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Abstract: Ask prices are the most essential form of information feedback in Iterative Combi-
natorial Auctions (ICA) and vital in achieving an efficient auction outcome. Different pricing
concepts have been analyzed in the literature, including linear, non-linear and discriminative
non-linear prices. Linear prices, i.e. per-item prices, are intuitive and easy to understand for
bidders, however, under certain conditions they can hinder auction efficiency. In this paper we
analyze ways how approximate linear prices are calculated, identify problems of existing ap-
proaches and suggest alternative rules for calculating linear prices and stopping the auction.
We use computer simulations as a tool to benchmark different auction designs, and compare
their results based on allocative efficiency.
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1 Introduction

Combinatorial auctions (CA) have become a popular research topic in Economics, Operations
Research, and Computer Science throughout the past few years [CSS06]. CAs are those auc-
tions where bidders can place bids on combinations of items, called ”packages” or ”bundles”
rather than just individual items. These types of auctions have found application in various
domains ranging from transportation to industrial procurement and the allocation of spectrum
licenses for wireless communication services in the US. In addition, researchers have shown
that CAs can achieve high levels of allocative efficiency in the presence of complex bidder val-
uations [KLPD05, ACM06]. In comparison to sealed-bid designs, Iterative Combinatorial Auc-
tions (ICA) have been selected in many practical applications, since they help bidders express
their preferences by providing feedback, such as provisional pricing and allocation information
in each round.

In this work we focus on so called linear prices, where each item in the auction is assigned
an individual price, and the price of a package of items is simply the sum of the item prices.
They are easy to understand for bidders in comparison to non-linear prices, where the number
of prices that has to be communicated in each round is exponential [BO06, Par06]. Even though
linear prices are often impossible to calculate exactly, they can be approximated to provide a
guideline for bidders to improve their bid. Kwasnica, Ledyard, Porter, and DeMartini have
proposed a respective auction design, called Resource Allocation Design (RAD) [KLPD05].

In this paper we analyze ways how approximate linear prices are calculated, identify
problems of existing approaches and suggest alternative rules for calculating linear prices and
stopping the auction. We use computer simulations as a tool to benchmark different auction
designs, and compare their results based on allocative efficiency.

In Section 2 we provide an overview of iterative combinatorial auctions and describe
relevant concepts and terms. Section 3 discusses approaches to calculate linear prices, while



Section 4 deals with auction stopping rules. In Section 5, we describe the results of computer
simulations. Finally, in Section 6 we will draw conclusions and provide an outlook on future
research.

2 Iterative Combinatorial Auctions

In this section, we provide an overview of iterative combinatorial auctions and describe relevant
concepts and terms.1 We first introduce some necessary notation:K = {1, . . . ,m} denotes the
set of items indexed byk andI = {1, . . . , n} indexed byi denotes a set of bidders with private
valuationsvi(S) ≥ 0 for S ⊆ K. A typical goal in auction design is to achieve anefficient
allocation X∗ which can be obtained by solving theCombinatorial Allocation Problem (CAP)
(also called the Winner Determination Problem, WDP). The CAP is known to be NP-complete
[LMS06], and has a straight-forward integer programming formulation using binary decision
variablesxi(S) to indicate whether the bid of bidderi for bundleS is in the allocation or not:

max
xi(S)

∑
S⊆K

∑
i∈I

xi(S)vi(S)

s.t. ∑
S⊆K

xi(S) ≤ 1 ∀i ∈ I∑
S:k∈S

∑
i∈I

xi(S) ≤ 1 ∀k ∈ K

xi(S) ∈ {0, 1} ∀i, S

(CAP)

which requires thatX∗ is a combination of bundles which maximizes the sum of valua-
tions. The first set of constraints guarantees that any bidder can win at most one bundle, which
is only relevant for XOR-bidding. The second set of constraints ensures that each item is only
sold once withk ∈ K being the set of items to be sold. Note that at this point it is not defined
how much bidders pay for the goods, i.e. what the ask prices are. Package bids as they are used
in CAs lead to a number of hard problems.

• The Winner Determination Problem (WDP), introduced above, has been attracting
intense research efforts, and polynomial-time solutions for restricted cases are known
[RP98].

