
Symmetries and the Complexity of Pure Nash
Equilibrium

Felix Brandt a Felix Fischer a,∗ Markus Holzer b

aInstitut für Informatik, Universität München,
Oettingenstr. 67, 80538 München, Germany

bInstitut für Informatik, Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany

Abstract

Strategic games may exhibit symmetries in a variety of ways. A characteristic feature, en-
abling the compact representation of games even when the number of players is unbounded,
is that players cannot, or need not, distinguish between the other players. We investigate
the computational complexity of pure Nash equilibria in four classes of symmetric games
obtained by considering two additional properties: identical payoff functions for all players
and the ability to distinguish oneself from the other players. In contrast to other types of
succinctly representable multi-player games, the pure equilibrium problem is tractable in
all four classes when only a constant number of actions is available to each player. Identical
payoff functions make the difference between TC0-completeness and membership in AC0,
while a growing number of actions renders the equilibrium problem NP-hard for three of
the classes and PLS-hard for the most restricted class for which the existence of a pure
equilibrium is guaranteed. Our results also extend to larger classes of threshold symmetric
games where players are unable to determine the exact number of players playing a certain
action.

Keywords: game theory, normal-form games, symmetries, pure Nash equilibrium, compu-
tational complexity

1 Introduction

In recent years, the computational complexity of game-theoretic solution concepts,
both in cooperative and non-cooperative game theory, has come under increas-
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ing scrutiny. A major obstacle when considering normal-form games with an un-
bounded number of players is the exponential size of the explicit representation of
the payoffs. More precisely, a general game in normal-form with n players and k ac-
tions per player comprises n·kn numbers. Computational statements over such large
objects are somewhat dubious for two reasons [cf. 28]. First, the value of efficient,
i.e., polynomial-time, algorithms for problems whose input size is already exponen-
tial in a natural parameter (the number of players) is questionable. Secondly, most,
if not all, “natural” multi-player games will hardly be given as multi-dimensional
payoff matrices but rather in terms of some more intuitive (and compact) represen-
tation. A natural and straightforward way to simplify the representation of multi-
player games is to somehow formalize similarities between players. As a matter of
fact, symmetric games have been studied since the early days of game theory [e.g.,
34, 15, 25]. The established definition states that a game is symmetric if the payoff

functions of all players are identical and symmetric in the other players’ actions,
i.e., it is impossible to distinguish between the other players [35, 24]. When explic-
itly looking at multi-player games, there are other conceivable notions of symmetry.
For instance, dropping the requirement of identical payoff functions yields a more
general class of multi-player games that still admit a compact representation.

In this paper, we define four classes of succinctly representable symmetric multi-
player games and study the computational complexity of finding pure Nash equi-
libria in games belonging to these classes. It turns out that in all four classes equi-
libria can be found efficiently if only a constant number of actions is available to
each player. Moreover, identical payoff functions for all players further reduce the
computational complexity of pure equilibria, an effect that is nullified as soon as
there are two different payoff functions. The fact that a player cannot (or does not)
distinguish himself from the other players, does not seem to offer any computa-
tional advantage. Finally, computing pure equilibria becomes intractable in all four
classes of symmetric games when the number of actions grows at least linearly in
the number of players.

Unlike Nash equilibria in mixed strategies, i.e., probabilistic combinations of ac-
tions, pure Nash equilibria are not guaranteed to exist. If they exist, however,
pure equilibria have two distinct advantages over mixed ones. For one, requiring
randomization in order to reach a stable outcome has been criticized on various
grounds. In multi-player games, where action probabilities in equilibrium can be
irrational numbers, randomization is particularly questionable. Secondly, pure equi-
libria as computational objects are usually much smaller in size than mixed ones.

We assume the reader to be familiar with the well-known chain of complexity
classes AC0 ⊂ TC0 ⊆ L ⊆ P ⊆ NP, and the notions of constant-depth and
polynomial-time reducibility [e.g., 7, 27, 21]. AC0 is the class of problems solv-
able by uniform constant-depth Boolean circuits with unbounded fan-in, and TC0

adds so-called threshold gates which output true if and only if the number of true
inputs exceeds a certain threshold. Here, uniformity means that there is an “effi-
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cient” algorithm for constructing, for each input length n, the circuit Cn from the
circuit family C = (Cn)n≥0. Different notions of efficiency give rise to different no-
tions of uniformity [31]. We will consider logspace-uniform circuit families, where
the mapping n 7→ Cn is computable in deterministic logarithmic space. In some
of our constructions we use sub-circuits described by Chandra et al. [7] as basic
building blocks. It is easy to see that all these sub-circuits are logspace-uniform.
Finally, L is the class of problems solvable by deterministic Turing machines us-
ing only logarithmic space, and P and NP are the classes of problems that can
be solved in polynomial time by deterministic and nondeterministic Turing ma-
chines, respectively. Furthermore, #P is the class of counting problems associated
with polynomially balanced polynomial-time decidable relations. The class PLS of
polynomial local search problems and an appropriate notion of reduction [22] will
be introduced as needed.

The remainder of this paper is organized as follows: In the following section, we
survey relevant work on symmetric games, succinct representations, and the com-
putational complexity of pure Nash equilibrium. In Section 3, we then formally
introduce four different notions of symmetry in strategic games and the solution
concept of Nash equilibrium. The main results of this paper, including efficient
algorithms as well as hardness results for all four symmetry classes, are given in
Section 4. In Section 5, we provide additional results for a more general notion of
symmetry. Section 6 concludes the paper and points to some open problems.

2 Related Work

Symmetries in games have been investigated since the earliest days of game the-
ory. Von Neumann [34] and von Neumann and Morgenstern [35] were the first to
consider symmetries of cooperative games, calling a game in characteristic form
symmetric if the value of a coalition depends only on its size. In the context of
two-player (non-cooperative) normal-form games, the term symmetric is used to
refer to games with a skew-symmetric payoff matrix [e.g., 5, 15], corresponding
to strong symmetry in the vocabulary of this paper. Gale et al. [15] provided a
(polynomial-time) reduction from arbitrary games to symmetric games which pre-
serves equilibria. Since finding a (possibly mixed) equilibrium in general games has
recently been shown PPAD-complete even for games with just two players [10, 8],
the same holds for symmetric games as well. The above hardness result has also
led to an increased interest in approximate equilibria. In particular, the larger class
of anonymous games, allowing different payoff functions for different players, has
been shown to admit an approximation by a factor depending on the Lipschitz con-
stant of the payoff function and on the square of the number of actions, and a
polynomial-time approximation scheme for the case of two actions [11].

To date, most research on symmetries in games has concentrated on games that
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require identical payoff functions for all players, called symmetric games in this
paper. One of the reasons for this may have been the strong focus of the early
research in non-cooperative game theory on two-player games, where anonymity
as defined in this paper does not impose any restrictions. An early result by Nash
[25] shows that there always exists an equilibrium respecting all symmetries of the
game, which in symmetric games implies the existence of a symmetric equilib-
rium, i.e., one where all players play the same (mixed) strategy. Papadimitriou and
Roughgarden [28] capitalize on this existence result and show that a Nash equi-
librium of a symmetric game with n players and k actions can be computed in P
if k = O(log n/ log log n). While their tractability results for correlated equilib-
rium [1] do not rely on identical payoff functions and hence apply to anonymous
games as well, this is not the case for the results about Nash equilibria. The afore-
mentioned existence of symmetric Nash equilibria neither extends to pure equilib-
ria, nor does it hold for anonymous games. For example, Figure 3 on Page 8 shows
an anonymous game without a symmetric equilibrium.

