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Abstract

Iterative Combinatorial Auctions (ICA) have been get-
ting increasing attention both from researchers and in prac-
tice as they can increase efficiency of complex markets
with substitute or complement valuations. This paper sug-
gests several improvements for such auctions. We analyze
the impact of these rules along several performance mea-
surements using numerical simulations under various value
models. Based on these simulations we select successful
rules and consider their possible combinations.

1 Introduction

In Combinatorial Auctions several items are sold simul-
taneously and bidders can submitbundle bids. Such bids
declare a single ask price for a subset of items, and the bid-
der can either win the complete subset or nothing, but not
just a part of it. This solves theexposure problemof re-
ceiving just some of complement items, and consequently
suffering economical losses. Thus Combinatorial Auctions
allow bidders to better communicate their valuations, and to
achieve better market efficiency compared to, for example,
simultaneous multi-item auctions [5].

With growing adoption of electronic commerce, Combi-
natorial Auctions find broad practical applications. Exam-
ples include industrial procurement, selling of communica-
tion spectrum licenses, service contracts for bus routes and
airport slots. Combinatorial Auctions have been adopted,
among others, by Procter&Gamble, Wal-Mart, Bridgestone,
Ford, Compaq, Staples [6].

In a Combinatorial Auction withm items 2m bundles
can be built and used by bidders. This combinatorial
explosion results in two hard problems. The auctioneer
must solve theWinner Determination Problem (WDP), also
calledCombinatorial Allocation Problem (CAP). It lies in
selecting the most valuable combination of bids under re-
striction that each item can be sold only once. Bidders have
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to solve thePreference Elicitation Problem (PEP) - to find
most valuable bundles, which in the general case requires
evaluation of all2m bundles.

The CAP has been extensively studied in literature. It
can be interpreted as a weighted set packing problem (SPP)
- an NP-complete problem [10]. To solve CAP, along with
traditional methods of Operation Research, there exist sev-
eral CA-specific heuristics [17, 8]. For some restricted cases
the CAP can be solved in polynomial time [4, 16].

There is much less research addressing the PEP. In prac-
tice it combines with the bidder’s strategy, and therefore can
be solved analytically only under strict assumption regard-
ing bidders’ behavior, usuallymyopic best response bidding
[14].

An established method of mitigating the PEP is conduct-
ing of the auction in several rounds - Iterative Combinator-
ial Auctions (ICA). In each round bidders receiveprices and
optionally further information about the auction state (e.g.
provisional allocation). This information shall help bidders
to reduce bundle search space.

In this work we consider ICAs withlinear prices, where
ask price of a bundle is defined as a sum of individual item
ask prices. There are few theoretical results on linear prices
in ICA, and therefore we build our research on numerical
simulations. We base our tests on the RAD ICA design [9]
as it uses intuitive pseudo-dual pricing model, and suggest
several possible improvements on it. We analyze the impact
of each improvement separately, and define those which im-
prove the auction results. Further we measure the impact of
the selected set of improvements on the auction outcome.

The rest of this work has the following structure. Sec-
tion 2 presents theoretical background on ICA. Section 3
describes suggestions for improved ICA rules. Section 4
describes simulation framework and parameters. Section 5
analyzes obtained results and practical applicability of the
new ICA rules. Finally Section 6 concludes the work and
discusses further research directions.



2 ICA with Linear Prices

We take a closer look at the CAP. LetK = {1, . . . ,m}
denote the set of items in the auction, indexed byk, and
I = {1, . . . , n} denote the set of participating bidders, in-
dexed byi. Let vi(S) ≥ 0 indicate the private valuation
of bidderi for a bundleS ⊆ K. For an allocationX, the
binary decision variablexi(S) indicates if bidderi’s bid on
bundleS belongs to this allocation, i.e.X = {xi(S)}. The
CAP has the following straightforward formulation. The
linear program maximizes the sum of winning bids under
the restriction that each item can be sold at most once.

max
xi(S)

∑
S⊆K

∑
i∈I

xi(S)vi(S)

s.t.∑
S:k∈S

∑
i∈I

xi(S) ≤ 1 ∀k ∈ K

xi(S) ∈ {0, 1} ∀i, S

(CAP)

The central problem in the auction design is that the CAP
requires valuesvi(S) for 2m bundles and for each bidder to
be known to the auctioneer. Technically it is impractical for
both time and space reasons. Furthermore there is a strate-
gic problem: bidders are reluctant to submit their true valu-
ations as they want to get goods cheaper, and prefer not to
reveal their true preferences.

