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Abstract 
Service-based IT infrastructures serve many different business processes on a 
shared infrastructure in parallel. The automated request execution on the 
interconnected software components, hosted on heterogeneous hardware 
resources, is typically orchestrated by distributed transaction processing (DTP) 
systems. While pre-defined quality-of-service metrics must be met, IT providers 
have to deal with short-term demand fluctuations. Adaptive prioritization is a way 
to react to short-term demand variances. Performance modelling can be applied to 
predict the impact of prioritization on the overall performance of the system. In 
this paper we describe the workload characteristics and particularities of two real-
world DTP systems and evaluate the effects of prioritization regarding overall 
load and end-to-end performance measures. 
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1. Introduction 
Today’s services industries make use of distributed transaction processing (DTP) 
systems to run their day-to-day business. DTP systems coordinate the automated 
execution of business processes on shared IT infrastructures, often incorporating 
hundreds of basic service components hosted on numerous heterogeneous 
hardware resources. The automated request execution on such business processes 
without human interaction (referred to as workflows in the following) is typically 
orchestrated by a transaction processing (TP) monitor [1-3]. 
Capacity planning and performance management issues of such applications are 
business-critical for IT service providers as the DTP systems have to satisfy 
quality-of-service goals pre-defined in service level agreements (SLAs). 
Important performance measures include end-to-end workflow response times, 
throughput, and availability. While proactive planning of such a meshwork of IT 
components is already difficult, the demand variations in dynamic business 
environments make it even more challenging. The request ratios on the single 
workflows that are served in parallel (often referred to as workflow mix) as well as 
the overall demand of the system in a certain time period change over the year, the 
week, and also throughout the day.  
In our research, we focus on the performance and capacity planning for DTP 
systems. We analyzed two systems of our industry partner, a telecommunication 
provider. The workload is stochastic:  tariff changes as well as new products, 
marketing campaigns, activities of competitors, and seasonality influence the 
number of requests that has to be served.  For example the number of new 
customer activations strongly increases in the weeks before Christmas.  In 
addition to this user-initiated Online Transaction Processing (OLTP) workload, 
the DTP systems have to serve maintenance and management requests created by 
internal IT components such as the CRM system, billing, or backup strategies. 
These requests are typically fed into the system as batch jobs during the night as 
the OLTP workload is relatively low during this time period.  
While many seasonalities and daily cycles in the workload can be forecasted with 
traditional time series methods, some short-term variations due to marketing 
campaigns or unforeseen moves of the competition are hard to predict based on 
historical data. Often, IT service providers deal with this problem by over-
provisioning their system capacities, allowing for short demand peaks. As a 
consequence, the resulting resource utilization is quite low, as low as 10% in our 
systems under study. 
An alternative way of dealing with short-term demand variances is adaptive 
workflow prioritization at runtime. By giving those workflows with unforeseen 
demand peaks a higher priority, costly capacity buffers can be reduced as 
performance measures of these workflows will be improved. However, of course, 
the effect of prioritization has an impact on the other workflows on the shared IT 
infrastructure. It is therefore important for the IT service providers to understand 
the impact of possible prioritization scenarios on the performance measures of the 
overall system. As benchmarking and testing of such complex IT infrastructures is 
often very costly and time-consuming, performance modelling can be used to 
estimate the impact.  
In the remaining of this paper we first describe the particularities of the two real-
world DTP systems of our industry partner. In chapter three, we then characterize 
the workload specifics of these systems in detail. After an overview of 
performance modelling in this area in chapter four, we evaluate the effects of 



3 

prioritization strategies on the overall system performance in chapter five. Related 
literature is discussed in chapter six. In parts, we draw on and extend previous 
work in [4]. The main focus of the extension lies in the revision of the 
prioritization levels and their influence on the overall system performance. 

