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Abstract 

In today’s data centers, typically thousands of enterprise applications with varying workload 

behaviors are hosted. As energy usage is one of the key cost drivers in data centers, workload 

consolidation is increasingly used to host multiple applications on a single server, sharing and 

multiplexing a server’s capacity over time. To minimize the number of required, energy-

consuming servers, IT managers need to decide which applications should be combined on which 

server. For that purpose, typically application workload levels are predicted for a planning period 

such as a month in a defined granularity (e.g., over 5-minute intervals). Then integer programs 

are used to minimize the amount of required servers, while for each interval constraints ensure 

that the aggregated workloads of applications assigned to a server must not exceed a server’s 

capacity. As such problems are NP-hard and computationally intractable for data centers with 

hundreds of servers and fine-grained workload data, approximations are applied to find at least a 

good solution, often abandoning the chance to find the optimum. In this paper we propose a novel 

approach based on applying Singular Value Decomposition to the workload data to reduce the 

dimensionality of the problem by capturing workload features in order to make the problem 

computationally tractable. We interpret the coordinates of the time-series projections along the 

first right singular vectors as indicators for workload levels and complementarities and propose a 

model to solve the consolidation problem with these few indicators only. We evaluate the model 

using industry data. 
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1. Introduction 

In today’s data centers, typically thousands of enterprise applications like ERP modules or databases with 

complex and varying workload behaviors are hosted. Server virtualization based workload consolidation 

is increasingly used to raise server utilization levels. Server virtualization allows for hosting multiple 

virtual servers (or virtual machines (VM)) including application plus underlying operating system on a 

single physical server (target). A target’s capacity is then shared and multiplexed over time amongst 

VMs. As specifically energy costs account for 30–50% of the total data center operation costs, IT 

managers need to decide which VMs should be combined (consolidated) on which target to minimize the 

number of required, energy-consuming targets (Filani et al. 2008).  

Existing consolidation decision models typically first predict VM workload over a planning period such 

as a day or a month in a defined granularity (e.g., maximum workload over 5-minute intervals) based on 

past observations. Usually, workloads show recurring patterns on a daily or weekly basis. For example, 

payroll accounting is performed at the end of the week, while workload of an OLAP application has a 

daily peak in the morning when managers access their reports. More advanced consolidation models 

leverage these cycles by first determining representative e.g. daily VM workload profiles describing the 

workloads expected in each time interval (e.g. maximum over a 5-minute interval) for different resource 

types such as CPU and memory. Second, an integer program (IP) attempts to assign those VMs together 

on targets whose workloads are complementary, i.e. peaks are at different times of the day to smoothen 

and increase overall target workload in order to reduce the number of targets. One constraint per resource 

and interval ensures that the aggregated workload of VMs assigned to a target must not exceed the 

target’s capacity. 
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As an example consolidation model we describe the Static Server Allocation Problem considering 

Varying Workload (SSAPv) model published by Bichler et al. (Bichler et al. 2006). Suppose that we are 

given J VMs j, j  {1,… J} to be hosted by I or less target servers i, i  {1,… I}. Different types of 

resources k, k  {1, …, K}, may be considered and each target has a certain capacity sik of resource k. yi is 

a binary decision variable indicating if target i is used, ci describes the cost of a target (e.g. energy costs 

over a planning period), and the binary decision variable xij indicates which VM is allocated to which 

target. The planning period is divided into time intervals indexed by t={1, …, }. Let further ujkt describe 

how much capacity j requires of k in t. Techniques how to derive ujkt are described in (Bichler et al. 2008). 

The resulting consolidation problem is formulated in equation (1).  

min ciyi
i

s.t.

xij
i I

=1 j J

u jkt xij
j J

sik yi i I, k K,  t

yi,xij {0,1} j J,  i I
 

   (1) 

The objective function minimizes server costs, the first constraint ensures that each VM is allocated 

exactly once, and the second constraint ensures that the aggregated workload of multiple VMs does not 

exceed a target’s capacity.  

