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We study social decision schemes (SDSs), i.e., functions that map a col-
lection of individual preferences over alternatives to a lottery over the al-
ternatives. Depending on how preferences over alternatives are extended to
preferences over lotteries, there are varying degrees of efficiency and strat-
egyproofness. In this paper, we consider four such preference extensions:
stochastic dominance (SD), a strengthening of SD based on pairwise com-
parisons (PC ), a weakening of SD called bilinear dominance (BD), and an
even weaker extension based on Savage’s sure-thing principle (ST ). While
random serial dictatorships are PC -strategyproof, they only satisfy ex post
efficiency. On the other hand, we show that strict maximal lotteries are
PC -efficient and ST -strategyproof. We also prove the incompatibility of (i)
PC -efficiency and PC -strategyproofness for anonymous and neutral SDSs,
(ii) ex post efficiency and BD-strategyproofness for pairwise SDSs, and (iii)
ex post efficiency and BD-group-strategyproofness for anonymous and neu-
tral SDSs.
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1. Introduction

Two fundamental notions in microeconomic theory are efficiency—no agent can be made
better off without making another one worse off—and strategyproofness—no agent can
obtain a more preferred outcome by misrepresenting his preferences. The conflict be-
tween these two notions is already apparent in Gibbard and Satterthwaite’s seminal
theorem, which states that the only single-valued social choice functions (SCFs) that
satisfy non-imposition—a weakening of efficiency—and strategyproofness are dictator-
ships (Gibbard, 1973; Satterthwaite, 1975). In this paper, we study efficiency and strat-
egyproofness in the context of social decision schemes (SDSs), i.e., functions that map a
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preference profile to a probability distribution (or lottery) over a fixed set of alternatives
(e.g., Gibbard, 1977; Barberà, 1979a). Randomized voting methods have a surprisingly
long tradition going back to ancient Greece and have recently gained increased atten-
tion in social choice (see, e.g., Bogomolnaia et al., 2005; Chatterji et al., 2014; Brandl
et al., 2016a) and political science (see, e.g., Goodwin, 2005; Stone, 2011; Guerrero,
2014). Randomization is particularly natural in subdomains of social choice that are
concerned with the assignment of objects to agents such as house allocation (see, e.g.,
Abdulkadiroğlu and Sönmez, 1998; Bogomolnaia and Moulin, 2004; Che and Kojima,
2010; Budish et al., 2013). Positive results, such as our results on maximal lotteries, are
inherited from the general social choice domain to these subdomains.

In order to identify efficient lotteries and argue about incentives with respect to lotter-
ies, one needs to know the agents’ preferences over lotteries. There are various problems
associated with asking the agents to submit complete preference relations over all lotter-
ies. For example, the preferences may not allow for a concise representation and agents
may not even be aware of these preferences in the first place.1 We therefore follow
the common approach which only assumes that ordinal preferences over alternatives are
available. These preferences are then systematically extended to possibly incomplete
preferences over lotteries. We will refer to such extensions as lottery extensions (see
also Cho, 2016). One of the most studied lottery extensions is stochastic dominance
(SD), which states that one lottery is preferred to another iff the former first-order
stochastically dominates the latter. This extension is of particular importance because
it coincides with the extension in which one lottery is preferred to another iff, for any
von Neumann-Morgenstern (vNM) utility function consistent with the ordinal prefer-
ences, the former yields at least as much expected utility as the latter. Settings in which
the existence of an underlying vNM utility function cannot be assumed may call for
other lottery extensions. A natural candidate is the pairwise comparison (PC ) exten-
sion, which arises as a special case of skew-symmetric bilinear (SSB) utility functions, a
generalization of vNM utility functions proposed by Fishburn (1982). According to this
extension, one lottery is preferred to another iff it is more likely that the former yields a
better alternative than the latter. Clearly, each of these lottery extensions gives to rise
to different variants or degrees of efficiency and strategyproofness.

Since many lottery extensions are incomplete, i.e., some pairs of lotteries are incom-
parable, there are two fundamentally different ways how to define strategyproofness.
The strong notion, first advocated by Gibbard (1977), requires that every misreported
preference relation of an agent will result in a lottery that is comparable and weakly

1We surmise that, even if humans think they can competently assign von Neumann-Morgenstern utilities
to alternatives, these assignments are prone to be based on arbitrary choices because of missing
information and the inability to fully grasp the consequences of these choices. A similar sentiment
is expressed by Abramowitz and Anshelevich (2018): “Human beings are terrible at expressing their
feelings quantitatively. For example, when forming collaborations people may be able to order their
peers from ‘best to collaborate with’ to worst, but would have a difficult time assigning exact numeric
values to the acuteness of these preferences. In other words, even when numerical (possibly latent)
utilities exist, in many settings it is much more reasonable to assume that we only know ordinal
preferences: every agent specifies the order of their preferences over the alternatives, instead of a
numerical value for each alternative.”
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less preferred by that agent to the original lottery. According to the weaker notion,
first used by Postlewaite and Schmeidler (1986) and then popularized by Bogomolnaia
and Moulin (2001), no agent can misreport his preferences to obtain another lottery
that is strictly preferred to the original one. In other words, the strong version always
interprets incomparabilities in the worst possible manner (such that they violate strat-
egyproofness) while the weak version interprets them as actual incomparabilities that
cannot be resolved.2 Usually, the strong notion is much more demanding than the weak
one. Whenever a lottery extension is complete, however, both notions coincide.

