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Abstract We consider the notion of Pareto optimality under the assumption
that only the pairwise majority relation is known and show that the set of
necessarily Pareto optimal alternatives coincides with the McKelvey uncovered
set. As a consequence, the McKelvey uncovered set constitutes the coarsest
Pareto optimal majoritarian social choice function. Moreover, every majority
relation is induced by a preference profile in which the uncovered alternatives
precisely coincide with the Pareto optimal ones. We furthermore discuss the
structure of the McKelvey covering relation and the McKelvey uncovered set.
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1 Introduction

Let A be a finite set of m alternatives. The preferences of an agent i over
these alternatives are represented by a complete, transitive, and antisymmetric
preference relation Ri ⊆ A × A.1 The interpretation of (x, y) ∈ Ri, usually
denoted by x Ri y, is that agent i values alternative x at least as much as
alternative y. In accordance with conventional notation, we write Pi for the
strict part of Ri, i.e., x Pi y if x Ri y but not y Ri x. Since Ri is antisymmetric,
x Pi y iff x Ri y and x 6= y. A preference profile R is a finite vector of pairs
which associate each agent i with its corresponding preference relation Ri. For
a given preference profile, NR denotes the set of agents represented in R. In
particular, we do not assume a fixed number of agents. For convenience, we
furthermore define nR(x, y) := |{i ∈ NR | x Ri y}|. The relations RMaj and
RPar of a given preference profile R are then given by

x RMaj y iff nR(x, y) ≥ nR(y, x), and

x RPar y iff nR(x, y) = |NR|.

By convention, again PMaj denotes the strict part of RMaj and PPar the
strict part of RPar. Thus, x PPar y iff x Ri y for all i and x Pj y for some j.
The relation RMaj will be called the majority relation and PPar the Pareto
relation of R, respectively. Note that, by definition, RMaj is complete whereas
the Pareto relation PPar is transitive and antisymmetric.

We say that a profile R is consistent with the majority relation R′
Maj of

another profile R′ if RMaj = R′
Maj. In this case, R is also said to be consistent

with R′.

An alternative x ∈ A is called a Condorcet winner of a given (majority)
relation RMaj if it strictly dominates all other alternatives, i.e., if x PMaj y
for all y ∈ A \ {x}.

Given a preference profile R, an alternative x is said to be Pareto optimal
whenever there is no alternative y with y PPar x, i.e., if x is a maximal element
of RPar.

2

A social choice function (SCF) f associates with every preference profile R
over a set A of alternatives a nonempty subset f(R) of A. An SCF f is called
a refinement of another SCF g if f(R) ⊆ g(R) for all preference profiles R. In
short, we write f ⊆ g in this case and also say that g is coarser than f . An
example of an SCF is the Pareto set PO , which selects the alternatives that
are Pareto optimal, i.e.,

PO(R) = {x ∈ A | y PPar x for no y ∈ A}

1 Antisymmetry is not required for any of our results to hold. In fact, Theorem 1 is even
stronger when also assuming antisymmetric individual preferences (since this only increases
the difficulty of constructing a suitable preference profile).

2 Some authors call this strong Pareto optimality. In contrast, an alternative x would be
weakly Pareto optimal if there is no alternative y with y Pi x for all i ∈ NR. In the case of
antisymmetric preferences, the two notions coincide.
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An SCF f is called Pareto optimal if it is a refinement of the Pareto set, i.e.,
if f ⊆ PO .

We will restrict attention to so-called majoritarian SCFs, whose outcomes
only depend on the majority relation, i.e., to SCFs f such that, for all prefer-
ence profiles R,R′,

RMaj = R′
Maj implies f(R) = f(R′).

An interesting class of majoritarian SCFs are defined using certain refine-
ments of the majority relation called covering relations. For a given covering
relation, the uncovered set contains those alternatives that are not covered by
any other alternative. For a comprehensive overview of the theory of covering
relations and uncovered sets, see Duggan (2013). A range of varying definitions
of the covering relation exist, all of which coincide when restricted to antisym-
metric majority relations. We will be concerned with what Duggan refers to
as McKelvey covering (Bordes, 1983; McKelvey, 1986).