• The Preference Elicitation Problem (PEP) of a bidder, which is againNP-complete
in the number of auction items, is much less well understood. Compared to the WDP,
which is solved centrally by the auctioneer and is precisely defined mathematically, pref-
erence elicitation is done by each bidder individually [SB06]. The problem can be further
separated into thebundle selection and thebundle evaluation problem. In addition, the
strategy problem of calculating bid prices in various auction formats has been a main
focus in the classic game-theoretic auction literature, but turns out to be difficult to solve
for iterative combinatorial auctions.

• Communication Complexity is related to the PEP and describes the problem of having
to transfer an exponential number of valuations from the bidder to the auctioneer [Nis00].

PEP ”has emerged as perhaps the key bottleneck in the real-world application of combina-
torial auctions. Advanced clearing algorithms are worthless if one cannot simplify the bidding
problem facing bidders” [Par06]. ICAs are up to date the most promising way of addressing

1We refer the reader to [Par06] for a more detailed introduction into Iterative Combinatorial Auctions.



problems of preference elicitation and communication complexity. Bidders do not need to con-
duct complete preference elicitation for all possible bundles in one step, but can use feedback
obtained from the auctioneer during the auction to significantly reduce the space of interest-
ing bundles. Further interesting benefits of ICA includetransparency (and therefore empirical
fairness),privacy anddistribution of computations(see also [Par06]).

2.1 Pricing in ICAs

Because of computational requirements, ICAs are usually round-based rather than continuous.
Bidders can submit their bids whilst the round is open, and after each round the auctioneer
publishes feedback about the current market status. ICAs typically provide feedback in form
of ask prices. Different pricing schemes have been discussed in the literature (see [PB05] for a
more detailed discussion):

Definition 1 A set of pricespi(S), i ∈ I, S ⊆ K is called:

• linear (or additive), if
∀i, S : pi(S) =

∑
k∈S

pi(k)

• anonymous, if
∀i, j, S : pi(S) = pj(S)

In other words, prices arelinear if the price of a bundle is equal to the sum of prices of its
items, and prices areanonymousif prices of the same bundle are equal for every bidder. Non-
anonymous prices are also calleddiscriminatoryprices. By combining the introduced notions
the following three sets of ask prices can be derived after each auction round:2

1. a set of linear anonymous pricesP = {pi(k)}

2. a set of non-linear anonymous pricesP = {p(S)}

3. a set of non-linear discriminatory pricesP = {pi(S)}

For a bidderi, a set of pricesP and a bundleS let πi(S,P) = vi(S) − pi(S) denote the
bidder’s payoff andΠ(S,P) =

∑
i∈I pi(S) denote the auctioneer’s revenue from bundleS at

pricesP. In addition, letΓ denote the set of all possible allocations withX∗ ⊆ Γ. A important
guideline in constructing efficient price-based auctions is the economic theory ofcompetitive
equilibrium, where supply equals demand.

Definition 2 (Competitive Equilibrium, CE) PricesP and allocationX∗ = {S∗
1 , . . . , S

∗
n}

are in competitive equilibrium if:

πi(S
∗
i ,P) = max

S⊆K
[vi(S)− pi(S), 0] ∀i ∈ I

Π(X∗,P) = max
S∈Γ

∑
i∈I

pi(S)

In the CE the payoff of every bidder (and the auctioneer) is maximized and the auction
will effectively end because bidders will not want to change the allocation by submitting any
further bids. The allocationX∗ is said to besupported by pricesP in CE.

Bikhchandani and Ostroy [BO06] show thatX∗ is supported in CE by some set of prices
P if and only if X∗ is an efficient allocation. This fact allows for construction of ICAs, which
update prices in the direction of CE prices until there are no new bids. Such ICA will normally
converge to a minimal CE price set, which is usually the desired design goal.

2To our knowledge linear discriminatory prices have not been discussed in the literature.



Definition 3 (Minimal CE Prices) Minimal CE prices minimize the auctioneer revenue
ΠS(X∗,P) on the efficient allocationX∗ across all CE prices possible for this allocation.

Simple examples illustrate that both linear and anonymous prices do not exist for a general
CAs, in other words, for certain types of bidder valuations it is impossible to find linear prices
which support the efficient allocationX∗ [PB05] . On the other hand, Bikhchandani and Ostroy
have shown that non-linear discriminatory competitive equilibrium prices do always exist and
support the efficient allocation [BO02]. However, discriminatory pricing introduces additional
complexity by the sheer volume or prices and is often considered unfair by bidders.