Perhaps the most well-known SDS, which is only defined for linear preferences, is
random dictatorship (RD). In RD , one of the agents is chosen uniformly at random
and this agent’s most preferred alternative is selected. Gibbard (1977) has shown that
RD is the only strongly SD-strategyproof SDS that never puts positive probability on
Pareto-dominated alternatives. The latter property is known as ex post efficiency.3 It
is easily verified that RD even satisfies the stronger condition of SD-efficiency.

Gibbard’s proof requires the universal domain of linear preferences and cannot be
extended to arbitrary subdomains (see, e.g., Chatterji et al., 2014). In many important
subdomains of social choice such as house allocation, matching, and coalition formation,
ties are unavoidable because agents are indifferent among all outcomes in which their
allocation, match, or coalition is the same (see Section 2). In the presence of ties, RD
is typically extended to random serial dictatorship (RSD), where dictators are invoked
sequentially and ties between most-preferred alternatives are broken by subsequent dic-
tators. While RSD still satisfies strong SD-strategyproofness, it violates SD-efficiency.
This was first observed by Bogomolnaia and Moulin (2001) in the restricted domain of
house allocation. The example by Bogomolnaia and Moulin (2001) can be translated
to a preference profile with 24 alternatives in the general social choice domain. We
give a minimal example for four agents and four alternatives and completely character-
ize in which settings RSD satisfies SD-efficiency. Recently, Brandl et al. (2018a) have
shown a sweeping impossibility: no anonymous and neutral SDS simultaneously satis-
fies SD-efficiency and SD-strategyproofness whenever there are at least four alternatives
and four agents. This result was obtained with the help of computers and is tedious
to verify. We give manual and simpler proofs for two related statements: there is no
anonymous, neutral, PC -efficient, and PC -strategyproof SDS and there is no ex post ef-
ficient and BD-strategyproof pairwise SDS, where BD-strategyproofness is a weakening
of SD-strategyproofness. While the first result uses stronger conditions than the one by
Brandl et al. (2018a), it requires less agents and alternatives. The second result uses
weaker conditions, but only holds for the restricted class of pairwise SDSs.

In order to obtain positive results we then introduce a new lottery extension that is

2The weak notion of strategyproofness has often been considered in the context of set-valued social
choice where preferences over alternatives are extended to incomplete preference relations over sets
of alternatives (see, e.g., Gärdenfors, 1976; Barberà, 1977a,b; Kelly, 1977; Feldman, 1979a,b). For
relatively weak preference extensions, it allows for rather positive results (Nehring, 2000; Brandt and
Brill, 2011; Brandt, 2015).

3Alternative proofs of this theorem were given by Duggan (1996), Nandeibam (1997), and Tanaka
(2003).
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Figure 1: Relationships between varying degrees of efficiency and strategyproofness. An
arrow from one notion of efficiency or strategyproofness to another denotes
that the former implies the latter. Solid lines represent positive results whereas
dashed lines represent impossibility results. The result by Brandl et al. (2018a)
was shown using computer-aided solving techniques.

weaker than stochastic dominance and is based on Savage’s sure-thing principle (ST ).
All three lottery extensions are then used to demonstrate an interesting tradeoff (see
Figure 1): random serial dictatorship is strongly SD-strategyproof, but only satisfies
ex post efficiency. On the other hand, strict maximal lotteries (SML) as defined by
Kreweras (1965) and Fishburn (1984a), satisfy PC -efficiency and ST -strategyproofness.
Strict maximal lotteries correspond to the quasi-strict mixed equilibria of the symmetric
zero-sum game induced by the pairwise majority margins. While ST -strategyproofness
is quite weak, it is important to note that most common ex post efficient SDSs (except
RSD) violate much weaker notions of strategyproofness. Moreover, SML satisfies a
number of other desirable properties violated by RSD such as Condorcet-consistency
and composition-consistency (Laslier, 2000; Brandl et al., 2016a). Figure 1 summarizes
our findings.

We also consider manipulation by groups of agents. We prove that both RSD and
SML satisfy ST -group-strategyproofness and that no anonymous, neutral, and ex post
efficient SDS satisfies the slightly stronger notion of BD-group-strategyproofness. These
results are visualized in Figure 2.

