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In the early 1950s Lloyd Shapley proposed an ordinal and set-valued solu-
tion concept for zero-sum games called weak saddle. We show that all weak
saddles of a given zero-sum game are interchangeable and equivalent. As a
consequence, every such game possesses a unique set-based value.
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1 Introduction

One of the earliest solution concepts considered in game theory are saddle points, com-
binations of actions such that no player can gain by deviating (see, e.g., von Neumann
and Morgenstern, 1947). In two-player zero-sum games, every saddle point happens to
coincide with the optimal outcome both players can guarantee in the worst case and thus
enjoys a very strong normative foundation. Unfortunately, however, saddle points are
not guaranteed to exist. This situation can be rectified by the introduction of mixed—
i.e., randomized—strategies, as first proposed by Borel (1921). Von Neumann (1928)
proved that every zero-sum game contains a mixed saddle point, or equilibrium. While
equilibria need not be unique, they maintain two appealing properties of saddle points:
interchangeability (any combination of equilibrium strategies for either player forms an
equilibrium) and equivalence (all equilibria yield the same expected payoff).

Mixed equilibria have been criticized for resting on demanding epistemic assumptions
such as the expected utility axioms by von Neumann and Morgenstern (1947). See, for
example, Luce and Raiffa (1957, pp. 74–76) and Fishburn (1978). As Aumann puts it:
“When randomized strategies are used in a strategic game, payoff must be replaced by
expected payoff. Since the game is played only once, the law of large numbers does not
apply, so it is not clear why a player would be interested specifically in the mathematical
expectation of his payoff” (Aumann, 1987, p. 63).

Shapley (1953a,b) showed that the existence of saddle points can also be guaranteed
by moving to minimal sets of actions rather than randomizations over them.1 Shapley

1The main results of the 1953 reports later reappeared in revised form (Shapley, 1964).
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defines a generalized saddle point (GSP) to be a tuple of subsets of actions for each
player that satisfies a simple external stability condition: Every action not contained
in a player’s subset is dominated by some action in the set, given that the other player
chooses actions from his set. A GSP is minimal if it does not contain another GSP.
Minimal GSPs, which Shapley calls saddles, also satisfy internal stability in the sense
that no two actions within a set dominate each other, given that the other player chooses
actions from his set. While Shapley was the first to conceive GSPs, he was not the only
one. Apparently unaware of Shapley’s work, Samuelson (1992) uses the very related
concept of a consistent pair to point out epistemic inconsistencies in the concept of
iterated weak dominance. Also, weakly admissible sets as defined by McKelvey and
Ordeshook (1976) in the context of spatial voting games and the minimal covering set
as defined by Dutta (1988) in the context of majority tournaments are GSPs (Duggan
and Le Breton, 1996a).2

In this paper, we consider GSPs with respect to weak dominance. An action weakly
dominates another action if it always yields at least as much utility. Shapley (1964,
p. 10) notes that no general uniqueness result is available for this type of saddle. Later,
uniqueness has been shown for restricted classes of zero-sum games, namely tournament
games (Dutta, 1988) and confrontation games (Duggan and Le Breton, 1996a). We show
that all weak saddles of a given zero-sum game are interchangeable and equivalent. This
implies the above-mentioned uniqueness results and shows that every zero-sum game
possesses a unique set-based value. Our result can be interpreted as an ordinal variant
of the minimax theorem.

2 Preliminaries

A finite two-player zero-sum game is given by a matrix A = (ai,j)i∈R,j∈C . The finite set
R of rows represents the row player’s actions, and the finite set C of columns represents
the column player’s actions. If the row player chooses action r ∈ R, and the column
player chooses action c ∈ C, then the payoff (or utility) of the row player is given by
the entry ar,c of the matrix, while the payoff of the column player is given by −ar,c. For
nonempty subsets R′ ⊆ R and C ′ ⊆ C, A∣R′×C′ denotes the subgame in which the row
player has action set R′ and the column player has action set C ′.

