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Abstract

Iterative Combinatorial Auctions (ICA) have been get-
ting increasing attention in computer science and eco-
nomics, as they provide an efficient solution to resource al-
location problems with superadditive and subadditive valu-
ations. Several auction designs have been proposed in the
literature using different types of bidding languages and dif-
ferent types of ask prices. A few auction designs have fo-
cused on simple linear prices. Although, it can be shown
that exact linear prices are often impossible to calculate,
ICAs based on linear prices have performed very well in the
laboratory with respect to allocative efficiency. In this pa-
per we focus on three promising auction designs, the Com-
binatorial Clock Auction, the Resource Allocation Design
(RAD) and a modified version of RAD and analyze their
performance in discrete event simulations.

1 Introduction

Combinatorial auctions (CA) allow the design of auc-
tions for complex markets, where the bidders can place bids
on combinations of items, called ”packages” or ”bundles”
rather than just on individual items. This allows the bid-
ders to better express their valuations and ultimately in-
creases the overall economic efficiency [7, 3]. CAs have
already found application in various domains ranging from
the transportation to the industrial procurement and the al-
location of spectrum licenses for wireless communication
services. In comparison to sealed-bid designs, iterative CAs
(ICAs) have been selected in many practical applications,
since they help the bidders to express their preferences by
providing feedback, such as provisional pricing and alloca-
tion information in each round.

In this work we focus on the ICA designs with linear
prices, i.e. where each item in the auction is assigned an
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individual price, and the price of a package of items is the
sum of the item prices. One can use item prices to compute
any bundle price even if no bids were submitted for it. In
addition, they are easy to understand for the bidders in com-
parison to the non-linear prices, where the number of prices
to communicate in each round is exponential in the number
of items [4, 12, 6].

In this paper we use numerical simulations as a tool to
benchmark selected auction designs and compare their out-
come based on the allocative efficiency and the auctioneer
revenue. Our goal is to study the economic behavior of
ICAs based on linear prices and to quantify potential effi-
ciency losses due to imprecise linear pricing.

The paper is organized as follows. Section 2 provides an
overview of the studied auction designs. Section 3 describes
the central aspects of our simulation framework, the model
parameters and the performance measures. In Section 4 we
discuss the numerical results. Section 5 concludes.

2 ICA Designs Based on Linear Prices

Due to the size restrictions of this paper we refer the
reader to [9] for the general introduction to ICAs and ICA
pricing schemes. Resource Allocation Design (RAD), Com-
binatorial Clock Auction (CC-auction) and Clock-Proxy
Auction have been proposed as ICA designs mainly based
on linear prices. Newly we also proposed a number of im-
provements for the RAD design, which we now combine to
a modified RAD auction and refer to it as RADm.

The Combinatorial Clock Auction (CC-auction) pro-
posed in [10] utilizes anonymous linear prices called item
clock prices. In each round bidders submit bids on the pack-
ages they would like to purchase at the current prices. As
long as demand exceeds supply for at least one item the
price clock ”ticks” upwards for those items (the item prices
are increased by a fixed price increment), and the auction
moves on to the next round. If there is no excess demand
and no excess supply, the items are allocated corresponding
to the last round bids and the auction terminates. If there



is no excess demand but there is excess supply, the auction-
eer solves the winner determination problem considering all
bids submitted during the auction runtime end terminates.
The advantages of the CC auction is it’s cognitive, compu-
tational and communicative simplicity.

The Clock-Proxy Auction is a relatively new extension
of the CC auction proposed in [3] and [2]. Since it is not a
purely based on linear prices, it is out of scope of this paper.

Resource Allocation Design (RAD) auction proposed in
[7] also uses the anonymous linear pricing scheme. How-
ever, instead of increasing the prices incrementally, the auc-
tion lets the bidders submit priced bids. It then computes
a provisional allocation and a set of approximative linear
ask prices for the next round based on the submitted bid
prices. In the next round the losing bidders have to bid
more then the ask prices plus a fixed minimum increment,
and the winning bids remain valid. Since the prices may
sometimes fall, the auction termination relies on additional
eligibility rules defined as in the Simultaneous Multiround
Auction (SMR) [5]. The strength of RAD lies in it’s com-
municative simplicity and in the flexible price calculation
mechanism, which can be tuned to lead the auction to the
efficient allocation and to lower some undesirable effects
like the well known threshold problem.