In order to define the McKelvey covering relation, we need to intro-
duce the notions of strict and weak dominators of a given alternative. The
strict dominators PMaj(x) of an alternative x ∈ A are defined by the set
of all alternatives y ∈ A that are strictly majority preferred to x, i.e.,
PMaj(x) := {y ∈ A | y PMaj x}. Analogously, the weak dominators RMaj(x)
of an alternative x ∈ A are defined as the set of all alternatives y ∈ A that are
weakly majority preferred to x, i.e., RMaj(x) := {y ∈ A | y RMaj x}

Let CRMaj
denote the (McKelvey) covering relation, i.e., for any pair of

alternatives x, y, the relation x CRMaj
y holds iff each of the following three

conditions is satisfied:

(i) x PMaj y,
(ii) PMaj(x) ⊆ PMaj(y), and

(iii) RMaj(x) ⊆ RMaj(y).

As can easily be seen, CRMaj
is transitive and asymmetric. The (McKelvey)

uncovered set UC is then defined as

UC (R) :=
{
y ∈ A | x CRMaj

y for no x ∈ A
}

.

Alternative, but equivalent, definitions of the McKelvey uncovered set were
used by Dutta and Laslier (1999), Peris and Subiza (1999), and Brandt and
Fischer (2008).

It is also well-known (see, e.g., Duggan, 2013) that the McKelvey uncovered
set can be characterized as the set of alternatives that dominate every other
alternative in at most two steps (of which at most one may be a tie). Formally,
the McKelvey uncovered set then consists of all alternatives x ∈ A such that
for all y ∈ A \ {x} at least one of the following three conditions is satisfied:

(i) x RMaj y,
(ii) there is a z ∈ A such that x RMaj z PMaj y, or

(iii) there is a z ∈ A such that x PMaj z RMaj y.

For brevity, we will omit any reference to McKelvey in the following and just
write “covering” and “uncovered set.”
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2 The Structure of the McKelvey Covering Relation

In this section we consider the structural properties of the covering relation
and observe that any transitive and asymmetric relation can be obtained as
the covering relation of some preference profile.

Proposition 1 Let Q ⊆ A × A be a binary relation. Then the following are
equivalent:

(i) Q is transitive and asymmetric.
(ii) There exists a preference profile R such that CRMaj

= Q.

Proof The implication from (ii) to (i) is immediate, as for every preference pro-
file R the covering relation CRMaj

is transitive and asymmetric. For the other
direction, assume that Q is transitive and asymmetric and let R be a prefer-
ence profile with PMaj = Q. By virtue of McGarvey’s Theorem (McGarvey,
1953) we know such a preference profile exists. It then remains to observe that
(x, y) ∈ CRMaj

iff (x, y) ∈ Q. The “if”-direction is immediate. For the “only
if”-direction, consider an arbitrary edge (x, y) ∈ Q. By construction of R, also
x PMaj y and, by transitivity of Q = PMaj, we obtain PMaj(x) ⊆ PMaj(y).
To see that also RMaj(x) ⊆ RMaj(y), consider an arbitrary z ∈ RM (x) and
assume for contradiction that y PMaj z. Again by transitivity of PMaj, then
x PMaj z, a contradiction. It follows that z ∈ RMaj(y). ut

Interestingly, the implication from (i) to (ii) does not hold if RMaj is
required to be antisymmetric (e.g., when the number of agents is odd). We are
not aware of a non-trivial characterization of potential covering relations for
this case.3

A result analogous to Proposition 1 was shown by Dushnik and Miller
(1941) for the Pareto relation. They proved that for any transitive and asym-
metric relation Q ⊆ A × A there exists a preference profile R such that
PPar = Q. Note that this does not imply Proposition 1 as the majority rela-
tion outside Q may be very different in the preference profile R instantiating
Q as the Pareto relation, and a preference profile R′ instantiating Q as the
covering relation. In our proof, in particular, all edges outside Q are required
to be majority ties.

Regarding the internal structure of the uncovered set, it was already shown
by Moulin (1986) that any complete binary relation without a (non-trivial)
Condorcet winner is the majority relation between uncovered alternatives for
some preference profile. While Moulin (1986) proved this result for tourna-
ments only, the argument can easily be adapted to cover our setting, in which
majority ties are allowed.