All of our impossibility results assume anonymity. Serial dictatorship, an SDS that
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Figure 2: Relationships between efficiency and group-strategyproofness concepts. Solid
lines represent positive results whereas dashed lines represent impossibility
results.

clearly violates anonymity, is defined for a fixed sequence of the agents and lets each
agent narrow down the set of alternatives by picking his most preferred of the alterna-
tives selected by the previous agents. Serial dictatorship trivially satisfies all reasonable
notions of efficiency and strategyproofness. Since lotteries can guarantee ex ante fairness
via randomization, anonymity and neutrality are typically two minimal conditions that
fair SDSs are expected to satisfy.

2. Related Work

Starting with the Gibbard-Satterthwaite impossibility (Gibbard, 1973; Satterthwaite,
1975), there is remarkable number of results that reveal a tradeoff between efficiency
and strategyproofness.

As mentioned above, RD , as proposed by Gibbard (1977), satisfies SD-efficiency and
(strong) SD-strategyproofness when preferences are linear. Brandl et al. (2016b) have
shown that RD cannot be extended to the full domain of weak preferences without
violating at least one of these properties or anonymity or neutrality.4 This theorem
has been strengthened by Brandl et al. (2018a), who showed that no anonymous and
neutral SDS satisfies SD-efficiency and SD-strategyproofness by leveraging computer-
aided solving techniques.5

When preferences are dichotomous, efficiency and strategyproofness are compatible.
The utilitarian mechanism described by Bogomolnaia et al. (2005) satisfies the strongest
degrees of efficiency and strategyproofness considered in this paper (PC -efficiency and
strong SD-strategyproofness). Interestingly, this mechanism always returns a maxi-
mal lottery (which happens to be of a particularly simple form for dichotomous prefer-
ences). When replacing strategyproofness with group-strategyproofness and weakening

4A natural candidate is RSD , which—as we discuss in Section 4—violates SD-efficiency. Aziz (2013)
proposes another SDS that satisfies a stronger notion of efficiency and a weaker notion of strate-
gyproofness than RSD . However, it also violates SD-efficiency.

5The theorem by Brandl et al. (2018a) also implies analogous impossibilities for the upward lexico-
graphic UL and downward lexicographic DL extensions introduced by Cho (2016). The impossibility
for UL even holds for linear preferences while this is not the case for DL since RD satisfies both
DL-efficiency and DL-strategyproofness (Brandl, 2013).
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SD-efficiency to ex post efficiency, this possibility turns into an impossibility (Bogomol-
naia et al., 2005). We strengthen this result in Section 7.

A subdomain of social choice that has been thoroughly studied in the literature is
the assignment (aka house allocation or two-sided matching with one-sided preferences)
domain. An assignment profile can be associated with a social choice profile by letting
the set of alternatives be the set of deterministic allocations and postulating that agents
are indifferent among all allocations in which they receive the same object (see, e.g., Aziz
et al., 2013).6 Thus, impossibility results for the assignment setting imply impossibility
results for the social choice setting.

Bogomolnaia and Moulin (2001) have shown that no random assignment rule sat-
isfies SD-efficiency, strong SD-strategyproofness, and equal treatment of equals. The
result by Bogomolnaia and Moulin even holds when preferences over objects are lin-
ear and identical up to a single object (Chang and Chun, 2017). In a related paper,
Katta and Sethuraman (2006) proved that no assignment rule satisfies SD-efficiency, SD-
strategyproofness, and strong SD-envy-freeness for the full domain of weak preferences
over objects.7 Nesterov (2017) showed similar impossibilities: ex post efficiency, strong
SD-strategyproofness, and strong SD-envy-freeness as well as SD-efficiency, strong SD-
strategyproofness, and weak SD-envy-freeness are incompatible with each other. Bogo-
molnaia and Moulin (2001) have introduced the probabilistic serial (PS) assignment rule
which satisfies SD-efficiency and SD-strategyproofness when preferences over objects are
linear. Natural extensions of the probabilistic serial rule to the full assignment domain
and to the general social choice domain fail to satisfy SD-strategyproofness (Katta and
Sethuraman, 2006; Aziz and Stursberg, 2014). Thus, it is an interesting open question
whether there is any SD-efficient and SD-strategyproof assignment rule on the full as-
signment domain that satisfies equal treatment of equals. We conjecture that no such
rule exists.