Resource Allocation Design (RADm). In [11] we ana-
lyzed some pitfalls in the RAD price calculation algorithm
and the termination condition. So it is possible that the cal-
culated prices are not minimal, not unique and the price de-
viations are not minimized. It is also possible that the auc-
tion prematurely terminates due to the looping phenomenon
(endless switching between two specific inefficient alloca-
tions). In the same paper we proposed a number of ways
to avoid these problems. Now we introduce a new design
called Modified RAD (RADm), which differs from RAD in
the following points: a) we use the modified price calcula-
tion rule, b) bidder has to overbid her own own bids and c)
the auction terminates when no more valid losing bids ex-
ist. In the following we will see that the RADm generally
produced better results than RAD.

In the following we compare the CC auction, RAD and
RADm auction designs using discrete event simulations and
simple artificial bidders bidding on all possible bundles,
which provide positive value to them.

3 Setup for Numerical Experiments

3.1 Simulation Framework

We developed a generic simulation framework for ICAs
including three main components: Value Model, Bidding
Agents and Auction Processor.

A value model generates valuations of all possible bun-
dles for each bidder. We analyzed the following three value

models: Pairwise Synergy, Transportation and Matching.
The Pairwise Synergy value model is a slightly modi-

fied implementation of the model described in [1]. It is de-
fined by a set of valuations of individual items and a matrix
of pairwise item synergies (complementarities). A synergy
value of 0 corresponds to completely independent items,
and the synergy value of 1 means that the bundle valuation
is twice as high as the sum of the individual item valua-
tions. The most important parameters are the interval for
the randomly generated item valuations and the interval for
the randomly generated synergy values.

The Transportation value model is built following the
idea of the Paths in Space model from the Combinatorial
Auction Test Suite (CATS) [8] with necessary adjustments
for the use in simulations of ICAs. It simulates a nearly
planar transportation graph, where each bidder is interested
in securing a path between two randomly selected vertices
(cities). The items traded are edges (routes) of the graph.

The Matching value model is an implementation of the
Matching scenario in CATS with necessary modifications.
It models the four large airports each having a predefined
amount of starting and landing time slots. Each bidder is
interested in obtaining one starting and one landing slot in
two randomly selected airports. The bidder valuation is pro-
portional to the distance between the airports, but can be
reduced if the plane arrives later as planned or/and has to
delay landing until the landing slot becomes available.

A bidding agent implements a bidding strategy adher-
ing to the given value model and to the restrictions of the
specific auction design. In this set of simulations we did
not use agents that emulate real-world bidding behavior or
myopic best-response bidders, but agents bidding the mini-
mal allowed price on all possible bundles that provide posi-
tive payoff at the current prices.

An auction processor implements the auction logic, en-
forces the auction protocol rules, calculates the ask prices
and provisional allocation for the current round.

3.2 Performance Measures

The most important characteristic of a (combinatorial)
auction design is it’s allocative efficiency (or simply effi-
ciency). Intuitively it shows whether the auction allocates
items to the bidders who value them most highly. We mea-
sure the efficiency following [7] as the ratio of the total val-
uation of the resulting allocation to the total valuation of an
efficient (best possible) allocation.

Another important characteristic of an auction design
is the auctioneer normalized revenue (or simply revenue),
which shows the auctioneer’s share in the overall econom-
ical gain, that could have been generated by the auction.
Given the resulting allocation and the bid prices, the rev-
enue is measured as the ratio of the auctioneers income to



the total valuation of an efficient allocation.
While achieving maximum efficiency is usually desir-

able for any auction design, it can sometimes compete with
the revenue maximization goal. It is also possible for two
auction designs with similar efficiency to produce signifi-
cantly different auctioneer revenues.

4 Simulation Results

4.1 Efficiency of Different ICA Designs

To compare performance of different ICA designs we
have tested auctions of three selected designs against dif-
ferent value models.

Within the Pairwise Synergy value model we have run
250 auctions with 5 items and synergy values ranging from
0 to 2.5. To create a competitive market with different
but similar valuations, private value models for each bidder
were set using different parameters, taken from the same
narrow distribution, and bidders were restricted to a maxi-
mum bundle size of 3.