ICA addresses this problem by using bid pricesbt
i(S) in

roundt instead of valuations to calculate the provisional al-
location. In each roundt, the set of active bidsBt is consid-
ered. LetBtk denote the set of all roundt bids, containing
itemk. xb are binary decision variables, indicating winning
state of corresponding bids:

max
∑

b∈Bt

bt
i(S)xb

s.t.∑
b∈Btk

xb ≤ 1 ∀k ∈ K

xb ∈ {0, 1} ∀b

(CAP ICA)

The resulting allocation is presented to bidders in each
round, and unsatisfied participants can react by submitting
higher bids and thus change the provisional allocation in the
next round to their favor.

Additionally to the provisional allocation, ask prices are
calculated and presented to bidders in each round. Differ-
ent pricing schemes suggested in literature fall into two big
categories: linear and non-linear, i.e. bundle prices. ICAs
with linear prices communicate ask price for each lot in the
auction separately. To determine a bundle ask price, the
bidder sums individual lot prices. In case of bundle prices,
individual ask price is defined for each bundle.

Duality theory provides an intuitive approach to pricing
[7]. If we consider dual LP to the linear relaxation of CAP

ICA, dual variables will yield pricespk for each item, indi-
cating cost of not awarding the item to the currently winning
bidder.Kb indicates the set of items in the bidb.

min
∑

k∈K
pt

k

s.t.∑
k∈Kb

pt
k ≥ bt

i(S) ∀b ∈ Bt

pt
k ≥ 0 ∀k

(CAP Dual)

CAP ICA is an integer LP, and the objective function of
the dual problem might be greater then the objective func-
tion of the CAP. Obtained prices in this case will be too
high. Therefore approximatedpseudo-dual prices are used
[9], which are inherently imprecise and therefore cannot
guarantee an efficient allocation. Only non-linear and per-
sonalized prices can fully and precisely describe the market
situation in a general case [3], however such pricing models
have practical problems.

As an iterative auction progresses, prices generally grow
until Competitive Equilibrium (CE) state is reached [15]. At
this point neither party (auctioneer and all bidders) wants to
make any changes to the allocation and prices, and the auc-
tion terminates. To stimulate truthful bidding, it is impor-
tant to approach CE prices from bottom, targetingminimal
CE prices. This requirement is reflected by the minimizing
objective function in (CAP Dual). Strictly speaking, only
an auction which guarantees outcome with VCG prices [2]
has truthful bidding as its dominant strategy. However in a
general case VCG prices are not reachable in apay-what-
you-bid ICA [12], and minimal CE prices are commonly
used as a target.

Resource Allocation Design (RAD) auction design pro-
posed in [9] is an ICA which uses linear pseudo-dual prices.
Bidders are required to outbid the ask prices by a minimum
increment. Winning bids from roundt − 1 are automati-
cally resubmitted into roundt. To enforce competitive bid-
ding and auction progress, RAD useseligibility rules: a bid-
der is not allowed to bid on an increasing number of items
in subsequent rounds. As pseudo-dual prices on individual
items can also fall in course of an auction, eligibility rules
alone do not guarantee termination. Therefore an additional
termination rule on identical allocation in two consequent
rounds is used.

2.1 CA Design Goals

To measure quality of an (Iterative) CA mechanism sev-
eral values are important.

Allocative efficiency is the most important benchmark
for (combinatorial) auction designs. It measures revenue



of all auction participants for the resulting allocationX in
relation to the maximum possible revenue for the optimal
allocationX∗. Important to note is that the efficiency does
not depend on prices, but only on the final allocation.