2. Overview of DTP Systems 
Modern enterprise IT infrastructures consist of a wide variety of applications and 
systems. A DTP system supports the flexible composition of distributed software 
services in such heterogeneous environments to workflows, and provides an 
implementation of automated business processes.  
Typically, several workflows are hosted on a shared IT environment, using the 
basic IT service components collectively. For example the validation of a credit 
card account might be such a basic service component that can be incorporated in 
several workflows of a shop system. Basic IT components might call others to 
fulfill their functionality, such as queries to a CRM or billing system. These 
interwoven call structures lead to a complex meshwork of interconnected IT 
services.  
In practice, most automated business processes are executed on TP monitors such 
as Oracle Tuxedo [1], the Vitria suite [2], TIBCO Business Works [3], and a 
growing number of BPEL engines. The main purpose of a TP monitor is to ensure 
the ACID properties (atomicity, consistency, isolation, and durability) of the 
single transaction steps of a workflow while managing the automatic request 
execution across the shared IT infrastructure [5]. Coordinating this process across 
numerous services, running on many different software components, hosted on 
heterogeneous hardware resources, and connected by possibly unreliable 
communication links, is an essential problem in distributed transaction 
management. TP monitors face this challenge by rollback mechanisms and the 
two-phase commit protocol [6]. 
Technically, TP monitors are often implemented as a Message Oriented 
Middleware (MOM) to organize the eradication of all jobs. Figure 1 shows a part 
of a sample MOM. Service components send messages to the MOM; the MOM 
itself sends messages to the affected service components.  The communication 
between service components contains information about the start of a new job or 
the termination a job. This information is saved in the message queues. If a 
service component sends a message that it can process a new job, the MOM sends 
the next job to the service component. This job can be the first job in the queue, 
based on the dispatching routine of the MOM. DTP systems also provide other 
queueing and dispatching disciplines such as last-in-first-out, or highest-priority-
first. The latter requires the system administrator to define priorities for different 
types of workflow requests. 
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Figure 1: Structure of a message-oriented middleware 

3. Workload of DTP Systems 
Many enterprise systems, which serve a national market (in a single time zone), 
exhibit a characteristic workload pattern, with an increasing number of requests in 
the morning and a decline in the evening. While there are yearly seasonalities for 
customer-centric applications, which are bound to the sales cycles of a business, 
much of the variation can be explained by daily cycles.  
Figure 2 shows the observed workflow workload pattern of an industry partner. 
The daytime consists of an OLTP workload initiated by human interaction on a 
web portal; its amount and arrival time can only be estimated but not be directly 
controlled by the IT service provider. During the night, several internal systems 
such as the billing or the CRM system run batch jobs on the DTP systems. 
Daytime end-to-end response times of most workflows are the primary metric in 
SLAs as they will be observed by the customers. We will therefore focus on the 
daytime workload for our studies. 

 

 
Figure 2: Typical workload scenario on a sample workflow of the DTP system of 
a telecom provider during the day 

  
The workload of the workflow in Figure 2 is representative for most of the other 
workflows, which we have analyzed as well, however individual workflows have 
varying peak demand times. The result is a dynamically changing workflow mix 
throughout the day.  
It is important to understand the expected overall load and the workload mix of 
the DTP systems for a planning period to meet adequate capacity planning 
decisions.  
We applied the traditional time series analysis such as linear regression [7] or 
triple exponential smoothing [8] to extract seasonal patterns in the workload. 
While such forecasts represent most of the variation throughout the day, certain 
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days exhibit outliers or short-term demand peaks due to some unforeseen events. 
Such events could be due to successful marketing campaigns or product failures, 
which lead to a larger volume of complaints and other types of customer 
interaction with the system. 
These short-term demand peaks cannot be predicted based on historical data and 
are one of the reasons for the over-provisioning of DTP systems, because the 
decision makers want to avoid the risk of violating pre-defined SLAs. As peak 
demands on single workflows are typically short and only impact one or a few 
workflows, adaptive prioritization is one possibility to address these short-term 
demand variances. 
The workflows of the systems under study include different pre-defined SLAs 
regarding response time. The ones with direct customer interaction (like activation 
of a new mobile) are more business critical than other workflows. The goal of 
prioritization in our study is to guarantee the pre-defined SLAs for the business 
critical workflows even in times with short-term demand-peaks without strong 
over-provisioning.  
Prioritization of workflows in such complex systems has side effects to overall 
system performance, and will impact the performance of other workflows. If the 
operator decides to adapt the priority of certain workflows in such situations, it is 
important to understand the impact of such changes on the overall system. 
Discrete event simulation and queueing networks are two methods to estimate and 
predict this impact. 
 