Obviously, deciding the existence of a pure Nash equilibrium is easy if the number
of candidates for such an equilibrium, i.e., the number of action profiles, is polyno-
mial in the size of the game. This is certainly the case for the explicit representation
of a game as a multi-dimensional table of payoffs, but no longer holds if the game
is represented succinctly. For example, deciding the existence of a pure equilibrium
has been shown to be NP-complete for games in graphical normal form [17, 14] or
circuit form [33]. Apart from these generic types, many succinct representations
are related to symmetries in that they exploit some form of independence among
certain actions or players playing these actions. In congestion games [30], the avail-
able actions consist of sets of resources, and the payoff depends on the number of
other players that have selected the same resources (i.e., played the same action).
Congestion games always have a pure equilibrium [30], and finding one is PLS-
complete even for symmetric congestion games and in P in the symmetric network
case [13]. For singleton (or simple) congestion games, where only a single resource
can be selected, there is a polynomial-time algorithm for finding a social-welfare-
maximizing equilibrium [19]. In local-effect games [23], the payoff from an action
may also depend on (a function of) the number of agents playing “neighboring” ac-
tions. Unlike congestion games and local-effect games, action-graph games [3] can
encode arbitrary payoffs. For action-graph games of bounded degree, expected pay-
offs and the Jacobian of the payoff function can be computed in polynomial time.
The latter forms the practical bottleneck step of the algorithm of Govindan and Wil-
son [18] for finding Nash equilibria, but the algorithm may still take exponentially
many steps to converge even for bounded degree. In fact, the pure equilibrium prob-
lem is NP-complete for symmetric action-graph games with bounded degree, but
becomes tractable if the treewidth is bounded [20]. In general action-graph games,
the pure equilibrium problem is NP-complete even if the action-graph is a bounded-
degree tree [12]. Finally, Brandt et al. [6] transfer different notions of symmetry to
graphical games and obtain mostly negative results concerning the complexity of
pure Nash equilibrium.
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3 Preliminaries

In this section, we formally define essential game-theoretic concepts, introduce
four notions of symmetry in strategic multi-player games, and state several facts
concerning these notions.

3.1 Strategic Games

An accepted way to model situations of strategic interaction is by means of a
normal-form game [e.g., 24].

Definition 1 (normal-form game) A game in normal-form is a tuple Γ =

(N, (Ai)i∈N , (pi)i∈N) where N is a set of players and for each player i ∈ N, Ai is
a nonempty set of actions available to player i, and pi : (

�
i∈N Ai) → R is a func-

tion mapping each action profile of the game (i.e., combination of actions) to a
real-valued payoff for player i.

A combination of actions s ∈
�

i∈N Ai is also called a profile of pure strategies.
This concept can be generalized to (mixed) strategy profiles s ∈ S =

�
i∈N S i, by

letting players randomize over their actions. We have S i denote the set of probabil-
ity distributions over player i’s actions, or (mixed) strategies available to player i.
We further write n = |N | for the number of players in a game, si for the ith strategy
in profile s, and s−i for the vector of all strategies in s but si.

3.2 Symmetries in Multi-Player Games

Symmetry as a property of a mathematical object typically refers to its invariance
under a certain type of transformation. Symmetries of games usually mean invari-
ance of the payoffs under automorphisms of the set of action profiles induced by
some group of permutations of the set of players. Since such an automorphism pre-
serves the number of players that play a particular action, a characteristic feature of
symmetries in games is the inability to distinguish between other players. Follow-
ing Daskalakis and Papadimitriou [11] the most general class of games with this
property will be called anonymous. Four different classes of games are obtained by
considering two additional characteristics: identical payoff functions for all players
and the ability to distinguish oneself from the other players. The games obtained
by adding the former property will be called symmetric, and presence of the latter
will be indicated by the prefix “self ”. For the obvious reason, we will henceforth
talk about games where the set of actions is the same for all players and write
A = A1 = · · · = An and k = |A|, respectively, to denote this set and its cardinality.
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anon

symm s-symm s-anon

Fig. 1. Inclusion relationships between anonymous, symmetric, self-anonymous, and
self-symmetric games

An intuitive way to describe anonymous games is in terms of equivalence classes of
the aforementioned automorphism group, using a notion introduced by Parikh [29]
in the context of context-free languages. Given a set A of actions, the commutative
image of an action profile s ∈ AN is given by #(s) = (#(a, s))a∈A where #(a, s) =

|{ i ∈ N : si = a }|. In other words, #(a, s) denotes the number of players playing
action a in action profile s, and #(s) is the vector of these numbers for all the
different actions. This definition naturally extends to action profiles for subsets of
the players.

Definition 2 (symmetries) Let Γ = (N, (Ai)i∈N , (pi)i∈N) be a normal-form game
and A a set of actions such that Ai = A for all i ∈ N. Γ is called

• anonymous if pi(s) = pi(t) for all i ∈ N and all s, t ∈ AN with si = ti and
#(s−i) = #(t−i),

• symmetric if pi(s) = p j(t) for all i, j ∈ N and all s, t ∈ AN with si = t j and
#(s−i) = #(t− j),

• self-anonymous if pi(s) = pi(t) for all i ∈ N and all s, t ∈ AN with #(s) = #(t),
and

• self-symmetric if pi(s) = p j(t) for all i, j ∈ N and all s, t ∈ AN with #(s) = #(t).

When talking about anonymous games, we write pi(si, x−i) to denote the payoff of
player i under any action profile s with #(s−i) = x−i. For self-anonymous games,
pi(x) is used to denote the payoff of player i under any profile s with #(s) = x.
It is easily verified that the class of self-symmetric games equals the intersection
of symmetric and self-anonymous games, which in turn are both strictly contained
in the class of anonymous games. An illustration of these inclusions is shown in
Figure 1. Figure 2 illustrates the different payoff structures for n = 3 and k = 2.
In terms of this characterization, a game is anonymous if the payoff pi(s) of player
i ∈ N in action profile s depends, besides his own action si, only on the number
#(a, s−i) of other players playing each of the actions a ∈ A, but not on who plays
them. If two players exchange actions, all other players’ payoffs remain the same.
For two-player games, anonymity does not impose any restrictions (action sets of
equal size can simply be achieved by adding dummy actions for one of the players).
This may be one of the reasons why anonymity has not received much attention in
the past. A game is symmetric if it is anonymous and if the payoff function is the
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Γ1:
(·, ·, ·) (a, g, c) (a, b, · ) ( · , e, f )

( · , b, c) (d, e, · ) (d, ·, f ) (·, ·, ·)
Γ2:

(a, a, a) (b, c, b) (b, b, c) (e, d, d)

(c, b, b) (d, d, e) (d, e, d) ( f , f , f )

Γ3:
(·, ·, ·) (a, b, c) (a, b, c) (d, e, f )

(a, b, c) (d, e, f ) (d, e, f ) (·, ·, ·)
Γ4:

(a, a, a) (b, b, b) (b, b, b) (c, c, c)

(b, b, b) (c, c, c) (c, c, c) (d, d, d)

Fig. 2. Relationships between the payoffs of anonymous (Γ1), symmetric (Γ2), self-anony-
mous (Γ3), and self-symmetric (Γ4) games for n = 3 and k = 2. Players 1, 2, and 3 simul-
taneously choose rows, columns, and tables, respectively, and obtain payoffs according to
the vector in the resulting cell. Each lower case letter stands for a payoff value, dots denote
arbitrary payoff values. As an example for the separation of the different classes, Γ1 is not
symmetric if a , c and not self-anonymous if b , g. Γ2 is not self-anonymous if b , c. Γ3
is not self-symmetric if a , c.