It is interesting to characterize types of valuations, where linear CE prices are possible.
The sufficient and almost necessary condition for existence of linear CE prices is thegoods are
substitutes property [Par06]. Intuitively this implies that the bidder will continue to demand
items which do not change in price, even when prices on other items are increasing. Thegoods
are substitutescondition is very restrictive as most known practical applications of combinato-
rial auctions rather deal with complementary goods.

Although, the existence of linear CE prices is limited they are of high practical value.
Having obtained linear price from the auctioneer, a bidder can easily determine prices for dif-
ferent bundles. For non-linear prices, this would require a specialrequest-for-quotes protocol,
since the transmission of all bundle prices is usually impractical. These arguments advocate
application of approximative linear prices for the design of ICA mechanisms.

2.2 Auction Designs based on Linear Prices

The Resource Allocation Design(RAD) [KLPD05], the combinatorial clock auctionand the
clock-proxy auction[ACM06] have been proposed as iterative combinatorial auction designs
based on linear prices. Whereas the combinatorial clock auction and the clock-proxy auction
do not allow submitting bid prices in each round and use a simple incremental price update
rule, RAD utilizes the submitted bid prices to approximate linear prices for the next round. This
allows fine tuning of the price calculation procedure to produce prices most appropriate to serve
as a guideline for the bidders. Since RAD has been shown to produce high levels of allocative
efficiency and a detailed comparison of the combinatorial clock and clock-proxy auction to
RAD is beyond the scope of this paper, we will restrict our attention to RAD-based auction
designs in the following.

3 Calculating Linear Prices based on Bid Prices

In this section we introduce related terminology and discuss some desirable properties of ap-
proximated linear ask prices based on bid prices. Based on this, we discuss some pitfalls in cal-
culating linear prices and suggest an improved price calculation algorithm which avoids these
problems.

3.1 Desirable Properties and the Overall Procedure

Though linear prices is a very attractive instrument due to their intuitive meaning to the bidder,
their calculation requires significant computational effort, as we will see later in this section.
Since linear CE prices do not always exist [BO02], linear ask prices often do not lead the auction
to the efficient allocation. Moreover, as will be shown later, even the existence ofcompatible
linear pricesin each iteration is not guaranteed. Therefore we try to approximate the desired
bundle prices by linear prices to provide a good enough guideline for the bidders. There are
different ways of doing this, and as of now there is little research on the effects of those pricing
heuristics.

In general there are three obvious negative effects of the price approximation: (a) if the



price of some bundle is approximated too high, this can keep a bidder from submitting a po-
tentially winning bid, (b) if the price of some bundle is approximated too low, a new bid might
have little chances of winning3, and (c) since there are several feasible price sets, an unfavorable
price selection can worsen the threshold problem.

At this point we need some additional notation. Lett = 1, 2, 3, . . . denote the current
auction round, andBt be the set of all bids submitted in the roundt with b ∈ Bt denoting a
single bid. A bidb = bi(S) represents the bid price submitted by the bidderi on the bundle
S. Furthermore, for the current provisional allocationX t let W t ⊆ Bt andLt ⊂ Bt be the
currently provisionally winning respectively the provisionally losing bids, withW t

⋂
Lt = ∅,

W t
⋃

Lt = Bt. In other words,b = bi(S) ∈ W t ⇔ xt
i(S) = 1. In the following we will

often omit the round indext always indicating withB, W, L, X the provisional allocation in the
current roundt and withP the prices to be calculated for the next roundt + 1.

Definition 4 A set of pricesP = {pi(S)} is calledcompatible4 with the allocationX and bids
B = {bi(S)}, iff

∀b ∈ B : b ∈ W ⇔ pi(S) ≤ bi(S) andb ∈ L ⇔ pi(S) > bi(S)

The interpretation is quite intuitive: the set of prices is compatible with the given alloca-
tion and bids if all winning bids are higher than or equal to the prices and all losing bids are
lower than the prices. In other words, compatible prices should explain the winners, why they
won, and the losing bidders, why they lost.

Inspired by RAD, we try to fulfill the following three properties, that seem important
to weaken the negative effects of the price approximation described above, in the following
preference order:

1. The prices for the next round should be compatible with the current provisional allocation
and submitted bids. If such prices do not exist, they should be approximated as close as
possible.