3 Consider, for instance, the simple case of A = {a, b, c} and Q = {(a, b), (a, c)}, which is
easily seen not to be the covering relation for any preference profile.
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3 The McKelvey Uncovered Set and the Pareto Set are
Majority-equivalent

In this section, we consider the relationship between the uncovered set and the
Pareto set for profiles that yield the same majority relation (i.e., consistent
preference profiles).

Our main result shows that for every preference profile R, we can find
another preference profile R′ consistent with RMaj such that the uncovered
set of R and the Pareto set of R′ coincide. This has a number of consequences.
First, if we assume that only the majority relation is known, the uncovered
set not only coincides with the Pareto optimal alternatives for some consistent
preference profile, but also consists of precisely those alternatives that are
Pareto optimal for every consistent preference profile. Moreover, there exists
a consistent profile in which all covered alternatives are Pareto dominated.
Secondly, the theorem implies that the uncovered set can be characterized as
the coarsest majoritarian Pareto optimal SCF.

Theorem 1 For every preference profile R, there is another preference pro-
file R′ with RMaj = R′

Maj such that

UC (R) = PO(R′).

Proof Consider an arbitrary preference profile R. Then, for every alterna-
tive y /∈ UC (R) there is some x ∈ UC (R) such that x CRMaj

y. Thus, let
UC (R) = {x1, . . . , x`} and associate with every xi ∈ UC (R) a (possibly
empty) set f(xk) ⊆ {x′ ∈ A | x CRMaj

x′} such that

f(xk) ∩ f(xk′) = ∅ for 1 ≤ k < k′ ≤ ` and f(x1) ∪ · · · ∪ f(x`) = A \UC (R).

Define the relation F ⊆ CRMaj
such that, for all alternatives x and y,

x F y iff x ∈ UC (R) and y ∈ f(x).

We construct a preference profile R′ such that R′
Maj = RMaj and R′

Par = F .
It can readily be appreciated that then UC (R) = PO(R′), as desired.

For notational convenience we denote f(xk) by Xk. For any subset Y of

alternatives, by
→

Y and
←

Y we denote an enumeration of Y and its inverse,

respectively, i.e., if
→

Y = y1, . . . , yk then
←

Y = yk, . . . , y1.
First, we generate the relation F . To this end, we introduce two agents, iF

and jF with preferences given by the following two sequences:

iF : x1,
→

X1, . . . , x`,
→

X`,

jF : x`,
←

X`, . . . , x1,
←

X1.

Letting RF = (RiF , RjF ), we thus have RF
Par = F .

Furthermore, for every pair (v, w) in RMaj that is not contained in F we
also introduce two additional agents ivw and jvw. We distinguish five cases
and denote by Rvw the profile (Rivw

, Rjvw
). Without loss of generality and for

notational convenience, we will usually assume that v+ = x1 and w+ = x2.
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Case 1 There is a v+ ∈ UC (R) such that v, w ∈ f(v+). Let V = f(v+) \
{v, w}. For an illustration see Figure 1a. Then, define the preferences
of ivw and jvw by the following lists:

ivw : v+, v, w,
→

V , x2,
→

X2, . . . , x`,
→

X`,

jvw : x`,
←

X`, . . . , x2,
←

X2, v
+,
←

V , v, w.

Observe that in this case, we have P vw
Maj= F ∪ {(v, w)}.

Case 2 There are v+, w+ ∈ UC (R) with v ∈ f(v+) and w ∈ f(w+). Let
V = f(v+) \ {v} and W = f(w+) \ {w}. Observe that in this case
we have that v+ CRMaj

v for R and, hence, also v+ PMaj w. For an
illustration see Figure 1b. In this case define the preferences of ivw
and jvw as

ivw : v+,
→

V , v, w+, w,
→

W,x3,
→

X3, . . . , x`,
→

X`,

jvw : x`,
←

X`, . . . , x3,
←

X3, w
+,
←

W, v+, v, w,
←

V .

It thus follows that P vw
Maj= F ∪ {(v, w), (v+, w)}.