same for all players. Hence, if two players exchange actions, their payoffs are also
exchanged while all other players’ payoffs remain the same. Many well-known
games like the Prisoner’s Dilemma, Rock-Paper-Scissors, or Chicken are examples
of symmetric (two-player) games. Multi-player simple congestion games [19] are
also symmetric. In a self-anonymous game the payoff of each player depends only
on the number #(a, s) of players playing each of the actions a ∈ A, including the
player himself. If two players exchange actions, the payoffs of all players remain
the same. Matching Pennies is a self-anonymous two-player game, voting with
identical weights can be seen as an example for the multi-player case. Finally, in
a self-symmetric game the payoff is always the same for all players and stays the
same if two players exchange actions. Self-symmetric games thus are a special case
of common payoff (or pure coordination) games, in which every action profile with
maximum payoff is an equilibrium (since no player can gain by deviating). Other
games guaranteed to possess a pure equilibrium, and the complexity of finding an
equilibrium in these games, have been investigated by Fabrikant et al. [13].

Interestingly, the ability to distinguish oneself from the other players does not in-
crease the complexity of the pure equilibrium problem when players only have two
actions.

Lemma 1 When there are only two actions available to each player, there exists
an AC0-reduction from anonymous games to self-anonymous games that preserves
pure Nash equilibria and identical payoff functions.

Proof: Let Γ = (N, ({a1, a2})i∈N , (pi)i∈N) be an anonymous game, and define a new
game Γ′ = (N, {a1, a2}

n, (p′i)i∈N) such that for all i ∈ N and for all x ∈ {0, 1, . . . , n−1},

(1) p′i((x, n − x)) > p′i((x + 1, n − x − 1)) if and only if pi(a1, (x, n − x − 1)) >
pi(a2, (x, n − x − 1)),

(2) p′i((x, n − x)) < p′i((x + 1, n − x − 1)) if and only if pi(a1, (x, n − x − 1)) <
pi(a2, (x, n − x − 1)), and
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(0, 1, 1) (0,0,1)

(1,1,1) (0, 0, 0)

(0,1,0) (0, 0, 0)

(0, 1, 0) (1, 0, 1)

Fig. 3. Anonymous game with a unique, non-symmetric Nash equilibrium at the action pro-
file with payoff (1, 1, 1). Players 1, 2, and 3 choose rows, columns, and tables, respectively.
Outcomes are denoted as a vector of payoffs for the three players. Action profiles with the
same commutative image as the equilibrium are shaded.

(3) p′i((x, n − x)) = p′i((x + 1, n − x − 1)) if and only if pi(a1, (x, n − x − 1)) =

pi(a2, (x, n − x − 1)).

Depending on the payoff structure of Γ, it may be necessary to use up to n different
payoffs in Γ′, even when Γ contains only two. It is now easily verified that Γ′ is self-
anonymous in general, and self-symmetric if the original game Γ is symmetric. It
should be noted that this construction cannot in general be extended to games where
players have more than two actions, because it can lead to cyclic preference rela-
tions. For example, the symmetric two-player game Rock-Paper-Scissors cannot be
mapped to a corresponding self-symmetric game using the above technique. �

3.3 Nash Equilibrium

One of the best-known solution concepts for strategic games is Nash equilib-
rium [25]. In a Nash equilibrium, no player is able to increase his payoff by unilat-
erally changing his strategy.

Definition 3 (Nash equilibrium) A strategy profile s ∈ S is called a Nash equilib-
rium if for each player i ∈ N and each strategy s′i ∈ S i,

pi(s) ≥ pi((s−i, s′i)).

A Nash equilibrium is called pure if it is a pure strategy profile.

For general games, simply checking the equilibrium condition for each action pro-
file takes time polynomial in the size of their explicit representation. Using a suc-
cinct representation for games where the size of the explicit representation grows
exponentially in the number of players, which is the case for k = 2 already, quickly
renders the problem NP-complete [14, 33]. On the other hand, the polynomial size
even of the explicit representation for anonymous games with a constant number
of actions might suggest that finding pure equilibria is easy by a similar argument
as above. This reasoning is flawed, however, since a single entry in the payoff table
corresponds to an exponential number of action profiles, and it is very well possi-
ble that only a single one of them is an equilibrium while all others are not. The
anonymous game given in Figure 3 illustrates this fact.
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4 Solving Anonymous and Symmetric Games

In this section, we analyze the computational complexity of pure Nash equilib-
rium in anonymous and symmetric games with a constant number of actions and a
growing number of actions, respectively. We first consider games with a constant
number of actions, and show membership of the pure equilibrium problem for com-
plexity classes inside P. We then show that the same problem becomes NP-hard and
PLS-hard, respectively, if the number of actions is not bounded.

4.1 A Few Words on Encodings

Since we are interested in games that model real-world situations, we will hence-
forth restrict ourselves to games that can be represented in space polynomial in
their natural parameters, like the number of players or actions [cf. 28]. We will try
to characterize games in terms of their natural parameters, while making as few
assumptions as possible about any particular encoding. Apart from hardness results
in Section 4.3, which will be shown to extend to games with an exponential num-
ber of players, we assume that the number of players of a game is polynomial in
the size of its representation. We further assume that each player can determine effi-
ciently whether a particular action is a best response for a given action profile of the
other players, which obviously is both necessary and sufficient for playing a game
rationally and efficiently at the same time. Tractability results then hold for any en-
coding satisfying these properties. Hardness, on the other hand, is established via
some encoding which allows efficient and rational play.

The most basic way to encode a normal-form game is to explicitly write down a
multi-dimensional table listing the payoffs for every single action profile. Certain
games can be represented more succinctly because the payoff is the same for action
profiles that are equivalent according to some equivalence relation, and needs only
be specified once. For anonymous games, this equivalence relation is given by the
number of players playing each action. The representation that lists the payoffs for
every equivalence class will henceforth be referred to as the explicit representation
of an anonymous game. There are

(
n+k−1

k−1

)
distributions of n players among k actions.

Since these are exactly the equivalence classes of the set of action profiles for n− 1
players under the commutative image, an anonymous game can be represented us-
ing at most n · k ·

(
n+k−2

k−1

)
numbers, and is representable using space polynomial in n

if and only if k is bounded by a constant. On the other hand, the size of the game
becomes super-polynomial in n even for the slightest growth of k. Nevertheless,
space polynomial in n may still suffice to encode certain subclasses of symmetric
games with a larger number of actions if we use an implicit representation of the
payoff functions like a Boolean circuit. It is easy to see that for games with a con-
stant number of actions, any encoding of a game that has size at least linear in the
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number of players and satisfies the above assumption of rational and efficient play
is equivalent to its explicit representation under polynomial-time reductions.

4.2 Games with a Constant Number of Actions

We begin by investigating games with a constant number of actions. Obviously,
solving a game cannot be easier than playing it optimally given that the opponents’
actions are known. The most interesting upper bounds for the former problem will
thus be obtained when the latter problem is easy. We will therefore assume through-
out this section that for any action profile of his opponents, a player can compute
the payoff of a particular action in AC0, i.e., by evaluating a Boolean circuit with
constant depth and bounded fan-in. This particularly holds if the payoff function is
given explicitly. It will further be obvious from the proofs that for payoff functions
that are harder to compute, the complexity of the pure equilibrium problem exactly
matches that of computing the payoff function.