E(X) =

∑
S⊆K

∑
i∈I

xi(S)vi(S)∑
S⊆K

∑
i∈I

x∗i (S)vi(S)

Revenue Distribution shows how the overall surplus is
distributed between the auctioneer and bidders. It is mea-
sured relatively to the revenue of the efficient allocation. If
the auction outcome is not 100% efficient, part of the rev-
enue is lost. Auctioneer’s revenueR(X) is therefore de-
fined as:

R(X) =

∑
S⊆K

∑
i∈I

xbbi(S)∑
S⊆K

∑
i∈I

x∗i (S)vi(S)

Cumulative bidder revenue comprisesE(X) − R(X),
revenue loss is1− E(X).

Natural goal of the auctioneer is revenue maximization.
However bidders in the revenue-maximizing auction will
likely speculate and not bid their true valuations, or even
refuse to participate in the auction. Bidders’ strategies in
this case are complex, and it is generally impossibly to
achieve an efficient outcome predictably. Therefore mini-
mum CE prices, or VCG prices are usually used as design
target. Such prices minimize the auctioneers revenue for a
given allocation, but motivate truthful bidding.

Speed of Convergence measured in rounds is an impor-
tant characteristic for combinatorial auction designs. As
each round requires significant analytical effort from bid-
ders, the goal is to have less rounds.

Obviously increased minimum increment can reduce
auction duration. However there is a tradeoff with auction
efficiency: large price steps can quickly jump over bidder’s
valuation and prevent him from submitting a bid.

Price Monotonicity Pseudo-dual linear prices are subject
to fluctuations, as demand for different items varies. If a
previously highly requested item looses some of its attrac-
tion due to raised ask price, price calculation algorithm re-
flects this by assigning a lower ask price for next round.
However strongly fluctuating item prices can confuse bid-
ders and should be avoided.

We introduce a quantitative measure for the price
monotonicity error as a ratio of negative price changes
∆et,k, summed up over all rounds and over all items, to
the sum of all positive price changes∆pt,k.

m =
∑T

t=1

∑
k∈K ∆et,k∑T

t=1

∑
k∈K ∆pt,k

This calculation yields a monotonicity measure in the in-
tervalm ∈ [0, 1]. A monotonicity error of 0 corresponds to
a fully monotonic function whereas a value of 1 indicates
the maximum possible monotonicity error.

Clearly there is no “one-and-best” measuring method for
monotonicity error. Depending on the application, it may
be necessary to normalize it using various values besides
number of rounds and number of items (e.g. final price).
However our measurement allows for comparison of two
auction formats with respect to monotonicity error as long
as other settings are not changed.

Activity Rules are a standard way of forcing bidders to be
active in the auction from the very beginning, and prevent-
ing the ”snipe” strategy of waiting and submitting bids at the
last moment. Sniping is harmful for the auction efficiency
since prices evolve without information about bidders val-
uations. On the other side, excessively restrictive rules can
prevent bidders from bidding in some cases and negatively
impact the auction efficiency.

3 Proposals for Improvements

We propose several modifications to the original RAD
design, which are later tested in simulations. Most of these
modifications are generic, and can be applied to other ICA
designs.

Dynamic Minimum Increment calculates a minimum
increment for each item and in each round separately de-
pending on the competition rather than using fixed min-
imum increment through the auction and for all items.
Higher minimum increment while competition is high can
advance the auction faster, while lower increment when
only a few bidders are left shall guarantee good price granu-
larity. Consequently this rule shall reduce auction duration
without sacrificing the efficiency. Figure 1 illustrates the
model for price increment calculation, which we adopted
after several design iterations.

The x-axis indicates the number of bidders holding bids
that contain the item in question, and the y-axis shows the
corresponding increment value. Compared to a single min-
imum increment value in the RAD auction design, several
parameters must be defined by the auctioneer in this case.
The value ofminIncrementdetermines the minimal mini-
mum increment value, which is used when no competition
(zero or one bidders) exist on the item. The value ofmaxIn-
crementis the maximal possible minimum increment value



Figure 1. Dynamic minimum increment

for an item. The valueX defines minimal number of ac-
tive bidders, required to reach themaxIncrementvalue. Es-
pecially important for auctions with small number of bid-
ders is thecurvatureparameter (> 0). The calculation is
performed by interpreting the points(1, minIncrement) as
(0, 0) and(|X | , maxIncrement) as(1, 1) and then applying
the power functionxcurvature.