4. Performance Modelling 
Modelling real-world systems typically has two major goals: gaining insight into 
the actual system and predicting future system behavior [9]. Moreover, 
performance models support decision makers in their planning and optimization 
tasks by identifying possible bottleneck hardware components (referred to as 
service components in the following) or predicting the expected workflow 
response times of a workload scenario.  

4.1. Overview 

We apply Queueing Theory (QT) to model DTP systems. QT is a well-studied 
methodology for the analysis of systems with service stations and waiting lines. 
Its applications range from manufacturing system planning over computer 
processor design to multi-tiered web applications [9, 10]. 
The complex interdependencies of service components in modern DTP systems 
result in end-to-end workflow response times that develop in a non-linear way up 
from a certain amount of load. The strength of QT is, that once a valid 
performance model is built, this non-linear response time behavior can be 
predicted. Thus, it is possible to evaluate the impacts of many different load 
scenarios to the overall performance of the systems. 
Queueing Network Models (QNMs) represent a system as a network of service 
stations with queues that serve requests of several classes. Figure 3 shows one 
exemplary QNM with three single service components. A single service 
component consists of one or more identical parallel servers with a joint waiting 
room, the queue. Jobs arrive at the queue with an arrival rate λ and have an 
expected service time E(S). Both the arrival rate and expected service time are 
modelled via distributions - in our case the exponential distribution. If the servers 
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of a service component are all occupied, jobs have to line up in the queue and wait 
for their execution.  
 

 
Figure 3: Queueing Network Model 
  
Three types of queueing networks are distinguished:  
 

• Open Queueing Networks, 
• Closed Queueing Networks, and 
• Mixed Queueing Networks 

 
When the jobs enter the system from outside and leave it after being served, we 
speak of an Open Queueing Network Model. In Closed Queueing Networks, the 
jobs circulate inside the system without leaving it. If jobs of both characteristics 
are combined in a model, it is called a Mixed Qeueuing Network Model. DTP 
systems can be modelled as Mixed QNMs.  
One way to solve QNMs is to use exact or approximated algorithms. 
Alternatively, one can solve QNMs by the means of simulation. In contrast to 
analytic algorithms, the simulation engine can estimate performance measures for 
models that include state-dependent real-world objectives like adaptive 
prioritization strategies or state-based configuration adjustments [12]. In this 
paper we evaluate prioritization strategies in QNMs and therefore use Discrete-
Event Simulation to estimate the performance measures of the QNMS. 

4.2. Simulation 

In a Discrete-Event Simulation, the state of each station in the network changes 
only at discrete points in time, for example, when a job enters the system, a job is 
dispatched at a service component, or a job leaves the system after completion. 
Incoming jobs to a workflow are generated based on the distribution of the arrival 
rate on this workflow. Similarly, the event for dispatching jobs at a service 
component is generated using the distribution of the service time for this service 
component. 
In order to analyze our real-world DTP systems, we make use of a custom 
developed discrete-event simulation engine in our experiments. The simulation 
engine is part of our Performance Modelling Tool suite PerMoTo [13], designed 
for the evaluation of DTP systems.  
Figure 4 shows the structure of a single service station called node in the 
simulation. Each node comprises three parts: an input section, a server section, 
and an output section. The input section is responsible for receiving incoming 
jobs; storing them in a queueing buffer and releasing them from the queue by 
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realizing a certain queueing discipline, e.g. a prioritization discipline that 
discriminates the jobs according to their priority level. In the example of Figure 4 
the third job in the input section is the job with the highest prioritization level 3 
and will be served next. The service section simulates the service execution on the 
node. The time needed to process the job on this station is specified by the input 
parameters. As soon as a job finishes its execution, the outgoing section forwards 
the job according to pre-configured outgoing connection probabilities to a 
subsequent node. 
 