As we have noted earlier, the potential hardness of finding pure equilibria in games
with succinct representations stems from the fact that the number of action profiles
that are candidates for being an equilibrium is exponential in the size of the rep-
resentation of the game. While anonymous games certainly satisfy this property,
the pure equilibrium problem nevertheless turns out to be tractable. The following
theorem concerns games where the number of players is polynomial in the size of
the representation.

Theorem 1 Deciding whether an anonymous or self-anonymous game with a
constant number of actions has a pure Nash equilibrium is TC0-complete under
constant-depth reducibility. Hardness holds even for games with three different pay-
offs and two different payoff functions.

Proof: For membership in TC0, we propose an algorithm that decides whether
there exists a pure Nash equilibrium with a given commutative image. The theo-
rem then follows by observing that the number of different commutative images is
polynomial in the number of players if the number of actions is constant.

Let Γ = (N, (Ai)i∈N , (pi)i∈N) be an anonymous game, A = {a1, a2, . . . , ak} a set
of actions such that Ai = A for all i ∈ N. Given the commutative image x =

(xa1 , xa2 , . . . , xak) for some action profile of Γ, call an action a` ∈ A a potential best
response for player i in x if xa` > 0 and

pi(a`, x−`) ≥ pi(am, x−`) for all am ∈ A, (1)

where x−` = (xa1 , . . . , xa`−1 , xa` − 1, xa`+1 , . . . , xak).

Fix a particular commutative image x = (xa1 , xa2 , . . . , xak), and define a bipartite
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3

2

1 (0, 1)

(0, 2)

(1, 1)
{2, 3}

{1} {(0, 1), (0, 2)}

{(1, 1)}

Fig. 4. Matching problem for the game of Figure 3 (left) and representation of the same
problem by a graph with a constant number of vertices (right), as used in the proof of
Theorem 1.

graph G = (V, E) such that

V = V1 ∪ V2, V1 = N, V2 = { (a j, `) : a j ∈ A, 1 ≤ ` ≤ x j }, and
E = { (i, (a j, `)) : a j is a potential best response for i under x }.

In other words, the two sides of G correspond to players and actions of Γ, respec-
tively, with multiplicities of the actions chosen according to x. Edges connect each
player to his potential best responses. The graph corresponding to the shaded ac-
tion profiles in Figure 3 is shown on the left of Figure 4. It is now readily ap-
preciated that a pure equilibrium of Γ with commutative image x directly corre-
sponds to a perfect matching of G, and vice versa. Furthermore, by Hall’s Theo-
rem, G has a perfect matching if and only if |ν(V ′)| ≥ |V ′| for all V ′ ⊆ V1, where
ν(V ′) = {v ∈ V2 : (u, v) ∈ E, u ∈ V1} is the neighborhood of vertex set V ′ [e.g., 4].

Observe that Hall’s condition cannot be verified efficiently in general. We will see,
however, that this can indeed be done for G, by considering a new graph obtained
from G which possesses only a constant number of vertices. More formally, assume
w.l.o.g. that for all v ∈ V1, ν(v) , ∅, and define an equivalence relation ∼ ⊆ V × V
such that for all v, v′ ∈ V , v ∼ v′ if and only if ν(v) = ν(v′). By construction
of G, and since both the number of actions and the number of possible subsets
of actions are constant, the set V/∼ of equivalence classes has constant size, and
V/∼ = (V1/∼) ∪ (V2/∼). Each element of V1/∼ corresponds to the set of players
having a particular set of actions as their potential best responses in x. Each element
of V2/∼ corresponds to an action in A. The neighborhood function ν can naturally
be extended to equivalence classes by letting for each U ∈ V1/∼, ν(U) = {U′ ∈
V2/∼ : v ∈ ν(u) for some u ∈ U, v ∈ U′ }. This yields a bipartite graph with vertex
set V/∼, the graph corresponding to the game in Figure 3 is shown on the right
of Figure 4. It is now easily verified that G has a perfect matching, and Γ a pure
equilibrium, if and only if for every Y ⊆ V1/∼,

∑
X∈Y |ν(X)| ≥ |Y |.

We proceed to show that this property can be verified by a threshold circuit with
unbounded fan-in, constant depth, and a polynomial number of gates. From the
description given below it is easy to see that the constructed circuit is logspace-
uniform. Since V1/∼ has only a constant number of subsets, we can construct
a constant depth threshold circuit which uses sub-circuits UNARY-COUNT and
UNARY-TO-BINARY as described by Chandra et al. [7] to sum over elements of
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p0 0 . . . ` + 1 . . . m + 2

. . . 1 0 1 0 2 1 0 1 0 1 . . .

p1 0 . . . ` + 1 . . . m + 2

. . . 1 0 1 0 1 2 0 1 0 1 . . .

Fig. 5. Payoffs of the game Γ used in the proof of Theorem 1

the equivalence classes, and COMPARISON sub-circuits to verify the inequalities.
The former is easily realized with the help of MAJORITY gates. It thus remains to
be shown that for any X ∈ V1/∼, |X| and |ν(X)| can be computed in TC0. For this,
recall that a particular element of V1/∼ corresponds to the set of players that have a
certain set of actions as their set of best responses in x. To compute the number of
such players we first construct a circuit of constant depth that uses COMPARISON
sub-circuits to check whether Equation 1 is satisfied for a fixed commutative image
x, a particular player i ∈ N, and a particular action a ∈ A. To check whether C ⊆ A
is the set of best responses for player i under x, we simply combine the outputs of
the above circuits for all actions a ∈ A into a single AND gate, negating the outputs
of that for actions a < C. The desired number of players is then obtained by adding
up the outputs of these gates for all players i ∈ N, again using UNARY-COUNT
sub-circuits. On the other hand, |ν(X)| corresponds to the number of players bound
to play an action from a certain subset in every action profile with commutative
image x, and can easily be obtained by summing over the respective elements of x.

For hardness, we reduce the problem of deciding whether exactly ` bits of a string
of m bits are 1 to deciding the existence of a pure equilibrium in a self-anonymous
game. Hardness of the former problem is immediate from that of MAJORITY [e.g.,
7]. For a particular m-bit string b, we define a game Γ with m + 2 players of two
different types 0 and 1 and actions A = {0, 1}. The ith player of Γ is of type 0 or 1
if the ith bit of b is 0 or 1, respectively. Player m + 1 is of type 0, player m + 2 is of
type 1. The payoffs p0 and p1 for the two types are given in Figure 5, the column
labeled j specifies the payoff when exactly j players, including the player himself,
play action 1. It is easily verified that this is an AC0 reduction. We claim that Γ

possesses a pure equilibrium if and only if exactly ` bits of b are 1. We observe the
following:

• An action profile s cannot be an equilibrium of Γ if #(1, s) , ` + 1. In this case,
the players of one of the two types get a higher payoff at both #(1, s) − 1 and
#(1, s) + 1, or at one of these in case #(1, s) = 0 and #(1, s) = m + 2. Since by
construction we have at least one player of each type, there always exists a player
who can change his action to get a higher payoff.

• If there are ` + 1 players of type 1, the action profile where all players of type
0 play action 0 and all players of type 1 play action 1 is an equilibrium. None
of the players of type 0 can gain by changing his action to 1, and none of them
can change his action to 0 (because all of them already play 0). A symmetric
condition holds for players of type 1.