2. The prices should be balanced across items to be perceived as fair and to weaken the
threshold problem.

3. The prices should be minimal enabling bidders to submit bids as long as they can.

RAD’s price calculation rules try to satisfy the first two properties by solving a series
of linear programs (LPs), however, the RAD pricing rules are not sufficient to achieve these
properties. In the following we propose an extended RAD-based price calculation algorithm,
which fulfills all the three properties and always produces a unique5 price set. We will also
illustrate the leaks of RAD by examples and explain how our algorithm avoids these pitfalls.

The overall approach can be schematically described as follows:

min
p(k),δb

{max{δb}, max{p(k)}}

subject to:∑
k∈S

p(k) = bi(S) ∀ b = bi(S) ∈ W∑
k∈S

p(k) + δb ≥ bi(S) ∀ b = bi(S) ∈ L

δb ≥ 0 ∀ b ∈ L
p(k) ≥ 0 ∀ k ∈ K

(1)

3This scenario can delay the auction for several more rounds, but does not necessarily cause inefficiency.
4We introduced this concept in [PB05].
5By unique we mean independent from the LP solver implementation.



The first condition sets the bid prices of the winning bids equal to the ask prices which
satisfies the first compatibility requirement.6 The second condition tries to satisfy the second
compatibility requirement as close as possible, whereby the distortionsδb represent the devia-
tions from the ideal. The schematically defined objective functionmin {max{δb}, max{p(k)}}
stands for balanced minimizing all distortionsδb and then balanced minimizing the prices,
which can be done by solving a series of LPs. The next two sections describe these steps in
full detail.

3.2 Minimizing Distortions

In this step we sequentially lower all distortions while trying to keep them balanced. We first
minimize the maximum of all distortions, then fix those distortions that can not be further
improved and repeat. Let̂L denote the set of all bidsb, for which δb can not be improved any
more, and initialize it witĥL = ∅. Then solve the following linear program (2):

min
p(k),Z,δb

Z

subject to:∑
k∈S

p(k) = bi(S) ∀ b = bi(S) ∈ W∑
k∈S

p(k) + δ̂b = bi(S) ∀ b = bi(S) ∈ L̂∑
k∈S

p(k) + δb ≥ bi(S) ∀ b = bi(S) ∈ L \ L̂

0 ≤ δb ≤ Z ∀ b ∈ L \ L̂
p(k) ≥ 0 ∀ k ∈ K

(2)

Let Z∗, δ∗,P∗ be the solution of (2) and letL∗ := {b : δ∗b = Z∗}. If Z∗ = 0 we are
done. Otherwise RAD would fix the distortions for all bids inL∗ and proceed. However, ifL∗

contains more than one element, some of these distortions may still be improved. Moreover, if
the Simplex optimization algorithm [NW88] is used, we will very likely get someδ∗b = Z∗ since
it always finds some vertex of the feasible polyhedra. This makes additional steps necessarily.
We now bound the distortions byZ∗ and minimize the sum of all distortions inL∗ as follows:

min
p(k),δb

∑
b∈L∗

δb

subject to:∑
k∈S

p(k) = bi(S) ∀ b = bi(S) ∈ W∑
k∈S

p(k) + δ̂b = bi(S) ∀ b = bi(S) ∈ L̂∑
k∈S

p(k) + δb ≥ bi(S) ∀ b = bi(S) ∈ L \ L̂

0 ≤ δb ≤ Z∗ ∀ b ∈ L \ L̂
p(k) ≥ 0 ∀ k ∈ K

(3)

If at least one of the distortions inL∗ can be improved, this will be done by (3). We now
remove all bids with improved distortions fromL∗ and repeat with (3) until no more distortions
can be improved. At this point we setL̂ := L̂ ∪ L∗, fix all non-improvable distortions (∀b ∈ L∗

setδ̂b := δ∗b ), and continue with (2).

6Though this is a little bit more restrictive than the corresponding condition in the price compatibility require-
ment, it looks reasonable and guarantees the uniqueness of the prices. We follow the RAD approach at this point.