 
Figure 4: Simulation node implementation: input, service, and output section 
 
The usage of prioritization in a DTP system requires that priority levels are 
introduced and all workflows of the system are matched into one of those priority 
classes. Possible hints for this classification might be the business-criticality of the 
workflow, the direct performance feedback of this single workflow to the 
customer or the risk, that a related SLA might be violated.  

5. Prioritization Experiment 
5.1. Characteristics of the systems under study 

We analyzed the effect of prioritizing workflows that are at risk to violate SLAs 
due to short-term demand peaks. The effect of prioritization comes along with 
harms to the performance of other workflows run on the shared IT infrastructure. 
Therefore, we analyzed two DTP systems of a telecom provider; System Alpha 
and System Bravo, referred to as A and B. 
System A is the central IT backbone for workflows related to the management of 
the retail customer segment including billing, customer data acquisition, network 
provisioning, and phone number management. The technical implementation is 
done based on the Transaction Monitor product Bea Tuxedo. Requests on the 
system are initiated by internet portals, shop-based applications, and call centers. 
System A serves 18 business critical workflows. The individual tasks of the 
workflows are achieved by accessing 90 different service components. The length 
of the workflows varies: while a single one is very short as it consists of only 
three service component steps, the other ones are more complex and contain up to 
53 single service calls. The length of the workflows varies as well - while one 
contains only three single service component steps, others call up to a maximum 
of 89 services. Single service component types are typically called by more than 
one workflow; one of the services is called by each of the 18 workflows. 
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System B is the integration backbone for workflows related to the management of 
products hosted by our industry partner but originally sold as prepaid 
telecommunication or DSL packages by external third-party companies. Therefore 
many external applications are integrated in the workflows that cannot be 
controlled by our industry partner. System B serves two main classes of 
workflows: order-entry workflows initiated by customers over a voice portal, and 
workflows called by internal IT systems of the partner companies like billing or 
tariff administration. Technically, B is based on a customized version of the TP 
monitor product Tibco Business Works. 
Table 1 summarizes the characteristics of System A and B. 
 
Table 1: Characteristics of Systems A and B 

System A System B 
System characteristics 

Amount / Min-Max Amount / Min-Max 

Overall number of workflow types in system 18 15 

Overall number of service components in system 90 35 

Overall service components call in system 209 90 

Number of service component types in single workflow 3-53 1-17 

Number of service component steps in single workflow 3-89 1-19 

Number of workflow types calling single service component type 1-18 1-7 

 

5.2. Analyzed Workload Data 

The overall demand but also the workflow mixes of DTP systems change 
dynamically. For our industry partner, for example, the weeks before Christmas 
are the top-selling period of the year. Thus, during this time the overall workload 
on the systems is significantly higher than throughout the rest of the year.  
The DTP systems of our industry partner have a release cycle of three months that 
affects the arrival rates of all workflows handled by the system. Figure 5 shows 
the workload mix of the eight major workflows for three consecutive releases of 
one of the systems, which we analyzed in our research. The arrival rates vary 
independent from each other over the three releases. While the request ratios of 
workflow WF A1 increased, those of the other workflows declined. Hence, the 
trend for the arrival rate development of one single workflow needn't be correlated 
to the trends of the other workflows of a DTP system.  
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Figure 5: Workload mix shares of the workflows of DTP System A over three 
release cycles 

 
While the overall amount of requests increased by 33% during Release R2, it 
decreased by nearly 10% during Release R3 compared to Release R1. In general 
such workload mix changes have different reasons, such as marketing campaigns, 
tariff changes, introduction of new products, activities of the competitors, etc. 
Figure 6 shows the daily workload of workflow WF A2 of the same system over 
three weeks in June 2008. It starts on a Monday and goes until the third following 
Sunday. We have a daily sample workload with nightly batch jobs and a 
characteristic usage pattern over the day. In addition, we can observe a weekly 
seasonality: the workload is significantly lower on Sundays. These effects are 
typical for workflows on this system. 
 