• In turn, if the number of players of type 1 does not equal ` + 1, an action profile
s with #(1, s) = ` + 1 cannot be an equilibrium. In this case, there must be (i) a
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player of type 0 playing action 1 in s, or (ii) a player of type 1 playing 0. This
player can change his action to get a higher payoff.

Hence, a pure equilibrium exists if and only if there are ` + 1 players of type 1, i.e.,
if and only if b has ` 1-bits. This completes the reduction. �

In contrast to anonymous games, if s is a pure equilibrium of a symmetric game,
so are all t satisfying #(t) = #(s). This is due to the fact that the payoff functions
of all players, and thus the situation of all players playing the same action a ∈ A,
is identical, as would be the situation of any other player exchanging actions with
someone playing a. We exploit this property to show that deciding the existence of
a pure equilibrium in symmetric games with a constant number of actions is strictly
easier than for anonymous and self-anonymous games.

Theorem 2 The problem of deciding whether a symmetric game with a constant
number of actions has a pure Nash equilibrium is in AC0.

Proof: Like with anonymous games, an action profile s is an equilibrium of a sym-
metric game if and only if, for all i ∈ N, si is a best response to #(s−i), i.e., if

pi(si, #(s−i)) ≥ pi(a, #(s−i)) for all a ∈ A. (2)

For a particular player i ∈ N and for constant k, checking this inequality requires
only a constant number of comparisons and can be done using a circuit of constant
depth and polynomial size [e.g., 7]. When it comes to checking Equation 2 for the
different players, the observation about action profiles with identical commutative
images affords us a considerable computational advantage as compared to, say,
anonymous or self-anonymous games. More precisely, we only have to check if
Equation 2 is satisfied for a player playing a certain action, of which there are at
most k. Again, this can be done using a circuit of constant depth and polynomial
size if k is a constant.

Finally, to decide whether game Γ has a pure equilibrium, we have to check Equa-
tion 2 for the different values of #(s) for s ∈ AN . If k is constant, there are only
polynomially many of these, so the complete check requires only polynomial size
and constant depth. �

The reasoning in the proof of Theorem 2 also provides a nice illustration of the
fact that every symmetric game with two actions possesses a pure equilibrium, as
recently shown by Cheng et al. [9]. In the case of two actions, pi depends only on
player i’s action (0 or 1) and on the number of other players playing action 1. A pure
equilibrium exists if for some m neither the players playing 0 (who see m players
playing 1) nor the players playing 1 (who see m−1 other players playing 1) have an
incentive to deviate, i.e., pi(0,m) ≥ pi(1,m) and pi(1,m−1) ≥ pi(0,m−1). For m =

0 and m = n, one of the conditions is trivially satisfied, because there are no players
playing 1 or 0, respectively. It is now straightforward to show that at least one such
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m must exist. Alternatively, the existence of pure equilibria in symmetric games
with two actions can also be obtained as an immediate consequence of Lemma 1.
We can transform every symmetric game with two actions into a self-symmetric
game with the same set of equilibria, and every game in the latter class is guaranteed
to have at least one pure equilibrium.

As stated earlier, self-symmetric games always possess a pure equilibrium, namely
an action profile with maximum payoff for every player. We proceed to show that
such an action profile, which has the additional property of maximizing social wel-
fare, i.e., the sum of all players’ payoffs, can be found in AC0.

Theorem 3 The problem of finding a social-welfare-maximizing pure Nash equi-
librium of a self-symmetric game with a constant number of actions is in AC0.

Proof: Since self-symmetric games belong to the class of common payoff games,
any action profile with maximum payoff (for all players) is a social-welfare-
maximizing equilibrium (and Pareto dominates any other strategy profile). Finding
such an equilibrium is thus equivalent to finding the maximum of

(
n+k−2

k−1

)
integers.

The exact number is irrelevant as long as it is polynomial in the size of the input,
which is certainly the case if k is bounded by a constant. Chandra et al. [7] have
shown that the maximum of m m-bit binary numbers can be computed by an un-
bounded fan-in, constant-depth Boolean circuit of size polynomial in m. Since m is
of course polynomial in the size of the input, the size of this circuit is as well. �

4.3 Games with a Growing Number of Actions

The proofs we have seen so far could exploit the fact that for constant k the explicit
representation of an anonymous game is equivalent, under the appropriate type of
reduction, to any kind of payoff function computable in a particular complexity
class inside P. This need no longer be the case for unbounded k, because then the
size of the explicit representation grows exponentially in n. Such games may of
course still admit a polynomial representation, for example if payoff functions are
encoded by a Boolean circuit. We will now show that deciding the existence of a
pure equilibrium in anonymous, symmetric, and self-anonymous games becomes
NP-hard if the number of actions grows in n. For self-symmetric games, which al-
ways have a pure equilibrium, the associated search problem will be shown to be
PLS-hard. In particular, we show NP-completeness and PLS-completeness, respec-
tively, for games that have a polynomial number of players—like those covered
by Theorems 1 and 2—and a number of actions that grows linearly in the num-
ber of players. It will be obvious from the proofs that hardness for the respective
classes also holds for games with an exponential number of players and logarithmic
growth of the number of actions. The corresponding case with a constant number
of actions, on the other hand, remains open.
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If the number of actions in a game is large enough, they can in principle be used to
distinguish the players playing them. We will exploit this fact and prove the follow-
ing theorems by reductions from satisfiability of a Boolean circuit. For this, recall
that circuit satisfiability (CSAT), i.e., deciding whether a Boolean circuit has a sat-
isfying assignment, is NP-complete [e.g., 27]. We provide a reduction from CSAT
to the problem of deciding the existence of a pure equilibrium in a special class of
games. For a particular circuit C with inputs M = {1, 2, . . . ,m}, we define a game Γ

with at least m players and actions A = { a0
j , a

1
j : j ∈ M } ∪ {b}. An action profile s

of Γ where #(a0
j , s) + #(a1

j , s) = 1 for all j ∈ M, i.e., one where exactly one action
of each pair a0

j , a1
j is played, directly corresponds to an assignment c of C, the jth

bit of this assignment being 1 if and only if a1
j is played. Observe that in this case

the auxiliary action b has to be played by exactly n − m players. We can thus dis-
tinguish the action profiles of Γ corresponding to a satisfying assignment of C from
those corresponding to a non-satisfying assignment and those not corresponding to
an assignment at all.

Theorem 4 Deciding whether a self-anonymous game has a pure Nash equilib-
rium is NP-complete, even if the number of actions is linear in the number of play-
ers and there is only a constant number of different payoffs.

Proof: Membership in NP is obvious. Since the number of players is polynomial,
we can simply guess an action profile and verify that it satisfies the equilibrium
condition.

For hardness, we reduce satisfiability of a Boolean circuit C with inputs M =

{1, 2, . . . ,m} to the existence of a pure equilibrium in a game Γ with n ≥ m players,
actions A = { a0

j , a
1
j : j ∈ M } ∪ {b}, and payoff functions pi as follows:

• If s corresponds to a satisfying assignment of C, we let pi(s) = 1 for all i ∈ N.
• Otherwise we let
· p1(s) = 1, p2(s) = 0 if #(b, s) is even,
· p1(s) = 0, p2(s) = 1 if #(b, s) is odd, and
· pi(s) = 1 for all i ∈ N \ {1, 2}.

We observe the following:

• In all of the above cases, the payoff of player i only depends on the number of
players playing certain actions. If two players exchange actions, the payoff to all
players remains the same. Hence, Γ is self-anonymous.

• Clearly, every action profile s corresponding to a satisfying assignment of C is
an equilibrium, because in this case all players receive the maximum payoff of
1.