An action r1 ∈ R weakly dominates another action r2 ∈ R with respect to a set C ′ ⊆ C
of columns, denoted r1 ≥C′ r2, if ar1,c ≥ ar2,c for all c ∈ C ′.3 Similarly, an action c1 ∈ C
weakly dominates another action c2 ∈ C with respect to a set R′ ⊆ R of rows, denoted
c1 ≤R′ c2, if −ar,c1 ≥ −ar,c2 (and thus ar,c1 ≤ ar,c2) for all r ∈ R′. Strict dominance is
defined analogously, with the weak inequalities replaced by strict inequalities.

Dominance relations can be extended to sets of actions as follows. A set R1 of rows
weakly (resp. strictly) dominates a set R2 of rows with respect to C ′ ⊆ C if for every

2GSPs have also been considered in the context of general normal-form games (see, e.g., Duggan and
Le Breton, 1996b; Brandt et al., 2009, 2011; Brandt and Brill, 2012)

3What we call weak dominance here is sometimes also called very weak dominance (see, e.g., Leyton-
Brown and Shoham, 2008).
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row r2 ∈ R2, there exists a row r1 ∈ R1 such that r1 weakly (resp. strictly) dominates r2
with respect to C ′. We denote this by R1 ≥C′ R2 (resp. R1 >C′ R2). Dominance between
sets of columns is defined analogously, and denoted C1 ≤R′ C2 (for weak dominance) and
C1 <R′ C2 (for strict dominance).

We are now prepared to define saddles, which are based on the notion of a generalized
saddle point (GSP) (Shapley, 1953a,b, 1964). Given a subset R′ ⊆ R of rows and a subset
C ′ ⊆ C of columns, the product R′ ×C ′ is a weak GSP if R′ ≥C′ R/R′ and C ′ ≤R′ C/C ′.
Furthermore, the product R′ × C ′ is a weak saddle if it is a weak GSP and no proper
subset of it is a weak GSP.4 Strict GSPs and strict saddles are defined analogously.

A1 =
⎛
⎜⎜⎜
⎝

2 1 0 1 2
0 3 4 4 1
0 2 2 1 2
2 1 0 2 1

⎞
⎟⎟⎟
⎠

A2 =
⎛
⎜
⎝

0 0 0
0 1 −1
0 −1 1

⎞
⎟
⎠

A3 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

2 2 1 3 2
2 4 0 0 2
1 3 3 4 1
2 3 1 3 2
1 0 2 2 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

Figure 1: Three example zero-sum games. For each game, the rows and columns are
labeled r1, r2, . . . and c1, c2, . . ., respectively. The game A1 contains one weak
saddle: {r1, r2} × {c1, c2, c3}. The game A2 contains a saddle point {r1} ×
{c1}. This saddle point is the unique pure Nash equilibrium and the unique
weak saddle of this game. Moreover, (12r2 +

1
2r3,

1
2c2 +

1
2c3) is a (mixed) Nash

equilibrium of A2. The game A3 contains four weak saddles: {r1, r3}×{c1, c3},
{r1, r3}×{c3, c5}, {r3, r4}×{c1, c3}, and {r3, r4}×{c3, c5}. For all three games,
the product of all rows and all columns is the unique strict saddle.

In contrast to strict saddles, weak saddles are extensions of saddle points in the sense
that every saddle point constitutes a weak saddle. Since the product R ×C containing
all actions is a trivial weak and strict GSP of any game, weak and strict saddles are
guaranteed to exist. While strict saddles have been shown to be unique in zero-sum
games (see Corollary 1), this is not the case for weak saddles. It is noteworthy that
saddles generally cannot be found by the iterated elimination of (weakly or strictly)
dominated actions.5 See Figure 1 for examples.

4Weak saddles have been called very weak saddles by Brandt et al. (2011); see also Footnote 3. In
some papers (e.g., Duggan and Le Breton, 1996a, 2001; Brandt et al., 2009, 2011), the dominance
used for weak saddles requires at least one strict inequality. In the context of confrontation games
(see Corollary 2), where weak saddles have usually been considered, both notions of weak saddles
coincide. Shapley (1953a,b, 1964) defines weak saddles as we do here. It is easily seen that our
theorem does not hold for weak saddles that require at least one strict inequality (see, for example,
the restriction to the first two rows and columns of game A2 in Figure 1).

5While the subgames generated by iteratively eliminating dominated strategies are GSPs, these GSPs
need not be minimal.
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3 The Result

In this section, we prove that weak saddles in zero-sum games are interchangeable and
equivalent. We begin with a lemma.