There is an extensive literature showing impossibility results for set-valued SCFs. Just
like in probabilistic social choice, strategyproofness is defined by lifting the preference
relation, in this case to sets of alternatives. It turns out that some of the resulting
notions of strategyproofness are logically related to notions considered in this paper.
For example, every strongly SD-strategyproof SDS induces a set-valued SCF (by just
taking the support of the resulting lottery) that is strategyproof with respect to the
optimist and pessimist extensions as used by Duggan and Schwartz (2000), Rodŕıguez-
Álvarez (2007), Rodŕıguez-Álvarez (2009), Sato (2008), and others. Similarly, every ST -
strategyproof SDS induces a set-valued SCF that is strategyproof with respect to the
simple extension where one set is preferred to another iff all alternatives in the former are
strictly preferred to all alternatives in the latter (see, e.g., Nehring, 2000; Brandt, 2015,
Remark 6). The relationship between BD-strategyproofness and strategyproofness with
respect to Fishburn’s set extension as used by Feldman (1979a), Ching and Zhou (2002),
Sanver and Zwicker (2012), Brandt and Geist (2016), and others works the other way

6Note that this transformation turns assignment profiles with linear preferences over k objects into
social choice profiles with non-linear preferences over k! allocations.

7Strong envy-freeness is a fairness property that is stronger than equal treatment of equals as used by
Bogomolnaia and Moulin (2001). Weak envy-freeness and equal treatment of equals are incomparable.
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round: every Fishburn-strategyproof SCF induces a BD-strategyproof SDS by taking
the uniform lottery over the resulting choice set. As a consequence, Theorem 6 implies
Theorem 3 by Brandt and Geist (2016). However, the proof of Theorem 6 uses weak
preferences while the result by Brandt and Geist (2016) even holds for linear preferences.

Mennle and Seuken (2015) proposed a different approach to trade off efficiency and
strategyproofness by quantifying manipulation losses and considering convex combina-
tions of random assignment rules. There also has been some recent work on the tradeoff
between participation (resistance against strategic abstention) and efficiency (Brandl
et al., 2015a,b).

Preliminary proofs of results presented in this paper have appeared in conference
proceedings. Please see the Acknowledgments for details.

3. Preliminaries

Let N = {1, . . . , n} be a set of agents who entertain ordinal preferences over a finite
set A of m alternatives. Every agent i ∈ N is equipped with a complete and transitive
preference relation Ri ⊆ A×A. The set of all preference relations will be denoted by R.
In accordance with conventional notation, we write Pi for the strict part of Ri, i.e., a Pi b
if a Ri b but not b Ri a and Ii for the indifference part of Ri, i.e., a Ii b if a Ri b and b Ri a.
Preference relations are straightforwardly extended to sets of alternatives X,Y where
X Ri Y denotes that x Ri y holds for all x ∈ X and y ∈ Y . Similarly, X Pi Y iff x Pi y
for all x ∈ X and y ∈ Y . We will compactly represent a preference relation as a comma-
separated list where all alternatives among which an agent is indifferent are represented
by a set. For example a Pi b Ii c is written as Ri : a, {b, c}. A preference relation Ri is
linear if x Pi y or y Pi x for all distinct alternatives x, y ∈ A. A preference relation Ri is
dichotomous if x Ri y Ri z implies x Ii y or y Ii z. A preference profile R = (R1, . . . , Rn)
is an n-tuple containing a preference relation Ri for every agent i ∈ N . The set of all
preference profiles is thus given by Rn. By R−i we denote the preference profile obtained
from R by removing the preference relation of agent i, i.e., R−i = R \ {(i, Ri)}.

The set of all lotteries (or probability distributions) over A is denoted by ∆(A). We
will write lotteries as convex combinations of alternatives, e.g., 1/2 a + 1/2 b denotes the
uniform distribution over {a, b}. For a given lottery p and alternative x, p(x) denotes the
probability that p assigns to x. The support of a lottery p ∈ ∆(A), denoted by p̂, is the
set of all alternatives to which p assigns positive probability, i.e., p̂ = {x ∈ A : p(x) > 0}.
A lottery p is degenerate if |p̂| = 1.

Our central object of study are social decision schemes, i.e., functions that map a
preference profile to a lottery. Thus, a social decision scheme (SDS) is a function

f : Rn → ∆(A).

A minimal fairness condition for SDSs is anonymity, which requires that f(R) = f(R◦π)
for all R ∈ Rn and all permutations π : N → N . Another fairness requirement is
neutrality. For a permutation π of A and a preference relation Ri, we define Rπi as the
preference relation where alternatives are renamed according to π, i.e., π(x) Rπi π(y) iff

7



x Ri y. An SDS f is neutral if, for all R ∈ Rn, x ∈ A, and all permutations π : A→ A,
f(R)(x) = f(Rπ)(π(x)).

3.1. Lottery Extensions

In order to reason about the outcomes of SDSs, we need to make assumptions on how
agents compare lotteries given their preferences over alternatives. A lottery extension
maps a preference relation to a (possibly incomplete) preference relation over lotteries.
We will now define the lottery extensions considered in this paper. Throughout this
section, let Ri ∈ R and p, q ∈ ∆(A). For the examples we assume that the underlying
preference relation is Ri : a, b, c.