• For an action profile s not corresponding to a satisfying assignment of C, either
player 1 or player 2 receives a payoff of 0. Furthermore, by choosing his own
action to be either b or some other action, this player can determine the parity
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of the number of players playing b. Changing the parity strictly increases the
player’s payoff. This means that s cannot be an equilibrium.

We have hence established a direct correspondence between satisfying assignments
of C and pure equilibria of Γ. The transformation from C to Γ essentially works by
writing down Boolean circuits that compute pi. Observing that this can be done in
time polynomial in the size of C if n ≤ 2k, where k = |A|, completes the proof. �

As the reader may have noticed, the construction used in this proof has players 1
and 2 play matching pennies in the case where the Boolean circuit is not satisfied.
Not only is this game a well-known example for a game that does not possess a pure
equilibrium, it is also self-anonymous on its own. On the other hand, it is readily
appreciated that the payoffs in this game do depend on the identities of the players,
i.e., the game is not symmetric. We will have to avail of a different construction for
the symmetric case.

Theorem 5 Deciding whether a symmetric game has a pure Nash equilibrium is
NP-complete, even if the number of actions is linear in the number of players and
there is only a constant number of different payoffs.

Proof: Membership in NP is again obvious.

For hardness, we provide a reduction from CSAT, mapping a circuit C with inputs
M = {1, 2, . . . ,m} to a game Γ with n ≥ m players, actions A = { a0

j , a
1
j : j ∈

M } ∪ {b}, and payoff functions pi as follows:

• If s corresponds to a satisfying assignment of C, we let pi(s) = 2 for all i ∈ N.
• If s does not correspond to a satisfying assignment of C, we distinguish three

different cases according to the number #(b, s) of players playing action b:
· If #(b, s) < n − m, we let pi(s) = 1 if si = b, and pi(s) = 0 otherwise.
· If #(b, s) > n − m, we let pi(s) = 0 if si = b, and pi(s) = 1 otherwise.
· Finally, if #(b, s) = n − m, we let

pi(s) = 2 if si = a1
j for some j ∈ M, #(a0

j , s) > 0, and #(a1
j , s) > 0,

pi(s) = 1 if si = a0
j for some j ∈ M, #(a0

j , s) > 0, and #(a1
j , s) = 0, and

pi(s) = 0 otherwise.

We observe the following:

• For all of the above cases, the payoff of player i only depends on his own ac-
tion and on the number of players playing certain other actions. If two players
exchange actions, their payoffs are also exchanged. Hence, Γ is symmetric.

• Clearly, any action profile corresponding to a satisfying assignment of C is an
equilibrium, because in this case all players receive the maximum payoff of 2.

• On the other hand, if s does not correspond to a satisfying assignment, we have
one of three different cases, in none of which s is an equilibrium:
· If #(b, s) < n−m or #(b, s) > n−m + 1, then there exists a player that receives

16



payoff 0 and can change his action to receive a payoff of 1.
· If #(a0

j , s) = 1 for all j ∈ M, which can only be the case if #(b, s) < n − m,
player i can change to some a1

m such that si , a0
m to increase his payoff from 1

to 2.
· Otherwise, there has to be some player i ∈ N who gets payoff 0, and, by the

pigeonhole principle, some j ∈ M such that #(a0
j , s−i) = #(a1

j , s−i) = 0. Then,
player i can change to a0

j to get a higher payoff.

Again, there is a direct correspondence between pure equilibria of Γ and satisfying
assignments of C. The transformation from C to Γ essentially works by writing
down Boolean circuits that compute pi. Observing that this can be done in time
polynomial in the size of C if n ≤ 2k, where k = |A|, completes the proof. �

By each of the previous two theorems and by the inclusion relationships between
the different classes of games, we also have the following.

Corollary 1 Deciding whether an anonymous game has a pure Nash equilibrium
is NP-complete, even if the number of actions is linear in the number of players and
there is only a constant number of different payoffs.

Since the proofs of Theorems 4 and 5 work by mapping satisfying assignments of
a Boolean circuit to a certain number of pure equilibria of a strategic game, we can
show that counting the number of pure equilibria in the above classes of games is
hard.

Corollary 2 For anonymous, symmetric, and self-anonymous games, counting the
number of pure Nash equilibria is #P-hard, even if the number of actions is linear
in the number of players and there is only a constant number of different payoffs.

Proof: Recall that in the proof of Theorem 4, actions of the game Γ are identified
with inputs of the Boolean circuit C. As a direct consequence of anonymity or
symmetry, it does not matter which player plays a particular action to assign a
value to the corresponding gate. Every satisfying assignment of C thus corresponds
to n! equilibria of Γ, so the number of satisfying assignments can be determined
by counting the number of pure equilibria, of which there are at most 2nn!, and
dividing this number by n!. Division of two m-bit binary numbers can be done
using a circuit with bounded fan-in and depth O(log m) [2]. For m = log(2nn!) =

O(n2), we have depth O(log n2) = O(log n), so the above division can be carried
out in NC1. We have thus found a reduction of the problem #SAT of counting
the number of satisfying assignments of C, which is #P-complete [e.g., 27], to the
problem of counting the pure equilibria of Γ. The same line of reasoning applies
to the proof of Theorem 5. Analogously to Corollary 1, #P-hardness extends to
anonymous games. �

As we have already outlined above, every self-symmetric game possesses a pure
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equilibrium. Theorem 3 states that finding even a social-welfare-maximizing equi-
librium is very easy as long as the number of actions is bounded by a constant.
If now the number of actions is growing but polynomial in the size of the input,
we can start at an arbitrary action profile and check in polynomial time whether
some player can change his action to increase the (common) payoff. If this is not
the case, we have found an equilibrium. Otherwise, we can repeat the process for
the new profile, resulting in a procedure called best-response dynamics in game
theory. Since the payoff strictly increases in each step, we are guaranteed to find
an equilibrium in polynomial time if the number of different payoffs is polyno-
mial. Conversely, we will show that, given a self-symmetric game with a growing
number of actions and an exponential number of different payoffs, finding a pure
equilibrium is at least as hard as finding a locally optimal solution to an NP-hard
optimization problem. For this, we formally introduce the class of search problems
for which a solution is guaranteed to exist by a local optimality argument.

Definition 4 (local search, PLS) A local search problem is given by (i) a set I of
instances, (ii) a set F (x) of feasible solutions for each x ∈ I, (iii) an integer mea-
sure µ(S , x) for each S ∈ F (x), and (iv) a set N(S , x) of neighboring solutions
for each S ∈ F (x). A solution is locally optimal if it does not have a strictly bet-
ter neighbor, i.e., one with a higher or lower measure depending on the kind of
optimization problem.

A local search problem is in the class PLS of polynomial local search problems [22]
if for every x ∈ I there exist polynomial time algorithms for (i) computing an initial
feasible solution in F (x), (ii) computing the measure µ(S , x) of a solution S ∈ F ,
and (iii) determining that S is locally optimal or finding a better solution inN(S , x).

A problem P in PLS is PLS-reducible to another problem Q in PLS if there exist
polynomial time computable functions Φ and Ψ mapping (i) instances x of P to
instances Φ(x) of Q and (ii) solutions S of an instance Φ(x) of Q to solutions
Ψ(S , x) of the corresponding instance x of P such that locally optimal solutions are
mapped to locally optimal solutions.

Interestingly, problems in PLS have a fully polynomial-time approximation
scheme [26].

The proof of the following theorem works along similar lines as those of Theo-
rems 4 and 5 to give a reduction from the PLS-complete problem FLIP.