As the problem is strongly NP-hard, it cannot be solved optimally for larger instances, in particular as the 

number of constraints grows linearly with  multiplied by K (Garey et al. 1979). Therefore, usually 

intervals are coarsened to reduce the number of constraints, e.g., hourly workload intervals are used by 

taking maxima over 12 5-minute intervals. However, coarsening intervals reduces the problem size but 

also the ability to exploit workload complementarities and therefore impacts the solution quality. 

Additionally, there are inherent inefficiencies with time intervals: for a certain period of time an interval 

might be coarse for VMs with volatile workload during that period, while it might be unnecessarily fine-

grained for other VMs with smoother workload during that period (v.v. in other periods).  

In this paper we propose a consolidation model based on multivariate statistics to circumvent the 

computational problems resulting from fine-grained workload data as well as the trade-off between fine- 

and coarse-grained time resolution. In section 2 we apply truncated Singular Value Decomposition (SVD) 

to the original workload matrix (with workload time series as row vectors) and project the time series 

onto data points in the space spanned by the first right singular vectors of the SVD. In section 3 we give 

an interpretation of these points, where coordinates along the first right singular vector indicate workload 

levels, and subsequent coordinates indicate workload complementarities. Subsequently we develop a 

mathematical model to solve the consolidation problem with only the few indicators derived. In section 4 

we evaluate the model using industry data. Related work is discussed in section 5. In section 6 

conclusions are drawn and future work is discussed.  

2. Dimensionality Reduction of Workload Data 

The K -dimensional tuples describing VM workload time series can be represented as points in a K -

dimensional space, where a VM workload level of a resource k in t is indicated as a coordinate along a 

dimension (k, t). To reduce dimensionality, these points need to be projected into an E-dimensional space 

so that E<<K . We apply truncated SVD for that purpose as it is applicable to non-square and not full-

ranked workload matrices and fast SVD approximations exist. 
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Let R be the original J by K  matrix of J VMs, with time series (per k) of length   as row-vectors 

(elements of R are ujkt). Let U  V
T
 be R’s factorization using standard SVD, where R’s singular values e 

in  are ordered in non-increasing fashion, U contains the left singular vectors, and V
T
 contains the right 

singular vectors. The intuition of this factorization is that the right singular vectors are the axis of a new 

space, the associated singular values are scaling factors for these axis, and the row-vectors in U represent 

the coordinates of VM workloads in the new space. As an illustration, consider workloads ujkt of VMs j 

for  =2 (maximum during daytimes (t=1) and nighttimes (t=2)) for one resource k=1. The resulting data 

points are shown in Figure 1.  
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Figure 1: Workload Time Series Projections 

For each j, coordinates uj
1 

are calculated by perpendicular projection of the points onto u
1
, the first right 

singular vector. These coordinates show the best 1-dimensional approximation of the data because u
1 

captures as much of data variation as possible by one direction. VM coordinates uj
2 

regarding the second 

right singular vector u
2
 (u

2
u

1
) captures the maximum variance after removing the projection of the data 

along u
1
 (in this 2-dimensional example, u

2
 captures all of the remaining variance; in general the number 

of singular vectors equals R’s rank).  

What makes SVD practical is that variation below a particular threshold E can be ignored as the singular 

values associated with the right singular vectors sort them in “goodness” order with explained variation 

from most to least. This is the idea of truncated SVD where only the first E column vectors of U and the 

first E row vectors of V
T
 are considered.  