3.3 Balancing Prices

After the set of all positive distortionŝL is identified and all those distortions are minimized and
fixed to{δ̂b}, the prices may still not be unique. For example in the ideal case we getL̂ = ∅ and
we still have a lot of freedom in setting prices. We now balance prices similar to minimizing
distortions in the previous step. We first minimize the maximum of all prices, then fix those
prices that can not be further lowered and repeat. LetK̂ denote the set of all items which prices
can not be lowered any more, and initialize it witĥK = ∅. Then solve the following linear
program (4):

min
p(k),Y

Y

subject to:∑
k∈S

p(k) = bi(S) ∀ b = bi(S) ∈ W∑
k∈S

p(k) + δ̂b = bi(S) ∀ b = bi(S) ∈ L̂∑
k∈S

p(k) ≥ bi(S) ∀ b = bi(S) ∈ L \ L̂

p(k) = p̂(k) ∀ k ∈ K̂
0 ≤ p(k) ≤ Y ∀ k ∈ K \ K̂

(4)

LetY ∗,P∗ be the solution of (4) and letK∗ := {b : p∗(k) = Y ∗}. Now RAD would fix the
prices for all bids inK∗ and proceed. But again, ifK∗ contains more than one element, some of
these prices may still be lowered and this is very likely to happen when using a Simplex-based
LP solver. This can be illustrated by the following examples.

Consider an auction with three itemsA, B, C and four currently active bids from different
biddersb1(A) = 55, b2(C) = 55, b3(AB) = 40, b4(BC) = 40. Obviously the provisional
winners are1 and3 andL̂ = ∅. After removing redundant inequalities the linear program (4)
looks like:

min
p(B),Y

Y

subject to:
p(A) = 55
p(C) = 55

55 ≤ Y
0 ≤ p(B) ≤ Y

We can get two possible solutions of this problem when using a simplex-based LP solver:
{p∗(B) = 55, Y ∗ = 55} or {p∗(B) = 0, Y ∗ = 55}. In the first case RAD would fix all prices
to 55, which would completely distort the bidder’s understanding of the current demand for the
itemB.

Another important point is the the balancing method used. RAD proposes maximizing
minimal price instead of minimizing maximum price. However, if the solver finds the second
solution, RAD would fixp̂(A) = 55 and p̂(C) = 55 and then yieldp∗(B) = ∞ in the next
iteration.

Now consider another auction with three itemsA, B, C and two currently active bids
b1(ABC) = 160, b2(A) = 70, where the provisional winner is1, and, again,̂L = ∅. The linear
program (4) looks like:



min
p(A),p(B),p(C),Y

Y

subject to:
p(A) + P (B) + P (C) = 160

p(A) ≥ 70
0 ≤ p(A), p(B), P (C) ≤ Y

With a simplex-based solver this would yield one of two possible solutions:{p∗(A) =
70, p∗(B) = 20, p∗(C) = 70, Y ∗ = 70} or {p∗(A) = 70, p∗(B) = 70, p∗(C) = 20, Y ∗ = 70}.
In both cases RAD would stop with this solution. There were no reason, why the prices for the
itemsB andC are different.

To avoid the pitfalls illustrated in the above examples we continue by bounding the prices
by Y ∗ and minimize the sum of all prices inK∗ as follows:

min
p(k)

∑
k∈K∗

p(k)

subject to:∑
k∈S

p(k) = bi(S) ∀ b = bi(S) ∈ W∑
k∈S

p(k) + δ̂b = bi(S) ∀ b = bi(S) ∈ L̂∑
k∈S

p(k) ≥ bi(S) ∀ b = bi(S) ∈ L \ L̂

p(k) = p̂(k) ∀ k ∈ K̂
0 ≤ p(k) ≤ Y ∗ ∀ k ∈ K \ K̂

(5)

If at least one of the prices inK∗ can be lowered, this will be done by (5). We now remove
all items with lowered prices fromK∗ and repeat with (5) until no more prices can be improved.
At this point we setK̂ := K̂ ∪ K∗, fix all non-improvable prices (∀k ∈ K∗ setp̂(k) := p∗(k)),
and continue with (4), unlessK \ K̂ = ∅.

4 Auction Termination Condition

An important decision which obviously can affect the auction efficiency is when to close it.
The RAD design [KLPD05] has an eligibility based stopping rule and forces a minimum bid
increment. As illustrated below this is not always sufficient to ensure auction termination.
One of the other stopping rules, defined in the RAD auction design, is an identical provisional
allocation in two consecutive rounds . However, the approximative nature of liner prices in
RAD in combination with this stopping rule can result in inefficient allocations.

Consider an example auction with the following valuationsvi(S).

Item A B C AB AC BC ABC
Bidder1 10 35
Bidder2 32 32

The efficient outcome would be to sellA to theBidder1 and{B,C} to theBidder2. Let
the following bids be active at some point during the auction, and the minimum bid increment
be 2 monetary units (MU)7.

