, however, with lower 

significance levels than in settings T2.1 to T2.4. The MLN models are weighted Horn clauses. The higher 

a weight, the more important the rule is. However, at the current state of MLN research, the weights of a 

learned rule cannot be translated into a significance level or a probability. 

The standard metrics we adopt are defined as follows. Let TP be the true positives, TN the true nega-

tives, FP the false positives, and FN the false negatives. Accuracy measures the proportion of predictions, 
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both for true and false positives that are correct. Precision measures the proportion of the claimed true 

positives that are indeed true positives. Sensitivity measures the proportion of true positives that are cor-

rectly recognized as true positives. Specificity measures the proportion of false positives that are correctly 

recognized as false positives. Then the above measures are defined as:  

 accuracy = (TP+TN)/(TP+FN+TN+FP), 

 sensitivity =  TP/(TP+FN), 

 specificity =  TN/(TN+FP), and 

 precision = TP/(TP+FP). 

% 

Logistic Propositionalization MLN 
 

 

(T1) 

Full 

Cnt 

(T2.1) 

Full 

Min  

(T2.2) 

Top 5 

Cnt  

(T2.3) 

Top 5 

Min  

(T2.4) 

Weighted 

Cnt 

(T2.5) 

Weighted 

Min 

(T2.6) 

Cnt 

 

(T3.1) 

Min 

 

(T3.2) 

Cnt & 

Min 

(T3.3) 

Accuracy 77.03 85.44 85.44 84.89 84.91 77.86 78.17 81.52 81.52 81.52 

Precision 54.15 79.09 79.09 76.58 77.63 57.37 58.42 75.33 75.33 75.33 

Sensitivity 34.7 54.37 54.37 53.12 53.12 34.06 34.69 35.31 35.31 35.31 

Specificity  90.6 95.04 95.04 94.79 95.1 91.89 92.09 96.3 96.3 96.3 

TP 111 174 174 170 170 109 111 113 113 113 

TN 905 953 953 947 950 918 920 963 963 963 

FP 94 46 46 52 49 81 79 37 37 37 

FN 209 146 146 150 150 211 209 207 207 207 

Table 1: Results for churn prediction 

Table 1 presents the results for churn prediction. The overall accuracy and precision were highest for the 

propositionalization settings T2.1 to T2.4 followed by the MLN settings T3.1 to T3.3. In terms of sensi-

tivity, propositionalization settings with churn aggregates (T2.1 to T2.4) dominate all other settings, 

whereas MLN settings did not perform better than the benchmark in this respect. For churn prediction, 

sensitivity is typically more important than specificity, since it is more costly to lose a valuable customer 

than to act on a non-churner. Note that the sensitivity of the benchmark logistic regression was rather low. 

In contrast to propositionalization with churn rates, propositionalization with weighted churn aggregates 

(T2.5 and T2.6) showed no improvement compared to the benchmark. There was no difference in perfor-

mance among the three MLN settings. There was no difference between the two alternative relational 

attributes call counts and call minutes in the performance of MLNs and propositionalization. In addition 
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to the logistic regression, we have used a C4.5 decision tree learner for the benchmark model, as it is of-

ten used as an alternative to the logistic regression [52]. The results of both were similar with respect to 

predictive accuracy and sensitivity. To summarize the results in terms of standard metrics, the proposi-

tionalization approach performs best, followed by the MLN models. Especially in terms of overall sensi-

tivity, the best propositionalization approach outperforms the best MLN model.  

While the overall hit rate is expressed by the sensitivity of a model, the Receiver Operating Char-

acteristic illustrates the trade-off between hit rate and error rate, i.e., sensitivity and specificity. The ROC 

can be represented by plotting the fraction of true positives (TPR = true positive rate) vs. the fraction of 

false positives (FPR = false positive rate) for every possible cutoff. Figure 2 shows the ROC curve of the 

three MLN settings and the logistic regression. MLNs dominate the logistic regression, and there is no 

difference among the three MLN settings T3.1 (Voice_Cnt), T3.2 (Voice_Min), and T3.3 

(Voice_Cnt_Voice_Min) so that the respective ROC curves overlap.  

 

Figure 2: ROC curves of three MNL settings and the logistic regression 
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Figure 3: ROC curves of propositionalization settings and the logistic regression 

Figure 3 shows that propositionalization with aggregate churn rates also dominate the logistic re-

gression. Settings T2.5 (Prop_Weighted_Voice_Cnt) and T2.6 (Prop_Weighted_Voice_Mnt) with the 

number of calls and voice minutes weighted, however, are similar to the benchmark logistic regression. 

Finally, Figure 4 compares the ROC curves of the best MLN setting (T3.3, 

Best_MLN_Voice_Cnt_Min) and the best propositionalization setting (T2.1, Prop_Voice_Cnt_full) to 

that of the benchmark logistic regression (T1, Logistic). It illustrates that although propositionalization 

with churn rate aggregates (T2.1 to T2.4) has the highest overall sensitivity and accuracy, MLNs yield 

comparable results for smaller samples.  