 
Figure 6: Three week plot of the daily sample workload of workflow on the DTP 
system 
 
In order to estimate model parameters, we have analyzed the log data of 30 
weekdays in June and July 2008 generated by the TP monitors. Timestamps and 
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request IDs in the log files allow for estimating the input parameters that are 
relevant for queueing network models and simulation, most notably arrival rates 
on a workflow level and service times on a service component level, as well as 
end-to-end response times. We modelled the service times and interarrival times 
as exponential distributions leading to M/M/c queueing networks as each service 
component in our systems has up to 8 parallel workers. Note that we have put 
considerable effort in data cleansing and outlier detection, which were due to 
inconsistent log syntax, rollbacks, and calls to external systems components. 
We modelled the two DTP systems as QNMs with 140 and 126 service 
components resp. The services are provided by parallel servers: some up to eight. 
Apart from service components with very short response times, the maximum 
response time of one service component in the examined period was 5.46 seconds 
for system A and 2.53 seconds for system B. The mean response workflow time 
for system B is 5.13 seconds and much shorter than for system A (37.81 seconds). 
The main characteristics of the two parameterized QNMs are described in Table 2. 

Table 2: Key characteristics of the Queueing Network Model of Systems A and B 
System A System B 

Queueing Network Model Characteristics 
Amount / Min-Max Amount / Min-Max 

Number of classes (i.e., workflows) 18 15 

Number of stations (i.e., services) 140 126 

Number of parallel workers in station 1 - 8 1 - 6 

Min - Max response time on service component level [sec] 0.01 - 5.46 0.051 - 2.53 

Mean response time on workflow level [sec] 37.81 5.13 

Min - Max response time on workflow level [sec] 4.41 - 248.26 0.01 - 36.06 

5.3. Experimental Results 

In our experiments, we evaluated three different scenarios for both DTP systems: 
 

• A base scenario, 
• an increased load scenario, and 
• a prioritization scenario. 

 
The base scenario represents the actual configuration and load of the DTP system. 
We therefore calculated the respective model parameters from the historic log 
files of the DTP systems with the help of a custom implemented Log Analyzer 
Tool. The increased load scenario is an extension of the base scenario where the 
relative workload mix remains constant but the absolute number of requests is 
increased for all workflows in a linear way up to 600% of the initial value. This 
scenario can be applied for detecting possible bottleneck candidates of the 
systems for higher loads. In addition to the increased load scenario, each 
workflow has an assigned priority level in the prioritization scenario. The 
respective workflow priority levels are determined with respect to the risk of 
violating a SLA when assuming the higher workload of the increased load 
scenario. Therefore, the prioritization scenario will show the impact of 
prioritization levels on the overall system’s performance. 
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5.3.1. Base Scenarios 

We modelled the base scenarios of the two DTP systems as open and closed 
QNMs in order to evaluate the predictive accuracy of both QNM types for DTP 
systems.  In addition, we applied a DES model that matches the parameters of the 
open QNM. During our experiments, we focused on the prediction of the end-to-
end workflow response times with the respective method. We then compared the 
predictions with the real-world response times calculated directly from the log 
files of the DTP systems. The predictive accuracy for all three models for System 
A was within  3% of the actual values, with a single outlier of around 11% [14]. 
For System B, the predictive accuracy was within 15%. Menasce et. al state in 
[10] that deviations of 10-20% for the predictive accuracy of response times are  
acceptable as they typically exhibit large variance due to system latencies.  

5.3.2. Increased Load Scenario of System A 

As described above, the increased load scenario models a request ratio of 600 % 
of the initial load of the basic scenario. This is also an indication of considerable 
over-provisioning of the current system. Table 3 presents the response times of 
the base scenario and the predicted ones of the increased load scenario for the 
eight most frequent workflows of System A. Furthermore, the relative deviation 
of the mean response times is given. 

Table 3: End-to-end workflow response times of the base and the increased load 
scenario of the eight most frequent workflows of System A 

Workflow Base 
Scenario 

Increased 
Load Scenario 

Response Time Deviation 
when compared to the 

Base Scenario 
 Response Time [sec] Response Time [sec] Deviation [%] 