A very simple and crude lottery extension prescribes that p is preferred to q iff every
alternative in the support of p is preferred to every alternative in the support of q, i.e.,
p̂ Pi q̂. This extension only allows the comparison of lotteries with disjoint supports. We
slightly generalize this definition by requiring that p and q assign the same probability
to all alternatives that are contained in both supports and (p̂ \ q̂) Pi (p̂ ∩ q̂) Pi (q̂ \ p̂).
Following Savage’s sure-thing principle, the resulting lottery extension will be referred
to as the sure-thing (ST ) extension. Formally,

p RST
i q iff (p̂ \ q̂) Pi (p̂ ∩ q̂) Pi (q̂ \ p̂) ∧ ∀x ∈ p̂ ∩ q̂ : p(x) = q(x). (ST )

The idea underlying ST is that the comparison of two lotteries should be independent
of the part in which they coincide. This is related to von Neumann and Morgenstern’s
independence axiom (von Neumann and Morgenstern, 1947) and has also been used for
defining preference extensions from alternatives to sets of alternatives (Fishburn, 1972;
Gärdenfors, 1979). For example, 1/2 a+ 1/2 b P ST

i
1/2 b+ 1/2 c.8

The second extension we consider, called bilinear dominance (BD), requires that for
every pair of alternatives the probability that p yields the more preferred alternative
and q the less preferred alternative is at least as large as the other way round. Formally,

p RBD
i q iff ∀x, y ∈ A : (x Pi y ⇒ p(x)q(y) ≥ p(y)q(x)) . (BD)

Apart from its intuitive appeal, the main motivation for BD is that p bilinearly dom-
inates q iff p is preferable to q for every SSB utility function consistent with Ri (cf.
Fishburn, 1984b; Aziz et al., 2015). For example, 1/2 a+ 1/2 b PBD

i
1/3 a+ 1/3 b+ 1/3 c.

Perhaps the best-known lottery extension is stochastic dominance (SD), which pre-
scribes that for each alternative x ∈ A, the probability that p selects an alternative
that is at least as good as x is greater or equal to the probability that q selects such an
alternative (Hadar and Russell, 1969). Formally,

p RSD
i q iff ∀x ∈ A :

∑
yRix

p(y) ≥
∑
yRix

q(y). (SD)

8A refinement of the ST extension can be defined by demanding that (p̂\ q̂) Ri (p̂∩ q̂) Ri (q̂ \ p̂) instead
of (p̂ \ q̂) Pi (p̂ ∩ q̂) Pi (q̂ \ p̂). However, Theorems 4 and 7 do not hold under this extension.
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It is well-known that p RSD
i q iff the expected utility for p is at least as large as that for q

for every von-Neumann-Morgenstern utility function compatible with Ri. For example,
1/2 a+ 1/2 c P SD

i
1/2 b+ 1/2 c.

A strengthening of SD is the pairwise comparison (PC ) extension (Aziz et al., 2015).
The reasoning behind PC is that p should be preferred to q if the probability that p
yields an alternative preferred to the alternative returned by q is at least as large as the
other way round. In other words, p is preferred to q if choosing p results in lower ex ante
regret. Formally,

p RPC
i q iff

∑
xRiy

p(x)q(y) ≥
∑
xRiy

q(x)p(y). (PC )

For example, 2/3 a+ 1/3 c PPC
i b.

The PC extension can alternatively be defined using skew-symmetric bilinear (SSB)
utility functions as defined by Fishburn (1982). Blavatskyy (2006) gave a characteriza-
tion of the PC extension which relies on the axioms that characterize SSB utility func-
tions (cf. Fishburn, 1982, 1988) plus an additional axiom that singles out PC . Moreover,
he cites empirical evidence showing that decision makers’ preferences adhere to the PC
extension (see also Butler et al., 2016). In contrast to the previous three extensions, PC
yields complete preference relations over lotteries.

The four lottery extensions introduced here form a hierarchy.9 For all Ri ∈ R,

RST
i ⊆ RBD

i ⊆ RSD
i ⊆ RPC

i .

3.2. Efficiency and Strategyproofness

Arguably one of the most fundamental axioms in microeconomic theory is Pareto-
efficiency. An alternative Pareto-dominates another alternative if every agent weakly
prefers the former to the latter and at least one agent strictly prefers the former to
the latter. Pareto-efficiency prescribes that Pareto-dominated alternatives are not cho-
sen. There are various reasonable ways to define Pareto-efficiency in probabilistic social
choice. In particular, every lottery extension defines a corresponding notion of Pareto-
efficiency.