Theorem 6 The problem of finding a pure Nash equilibrium in a self-symmetric
game is PLS-complete, even if the number of actions is linear in the number of
players.

Proof: Neighborhood among action profiles is given by a single player changing
his action. Since the number of players and actions is polynomial in the input size,
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and since the payoff function is computable in polynomial time, membership in
PLS is immediate.

For hardness, consider a Boolean circuit C with inputs M = {1, 2, . . . ,m} and `
outputs. Finding an assignment such that the output interpreted as an `-bit binary
number is a local maximum under the FLIP neighborhood (i.e., changing a single
input bit) is known to be PLS-complete [22, 32]. We provide a PLS reduction to
the problem of finding a pure equilibrium in a self-symmetric game by mapping
a particular circuit C as described above to a game Γ with n ≥ m players, actions
A = { a0

j , a
1
j : j ∈ M }, and a (common) payoff function p as follows:

• If s corresponds to an assignment c of C, we let p(s) = n + C(c), where C(c)
denotes the output of C for input c, interpreted as a binary number.

• Otherwise, we let p(s) = min(#(b, s), n −m) + |{ j ∈ M : #(a0
j , s) + #(a1

j , s) > 0 }|.
That is, the payoff is at most n − 1 and decreases in the minimum number of
players that would have to change their action in order to make s correspond to
an assignment of C.

We observe the following:

• Obviously, Γ is a common payoff game. Since p is invariant under any permuta-
tion of the players in both of the above cases, Γ is self-symmetric.

• If n ≤ 2k, where k = |A|, a Boolean circuit that computes p can be constructed
from C in time polynomial in the size of C. Hence, there exists a polynomial time
computable function that maps instances of FLIP to instances of the problem
under consideration.

• An action profile a that does not correspond to an assignment of C cannot be an
equilibrium of Γ. In this case there always exists j ∈ M such that a0

j and a1
j are

played by more than one player. At the same time, less than n − m players play
b, or no one plays a0

j′ or a1
j′ for some j′ ∈ M. If one of the players playing the

former changes to the latter, he gets a higher payoff (actually, all players do).
• There is a direct correspondence between the FLIP neighborhood of C and a sin-

gle player changing between a0
j and a1

j for some j ∈ M. Furthermore, changing
to an action profile that does not correspond to an assignment of C will get the
player strictly less payoff. Thus, there is a direct correspondence between pure
equilibria of Γ and local maxima of C under the FLIP neighborhood. Obviously,
the assignment corresponding to an action profile can be computed in polyno-
mial time, if such an assignment exists. The conditions of Definition 4 do not
require that we map solutions of Γ that are not locally optimal to solutions of C
that are not locally optimal. This means that action profiles not corresponding to
an assignment can simply be mapped to an arbitrary assignment.

It is easily verified that this satisfies the properties of a PLS reduction. �

Implicit in the definition of PLS is a standard algorithm for finding a locally op-
timal solution for a given input x ∈ I: start with an arbitrary feasible solution
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S ∈ F (x) and repeatedly find a strictly better neighbor until a locally optimal so-
lution T ∈ F (x) has been found. The standard algorithm problem can be phrased
as follows: given x, find the locally optimal solution T output by the standard al-
gorithm on input x. Schäffer and Yannakakis [32] introduce the notion of a tight
PLS reduction and show that tight reductions preserve both hardness of the stan-
dard algorithm problem and exponential worst-case running time of the standard
algorithm.

Definition 5 (tight PLS reduction) Let P,Q be PLS problems. A PLS reduction
(Φ,Ψ) from P to Q is called tight if for any instance x of P there exists a set R ⊆
F (Φ(x)) with the following properties:

(1) R contains all local optima of Φ(x).
(2) For every p ∈ F (x), a solution q ∈ R satisfying Ψ(q, x) = p can be computed

in polynomial time.
(3) Consider q0, q1, . . . , q` ∈ F (Φ(x)) such that q0, q` ∈ R, qi < R for all 0 < i < `,

qi+1 ∈ N(qi,Φ(x)) for all i < `, and µ(qi) > µ(q j) if i > j. Let p = Ψ(q0, x),
p′ = Ψ(q`, x). Then, either p = p′ or p′ ∈ N(p, x).

With some extra work, we can show that the reduction used in the proof of The-
orem 6 is tight, and draw additional conclusions about the standard algorithm and
the standard algorithm problem.

Corollary 3 The standard algorithm for finding pure Nash equilibria in self-
symmetric games has an exponential worst-case running time. The standard al-
gorithm problem is NP-hard.

Proof: Johnson et al. [22] have shown that the standard algorithm for FLIP has an
exponential worst-case running time, and the standard algorithm problem is NP-
hard. By Lemma 3.3 of Schäffer and Yannakakis [32] it thus suffices to show that
the reduction in the proof of Theorem 6 is tight. To this end, choose R to be the
set of actions profiles of Γ that correspond to an assignment of C. Obviously, R
contains all optimal solutions, and a payoff profile corresponding to a particular
assignment can be computed in polynomial time. The third condition is trivially
satisfied because the measure of any solution inside R is strictly greater than that of
any solution outside of R.

By a slight modification of the proof of Theorem 6, PLS-hardness, exponential
worst-case running time of the standard algorithm, and NP-hardness of the standard
algorithm problem can also be shown for general (i.e., not necessarily symmetric)
common payoff games with k = 2. This fact nicely illustrates the influence of sym-
metry on the hardness of finding, or deciding the existence of, a pure equilibrium.
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5 Threshold Symmetries

In order to extend the basic concept of symmetry as the indistinguishability of
players, we will now consider games where the players cannot even observe the
exact number of players playing a certain action, but only whether this number
reaches certain thresholds. Let Γ = (N, (Ai)i∈N , (pi)i∈N) be a normal-form game and
A a set of actions such that Ai = A for all i ∈ N. For T ⊆ {1, 2, . . . , n}, let ∼T ⊆

AN × AN be defined as follows: s ∼T t if for all a ∈ A and all x ∈ T , #(a, s) < x if
and only if #(a, t) < x. ∼T naturally extends to action profiles for subsets of N. It
is easily verified that for any T ⊆ {1, 2, . . . , n}, ∼T is an equivalence relation on the
set AM of action profiles for players M ⊆ N. We use ∼T to generalize Definition 2.

Definition 6 (threshold symmetry) Let Γ = (N, (Ai)i∈N , (pi)i∈N) be a normal-form
game, A a set of actions such that Ai = A for all i ∈ N. Let T ⊆ {1, 2, . . . , n}. Γ is
called

• T -anonymous if pi(s) = pi(t) for all i ∈ N and all s, t ∈ AN with si = ti and
s−i ∼T t−i,

• T -symmetric if pi(s) = p j(t) for all i, j ∈ N and all s, t ∈ AN with si = t j and
s−i ∼T t− j,

• T -self-anonymous if pi(s) = pi(t) for all i ∈ N and all s, t ∈ AN with s ∼T t, and
• T -self-symmetric if pi(s) = p j(t) for all i, j ∈ N and all s, t ∈ AN with s ∼T t.

For T = {1, 2, . . . , n}, these classes are equivalent to those of Definition 2. More-
over, we obtain Boolean symmetry, where payoffs only depend on the support of an
action profile (i.e., the actions that are played by at least one player), for T = {1}.
In general, we call a game threshold anonymous (for one of the above classes) if it
is T -anonymous for some T (and the corresponding class).