WF A1 226.69594 309.53597 36.54 

WF A2 238.59284 442.65372 85.53 

WF A3 5.37035 5.34819 0.41 

WF A4 4.94283 4.94484 0.04 

WF A5 178.38016 389.23448 118.21 

WF A6 10.14721 10.14642 0.01 

WF A7 9.32691 9.33009 0.03 

WF A8 14.88074 14.87481 0.04 

 
As one can see, three of the workflows exhibit a significantly raised response time 
(plus 36.54%, 85.53%, and 118.21% respectively). These workflows share some 
basic service components that evolve as bottleneck for the increased load 
scenario.  
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Figure 7: Utilization development of the service components (SC) included in 
workflow WF A2 

 
The resulting utilization ratios of the service components called within workflow 
WF A2 are shown in Figure 7: when increasing the load stepwise from the base 
scenario up to the 600% of the increased load scenario, the utilization of service 
components 4, 31, and 40 increase significantly. At 300% load the utilization of 
Service 4 is already near 100%. Service components 4 and 31 are furthermore 
included in the two workflows WF A1 and WF A5 (see Figure 8). These 
bottleneck service components lead to the response time development of the three 
workflows shown above. 
 

 
Figure 8: Workflow sequence of workflows WF A1 (dotted arrows), WF A2 
(solid arrows) and WF A5 (dashed arrows) 

5.3.3 Prioritization Scenario of System A 

The business critical workflows of System A are the workflows WF A2, WF A6 
and WF A7 as they have direct costumer interaction. The request execution finish 
times are recognizable directly to the customers as e.g. their phone is activated 
then. In order to keep the respective waiting time acceptable even in times of load 
peaks (or even decrease it), we apply prioritization in order to increase the 
performance of the affected workflow WF A2. 
We use three priority levels in the model of our prioritization scenario: 1, 2, and 3, 
where 3 is the level with the highest priority. Consequently, workflow WF A2 
gets a priority of 3 to improve its response time while the other business critical 
workflows get a priority of 2 to keep the response time at the same level. The 
other workflows of System A get the lowest priority of 1. The configured priority 
levels are summarized in Table 4. 
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Table 4: Workflow priorities in the models of the prioritization scenario for 
System A 

System A Business 
Importance 

Prioritization 
Level 

WF A1 Not critical 1 

WF A2 Critical 3 

WF A3 Not critical 1 

WF A4 Not critical 1 

WF A5 Not critical 1 

WF A6 Critical 2 

WF A7 Critical 2 

WF A8 Not critical 1 

 
The resulting response time behavior of workflow WF A2 for this prioritization 
scenario is shown in Figure 9: while the dashed line shows the respective response 
time of the scenario without prioritization, the solid one marks the resulting 
response time behavior with priority level 3. As one can see, the maximum load 
was increased by applying the prioritization while the response time of WF A2 
was of higher performance. 
 

 
Figure 9: Response time development of workflow WF A2 when increasing the 
load with and without prioritization 
 
Of course, this prioritization has side effects to the other workflows as well. For 
example the response times of the other two workflows containing the bottleneck 
stations increase. Table 5 summarizes the resulting response times and the 
respective deviations for the eight most frequent workflows of System A for the 
different scenarios. Additionally, the response time deviation for the increased 
load scenario and the prioritization scenario when compared to the base scenario 
are given. 
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Table 5: Workflow response times of the eight most frequent workflows of 
System A for the base scenario, the increased load scenario, and the prioritization 
scenario  

Workflow Base 
Scenario 

Increased 
Load Scenario 

Response Time 
Deviation when 
compared to the 
Base Scenario 

Prioritization 
Scenario 

Response Time 
Deviation when 
compared to the 
Base Scenario 

 Response 
Time [sec] 

Response 
Time [sec] Deviation [%] Response Time 

[sec] Deviation [%] 