Lemma 1. Consider a zero-sum game A with row set R and column set C. Let R1 ⊆
R2 ⊆ R and C1 ⊆ C2 ⊆ C. Suppose that R2 ×C2 is a weak GSP. Then, R1 ×C1 is a weak
GSP if and only if R1 ×C1 is a weak GSP in A∣R2×C2.

Proof. The “only if” part follows straightforwardly from the definitions. For the “if”
part, suppose that R1 ×C1 is a weak GSP in A∣R2×C2 . We will show that R1 ≥C1 R/R1;
the argument for column domination is analogous. Consider an arbitrary row r ∈ R/R1.
If r ∈ R2/R1, then since R1 × C1 is a weak GSP in A∣R2×C2 , there exists a row r′ ∈ R1

such that r′ ≥C1 r. Otherwise, we have r ∈ R/R2. Since R2 × C2 is a weak GSP in A,
there exists a row r′ ∈ R2 such that r′ ≥C2 r, and in particular r′ ≥C1 r. But since R1×C1

is a weak GSP in A∣R2×C2 , there exists a row r′′ ∈ R1 such that r′′ ≥C1 r
′. It follows that

r′′ ≥C1 r, and hence R1 ≥C1 R/R1.

We are now ready to prove the main theorem.

Theorem 1. Let A be a zero-sum game with weak saddles R1 ×C1 and R2 ×C2. Then
the following statements are true.

(i) R1 ×C2 and R2 ×C1 are also weak saddles (interchangeability).

(ii) The subgame A∣R2×C2 can be derived from A∣R1×C1 by permuting the rows and
columns (equivalence). In particular, ∣R1∣ = ∣R2∣ and ∣C1∣ = ∣C2∣, and the multisets
of entries of A∣R1×C1 and A∣R2×C2 are the same.

Proof. The general proof structure is as follows. We first show both statements for the
case in which every row of one saddle dominates some row of the other saddle with
respect to the columns of the first saddle (and similarly for the columns). We then
consider the more difficult case in which a saddle contains an “idle” action that does not
dominate any action of the other saddle. It turns out that this violates minimality of
the saddle and is therefore not possible.

Suppose that R1 ×C1 and R2 ×C2 are weak saddles, with ∣R1∣ = p1, ∣R2∣ = p2, ∣C1∣ = q1,
and ∣C2∣ = q2. We label the saddle actions in R1 with 1, . . . , p1, and similarly for the
actions in R2, C1, and C2. Since R1×C1 is a weak GSP, for each row r2 ∈ R2 there exists
a row r1 ∈ R1 such that r1 ≥C1 r2. (If r2 ∈ R1 ∩R2, then r2 ≥C1 r2.) Hence there exists
a function f1 ∶ [p2] → [p1] such that f1(i) ∈ R1 and f1(i) ≥C1 i for every row i ∈ R2,
where [n] denotes the set {1, . . . , n}. Similarly, there exist functions f2 ∶ [p1] → [p2],
g1 ∶ [q2] → [q1], and g2 ∶ [q1] → [q2] such that f2(i) ∈ R2 and f2(i) ≥C2 i for every row
i ∈ R1, g1(j) ∈ C1 and g1(j) ≤R1 j for every column j ∈ C2, and g2(j) ∈ C2 and g2(j) ≤R2 j
for every column j ∈ C1.

Suppose that f1, f2, g1, and g2 are all bijections (which in particular implies that
p1 = p2 and q1 = q2). Then the rows in R2 × C1 are dominated by the rows in R1 × C1,
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one by one. Hence ∑i∈R1,j∈C1
aij ≥ ∑i∈R2,j∈C1

aij . By putting together these inequalities
for R1 ×C1, R2 ×C1, R2 ×C2, and R1 ×C2, we get

∑
i∈R1,j∈C1

aij ≥ ∑
i∈R2,j∈C1

aij ≥ ∑
i∈R2,j∈C2

aij ≥ ∑
i∈R1,j∈C2

aij ≥ ∑
i∈R1,j∈C1

aij .