Having different minimum increments on different items
can certainly become too complex for bidders. This com-
plexity, however, can easily be reduced by implicitly includ-
ing the minimum increments into announced item prices for
each round.

Bundle Minimum Increment applies minimum incre-
ment not to each item in the bundle as defined by the RAD
design, but to the bundle as a whole. Suppose the minimum
increment value is set to 5 and we are interested in bundle
(ABC). Under RAD rules, the bidder would be requested to
bid 15 above ask price, 5 for each item in the bundle. Using
Bundle Minimum Increment, a single increment of 5 would
be applied to the whole bundle. This approach favors bids
for big bundles.

Old Bids Active rule implies keeping the bids from all
rounds active throughout the auction. As straightforward
optimization, we keep active only highest bid for each bid-
der and bundle.

Having higher number of bids (and, thus, better informa-
tion about bidders’ valuations) available for Winner Deter-
mination in late rounds of the auction shall help to find a
more efficient allocation.

The fact that bidders submit bids on bundles provides
evidence that they are interested in the respective item com-
binations at given bid prices. This interest shall a priori not
decline over time. Sooner or later, other item combinations

might certainly get more valuable as the auction progresses.
However this shall not invalidate previously submitted bids.
In case the rule is still seen as too restrictive by bidders, it
is possibly to make non-winning bids revocable.

Besides the expected positive effect on allocation effi-
ciency the rule also comes with a serious drawback. Keep-
ing all bids active blows up the size of the winner determi-
nation. Hence, once the rule is active, the size of feasible
auctions scenarios, i.e. the manageable number of items
and bidders, can get reduced.

Last-and-Final Bids rule is inspired from theiBundle
auction format outlined in [13]. It shall reduce efficiency
losses in situations where price increment steps are too high
for some bidders. Bidders are allowed to bid below the mar-
ket price if following conditions are met:

• Bid price is between the current ask price for the bun-
dle (without the minimum increment) and the mini-
mum bid price for the bundle (ask price plus minimum
increment).

• The bid is explicitly marked as last-and-final. For each
bundleS and each bidderi, only one last-and-final bid
is allowed. No further bids are accepted from bidderi
for bundleS.

Generally, higher minimum increment reduces the auc-
tion duration, but are more likely to result in efficiency
losses due to high price granularity. Last-and-final bids can
help to find a better compromise since bidders are allowed
to bid between increment steps. Therefore this rule can po-
tentially yield a faster auction progress without sacrificing
the efficiency.

Further advantage of this rule is the perceived fairness
for the auction design on the bidder side, as they always
have a possibility to bid their valuation.

Forced Price Monotonicity is a simple way to ensure
that prices do not fall throughout the auction. For each item,
we compare newly calculated prices in roundt with previ-
oust − 1 round price. If the new price is lower, it is set to
the level of roundt− 1.

Relaxed Eligibility. In some cases, especially when items
in the auction significantly vary in price, bidders may want
to replace a single expensive item by a set of cheaper items
in their bids. Eligibility rules present a serious problem in
this case. We introduce the notion of asurplus-eligibility,
which allows a bidder to extend his eligibility and still stim-
ulates competitive bidding.

Surplus-eligibilitySEt
i gives each bidderi a chance to

increase his roundt eligibility Et
i . To retain the original pur-



pose of enforcing activity in the auction, size of the surplus-
eligibility is directly bound to the bidder’s market activity
in the auction so far. The surplus-eligibilitySEt

i for each
bidder is calculated by the auction in each round and is com-
municated to the bidders along with prices and provisional
allocation. In roundt a bidder is allowed to bid - at maxi-
mum - on as many distinct items as he bid in the last round,
plus surplus eligibility:

Et
i ≤ Et−1

i + SEt
i

To determine the valueSEt
i we need to find a fair mea-

sure for bidder’s market activity. An important concern is to
avoid situations where bidders can artificially simulate ac-
tivity by submitting deliberately loosing bids. We introduce
the notion ofbid volume of bidderi in roundt.