Overall, despite the superiority of MLN’s sophisticated theoretical framework, propositionaliza-

tion performed surprisingly well, and MLN could not beat the performance of those models (T2.1). While 

both are on the same level in terms of ROC, propositionalization performs significantly better in terms of 

overall sensitivity. However, both propositionalization and MLN clearly outperform the baseline model.  
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Figure 4: ROC curves of MLNs, propositionalization, and the logistic regression 

5.1 Game Download 

We were interested in ways how information about neighbors can help predict alternative target variables 

and looked at game download, since people with game downloads appear to be well connected (see Fig-

ure 1 (b)). Game download showed exceptionally many connections among the positives, suggesting that 

there might also be an influence of customers on each other. Therefore, we also analyzed the nine differ-

ent settings for customers’ game downloading behavior and report the results as a comparison. Data prep-

aration for game download was done as described in Section 4.1. We present and discuss (i) the model 

results, (ii) some standard metrics, and (iii) the Receiver Operating Characteristic (ROC). 

The resulting indicated that three groupings of customer attributes were important: 1) two attrib-

utes  indicating whether or not a customer signed up for specific online services; 2) three attributes 

providing  information on the duration of the actual and past contract periods; and 3) one general usage-

related attribute. For the propositionalization settings T2.x, customer attributes showed the same signifi-
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cance level as the benchmark model, except for one attribute about the duration of the present contract 

period, which was not significant for the benchmark logistic regression but significant for all proposition-

alization settings (=0.01). Attributes about the utilized services as well as the general usage-related at-

tribute showed high significance (<0.001) in the settings with propositionalization, whereas attributes 

about past and present contract durations were less significant (=0.01). While the relational attributes, 

i.e. average churn rate aggregates in settings T2.1 to T2.4, were highly significant (<0.001), the 

weighted churn aggregates in T2.5 and T2.6 were not significant.  

 Regarding the standard metrics, the overall accuracy and precision were again highest for the 

propositionalization settings T2.1 to T2.4 and the three MLN settings T3.1 to T3.3, which all yield com-

parable results. In terms of sensitivity, propositionalization settings with average churn aggregates of all 

neighbors (T2.1 and T2.2) were best, closely followed by the MLN settings. All nine settings performed 

better than the benchmark logistic regression. Table 2 shows the results in detail. 

% 

Logistic Propositionalization MLN 
 

 

(T1) 

Full 

Cnt 

(T2.1) 

Full 

Min  

(T2.2) 

Top 5 

Cnt  

(T2.3) 

Top 5 

Min  

(T2.4) 

Weighted 

Cnt 

(T2.5) 

Weighted 

Min 

(T2.6) 

Cnt 

 

(T3.1) 

Min 

 

(T3.2) 

Cnt & 

Min 

(T3.3) 

Accuracy 61.06 69.72 69.72 67.38 67.38 65.04 65.17 68.0 68.0 68.0 

Precision 61.16 69.6 69.6 67.49 67.49 64.99 65.2 68.25 68.25 68.25 

Sensitivity 62.7 71.16 71.16 68.39 68.39 66.8 66.67 68.43 68.43 68.43 

Specificity  59.38 68.24 68.24 66.35 66.35 63.24 63.65 67.56 67.56 67.56 

TP 474 538 538 517 517 505 504 518 518 518 

TN 440 505 505 491 491 468 471 502 502 502 

FP 301 235 235 249 249 272 269 241 241 241 

FN 281 218 218 239 239 251 252 239 239 239 

Table 2: Results for game download prediction 

Figure 7,                    Figure 8, and Figure 9 in the Appendix  show the ROC curves of the MLN settings, 

the propositionalization settings, and a comparison of the best MLN and propositionalization settings with 

the benchmark model, respectively. MLNs perform slightly better than the logistic regression, and there is 

also no difference among the three MLN settings so that the respective ROC curves overlap (Figure 7). 

Propositionalization settings with aggregate churn rates (T2.1 to T2.4) dominate the logistic regression (                   
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Figure 8). Settings T2.5 and T2.6 with the number of calls and voice minutes weighted did not, however, 

perform better than the benchmark. So, while one could think of weighting as an appropriate approach to 

address the level of interaction between two customers, this did not have a strong effect. The comparison 

of the best MLN and propositionalization settings with that of the logistic regression shown in Figure 9 

illustrates that propositionalization settings with churn rate aggregates for all neighbors (T2.1 and T2.2) 

perform best and MLN settings yield only slightly better results than the benchmark for smaller samples. 

Overall, both propositionalization and MLN outperform the baseline model. Again, propositional-

ization performed surprisingly well, and MLN could not beat the performance of those models (T2.1).  