Case 3 There are v+, w+ ∈ UC (R) with v = v+ and w = w+. Let V =
f(v+) and W = f(w+). Observe that in this case we have for R that
w+ CRMaj

x and, hence, also v+ PMaj x for all x ∈W . The situation
is depicted in Figure 1c. Now define

ivw : v+,
→

V ,w+,
→

W,x3,
→

X3, . . . , x`,
→

X`,

jvw : x`,
←

X`, . . . , x3,
←

X3, v
+, w+,

←

W,
←

V .

Observe that now P vw
Maj= F ∪ {(v+, w+)} ∪ {(v+, x) | x ∈W}.

Case 4 There are v+, w+ ∈ UC (R) with v = v+ and w ∈ f(w+). Let V =
f(v+) and W = f(w+) \ {w}. The situation is depicted in Figure 1d.
In this case define the preferences of ivw and jvw as follows:

ivw : v+,
→

V ,w+, w,
→

W,x3,
→

X3, . . . , x`,
→

X`,

jvw : x`,
←

X`, . . . , x3,
←

X3, w
+,
←

W, v+, w,
←

V .

Accordingly, we also have P vw
Maj= F ∪ {(v+, w)}.

Case 5 There are v+, w+ ∈ UC (R) with v ∈ f(v+) and w = w+. Let V =
f(v+) \ {v} and W = f(w+). Observe that in this case we have for R
that v+ CRMaj

v and w+ CRMaj
x for all x ∈ W . As a consequence,

also v+ PMaj w
+, and thus v+ PMaj x and v PMaj x for all x ∈ W .

The situation is depicted in Figure 1e. In this case define:

ivw : v+,
→

V , v, w+,
→

W,x3,
→

X3, . . . , x`,
→

X`,

jvw : x`,
←

X`, . . . , x3,
←

X3, v
+, v, w+,

←

W,
←

V .

Hence, P vw
Maj= F ∪ ({v+, v} × (W ∪ {w+})).
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vx′
1

v+

x′
k1

w

(a) Case 1

v+

x′
1

x′
k1

v

w+

x′′
1

x′′
k2

w. . . . . .. . . . . . . . . . . .. . . . . .

(b) Case 2

v+

x′
1

x′
k1

w+

x′′
1

x′′
k2

. . . . . . . . . . . . . . . . . .

. . . . . .

(c) Case 3

v+

x′
1

x′
k1

w+

x′′
1

x′′
k2

w. . . . . . . . . . . . . . .. . . . . .

(d) Case 4

v+

x′
1

x′
k1

v

w+

x′′
1

x′′
k2

. . . . . . . . .. . . . . .. . . . . .

(e) Case 5

Fig. 1: The five cases distinguished in the proof of Theorem 1. The relation F
is indicated by double arrows.

Let RMaj \ F be given by {(v1, w1), . . . , (vp, wp)} and consider the profile

R′ = (R1, . . . , R2p+2) = (RiF , RjF , Riv1w1
, . . . , Rivpwp

).

Some reflection reveals that R′
Maj = RMaj. Also observe that F ⊆ Ri for all

1 ≤ i ≤ 2p + 2. Moreover, x PiF y iff y PjF x, for all (x, y) /∈ F . Hence,
R′

Par = F . Since, x /∈ UC (R) iff y F x for some y ∈ UC (R), it follows that
PO(R′) = UC (R), which concludes the proof. ut

For the next corollary we additionally need the (easy-to-prove) fact that
the uncovered set UC is Pareto optimal, which to the best of our knowledge
was first mentioned by Bordes (1983). We formalize it in the following lemma
for the sake of completeness. Note that this result relies on the definition of the
majority relation via simple majority rule (see, e.g., Gaertner, 2009, p. 39). If
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majorities are defined via (the less common) absolute majority rule, then the
uncovered set only satisfies weak Pareto optimality (Duggan, 2013).

Lemma 1 (Bordes, 1983) The Pareto relation is a subrelation of the
McKelvey covering relation. Hence, UC ⊆ PO.