Obviously, the number of payoffs that need to be written down for each player to
specify a general T -anonymous game is exactly the number of equivalence classes
of ∼T for action profiles of the other players. A T -anonymous game can be repre-
sented using at most n · k · |An−1/∼T | numbers, where X/∼ denotes the quotient set
of set X by equivalence relation ∼. For Boolean anonymity, the number of equiv-
alence classes equals the number of k-bit binary numbers where at least one bit
is 1, i.e., 2k − 1. More generally, there cannot be more than (|T | + 1)k equivalence
classes if |T | is bounded by a constant (since for every action, the number of players
playing this action must be between two thresholds), while for T = {n} there are
as few as k + 1. Hence, any T -anonymous game with constant |T | is representable
using space polynomial in n if k = O(log n). It does not matter if the thresholds
themselves are constant or not. We are now ready to identify a class of threshold
symmetric games for which the pure equilibrium problem is tractable. It should be
noted that the proof technique is not limited to this particular class, but in fact ap-
plies to the larger class of games for which the kernel of the best response function
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has polynomial size.

Theorem 7 For threshold anonymous games with k = O(log n) and a constant
number of thresholds, deciding the existence of a pure Nash equilibrium is in P.

Proof: Like in the proof of Theorem 1, we provide an algorithm that checks
whether there is an equilibrium in a particular equivalence class X ∈ AN/∼T . Since
for k = O(log n) and |T | = O(1), the cardinality of AN/∼T is polynomial in n, it
suffices to show that the algorithm requires only polynomial time for every such
set. For a particular element X ∈ AN/∼T , the algorithm is again divided into two
phases: (i) computing the set of best responses for each player under X, and (ii)
checking whether there is a particular action profile s ∈ X where each player plays
a best response.

In the first phase, and unlike the case T = {1, 2, . . . , n} covered by Theorem 1,
the action a played by player i ∈ N may or may not yield a different element of
AN\{i}/∼T against which a should be a best response. Instead of just looking for best
responses under elements of T N , we thus look for best responses under those of UN ,
where U = { u ≤ n : u ∈ T or (u − 1) ∈ T }. Since the cardinalities of both UN and
of the set of possible best responses is polynomial if |T | = O(1) and k = O(log n),
the first phase requires only polynomial time.

As for the second phase, we show that it can be reduced to deciding the existence
of an integer flow with upper and lower bounds in a directed network with O(2k)
vertices. Since this problem is in P if the number of vertices is polynomial [e.g., 16],
observing that 2k is polynomial in the size of the input if k = O(log n) completes
the proof. Fix X ∈ AN/∼T and define a directed graph G = (V, E) such that

V = {s, t, t′} ∪ V1 ∪ V2, V1 = 2A, V2 = A, and
E = {s} × V1 ∪ { (A′, a) ∈ V1 × V2 : a ∈ A′ } ∪ V2 × {t} ∪ {(t, t′)}.

Further define two functions ` : E → N and u : E → N such that,

for all A′ ∈ V1,
`(s, A′) = u(s, A′) = |{ i ∈ N : A′ is the set of best responses of i under X }|,

for all A′ ∈ V1 and a ∈ A′, `(A′, a) = 0 and u(A′, a) = n,
for all a ∈ V2, `(a, t) = min

x∈X
#(a, x) and u(a, t) = max

x∈X
#(a, x), and

`(t, t′) = u(t, t′) = n.

Figure 6 shows the flow network for the game in Figure 3. Edge capacities have
been computed by checking for each player if his action in the respective (shaded)
action profile of Figure 3 is a best response. Observe that since this game is not
only threshold anonymous but also anonymous, upper and lower bounds are the
same for flow leaving vertices in V2 = A.
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(1, 1)

(3, 3)

Fig. 6. Integer flow network used in the proof of Theorem 7, example for the game of
Figure 3. Edge e is labeled (u(e), `(e)).

Obviously every feasible flow from s to t′ must have size n. Furthermore, the con-
ditions for flow leaving vertices in V1 require that there exists an assignment of
actions to players such that each player plays a best response, while those for flow
leaving edges in V2 require that the resulting action profile is an element of X. It is
thus readily appreciated that a flow from s to t′ satisfying lower bounds ` and upper
bounds u directly corresponds to a Nash equilibrium of Γ, and vice versa. �

On the other hand, it is rather straightforward to modify the games defined in the
proofs of Theorems 4, 5, and 6 to be Boolean if n = k. We obtain the following
corollary.

Corollary 4 Deciding the existence of a pure Nash equilibrium is NP-hard for
threshold anonymous, threshold symmetric, and threshold self-anonymous games,
even if thresholds are Boolean, the number of actions is linear in the number of
players, and there is only a constant number of different payoffs. For the same
classes, counting the number of pure Nash equilibria is #P-hard.

For threshold self-symmetric games, finding a pure Nash equilibrium is PLS-hard,
even if thresholds are Boolean and the number of actions is linear in the number of
players.

Proof: In all constructions, we assume n = m and remove the auxiliary action b.
In addition to that, the self-anonymous game used in the proof of Theorem 4 is
modified by letting players 1 and 2 play matching pennies on the parity of the
number |{ j ∈ M : #(a0

j , s) > 0 }| of 0-actions that are played by at least one player.
It is easily verified that the arguments used to show the correspondence between
satisfying assignments of the Boolean circuit and pure equilibria of the respective
game still go through. Furthermore, the payoff of a particular player in each of
these games only depends on whether certain actions are played by at least one
player and, potentially, on the player’s own action. �
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k = O(1) k = O(n)

anonymous
TC0-complete

NP-hardself-anonymous

symmetric
in AC0

self-symmetric PLS-hard

Table 1
Complexity of pure Nash equilibrium in symmetric games

6 Conclusion and Future Work

In this paper, we have introduced four notions of symmetry in strategic multi-player
games and investigated the computational complexity of finding pure Nash equilib-
ria. We established that this problem is tractable for games with a constant number
of actions, but intractable if the number of actions grows at least linearly in the
number of players. It is worth noting that, for games with a constant number of
actions, the pure equilibrium problem happens to lie in NC1 for all symmetry types
and is thus open to parallel computation. For games with an exponential number of
players in which the number of actions grows sub-logarithmically, the complexity
remains open. The main results are summarized in Table 1.

In future work, it would be interesting to extend our tractability results to larger
classes of games. For example, games with a certain number of player types, where
indistinguishability holds only for players of the same type, can be obtained by
restricting Definition 2 to permutations that map players from a certain subset to
players of the same set. Given a game in this class, we can construct an anonymous
game with the same set of players and an action set that is the Cartesian product of
the original set of actions and the set of player types. By assigning a unique mini-
mum payoff to all actions not corresponding to the type of the respective player, we
can ensure that players only play actions corresponding to their type in every equi-
librium of the new game, effectively allowing us to distinguish players of different
types in the new game. For games with a constant number of players the size of
the new game is polynomial in the size of the original game, and the tractability re-
sult of Theorem 1 carries over immediately. A different notion, such that players of
the same type have identical payoff functions, does not seem to provide additional
structure. As we have already shown, only two different payoff functions suffice to
make the pure equilibrium problem TC0-hard for a constant number of actions and
NP-hard for a growing number of actions. More generally, one might investigate
games where payoffs are invariant under particular sets of permutations. For exam-
ple, von Neumann and Morgenstern [35] regard the number of permutations under
which the payoffs of a game are invariant as a measure for the degree of symmetry.
The question is in how far the computational complexity of solving a game depends
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on the degree of symmetry.
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