7In RAD minimum increment must be added to ask price of every item in bundle, and not to the bundle as a
whole



Item A B C AB AC BC ABC
Bidder1 30.5
Bidder2 23

According to the price calculation described in the previous section, the resulting ask
pricespi(S) are:

Item A B C
Price 11.5 11.5 7.5

The Bidder2 must choose between bidding 27 for{A,B} or 23 for {B,C}. As he has
equal valuations for both combinations, the second alternative is chosen. The next round bids
are:

Item A B C AB AC BC ABC
Bidder1 30.5
Bidder2 23

This is the second round with the same provisional allocation, and consequently the auc-
tion will be terminated withBidder1 receiving all three items. Obviously, this is not an efficient
outcome. ForBidder2 the auction termination comes as a surprise as form his point of view, he
had submitted competitive bid prices, and was still ready to submit higher bids.

A näıve approach of removing this termination rule and relying only on the eligibility-
based principle [KLPD05] causes other problems. Continuing the above example, prices of the
new round will change to:

Item A B C
Price 7.5 11.5 11.5

At this point theBidder2 can again bid 23 MU on the package{A,B}, and the auction
might loops without stopping at all. The reason of this infinite loop is the possibility for prices
to fall. Prices in RAD can go down from one round to another, because bidders are able to
retract loosing bids from previous rounds.

In order to avoid this type of undesired behavior, we suggest to omit the auction stopping
rule based on two successive identical allocations and introduce two alternative new rules to
prevent auctions from looping:

• Increase the minimum increment with each equal allocation, but reset the minimum in-
crement to the original value if the allocation changes.

• Request every bidder to outbid own bids, which were submitted in previous rounds on
same bundles.

If the loosing bidder’s valuation is high enough, both rules will eventually cause the allo-
cation to change. Otherwise the loosing bidder will at some point stop bidding and the auction
will end according to the eligibility rule.



5 Simulation

In this section we summarize the results of discrete event simulations of ICAs using linear prices
as described in the previous sections. We focus on two aspects:

• What is the impact of complementarity among items in bidder valuations. Typically, the
stronger this complementarity is, the more approximative linear prices deviate from CE
prices, which can negatively affect auction efficiency.

• How do the enhanced rules described in Section 3.3 compare to the original RAD with
respect to allocative efficiency.

5.1 Setup

The simulations are run against a slightly modified version of thepairwise synergy value model
described in An et al. [AEK05]. It is defined by valuations for individual itemsv1, v2, . . . , vm

and a matrix of pairwise synergies between itemssynk,l : k, l ∈ K, k 6= l, synk,l = synl,k, synk,k =
0. Valuation for a bundleS is calculated as

v(S) =

|S|∑
k=1

vk +
2

|S| − 1

|S|∑
k=1

|S|∑
l=1

synk,l

Synergy values of 0 correspond to independent goods, positive synergy values define a
market with super-additive valuations, and negative synergies define sub-additive valuations.
Parameters for the value model are the absolute interval for randomly generated item values,
and relative to the item price interval for synergy values.

To analyze the role of ask prices on the auction outcome we need a competitive market
with different but similar valuations. Such a scenario is modeled by generating private value
models for each bidder using different parameters, taken from the same narrow distribution.
Simulated bidders are myopic best-response agents which are restricted on the maximum bundle
size they need (and consequently bid on), and with enough computational resources to evaluate
all possible combinations. There is no budget constraint. The auction format is RAD with
modifications which take into account problems described in the Section 3. The minimum
increment is set very small in order not to impact the result.

We measure auction efficiency following [KLPD05] as the ratio of the total valuations of
the resulting allocationX ′ in the simulation to the total valuation of the efficient allocation.

E(X ′) =

∑
S∈X′

∑
i∈I

x′i(S)vi(S)

max
xi(S)

∑
S⊆K

∑
i∈I

xi(S)vi(S)

5.2 Impact of Item Complementarity on Auction Efficiency

Looking at the types of valuations, where linear CE prices are possible (Section 2.1), one can
assume that auction efficiency will decline as complementarities among items increase, because
approximated linear prices deviate further from CE prices.

In order to quantify the efficiency loss, we ran a series of 300 simulation rounds with
different synergy values in the set of valuations. The simulated auction scenario included 5
items, 7 bidders restricted to maximum bundle size of 3, and synergy values varying in small
increments from -2 to 4. The allocative efficiency related to synergy values is shown in the
Figure 1.