Definition 1. Let E ∈ {ST ,BD ,SD ,PC}, R ∈ Rn, and p, q ∈ ∆(A). Then, p E-
dominates q if p RE

i q for all i ∈ N and p P E
i q for some i ∈ N . An SDS f is E-efficient

if, for every R ∈ Rn, there does not exist a lottery that E-dominates f(R).

Since the lottery extensions we consider form a hierarchy, PC -efficiency implies SD-
efficiency which in turn implies BD-efficiency which in turn implies ST -efficiency.

A standard efficiency notion that cannot be formalized using lottery extensions is
ex post efficiency. An SDS is ex post efficient if, for every preference profile, it assigns

9To see that RST
i ⊆ RBD

i , let p, q ∈ ∆(A) such that p RST
i q and x, y ∈ A with x Pi y. We need to show

that p(x)q(y) ≥ p(y)q(x). If p(y) = 0 or q(x) = 0 this is trivial, since the right hand side is zero. So
we consider the case where y ∈ p̂ and x ∈ q̂. Because p RST

i q and x Pi y we have that x ∈ p̂ and
y ∈ q̂. This implies that p(x) = q(x) and p(y) = q(y) and in particular p(x)q(y) = p(y)q(x). We refer
to Aziz et al. (2015) for the remaining inclusions.
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probability zero to all Pareto-dominated alternatives. It can be shown that SD-efficiency
implies ex post efficiency and ex post efficiency implies BD-efficiency (cf. Aziz et al.,
2015).

Efficiency essentially requires that outcomes are socially optimal. This can be con-
trasted with strategyproofness, which is concerned with the individual behavior of agents.
Strategyproofness prescribes that no agent can obtain a more preferred outcome by mis-
representing his preferences. Again, we obtain varying degrees of this property depending
on the underlying lottery extension.

Definition 2. Let E ∈ {ST ,BD ,SD ,PC}. An SDS f is E-manipulable if there are
R,R′ ∈ Rn and i ∈ N with Rj = R′j for all j 6= i such that f(R′) P E

i f(R). An SDS is
E-strategyproof if it is not E-manipulable.

PC -strategyproofness implies SD-strategyproofness which in turn implies BD-
strategyproofness which in turn implies ST -strategyproofness (see Figure 1). Note that
our definition of strategyproofness does not require that f(R) RE

i f(R′) for all R′ with
R′j = Rj for all j 6= i. We refer to this stronger notion as strong strategyproofness, but
only use it in the context of the SD extension. For coarser extensions, in which most
lotteries are incomparable, it seems unduly restrictive. The weaker notion employed
here is for example also used by Postlewaite and Schmeidler (1986) and Bogomolnaia
and Moulin (2001) for the SD extension.

An SDS is strongly SD-strategyproof if no agent is better off by manipulating his
preferences for some expected utility representation of his ordinal preferences. This
condition is quite demanding because an SDS may be deemed manipulable just because
it can be manipulated for a contrived and highly unlikely utility representation. An SDS
is weakly SD-strategyproof if no agent is better off by manipulating his preferences for
all expected utility representations of his preferences.

Note that due to the completeness of the PC extension, strong PC -strategyproofness
and PC -strategyproofness coincide. Moreover, strong SD-strategyproofness is stronger
than PC -strategyproofness while (weak) SD-strategyproofness is weaker.

4. Random Serial Dictatorship

In this section, we examine random serial dictatorship (RSD)—an extension of ran-
dom dictatorship to the case where agents may express indifference among alternatives.
RSD is commonly used in house allocation, matching, and coalition formation domains,
where ties between outcomes naturally arise because agents are assumed to be indif-
ferent between outcomes in which their individual allocation is the same. (see, e.g.,
Abdulkadiroğlu and Sönmez, 1998; Bogomolnaia and Moulin, 2004; Che and Kojima,
2010; Budish et al., 2013). In these contexts, RSD is sometimes also referred to as the
random priority mechanism. RSD is defined by picking a sequence of the agents uni-
formly at random and then invoking serial dictatorship (i.e., each agent narrows down
the set of alternatives by picking his most preferred of the alternatives selected by the
previous agents).
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For a formal definition of RSD , let maxRi(A) denote the set of maximal alternatives
according to Ri, i.e., maxRi(A) = {x ∈ A : x Ri y for all y ∈ A}. For given R ∈ R,
A′ ⊆ A, and N ′ ⊆ N , RSD is then recursively defined as follows.10

RSD(R,A′, N ′) =

∆(A′) if N ′ = ∅,
1
|N ′|

∑
i∈N ′

RSD(R,maxRi(A
′), N ′ \ {i}) otherwise.

Then, RSD(R) = RSD(R,A,N).
Clearly, the set RSD(R) can only contain more than one lottery if there are two

alternatives among which all agents are indifferent. Otherwise, RSD(R) consists of a
single lottery. An SDS is called an RSD scheme if it always selects a lottery from the
set RSD(R) that furthermore only depends on RSD(R).