3. Dimensionality Reduction of Workload Data 

A  Principal Direction of Workload and Capacity Limits 

As a regression line running through the data points, u
1
’s direction approaches dimensions (k, t) with high 

aggregated workload where overload situations are likely to appear. Hence, we interpret u
1 

as major 

workload direction. Consider the scenario depicted on the left-hand side of Figure 2. 
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Figure 2:  Major Workload direction and Complementarity 
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The coordinate uj
1 

of a VM j along u
1 

fully describes j’s workload as e = 0  e > 0. Here, the problem 

can be solved as a variant of the bin-packing problem, with uj
1 

as object sizes, and the projection of the 

target capacity limits as bin sizes. We determine the bin sizes as follows: for each of the K  original 

dimensions the capacity constraint for resource k of target i is sik (for all t). Hence, for each target we 

obtain hyperplanes which form a convex polyhedron indicating its capacity limits (the grey lines in the 

pictorials show the hyperplanes of a target i=1; a rectangle in the 2-dimensional case).  

As a point (e.g. the aggregated uj
1
- coordinates of combined VMs) outranging this rectangle indicates 

target overload, the capacity limit is the intersection point Pi of u
1 

and a hyperlane of target i. Hence, i’s 

bin size equals ||Pi||, the Euclidian norm of the vector from origin to Pi.  

B  Workload Complementarities  

However, usually 2, 3, ... are non-zero and u
1
-based workload estimation is inaccurate. In the scenario 

depicted on the right-hand side of Figure 2, additional VMs A-D with equal uj
1 

but different uj
2
 

coordinates are considered. uj
2
 captures “distances” to u

1
, i.e., u

1
 workload approximation errors. 

Workload in t=1 (t=2) is overestimated (underestimated) by uj
1
 for VMs with positive uj

2
 (A and B); the 

opposite for VMs with negative uj
2
 (C and D). Hence, when combining VMs with positive and negative 

uj
2
 - for example A and D – A’s workload is overrated in intervals where B’s workload is underestimated 

and v.v., which reduces a target’s aggregated u
1
 workload estimation error. For example, when combining 

A and D, A’s higher workload in t=1 is compensated by D’s lower workload in t=1 in order to avoid 

overload due to u
1
 approximation errors. Therefore, VMs j with uj

2
-coordinates that add to zero can be 

considered as complementary.  

C  Model Formulation  

On the other hand, combining VMs with positive uj
2
 like A and B on a target further intensifies u

1
 

workload underrating in t=2. Let zi2 be the absolute sum over uj
2
 values of VMs assigned to a 

target. To avoid target overload when using a bin-packing formulation, zi2 must be added to the 

aggregated uj
1 

coordinates of assigned VMs to ensure sufficient capacity in all time intervals. The 

resulting IP entitled Thin Workload Consolidation Model (ThinWCM) is shown in equation (2). 

 
 

 

 

(2) 

 

 

 

 

 

 

Again, the objective is to minimize server costs and the first constraint ensures that each VM is allocated 

exactly once. The second constraint ensures that the aggregated u
1
 workload estimate of VMs assigned to 

a target plus zi2, their aggregated u
2
-coordinates do not exceed the target’s capacity limit. The third 

constraint calculates zi2 required in the second constraint (replacing the third constraint by two linear 

constraints is straightforward). Although not shown for reasons of clarity, variation along u
3
, u

4
, … is 

min ciyi
i I

s.t.

xij
i I

=1 j J

(u j
1 xij

j J

) + zi2 Pi yi i I

(u j
2xij )

j J

zi2 = 0 i I

yi,  xij {0,1} j J,  i I

zi2 > 0 i I
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considered just as variance along u
2
. For each u

e
, 2 < e < E, we introduce a constraint to determine zie, and 

add each zie to zi2 in the second constraint. As a conservative estimator for the remaining variance in u
E+1

, 

u
E+2

, … for each j we add the sum of j’s absolute coordinates uj
e
, e>E, to uj

E
, and ignore further 

complementarity in u
e
, e>E. 

4. Experimental Analysis 

From a professional data center we obtained data describing 5-minute averages for CPU and memory 

workload of hundreds of VMs over multiple months. Most of these workloads exhibit rather deterministic 

daily patterns without a significant trend. Thus, we consider daily workload profiles. We consider 

scenarios from 10 to 160 VMs to be consolidated, where each scenario consists of 10 arbitrarily chosen 

VM subsets. We assumed targets with identical capacity.  