RBV t
i =

∑
k∈K

maxbidpricet
i(k) (Round Bid Volume)

TBVi =
T∑

t=1

RBV t
i (Total Bid Volume)

Function maxbidpricet
i(k) determines the maximum

bid price for the single itemk based on bidderi’s bids
in round t. For each bidbt

i(S), the price for allk ∈ S
is determined by splitting the bundle bid price to individ-
ual items proportionally to item ask prices. For each item,
the maximum over all bids value is taken. In other words,
maxbidpricet

i(k) figures out how much itemk is maxi-
mally worth to bidderi in roundt.

The total bid volumeTBVi equals the sum ofRBV t
i

over all auction rounds and represents the overall bid vol-
ume that bidderi generated in the auction so far. Further
bidders are ranked by theirTBVi in ascending order. The
rank for bidderi, denoted byri, is the index of the position
in the ordered sequence of this bidder’sTBVi minus 1. The
surplus eligibility is then calculated as:

SEt
i = round

((
ri

|I| − 1

)
· SEmax

)
The value ri

|I|−1 lies in the range[0, 1] and represents the
market activity factor. SEmax is the maximal surplus eligi-
bility defined by the auctioneer. Summing up bidder activity
through the whole auction rather then using onlyRBV t

i in
determination ofSEt

i ensures that bidders are stimulated to
bid competitively right from the start of the auction.

4 Setup for Numerical Experiments

We have developed a generic simulation framework for
ICAs including three main components:Value Models,
Bidding Agents andAuction Processors.

Value Model generates valuations for all possible bun-
dles for each bidder based on realistic, economically moti-
vated scenarios. We have based our implementation on the
Combinatorial Auctions Test Suite (CATS) that has been
widely used for evaluation of winner determination algo-
rithms [11]. In addition, we have used the Pairwise Synergy
value model from [1]. Three different value model types
were used.

The Transportation value model is built following the
idea of thePaths in Spacemodel from CATS [11] with nec-
essary adjustments for use in simulations of iterative CAs.
It models a nearly planar transportation graph, where each
bidder is interested in securing a path between two ran-
domly selected vertices (cities). The items traded are edges
(routes) of the graph.

The Airport value model is an implementation of the
Matchingscenario in CATS with necessary modifications.
It models four airports each having a predefined amount of
starting and landing time slots. Each bidder is interested in
obtaining one starting and one landing slot in two randomly
selected airports. The bidder valuation is proportional to
the distance between the airports, but can be reduced if the
plane arrives later as planned or/and has to delay landing
until the landing slot becomes available.

The Pairwise Synergy value model is a slightly modi-
fied implementation of the model described in [1]. It is
defined by a set of valuations of individual items and a
matrix of pairwise item synergies (complementarities). A
synergy value of0 corresponds to completely independent
items, and the synergy value of1 means that the bundle val-
uation is twice as high as the sum of the individual item
valuations. The model parameters are the interval for the
randomly generated item valuations and the interval for the
randomly generated synergy values.

Bidding Agent implements a bidding strategy adhering
to the given value model and to the restrictions of the spe-
cific auction design. We usepowerset bidders, who always
bid the minimal allowed price on all possible bundles that
provide positive payoff at the current ask prices. It was not
possible to use themyopic best response agent mainly be-
cause of the RAD eligibility rule. Myopic bidder usually
looses his eligibility in early stages of the auction, which in
turn results in low efficiency. Thepowerset does not suf-
fer from this problem, and shall therefore provide the upper
bound for auction efficiency compared to any other bidder
types.

Auction Processor implements the auction logic, en-
forces auction protocol rules, calculates ask prices and pro-
visional allocation for the current round.

Maximum surplus eligibility was set to 5, minimum in-
crement curvature to 2, minimum number of bidders for



maximum increment to 5. Each of the new rules is analyzed
separately on 70 auction samples for each of the following
five value models:

• Airport value model with 84 items and 20 bidders.

• Pairwise Synergy Highvalue model with 7 items val-
ued from 0 to 88, synergy values from 1.5 to 2.0, and
5 bidders with maximum bundle size of 4.