Proof Let R be a preference profile and x, y ∈ A alternatives such that
x PPar y. To show that then also x CRMaj

y, first suppose z PMaj x for
some alternative z ∈ A. Since individual preferences are assumed to be tran-
sitive it follows that z PMaj y. The case of z RMaj x (implying z RMaj y) is
analogous and x PMaj y is an immediate consequence of x PPar y. ut

The following corollary, which follows from Theorem 1 and Lemma 1, pro-
vides a characterization of the McKelvey uncovered set via Pareto optimality.4

Corollary 1 A majoritarian SCF f is Pareto optimal iff f ⊆ UC . Conse-
quently, the McKelvey uncovered set is the coarsest Pareto optimal majoritar-
ian SCF.

Proof Lemma 1 establishes that the McKelvey uncovered set UC (and any
refinement of it) is Pareto optimal. To prove the other direction by contrapo-
sition, consider an arbitrary majoritarian SCF f such that f 6⊆ UC . Then,
there is a profile R and an alternative a such that a ∈ f(R) and a /∈ UC (R).
By Theorem 1, some preference profile R′ exists such that RMaj = R′

Maj and
UC (R) = PO(R′). Having assumed f to be majoritarian, f(R′) = f(R) and
hence a ∈ f(R′). It also follows that a /∈ PO(R′) and we may conclude that f
is not Pareto optimal. ut

4 Potential Extensions

We consider two natural extensions of Theorem 1 and show that neither of
them holds.

4.1 Constant number of agents

The proof of Theorem 1 crucially depends on the assumption of a variable elec-
torate since R′ usually has a different number of agents than R. The fact that
the same result cannot be achieved with a constant number of agents is ex-
hibited by the following minimal, computer-generated example.5 The majority
relation RMaj depicted in Figure 2 contains a unique covering edge a CRMaj

b
and can be realized by 3 agents.6

4 Corollary 1 also entails an analogous weaker result for the special case of tournaments
(i.e., antisymmetric majority relations RMaj), which was used as a Lemma by Brandt and
Geist (2014).

5 The whole example was obtained from and proved minimal by an automated computer
search based on the method developed by Brandt et al. (2014).

6 In fact, any tournament of size 7 can be realized by 3 agents.
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d e

f

g

a

b

c

(a) majority relation RMaj

1 1 1

e c b
f a d
c d g
g f a
a g e
b b f
d e c

(b) a consistent preference profile R

Fig. 2: A minimal example of a majority relation RMaj for which the transi-
tion from b /∈ UC (R) to b /∈ PO(R) increases the minimal number of agents
required to realize this relation.

If we, however, require b to be Pareto dominated, i.e., x PPar b for at least
one of the alternatives x PMaj b, then the minimal number of agents required
to realize RMaj (together with the additional requirement of x PPar b) rises
to 5, which has been verified on a computer.7

This example also shows that Corollary 1 does not in general hold for all
constant electorates. To see this, let the number of agents be fixed at three
and define an SCF f such that for all preference profiles R′,

f(R′) =

{
A if R′ is consistent with RMaj,

UC (R′) otherwise,

where RMaj is the majority relation in Figure 2. Thus, f is a coarsening of UC
but, due to the electorate being fixed at three agents, f is still Pareto optimal.

4.2 Equivalence of the covering relation and the Pareto relation

With Theorem 1 in mind, it is a natural question whether, given a preference
profile R, one can even obtain a consistent preference profile R′ (i.e., RMaj =
R′

Maj) in which the Pareto relation coincides with the covering relation (i.e.,
P ′
Par = CRMaj

). Unfortunately, the answer to this question is negative as the
following counterexample shows.

Consider the preference profile R and the corresponding majority relation
RMaj in Figure 3 and note that all strict majority edges are also covering
edges, i.e., PMaj = CRMaj

. Therefore, constructing a consistent preference
profile R′ with P ′

Par = CRMaj
, in this particular example, means to construct

7 This even holds when individual preferences are allowed to be weak orders.
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f

a e

b d

c

(a) majority relation RMaj, whose
strict part PMaj coincides with
the covering relation CRMaj

1 1 1 1

a a e e
b f d d
e b a a
c e f b
f d b c
d c c f

(b) a consistent preference profile R

Fig. 3: An example of a majority relation RMaj whose covering relation CRMaj

cannot be obtained as the Pareto relation of a consistent preference profile.

a consistent preference profile R′ such that P ′
Par = CRMaj

= PMaj. We now
show—using computer-aided solving techniques—that such a profile does not
exist.