Definition 3. An SDS f is an RSD scheme if for every R ∈ Rn, f(R) ∈ RSD(R), and
for all R,R′ ∈ Rn, RSD(R) = RSD(R′) implies f(R) = f(R′).

For a given notion of efficiency or strategyproofness, we write that RSD satisfies the
notion if every RSD scheme satisfies it. Similarly, we say that RSD violates the notion
if every RSD scheme violates it.

It is well-known that, if the outcome is determined by RSD , truth telling is a weakly
dominant strategy for every agent when lotteries are compared according to the SD
extension (see, e.g., Bogomolnaia et al., 2005). Moreover, RSD is ex post efficient.

Theorem 1. RSD is ex post efficient and strongly SD-strategyproof.

The proofs of all theorems are deferred to the appendix.
It has been shown by Bogomolnaia and Moulin (2001) that RSD violates SD-efficiency

within the domain of house allocation. The example by Bogomolnaia and Moulin can be
translated to a preference profile on 24 alternatives in the general social choice setting.
We give an independent example with four alternatives and four agents and completely
characterize in which settings RSD satisfies SD-efficiency.11 Consider the following
preference profile.

R1 : {a, c}, b, d
R2 : {a, d}, b, c
R3 : {b, c}, a, d
R4 : {b, d}, a, c

The unique RSD lottery is p = 1/3 a + 1/3 b + 1/6 c + 1/6 d, which is SD-dominated by
1/2 a + 1/2 b. In fact, it is even the case that all agents strictly prefer the latter lottery
according to SD . In other words, there exists a lottery which gives strictly more expected
utility than p to each agent and for every utility representation consistent with the

10Here, the sum of two sets A and B is defined as the Minkowski sum, i.e., A+B = {x+y : x ∈ A, y ∈ B}.
11Bogomolnaia et al. (2005) provide an example with six agents and five alternatives for the special case

of dichotomous preferences.
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ordinal preferences of the agents. Therefore RSD is not SD-efficient for n = 4 and
m = 4.

It turns out that RSD is only SD-efficient in settings where SD-efficiency is equivalent
to the weaker notion of ex post efficiency.

Theorem 2. RSD is SD-efficient iff n ≤ 2, or m ≤ 3, or n = 3 and m ≤ 5.

The stronger notion of PC -efficiency is violated by RSD even when preferences are
linear. In other words, RD already fails to satisfy PC -efficiency. To see this, consider
the following preference profile with three agents and three alternatives.

R1 : a, b, c

R2 : b, c, a

R3 : c, b, a

Clearly, RD (and hence RSD) returns 1/3 a+ 1/3 b+ 1/3 c, which is PC -dominated by the
degenerate lottery b.12 RD does satisfy SD-efficiency, however.

While implementing RSD by uniformly selecting a sequence of agents and then running
serial dictatorship is straightforward, it was recently shown that computing the ex ante
RSD probabilities is #P-complete and therefore computationally intractable (Aziz et al.,
2013). Even the question of whether the RSD probability of a given alternative exceeds
some fixed value λ ∈ (0, 1) is NP-complete and hence cannot be answered in polynomial
time unless P equals NP.

5. Maximal Lotteries

Maximal lotteries were first considered by Kreweras (1965) and independently proposed
and studied in more detail by Fishburn (1984a). Interestingly, maximal lotteries or vari-
ants thereof have been rediscovered again by economists (Laffond et al., 1993), mathe-
maticians (Fisher and Ryan, 1995), political scientists (Felsenthal and Machover, 1992),
and computer scientists (Rivest and Shen, 2010). An axiomatic characterization of max-
imal lotteries was recently given by Brandl et al. (2016a).

In order to define maximal lotteries, we need some notation. For a preference profile
R ∈ Rn and two alternatives x, y ∈ A, the majority margin gR(x, y) is defined as the
difference between the number of agents who prefer x to y and the number of agents
who prefer y to x, i.e.,

gR(x, y) = |{i ∈ N : x Ri y}| − |{i ∈ N : y Ri x}|.

Thus, gR(y, x) = −gR(x, y) for all x, y ∈ A. A maximal alternative, aka (weak) Condorcet
winner, is an alternative x ∈ A with gR(x, y) ≥ 0 for all alternatives y ∈ A. It is well
known that maximal alternatives may fail to exist. This drawback can however be

12A similar example in which all agents are strictly better off can easily be constructed with four
alternatives and four agents.
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remedied by considering lotteries over alternatives. The function gR can be naturally
extended to pairs of lotteries by considering its bilinear form, which corresponds to
expected majority margins. For p, q ∈ ∆(A), let

gR(p, q) =
∑
x,y∈A

p(x)q(y)gR(x, y).