• Pairwise Synergy Lowvalue model with 7 items valued
from 0 to 195, synergy values from 0 to 0.5, and 5
bidders with maximum bundle size of 4.

• Transportation Largevalue model with 50 items (34
cities, edge density 2.9), average shipping utility 5.0,
30 bidders.

• Transportation Smallvalue model with 25 items (15
cities, edge density 3.2), average shipping utility 5.0,
15 bidders.

5 Simulation Results and Interpretation

This chapter presents simulation results for each of the
proposed in Section 3 improvements, and analyzes the ob-
tained data. Table 1 in Appendix summarizes all num-
bers obtained during simulations, Table 2 presents results
of paired t-tests. Stars indicate positions, where significant
difference between plain RAD and RAD with applied im-
provement was found.

Old Bids Active rule is clearly the most effective way
to increase auction efficiency out of all tested improve-
ments. We obtain results of roughly 99% for each of the
five value models. We explain the efficiency increase by
higher number of bids available for winner determination in
late rounds. Another positive impact of this rule is increased
price monotonicity.

However there is a significant reduction of the bidder’s
revenue share too. Final prices are too high compared to
minimum CE prices. Being aware of this auction property,
real bidders can become conservative and never bid up to
their valuations, which can negatively affect the auction’s
efficiency. This phenomena however cannot be measured
using our software bidders.

Last-and-Final Bids had limited effect on most auction
parameters. It can still be used to raise bidders’ fairness
perception towards the auction. On the other hand, it is
questionable if the rule is not too complex for bidders to
understand and use.

Dynamic Minimum Increment rule has shown very
good results in reducing auction duration. There were no
noticeable changes to any other auction parameters.

Bundle Minimum Increment did not bring any improve-
ments in auction outcome. Measurements do not show any
common trend across all value models in any parameter.

Furthermore Bundle Minimum Increment rule has some
undesired side effects. We have measured significantly
higher deviation between samples compared to the origi-
nal RAD auction. Price calculation exhibits non-intuitive
behavior, which can be perceived unfair from the bidders
holding the bids on the higher priced bundles.

Forced Price Monotonicity rule made prices fully
monotonic. Another positive effect was slight reduction of
auction duration. However auction efficiency has suffered
losses, in some cases significant.

Surplus Eligibility relaxes limitations on amount of dif-
ferent items in bids and consequently improves the effi-
ciency. We have included thenone-eligibilityoption in sim-
ulations which allows bids on any number of items inde-
pendent of bid history. This rule is not practical since real
bidders will misuse it and will not actively bid from first
auction rounds. Our software bidders however bid com-
petitively during the whole auction. Therefore thenone-
eligibility option gives the upper bound to the efficiency
gain by a relaxed eligibility rule.

Results show increased efficiency, significant in some
cases. Most part of the gained efficiency goes to the auction-
eer, bidders’ revenue is even decreased in some cases. How-
ever there is still potential upwards forsurplus-eligibility, or
other replacement for the activity rule, of up to roughly 1%.

Summarizing analysis of suggested improvements, fol-
lowing list shows those rules which improve auction results.
For each rule, we state its primary contribution.

• Old Bids Activeboost auction efficiency.

• Last-and-Final bidshave only slight positive effect on
efficiency, but can increase bidders’ fairness percep-
tion towards the auction.

• Dynamic minimum incrementdrastically reduces the
number of auction rounds.

• Surplus-eligibilityincreases auction efficiency.

Theforced price monotonicityrule was discarded due to
its negative impact on the efficiency. Thebundle minimum
incrementwas not considered further either.

We have conducted another set of simulations to test auc-
tion performance with all selected rules enabled. As theOld



Bids Activerule can imply limitations on the auction size,
we have created two settings. First we include only three
rules: Last-and-Final Bids, Dynamic Minimum Increment
andSurplus Eligibility. Then we repeat simulations with all
four rules enabled, includingOld Bids Active. Tables 1 and
2 refer to results of these tests asFull excluding Old Bids
ActiveandFull including Old Bids Activerespectively.