WF A1 226.69594 309.53597 36.54 1746.68921 670.50 

WF A2 238.59284 442.65372 85.53 244.96256 2.67 

WF A3 5.37035 5.34819 0.41 5.36824 0.04 

WF A4 4.94283 4.94484 0.04 4.94589 0.06 

WF A5 178.38016 389.23448 118.21 3611.83304 1924.80 

WF A6 10.14721 10.14642 0.01 10.14714 0.00 

WF A7 9.32691 9.33009 0.03 9.32798 0.01 

WF A8 14.88074 14.87481 0.04 14.88039 0.00 

 
Figure 10 shows the deviation of the end-to-end workflow response times over the 
three scenarios of the three workflows that are affected most. On the left hand 
side, the workflow WF A2 is shown. As described above, the highest priority 
level 3 was assigned to this workflow. Furthermore, the workflows WF A1 and 
WF A5 are displayed as they suffer most from the introduced prioritization. The 
left bar shows the initial average response time at the base load (100%). The 
middle and right bars represent the predicted response times of the increased load 
scenario and the prioritization scenario respectively. 
When compared to the base scenario, the response time of WF A2 increases by 
85.5% for the increased load scenario. As effect of the prioritization scenario, the 
response time of this workflow is nearly reduced to the base level again despite 
the increased load: the response time is increased only by 2.67% when compared 
to the base scenario. Low prioritized workflows suffer of course from the 
introduced prioritization: the response time of workflow WF A1 increases from 
36.5% to 670.5% when compared to the base load; the response time of WF A5 
from 118.2% to even 1924.8%.  
However, this increase of the end-to-end response times of the two low-prioritized 
workflows has no impact to the visibility of the system performance to the 
customers as these workflows are not business critical. The other workflows of 
System A are not concerned at all by the prioritization of workflow WF A2. 
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Figure 10: End-to-end workflow response time deviation of the three most 
affected workflows (WF A2, WF A1, and WF A5) over the three scenarios 

5.3.4. Experimental Results of System B 

In addition to the analysis of System A as described above, we evaluated System 
B in the same way. Although System B serves nearly the same number of 
workflows (15 compared to 18), the workflows in System B consist only of a third 
of different service components. That leads to more interdependencies in the 
workflows than in System A. Additionally many applications of external partners 
are included which cannot be directly affected by the prioritization in the DTP 
system. 
For System B, we prioritized the workflow WF B4 with highest priority as it 
coordinates the activation of new customers. The priorities of the 8 most frequent 
workflows of B are shown in Table 6.  

Table 6: Workflow priorities in the models of the prioritization scenario for 
System B 

System B Business 
Importance 

Prioritization 
Level 

WF B1 Critical 2 

WF B2 Critical 2 

WF B3 Not critical 1 

WF B4 Critical 3 

WF B5 Not critical 1 

WF B6 Critical 2 

WF B7 Not critical 1 

WF B8 Not critical 1 

 
Again, we evaluated the three scenarios as described above. Table 7 summarizes 
the resulting end-to-end workflow response times and the deviations to the base 
scenario. While six workflows seem to be unaffected by the load increase, the 
workflow WF B4 develops a response time deviation of 18.2%. Again, the 
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performance of WF B4 can be increased by the prioritization and the response 
time deviation decreases to 17.6%. WF B8 suffers most from the side effects of 
the prioritization – the response time deviation increases from 28.8% to 117.0%. 
The responsible IT service managers have to make the decision whether the 
relatively small performance gain for WF B4 justifies the performance decrease of 
WF B8. So, in certain situations, even prioritization might not be an option and 
more capacity is required to make sure that no SLAs are violated. 

Table 7: Workflow response times of the eight most frequent workflows of 
System B for the base scenario, the increased load scenario, and the prioritization 
scenario  

Workflow Base 
Scenario 

Increased 
Load Scenario 

Response Time 
Deviation when 
compared to the 
Base Scenario 

Prioritization 
Scenario 

Response Time 
Deviation when 
compared to the 
Base Scenario 

 RT [sec] RT [sec] [%] RT [sec] [%] 