It follows that equality holds everywhere and that rows are only dominated by identical
rows and that columns are only dominated by identical columns. As a consequence,
R2 × C2 can be derived from R1 × C1 by permuting the rows and columns. Moreover,
R1×C2 and R2×C1 can also be derived from R1×C1 by permuting the rows and columns,
and one can check that they are saddles in R ×C as well. Hence both (i) and (ii) hold
in this case.

Suppose now that at least one of f1, f2, g1, and g2 is not a bijection. Then at least one
of them is not a surjection. Indeed, if for instance p1 < p2, then f2 is not a surjection.
If p1 = p2 and q1 = q2, and any of the functions f1, f2, g1, g2 is not a bijection, then it is
also not a surjection. Assume without loss of generality that f1 is not a surjection, i.e.,
R1 ×C1 contains an idle row that does not dominate any row in R2 with respect to C1.
We will show that R1 × C1 is not inclusion-minimal, i.e., there exists a proper subset
R′

1 ×C ′
1 ⊂ R1 ×C1 such that R′

1 ×C ′
1 is a weak GSP. But since R1 ×C1 is a weak GSP,

by Lemma 1 we only need to show that there exists a proper subset R′
1 ×C ′

1 ⊂ R1 ×C1

such that R′
1 ×C ′

1 is a weak GSP in A∣R1×C1 .

R1

R2

C1

C2

i′

f1(i)

i

j g1(j′) j′

j g2(j) j′

i′

f2(i′)

i

j′

Figure 2: Construction in the proof of Theorem 1. An arrow from one entry to another
indicates that the former is greater than or equal to the latter.

We index the entries of A∣R1×C1 by (xi,j)i∈[p1],j∈[q1], and the entries of A∣R2×C2 by
(yi,j)i∈[p2],j∈[q2]. We have xf1(i),j ≥ yi,g2(j) for all (i, j) ∈ [p2] × [q1] and xi,g1(j) ≤ yf2(i),j
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for all (i, j) ∈ [p1] × [q2]. Hence for all j ∈ [q2] and all k ∈ [q1] such that g2(k) = j, we
have xf1(i),k ≥ yi,j for all i ∈ [p2]. Define xf1(i),g−12 (j) ∶= {xf1(i),k ∣ g2(k) = j}, and for two
sets S,T , write S ≥ T if and only if s ≥ t for all s ∈ S and t ∈ T . Using this notation,
xf1(i),g−12 (j) ≥ yi,j for all (i, j) ∈ [p2] × [q2]. Similarly, we have that xf−12 (i),g1(j) ≤ yi,j for

all (i, j) ∈ [p2] × [q2]. See Figure 2 for an illustration. It follows that

xf1(i),g−12 (j) ≥ xf−12 (i),g1(j) (∗)

for all (i, j) ∈ [p2] × [q2]. This inequality will be leveraged later in the proof. If
f−12 (i) = ∅ for some i, the inequality is meaningless for that index i and we may re-
move the index from consideration. A similar statement holds for g2. We may relabel
the remaining indices as 1, . . . , p3 and 1, . . . , q3, respectively, so that [p3] = Im(f2) and
[q3] = Im(g2), where Im(f) is the image of a function f . We have ⋃i∈[p3] f

−1
2 (i) = [p1]

and ⋃j∈[q3] g
−1
2 (j) = [q1].

Consider the product S = Im(f1 ○ f2) × Im(g1 ○ g2). Since f1 is not surjective, we have
that S is a proper subset of R1 ×C1. Hence it suffices to show that there exists a subset
of S that is a weak GSP in A∣R1×C1 .

We now define a directed graph GR as follows. The nodes of GR are given by 1,2, . . . , p3.
For each i, we include a directed edge from f2(f1(i)) to i. Let SR be the set of nodes in
GR that belong to a directed cycle. (A self-loop counts as a directed cycle.) Each node
in GR has exactly one incoming edge, and any node in GR can be reached from a node
in SR. Similarly, we define a directed graph GC with nodes 1,2, . . . , q3. For each i, we
include a directed edge from i to g2(g1(i)). Each node in GC has exactly one outgoing
edge, and any node in GC can reach a node in SC , where SC is the set of nodes in GC
that belong to a directed cycle.