For P ′
Par = PMaj to hold, R′ may only contain agents with individual pref-

erences R′
i that respect all given strict majority edges as Pareto edges, i.e., for

which P ′
i ⊇ PMaj. This will stand in conflict with being able to maintain

the majority ties in R′
Maj = RMaj. We used an ASP program (Answer Set

Programming, a declarative problem-solving paradigm; see, e.g., Gebser et al.
(2011, 2012); in our case the packaged grounder/solver clasp) to compute all
22 candidates R′′

i for complete, antisymmetric, and transitive preference rela-
tions such that P ′′

i ⊇ PMaj. (One such ordering is e, d, a, f, b, c.) We would now
have to construct a preference profile using only these 22 candidates for indi-
vidual preference relations as building blocks. A small IP (Integer Program,
see, e.g., Schrijver (1986); the performance of the open-source solver lpsolve
satisfied our requirements) suffices to show that this is not possible: it contains
22 integer-valued variables xR′′i

, which denote, for each of the 22 preference
relations, how many agents with this particular preference relation are con-
tained in R′. Furthermore, it contains one constraint per indifference edge in
the majority relation (of which there are 7, namely (a, d), (a, e), (b, d), (b, e),
(b, f), (c, f), and (d, f)). Each of these constraints postulates for one indiffer-
ence edge (y, z) that 0 =

∑
R′′i

s((y, z), R′′
i ) · xR′′i

, where s((y, z), R′′
i ) = 1 if

(y, z) ∈ R′′
i , and s((y, z), R′′

i ) = −1 otherwise. With the additional constraints
that xR′′i

≥ 0 for all R′′
i and

∑
R′′i

xR′′i
≥ 1 the IP solver returns that there are

no feasible solutions to this problem, which completes the proof.8

8 The same counterexample also applies to the case of weak individual orders (i.e., without
the assumption of antisymmetry of Ri). In this case there are 256 instead of 22 candidates
for individual preferences relations, and additional constraints for the Pareto edges are



A Note on the McKelvey Uncovered Set and Pareto Optimality 11

References

G. Bordes. On the possibility of reasonable consistent majoritarian choice:
Some positive results. Journal of Economic Theory, 31(1):122–132, 1983.

F. Brandt and F. Fischer. Computing the minimal covering set. Mathematical
Social Sciences, 56(2):254–268, 2008.

F. Brandt and C. Geist. Finding strategyproof social choice functions via SAT
solving. In Proceedings of the 13th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), pages 1193–1200. IFAAMAS,
2014.

F. Brandt, C. Geist, and H. G. Seedig. Identifying k-majority digraphs via SAT
solving. In Proceedings of the 1st AAMAS Workshop on Exploring Beyond
the Worst Case in Computational Social Choice (EXPLORE), 2014.

J. Duggan. Uncovered sets. Social Choice and Welfare, 41(3):489–535, 2013.
B. Dushnik and E. W. Miller. Partially ordered sets. American Journal of

Mathematics, 63(3):600–610, 1941.
B. Dutta and J.-F. Laslier. Comparison functions and choice correspondences.

Social Choice and Welfare, 16(4):513–532, 1999.
W. Gaertner. A Primer in Social Choice Theory: Revised Edition. LSE Per-

spectives in Economic Analysis. Oxford University Press, 2009.
M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and

M. Schneider. Potassco: The Potsdam answer set solving collection. AI
Communications, 24(2):107–124, 2011.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer set solving in
practice. Synthesis Lectures on Artificial Intelligence and Machine Learning,
6(3):1–238, 2012.

D. C. McGarvey. A theorem on the construction of voting paradoxes. Econo-
metrica, 21(4):608–610, 1953.

R. D. McKelvey. Covering, dominance, and institution-free properties of social
choice. American Journal of Political Science, 30(2):283–314, 1986.

H. Moulin. Choosing from a tournament. Social Choice and Welfare, 3(4):
271–291, 1986.

J. E. Peris and B. Subiza. Condorcet choice correspondences for weak tour-
naments. Social Choice and Welfare, 16(2):217–231, 1999.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
1986.

required, which makes the resulting IP significantly larger, but still solvable within less than
one second.