As it was expected, auction efficiency is at 100% for negative synergy values (sub-additive
valuations) and a synergy value of 0 (independent goods). With growing super-additivity in the



Figure 1: Linear Price ICA Efficiency depending on Relative Synergy

value model, linear prices deviate further from CE ask prices, which are necessary to guide
bidders to an efficient auction outcome.

The results suggest that linear ask prices can be successfully applied for value models
with low or negative complementarity between items. In case of complementarities, a certain
efficiency loss can be attributed to the use of linear prices. In practice, there will be a tradeoff
between the efficiency loss in ICAs with discriminative non-linear prices that is due to the
increased complexity and the large number of ask prices that have to be communicated, and
the efficiency loss due to linear prices. One needs to mention, that the results are limited to the
pairwise synergy value model and cannot easily be transferred to other types of valuations.

5.3 Impact of different Price Calculation Methods

The second set of simulations was set up to compare the updated pricing procedure described
in Section 3.3 with the original RAD rules. We have created 28 auction setups with 5 items, 7
bidders, and relative synergy values from 0.5 to 2.0. Each setup was run using all of the three
pricing algorithms, and average efficiency was measured.

Pricing method Original RAD Advanced price calculations (see section 3)
Efficiency 0.94486 0.94812

In the current setup, the advanced price calculations performed consistently better than
RAD, but the gains were limited. We expect the difference to be more significant when some
bidders submit jump bids and ask prices change not monotonically. The impact of balanced
prices vs. unbalanced prices in laboratory settings might also be higher, which is, however,
subject of future research.

6 Conclusion

Iterative combinatorial auctions provide an efficient way to solve complex negotiation problems
on multiple items in the presence of complementarities. Economists typically use game theory



and laboratory experiments to analyze market mechanisms. It turns out, however, that com-
puting for example Nash equilibria of iterative combinatorial auctions is computationally hard
because the space of bidding strategies can be very large. Alternatively, laboratory experiments
are extremely helpful, but limited in the number of different treatment variables one can analyze
in a single experiment (e.g., number of items, synergies among items, pricing rules, stopping
rules, number of bidders).

In recent years, computation has become the third research methodology, complementing
theory and experiment in many sciences (aka computational science). Computer simulation
makes it possible to investigate regimes that are beyond current experimental capabilities and
to study phenomena that cannot be replicated in laboratories easily.

In this paper, we have used computer simulations to analyze linear pricing procedures in
iterative combinatorial auctions for myopic best-response bidders in different settings. Based on
these simulations we could identify design problems in RAD, including unbalanced ask prices
and inefficiencies due to the RAD auction stopping rules. We have suggested modifications
in the original design and compared these with the original design. In our future research, we
plan to extend this approach and provide detailed sensitivity analyses of iterative combinatorial
auction formats (using linear and non-linear prices) under various parameter settings.

7 Glossary

Variable Explanation
K = {1, . . . ,m} set of items
k ∈ K, alsol index for items
I = {1, . . . , n} set of bidders
i ∈ I, alsoj index for bidders
S ⊆ K bundle (package)
vi(S) valuation of the bidderi for the bundleS
pi(S) discriminatory bundle ask price of the bundleS

for the bidderi
p(S) anonymous bundle ask price of the bundleS
p(k) anonymous linear ask price of the itemk
P = {pi(S)} orP = {p(S)} orP = {p(k)} set of ask prices
πi(S,P) = vi(S)− pi(S) payoff of the bidderi for the bundleS
Di(P) = {S : πi(S,P) = max

T⊆K
πi(T,P), maximum demand set

πi(S,P) ≥ 0, S ⊆ K}
bt
i(S) ≥ 0 bid (bid price) of the bidderi for the bundleS

in the roundt
Bt = {bt

i(S)} set of bids (bid prices) in the roundt
b ∈ Bt index for bids
W t ⊆ Bt set of provisionally winning bids in the roundt
Lt ⊆ Bt set of provisionally losing bids in the roundt
... X allocation
... X∗ efficient allocation
... Π(X,P) =

∑
i∈I pi(Si) auctioneer’s revenue from allocationS



Acronym Explanation
CA Combinatorial Auction
CAP Combinatorial Allocation Problem
CE Competitive Equilibrium
ICA Iterative Combinatorial Auction
LP Linear Program
MU Monetary Unit
PEP Preference Elicitation Problem
RAD Resource Allocation Design
WDP Winner Determination Problem
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