Suppose that GR contains an edge i2 → i1 and GC contains an edge j1 → j2. Then
f1(i1) ∈ f−12 (i2) and g1(j1) ∈ g−12 (j2). From (∗), we have xf−12 (i1),g1(j2) ≤ xf1(i1),g−12 (j2)
and xf−12 (i2),g1(j1) ≤ xf1(i2),g−12 (j1). Since xf1(i1),g1(j1) belongs to both xf1(i1),g−12 (j2) and
xf−12 (i2),g1(j1), we have xf−12 (i1),g1(j2) ≤ xf1(i1),g1(j1) ≤ xf1(i2),g−12 (j1). In particular, we have

xf−12 (i1),g1(j2) ≤ xf1(i2),g−12 (j1).

Suppose now that GR contains edges in → in−1 → ⋯ → i1 and GC contains edges j1 →
j2 → ⋯→ jn. Then f1(ik) ∈ f−12 (ik+1) and g1(jk) ∈ g−12 (jk+1) for all k ∈ [n− 1]. Applying
the same argument as in the n = 2 case repeatedly, we have xf−12 (i1),g1(jn) ≤ xf1(in),g−12 (j1).

We claim that S′ ∶= ⋃i∈SR
f1(i) ×⋃j∈SC

g1(j) ⊆ S is a weak GSP in A∣R1×C1 . To prove
this claim, it suffices to consider row domination; column domination follows analogously.

For each node x ∈ SC , define c(x) = g2(g1(x)), i.e., c maps a node to its successor in
graph GC . We must show that for any i ∈ [p1], there exists j ∈ SR such that xf1(j),g1(k) ≥
xi,g1(k) for all k ∈ SC . Since g1(k) ∈ g−12 (c(k)), it suffices to show that for any i ∈ [p1],
there exists j ∈ SR such that xf1(j),g−12 (c(k)) ≥ xi,g1(k) for all k ∈ SC . Moreover, since

⋃i∈[p3] f
−1
2 (i) = [p1], we only need to show that for any i ∈ [p3], there exists j ∈ SR such

that xf1(j),g−12 (c(k)) ≥ xf−12 (i),g1(k) for all k ∈ SC .
Let M denote the least common multiple of all the cycle lengths in SC . For any

positive integer n and any node k ∈ SC , there exists a path of length nM − 1 in SC (and
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hence in GC) that begins with c(k) and ends with k. Since every node in GR has one
incoming edge, for large enough n′ there exists a path of length n′ in GR that begins with
some node j ∈ SR and ends with i. Taking n′′ = nM −1 for large enough n, there exists a
path of length n′′ in GC that begins with c(k) and ends with k, and a path of length n′′ in
GR that begins with j ∈ SR and ends with i. It follows that xf1(j),g−12 (c(k)) ≥ xf−12 (i),g1(k).
Thus S′ is a weak GSP, contradicting the minimality of R1 × C1. Hence the case in
which at least one of f1, f2, g1 and g2 is not a bijection cannot occur, and the proof is
complete.

Every weak saddle R′ × C ′ of a given zero-sum game A defines a subgame A∣R′×C′ .
It follows from Theorem 1 that all such subgames are identical up to the permutation
of rows and columns. As a consequence, A∣R′×C′ could be considered the “essence” (or
set-based value) of A. Moreover, every Nash equilibrium of A∣R′×C′ is a Nash equilibrium
of A. Therefore, every weak saddle contains the support of a Nash equilibrium and the
(von Neumann) value of A∣R′×C′ is the same as that of the original game A.6

4 Consequences and Remarks

Shapley (1953a) has shown that every zero-sum game contains a unique strict saddle.
Shapley’s proof crucially relies on the minimax theorem (and the interchangeability of
minimax strategies).7 Shapley’s result can be obtained as a corollary of Theorem 1 by
leveraging the interchangeability of weak saddles.

Corollary 1 (Shapley, 1953a). Every zero-sum game contains a unique strict saddle.