Results shows that already theFull excluding Old Bids
Activesetup improves auction results along many parame-
ters significantly. TheFull including Old Bids Activesetup
performs even better and reaches 99% efficiency for all
value models. Both settings achieve significant reduction
of auction duration and price fluctuations.

6 Conclusion and Outlook

In this paper we present a set of new rules for Iterative
Combinatorial Auctions. We use numerical experiments to
analyze their impact on the auction outcome based on our
implementation of the RAD auction format. Results indi-
cate significant improvements in several important parame-
ters, including allocative efficiency and auction duration.
We discuss practical applicability of the new rules and sug-
gest possible combinations.

Our future plans include analysis of the suggested rules
using laboratory experiments with human bidders. We also
want to continue looking for ICA improvements, and to
study applicability and effect of different rules under vary-
ing conditions (value models, bidder strategies, etc.)

7 Glossary

K = {1, . . . ,m} - set of items
k ∈ K, alsol - index for items
I = {1, . . . , n} - set of bidders
i ∈ I, alsoj - index for bidders
S ⊆ K - bundle (package)
vi(S) - valuation of the bidderi for the bundleS
p(S) - anonymous bundle ask price of the bundleS
p(k) - anonymous linear ask price of the itemk
P = {p(S)} orP = {p(k)} - set of ask prices
Bt = {bt

i(S)} - set of bids (bid prices) in the roundt
b ∈ Bt - index for bids
X = {xi(S)} - allocation
X∗ = {x∗i (S)} - efficient allocation
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hhhhhhhhhhhhhhhICA Design
Value Model

Airport
PairSyn
high

PairSyn
low

Transp.
large

Transp.
small

∅ Efficiency 95.19% 96.56% 96.67% 94.61% 93.79%
∅ Rev. Auctioneer 80.44% 81.02% 79.41% 61.04% 58.48%

RAD ∅ Rev. Bidders 14.75% 15.54% 17.26% 33.57% 35.30%
∅ Rounds 58.49 50.07 51.96 31.39 41.19
∅ Monoton. Error 0.82 0.36 0.38 0.76 0.70
∅ Efficiency 98.83% 98.61% 99.30% 98.77% 98.92%

Old ∅ Rev. Auctioneer 89.32% 86.66% 87.45% 67.52% 67.66%
Bids ∅ Rev. Bidders 9.51% 11.95% 11.85% 31.25% 31.26%

Active ∅ Rounds 55.10 50.84 54.03 28.06 41.41
∅ Monoton. Error 0.76 0.12 0.11 0.72 0.69
∅ Efficiency 95.19% 96.17% 96.03% 94.02% 94.00%

Last ∅ Rev. Auctioneer 79.57% 79.99% 78.98% 60.54% 58.95%
and ∅ Rev. Bidders 15.62% 16.18% 17.05% 33.48% 35.05%

Final ∅ Rounds 54.90 48.53 50.64 30.60 40.21
∅ Monoton. Error 0.78 0.33 0.31 0.75 0.69
∅ Efficiency 94.60% 94.94% 96.67% 95.02% 92.76%

Dynamic ∅ Rev. Auctioneer 79.06% 81.56% 81.99% 62.48% 57.95%
Minimum ∅ Rev. Bidders 15.55% 13.38% 14.68% 32.54% 34.81%
Increment ∅ Rounds 46.69 15.80 16.10 17.57 24.54

∅ Monoton. Error 0.84 0.39 0.36 0.66 0.67
∅ Efficiency 94.45% 97.17% 97.53% 92.34% 91.53%

Bundle ∅ Rev. Auctioneer 79.55% 78.52% 80.14% 60.07% 59.90%
Minimum ∅ Rev. Bidders 14.90% 18.65% 17.39% 32.26% 31.64%
Increment ∅ Rounds 67.46 45.73 38.13 40.30 42.47

∅ Monoton. Error 0.69 0.40 0.36 0.69 0.63
∅ Efficiency 93.40% 95.66% 96.20% 93.11% 91.05%

Forced ∅ Rev. Auctioneer 77.55% 79.82% 78.99% 60.54% 58.59%
Price ∅ Rev. Bidders 15.85% 15.84% 17.21% 32.57% 32.46%