Figure 1. Efficiency for Pairwise Synergy VM

The Transportation value model was tested in 264 auc-
tions with number of items varying from 5 to 26. There was
no restriction on the bundle size in this case, and the amount
of bidders was varying from 12 to 23 proportionally to the
amount of traded items to achieve sufficient competition.

Figure 2. Efficiency for Transportation VM

Another batch of 160 auctions was set up using the
Matching value model with number of items varying from
40 to 100. Bidder settings were similar to the setup of the
Transportation value model experiment.

The simulation results are presented in Fig. 1 and 2 (the
matching case is essentially similar to the transportation and
was omitted), which show which share of all auctions (y-
axis) achieved at least the given efficiency (x-axis). They
indicate generally a very good efficiency of the CC Auction.
The RADm design outperforms RAD in most cases and is
often very close to the CC design. Having analyzed several
auction instances where the difference between RADm and
RAD was especially large, we can say that RAD looses effi-
ciency primarily for two reasons. First, it tends to terminate
prematurely, when some bidders may still have valuations
exceeding current prices. Second, unbalanced prices can
prevent a bidder from further participating in the auction.
The good performance of the CC design can be also ex-
plained by up to 30% higher number of rounds compared to
the RAD designs with the same minimum increment. Fur-
thermore, the CC auction forces bidders to provide more
information to the auctioneer, see also Subsection 4.3.

4.2 Complementarity vs. Efficiency

In order to quantify potential efficiency losses in case of
high synergies between the item valuations, we have used
the Pairwise Synergy value model and measured the auction
efficiency across different synergy values varying from 0 to
2.5 for different auction designs.

Figure 3. Impact of Synergies on Efficiency

The simulation results are shown in the Figure 3. As ex-
pected, auction efficiency decreases as complementarity be-
tween items grows. The CC auction outperforms the RADm
in the low synergy range; starting from a synergy value of
0.5 both auctions perform equally well. The efficiency of
the RAD auction is limited because of other reasons (see
Section 4.1) and lies slightly below both other designs.

Interestingly, auction efficiency remains relatively high
for all auction designs even in case of high synergy val-
ues. This fact can be explained by the specifics of the Pair-
wise Synergy value model, where the valuations of a bidder
for all bundles are relatively high compared to other value
models, where some bundles might have a value of null. In
addition, we have indicated that the simulation results can
be interpreted as upper bounds of efficiency, which are less
likely in laboratory settings.



4.3 Utility Distribution

Another important characteristic is the auctioneer rev-
enue. In a broader sense, it is particularly interesting which
part of the overall utility (economic gains of the trade) goes
to the auctioneer, and which part is distributed to the bid-
ders. In cases where the auction is not 100% efficient, still
part of the overall utility is simply lost.

Figure 4. Utility Distribution for RADm

Our simulations indicate different utility distributions in
the three auction designs (essentially independent of the
value model). Figures 4 and 5 show efficiency and rev-
enue values for different auction designs based on the the
Pairwise Synergy value model. For each synergy value on
the x-axis, the distance under the Revenue curve is propor-
tional to the auctioneer revenue, the distance between the
Revenue and the Efficiency curves is proportional to the part
of the overall utility which is distributed to the bidders, and
the rest distance between the Efficiency curve and line y = 1
can be interpreted as the utility lost due to the inefficiency
of the final allocation.

Figure 5. Utility Distribution for CC Auction

One important observation is that the CC design in all
cases produced revenue nearly as high as efficiency, which
means that the most part of the overall auction utility goes
to the auctioneer. On the other hand, RAD and RADm auc-
tion designs result in a lower utility share for the auctioneer,
as they attempt to construct minimal prices given the sub-
mitted bids and do not just increase prices as the CC design
does. This will simplify the bidders strategy, since the bid-
ders do not need to try to shade their bids.

5 Conclusion and Outlook

In this paper we used computer simulations to compare
of three ICA designs based on different value models. We

analyzed how complementarity among items affects its ef-
ficiency in case of linear ask prices. We have also looked
into the distribution of utility between the auctioneer and
the bidders. The results provide upper bounds on efficiency
and a starting point for further experimental analysis.

In our future work we plan to extend our work with addi-
tional sensitivity analyzes using linear and non-linear price
designs under different parameter regimes. In particular,
we want to study the influence of minimum increment size,
number of bidders, different bidding behavior, and budget
constraints on the auction outcome.
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