Proof. Let R1 × C1 and R2 × C2 be two distinct strict saddles. We first show that
R1∩R2 ≠ ∅ and C1∩C2 ≠ ∅. Without loss of generality we may assume for contradiction
that R1 ∩R2 = ∅. Every strict GSP is also a weak GSP and therefore contains a weak
saddle. Let R′

1 × C ′
1 be a weak saddle such that R′

1 ⊆ R1 and C ′
1 ⊆ C1 and let R′

2 × C ′
2

be a weak saddle such that R′
2 ⊆ R2 and C ′

2 ⊆ C2. Theorem 1 implies that R′
2 × C ′

1 is
also a weak saddle. Note that R′

2 ∩R1 = ∅. Now let r1 be an arbitrary row in R1. Since
R′

2 × C ′
1 is a weak saddle, there must be r2 ∈ R′

2 such that r1 ≤C′

1
r2. Since R1 × C1 is

a strict saddle, there has to be r3 ∈ R1 such that r3 >C1 r2 (and hence also r3 >C′

1
r2).

The strict inequality implies that r3 ≠ r1. Alternating these two arguments, we obtain a
sequence of rows r1, r2, . . . such that

r1 ≤C′

1
r2 <C′

1
r3 ≤C′

1
r4 <C′

1
. . .

All ri have to be distinct and finiteness of the game implies that we will eventually find
a row rk, which is witness to the fact that either R′

2 ×C ′
1 is not a weak saddle or R1 ×C1

is not a strict saddle, both of which are contradictions.

6However, game A2 in Figure 1 shows that there can also be Nash equilibria whose support is disjoint
from all weak saddles.

7Shapley notes that Hyman Bass proved this statement without making reference to the minimax
theorem, but Bass’s report is unavailable.
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We thus have that R1 ∩R2 ≠ ∅ and C1 ∩C2 ≠ ∅. An argument using a chain of strict
inequalities (similar to the one above) easily shows that strict GSPs are closed under
non-empty intersection, i.e., (R1 ∩R2)× (C1 ∩C2) is a strict GSP. Hence, at least one of
the two original strict GSPs was not minimal, a contradiction.

A zero-sum game A with row set R and column set C is symmetric if R = C (with a
slight abuse of notation) and the payoff matrix A is skew-symmetric. In particular, all
entries on the main diagonal of A are zero. A confrontation game is a symmetric zero-
sum game in which zeroes appear only on the main diagonal. Strengthening a result by
Dutta (1988), Duggan and Le Breton (1996a) have shown that every confrontation game
contains a unique weak saddle.8 This now also follows as a consequence of Theorem 1.

Corollary 2 (Duggan and Le Breton, 1996a). Every confrontation game contains a
unique weak saddle.

Proof. Let A be a confrontation game. A weak saddle R′ × C ′ is called symmetric if
R′ = C ′. Hence, a weak saddle R′ ×C ′ is symmetric if and only if every row and every
column of A∣R′×C′ contains exactly one zero.

Assume for contradiction that A has two distinct weak saddles, R1 ×C1 and R2 ×C2.
We consider the following two cases.

Case 1 : At least one of the two weak saddles is not symmetric. Assume without loss
of generality that R1 ×C1 is not symmetric. Since A is skew-symmetric, C1 ×R1 is also
a weak saddle. By the first part of Theorem 1, R1 × R1 is a symmetric weak saddle.
Hence, R1 ×R1 contains exactly one zero in each row and each column, while R1 × C1

does not. This contradicts the second part of Theorem 1.
Case 2 : Both weak saddles are symmetric. Then R1 × C2 is an asymmetric saddle,

and we obtain a contradiction in the same way as in Case 1.

We conclude the paper with three remarks.

Remark 1. If all payoffs of a game are pairwise distinct, strict dominance and weak
dominance coincide. Thus, every such zero-sum game contains a unique weak saddle.

Remark 2. Duggan and Le Breton (2001) defined refinements of (weak and strict)
saddles based on mixed dominance. Game A2 in Figure 1 shows that Theorem 1 does
not hold for mixed weak saddles.

Remark 3. A zero-sum game may contain an exponential number of weak saddles
(Brandt and Brill, 2012). Thus, computing all weak saddles of a game is not feasi-
ble in polynomial time. The computational complexity of finding some weak saddle of a
zero-sum game is open.9

8By contrast, Nash equilibria are not unique in confrontation games (Le Breton, 2005).
9For two-player games that are not zero-sum, finding a weak saddle has been shown to be NP-hard

(Brandt et al., 2011).
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