WF B1 0.25758 0.25674 0.327 0.25674 0.327 

WF B2 0.25401 0.25317 0.328 0.25317 0.328 

WF B3 0.43748 0.44141 0.897 0.44141 0.897 

WF B4 13.30888 15.72755 18.173 15.65380 17.619 

WF B5 0.01870 0.01869 0.075 0.01869 0.075 

WF B6 0.01843 0.01842 0.075 0.01842 0.075 

WF B7 0.01868 0.01868 0.000 0.01868 0.000 

WF B8 8.07691 10.40152 28.781 17.52653 116.996 

5.5. Summary of the Experimental Results 

Prioritization can be successfully applied to react on short-term workload peaks 
during runtime. The overall effects of the introduced priority levels of our 
experiments can be seen for workflow WF A2 as depicted in Figure 11: the 
assignment to the highest priority level decreased the end-to-end workflow 
response time of WF A2 considerably. In the specific case of our experiment, the 
decreased workflow response time reaches nearly the time of the base scenario 
with a rather low workload. Furthermore, the overall load that the systems under 
study could handle within a certain performance level could be increased. 
In System B the improvement of the prioritized workflow WF B4 is too small to 
justify the further increase in response time of WF B8. The cause is the complete 
different structure of the workflows as they integrate many external applications 
that cannot be controlled by the prioritization. So the use of prioritization is no 
general answer for short-term demand peaks of workflows in DTP systems. 
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Figure 11: The introduction of the priority levels in our experiment had two 
dimensions for workflow WF A2: an end-to-end workflow response time benefit 
as well as an improvement of the overall workload that the system was able to 
handle  

6. Related Work 
For IT managers it is important to gain an understanding of the systems 
performance at a certain load level. To analyze the impact of different load 
conditions some authors have run experiments with synthetic workload generation 
[15]. To allow for a comparison with other systems one needs to use benchmarks, 
like the ones of the Transaction Processing Performance Council [16]. The 
characteristics of real-world demand distributions have been discussed in a 
number of recent publications [17-19]. 
For DTP systems experiments are very expensive, time-consuming or even 
impossible at all. The infrastructure typically involves a large number of 
individual components and replicating this infrastructure in a laboratory setting 
with realistic workloads is very expensive. Performance modelling can be seen as 
an alternative or complement to experiments in the lab [20, 21].  
Queueing models have often been used for the performance prediction. Published 
applications of queueing network models (QNMs) to distributed systems that we 
know of are restricted to rather small applications, such as three-tier web services 
[10, 22-24]. Urgaonka et al. have recently applied QNMs for predicting the 
performance of multi-tier internet services [25]. The systems were smaller and 
they could apply an exact mean value analysis (MVA) algorithm to solve closed 
QNMs with good predictive accuracy. 
We focus on the impact of workflow prioritization strategies on the performance 
measures of the overall DTP system. Our models are by far larger with over 
hundred of service components. Such models cannot be solved exactly by analytic 
solution methods because of the state space explosion in exact algorithms to solve 
queueing networks. Therefore, we solve the underlying queueing network by 
using a custom discrete-event simulation engine.  
Starvation is a main issue for prioritization in research in other areas. Most of the 
attempts use two queues for two different priority levels. For example in dynamic 
priority queueing [26] a counter guarantees that lower jobs are served at specific 
points in time. Threshold based priority queueing [27] uses the queue lengths as 
indicator for these points of time. Other queueing strategies use more than two 
queues [28].  
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7. Conclusions 
DTP systems are the IT backbone of today’s services industries. Proactive 
capacity and performance management is important, as pre-defined quality-of-
service metrics must be met. While the inherent complexity of DTP systems 
makes provisioning already challenging, the highly dynamic workload intensity 
and composition makes decisions even harder. Adaptive workload prioritization is 
one way to react to short-term workload peaks without the need for costly 
capacity over-provisioning. However, the effects of such prioritization strategies 
need to be known in advance in order to avoid SLA violations of the lower 
prioritized workflows. If prioritization is an acceptable option depends on the 
SLAs of other workflows. 
In this paper, we show how performance modelling techniques can be used to 
quantify the impact of different levels of prioritization. Such analysis is important 
to understand the effects of different prioritization settings on the system. We 
analyze the workloads of two real-world DTP systems of a telecom provider. 
Based on the data sets we experimentally evaluated the predictive performance 
using discrete event simulation and the impact of several prioritization strategies. 
We could show that prioritization can be successfully applied to guarantee the 
pre-defined SLAs for the business critical workflows during peak demand times, 
and that queueing models provide a low-cost method to analyze the impact of 
prioritization.  
In our future work we want to develop strategies and models for the automated 
detection of workload peaks during runtime. Proactively evaluated prioritization 
strategies can then be applied in order to overcome such short-term workload 
peak.  
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