Monotonicity ∅ Rounds 56.09 45.74 49.23 29.06 39.24
∅ Monoton. Error 0 0 0 0 0
∅ Efficiency 95.23% 96.13% 97.23% 96.10% 95.37%

Surplus ∅ Rev. Auctioneer 81.39% 82.53% 82.24% 63.36% 63.09%
Eligibility ∅ Rev. Bidders 13.84% 13.59% 14.99% 32.74% 32.29%

∅ Rounds 58.41 49.24 52.13 29.81 38.30
∅ Monoton. Error 0.83 0.35 0.34 0.77 0.71
∅ Efficiency 96.63% 97.00% 97.21% 97.14% 95.60%

None ∅ Rev. Auctioneer 82.73% 83.91% 82.26% 65.99% 63.10%
Eligibility ∅ Rev. Bidders 13.89% 13.09% 14.95% 31.15% 32.50%

∅ Rounds 58.86 49.36 51.47 29.64 37.77
∅ Monoton. Error 0.82 0.31 0.35 0.78 0.70
∅ Efficiency 95.35% 95.91% 97.45% 97.34% 95.43%

Full ∅ Rev. Auctioneer 82.53% 85.83% 84.76% 69.23% 63.83%
excluding ∅ Rev. Bidders 12.82% 10.08% 12.69% 28.11% 31.61%

Old Bids Active ∅ Rounds 42.76 14.39 15.10 18.01 23.69
∅ Monoton. Error 0.82 0.32 0.32 0.71 0.68
∅ Efficiency 99.73% 99.81% 99.64% 99.26% 99.97%

Full ∅ Rev. Auctioneer 92.77% 90.45% 90.96% 73.39% 75.01%
including ∅ Rev. Bidders 6.97% 9.35% 8.68% 25.89% 24.96%

Old Bids Active ∅ Rounds 38.80 12.84 14.74 15.86 28.91
∅ Monoton. Error 0.70 0.07 0.08 0.62 0.63

Table 1. Overall performance results of the improved auction rules



hhhhhhhhhhhhhhhICA Design
Value Model

Airport
PairSyn
high

PairSyn
low

Transp.
large

Transp.
small

∅ Efficiency F F F F F
Old ∅ Rev. Auctioneer F F F F F
Bids ∅ Rev. Bidders F F F F F
Act. ∅ Rounds F F F

∅ Monoton. Error F F F F
∅ Efficiency

Last ∅ Rev. Auctioneer F
and ∅ Rev. Bidders

Final ∅ Rounds F F F
∅ Monoton. Error F F
∅ Efficiency F

Dyn. ∅ Rev. Auctioneer F F
Min. ∅ Rev. Bidders F F
Inc. ∅ Rounds F F F F F

∅ Monoton. Error F F F
∅ Efficiency F

Bundle ∅ Rev. Auctioneer F F
Min. ∅ Rev. Bidders F F
Inc. ∅ Rounds F F F F

∅ Monoton. Error F F F
∅ Efficiency F F

Forced ∅ Rev. Auctioneer F F
Price ∅ Rev. Bidders F F
Mon. ∅ Rounds F F F F

∅ Monoton. Error F F F F F
∅ Efficiency F

Surp. ∅ Rev. Auctioneer F F F F F
Elig. ∅ Rev. Bidders F F F F

∅ Rounds F F
∅ Monoton. Error F F F
∅ Efficiency F F F

None ∅ Rev. Auctioneer F F F F F
Elig. ∅ Rev. Bidders F F F F

∅ Rounds F F
∅ Monoton. Error F F
∅ Efficiency F F

Full ∅ Rev. Auctioneer F F F F F
excl. ∅ Rev. Bidders F F F F F
OBA ∅ Rounds F F F F F

∅ Monoton. Error F F F
∅ Efficiency F F F F F

Full ∅ Rev. Auctioneer F F F F F
incl. ∅ Rev. Bidders F F F F F
OBA ∅ Rounds F F F F F

∅ Monoton. Error F F F F F

Table 2. Results of paired t-tests for the improved auction rules