In our experiments we analyze ThinWCM regarding solution quality (no. of targets) and computational 

time to solve the model using SSAPv as a benchmark. We set E=5 as over 90% of total workload variance 

was described in the directions of the first 5 eigenvectors. As SSAPv with 5-minute intervals (SSAPv 5 

minute) is intractable for larger problem instances, we solve SSAPv additionally for 1-hour (SSAPv 

hourly) and 1-day intervals (SSAPv daily). For 1-hour intervals we derive maxima over 12 5-minute 

intervals and for 1-day intervals workload is represented by its maximum. As mentioned before, the 

ability to exploit complementarities decreases with increasing interval lengths. Using SSAPv daily for 

each scenario an upper bound I for the number of targets was obtained; solutions of SSAPv 5 minute 

indicated lowest bounds. Calculations were performed on a 2.4Ghz Intel Duo, 4GB RAM using R for 

SVD calculation and Lp_solve v.5.5 (with defaults) as solver. Figure 3 shows the aggregated 

experimental results.  

    

Figure 3: Aggregated Experimental Results 

In the diagram on the left-hand side, for each model variant the average number of required targets per 

scenario is displayed as bar height. Missing bars indicate that no solution was computable within four 

hours. In most experiments, ThinWCM derived the optimal solution and dominated SSAPv hourly (and 

obviously SSAPv daily). The graph on the right-hand side of Figure 3 shows, on a logarithmic scale, the 

average computational time per scenario required to solve a model (for ThinWCM, time to compute the 

SVD is included). The exact model SSAPv 5 minute could be solved for up to 100 VMs, while SSAPv 

hourly could be solved for up to 120 VMs. SSAP daily and ThinWCM could be solved within a minute 

even for 160 VMs, with a much higher solution quality when applying ThinWCM instead of SSAPv daily. 

5. Related Work 

While there has been a lot of work on capacity planning in IS, little work has focused on efficient server 

consolidation. Closest in spirit to our work is the work by Bichler et al. (Bichler et al. 2008) and by Rolia 

et al. (Rolia et al. 2003), both use integer programs to exploit workload complementarities and 

statistically multiplex resources over time to minimize the amount of targets while ensuring sufficient 
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capacity in each time interval. They apply approximations such as time-slot coarsening and meta-

heuristics such as Genetic Algorithms (GA) to make their solutions computationally tractable. (Rolia et al. 

2005) and (Cherkasova et al. 2006) describe an approach based on statistical multiplexing using GA that 

penalize low target utilizations and target overload to minimize the number of targets. (Seltzsam et al. 

2006) also forecast workload profiles to multiplex server resources. (Urgaonkar et al. 2002) analyse best-

fit and worst-fit heuristics to bundle complementary services on common servers. 

In contrast to our work, we did not find approaches in the literature that apply multivariate statistics like 

SVD to reduce the dimensionality of the consolidation problem in order to transfer and solve the problem 

in a low-dimensional space.   

6. Conclusion and Outlook 

In this paper we introduced ThinWCM, a server consolidation model based on truncated SVD of workload 

data to derive indicators for VM workload levels and complementarities. In first experiments with 

industry data, ThinWCM found the optimal solution in most cases and solved much larger problems than 

decision models with a comparable solution quality.  

To the best of our knowledge, there is now previous work on how to apply multivariate statistics in order 

to solve IT problems such as server consolidation more efficiently. 

In our future research we plan to evaluate larger sets of workload traces and we will explore additional 

heuristics for server consolidation. Furthermore, as today IT service management suffers from the 

complexity of handling vast amounts of high-dimensional data, we plan to apply multivariate statistics to 

dynamically control and visualize data center workload with a few indicators only. In particular, we plan 

to predict trends and detect workload anomalies that require intervention like moving a VM to another 

target before an anticipated overload situations occurs. 
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