5.2 Comparison of Results for Churn and Game Download 

Interestingly, the impact of relational attributes was highly significant for predicting game download as 

well, but had a lower effect on sensitivity and the ROC curve compared to churn prediction. Just by add-

ing information about the average churn rate of neighbors, the sensitivity of the churn prediction model 

increased by almost 20 percentage points. In contrast, the sensitivity in the game download model only 

increased by roughly eight percentage points. The impact on overall accuracy was almost equal (8.4 vs. 

8.66 percentage points difference in accuracy in churn and game download, respectively). Looking at 

Figures 1 a) and b) illustrating the connections among the positives in both samples, this is somewhat 

surprising as the connections suggest that game download is more contagious than churn. Three observa-

tions from Figures 5 and 6 might provide an explanation. In Figure 5, we have plotted the communication 

edges among negatives ((a), (c)) and between positives and negatives ((b), (d)) for both churn and game 

download. In addition, the degree distributions are shown in Figure 6. 

First, while positives are less connected than negatives for the churn scenario, it is the opposite 

way for game download. Second, there are more connections from positives to negatives than connections 

among negatives in the game download sample. In contrast, there are fewer connections from positives to 

negatives than from negatives to negatives in the churn sample. 
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Churn Game Download 

  

(a)  Churn: negatives only (c) Game download: negatives only 

  

(b) Churn: positives to negatives (d) Game download: positives to negatives 

Figure 5: Visualization of connections a) between negatives (without churn), b) from positives with game 

download (squares) to negatives (triangles), and c) between negatives (without game download), and d) from 

positives with game download (squares) to negatives (triangles)  
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Third, churn positives are less common than customers with a game download in the sample. 

Overall, positives are much less connected in the churn sample than in the game download sample. How-

ever, relatively speaking, there are more connections strictly among positives or negatives than connec-

tions between positives and negatives for churn than for game download, i.e. the set of positives and the 

set of negatives are relatively speaking more separated in the churn sample than in the game download 

sample.  

 

Figure 6: Degree distribution of churners (left) and game download customers (right) 

In summary, churn was rare in our sample, and if there was churn in the neighborhood of a cus-

tomer, this event was a powerful predictor for churn of this customer, as compared to game download, 

which is relatively widespread in particular communities. This provides evidence for the impact that word 

of mouth has on churn decisions. 

6 Conclusions 

Churn prediction is among the most important tasks of marketing departments in today’s services indus-

tries, and improving the prediction of churn can have a considerable impact on a firm’s profit, as effective 

customer retention measures can prevent customers from churning [50]. Word of mouth (WOM) has long 
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been recognized as a determinant for churn. Traditional discrete choice models, however, do not ade-

quately allow the influence of peers through a social network to be modeled. Research in statistical rela-

tional learning has developed a number of new and powerful techniques. While original approaches such 

as Inductive Logic Programming have suffered from their high computational complexity, Markov Logic 

Networks allow for the analysis of larger data sets and can be considered a significant advancement in 

statistical relational learning. Social network modeling has been proposed as an application domain, alt-

hough we are not aware of any publication where MLNs have been applied to large-scale social networks.  

In this paper, we developed an MLN for churn prediction based on the anonymized data set of a 

mobile phone provider and found the MLN to have significantly higher predictive accuracy (+8%) and 

sensitivity (+19.7%) than the benchmark logistic regression. Similar results on accuracy were achieved 

when predicting game download, but the increase in sensitivity was lower. In addition, we have proposed 

a straightforward approach to the propositionalization of social network data. We found this approach to 

provide even better results than MLNs in terms of increasing sensitivity of the benchmark logit model. 

Note that the size of our dataset was restricted due to the computational effort of learning MLNs. Given 

that propositionalization is simpler, it is a viable alternative to marketers, in particular as it can be applied 

to much larger data sets than MLNs, which can lead to even better results.   

From a marketing point of view, our results suggest that customer WOM significantly affects 

churn and cross-buying decisions of their neighbors in the mobile phone industry. To our knowledge, this 

is the first paper estimating the impact of WOM on churn. Empirical work measuring the effect of WOM 

is challenging. There is an issue of homophily and endogeneity due to other sources influencing the churn 

decision of a customer. For example, there might be other, unobserved friends or factors influencing a 

churn decision. Also, we only focus on dyadic relationships between a customer and his neighbors in the 

network and did not take into account communication among neighbors and the influence of communities 

of connected customers. For the churn sample, neighbors who churned were rarely connected, so that we 

do not expect a significant effect of this on our churn analysis. This might, however, matter in other situa-

tions and it is a worthwhile research question that we leave for future research.  
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8  Appendix 

 

Figure 7: ROC curves of three MNL settings                   Figure 8: ROC curves of propositionalization settings  

and the logistic regression for game download                 and the logistic regression for game download 

 

 

Figure 9: ROC curves of MLNs, propositionalization, and the logistic regression for game download 

 