The set of maximal lotteries is then defined as

ML(R) = {p ∈ ∆(A) : gR(p, q) ≥ 0 for all q ∈ ∆(A)}.13

The Minimax Theorem (von Neumann, 1928) implies that ML(R) is non-empty for all
R ∈ Rn. In fact, gR can be interpreted as the payoff matrix of a symmetric zero-sum
game and maximal lotteries as the mixed maximin strategies (or Nash equilibria) of this
game. As a consequence, elements of ML(R) can be found in polynomial time using
linear programming. Interestingly, ML(R) is a singleton in most cases (see Brandl et al.,
2016a). This holds, in particular, if all agents have linear preferences and the number of
agents is odd (Laffond et al., 1997; Le Breton, 2005).

We first show that no maximal lottery is PC -dominated.

Theorem 3. Every SDS that returns maximal lotteries is PC -efficient.

This result contrasts with our earlier observation that RSD fails to be SD-efficient
and hence PC -efficient.

While ML satisfies a very high degree of efficiency, it does not do as well in terms
of strategyproofness. In fact, ML already violates BD-strategyproofness. To see this,
let A = {a, b, c} and consider the preference profiles given below. The set of maximal
lotteries only depends on gR, which can be nicely represented as a weighted majority
graph: for every pair of alternatives x and y with gR(x, y) > 0, there is an edge from x
to y labeled with gR(x, y).

R1 : a, c, b

R2 : a, b, c

R3, R4 : b, c, a

R5 : c, a, b

a

bc

1

1

1
R′1 : a,b, c

R′2 : a, b, c

R′3, R
′
4 : b, c, a

R′5 : c, a, b

a

bc

1

3

1

It can be verified that ML(R) = {1/3 a + 1/3 b + 1/3 c}. However, if agent 1 misrepre-
sents his preferences between b and c by reporting R′1 : a, b, c, the outcome for the new
preference profile R′ is ML(R′) = {3/5 a + 1/5 b + 1/5 c}. Thus, f(R′) PBD

1 f(R) for any
SDS f that returns maximal lotteries.

More severe violations of strategyproofness can be constructed by using preference
profiles that admit more than one maximal lottery and by breaking ties in an unfavorable
way. In order to illustrate this, consider the following preference profiles.

13Since ML only depends on gR, it does neither require transitivity nor completeness of individual
preferences.
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R1 : a, b, c

R2 : c, a, b

a

bc

2
R′1 : b,a, c

R′2 : c, a, b

a

bc

Here, ML(R) = ∆({a, c}) and ML(R′) = ∆({a, b, c}). Hence, when letting f(R) = {c}
and f(R′) = {a}, f is manipulable for any reasonable lottery extension (including ST ).
In order to avoid this, we define a useful and natural subclass of ML(R) called strict
maximal lotteries SML(R). SML(R) corresponds to the set of quasi-strict Nash equilibria
of gR, i.e., all equilibria p in which every action in the support of p yields strictly more
payoff than every action outside of the support of p.14 In zero-sum games, quasi-strict
equilibria constitute a subset of equilibria with maximal support (see, e.g., Dutta and
Laslier, 1999; Brandt and Fischer, 2008).

Definition 4. Let R ∈ Rn and p ∈ ∆(A). Then p ∈ SML(R) if, for all x ∈ A,

p(x) > 0 iff gR(x, p) = 0, and

p(x) = 0 iff gR(x, p) < 0.

An SDS is called an SML scheme if it always selects a lottery from the set SML(R)
and furthermore only depends on SML(R).15

Definition 5. An SDS f is an SML scheme if for every R ∈ Rn, f(R) ∈ SML(R), and
for all R,R′ ∈ Rn, SML(R) = SML(R′) implies f(R) = f(R′).

For a given notion of efficiency or strategyproofness, we write that SML satisfies the
notion if every SML scheme satisfies it. Similarly, we say that SML violates the notion
if every SML scheme violates it. Note that every SML scheme only depends on gR, since
SML(R) only depends on gR.

Theorem 3 obviously implies that SML satisfies PC -efficiency. It turns out that SML
is also ST -strategyproof.

Theorem 4. SML is PC -efficient and ST -strategyproof.

The proof of Theorem 4 provides interesting insights into SML. It seems as if this
is the highest degree of strategyproofness one can hope for when also insisting on PC -
efficiency.16 While ST -strategyproofness does allow manipulators to skew the resulting

14Geometrically, SML(R) is the relative interior of ML(R).
15The second assumption is not critical because, as mentioned above, SML(R) is almost always a sin-

gleton.
16For example, SML does not satisfy strategyproofness with respect to the strengthening of ST given in

Footnote 8. When preferences are strict, SML satisfies strategyproofness with respect to the Kelly
extension (p is preferred to q iff p̂ Ri q̂) (Brandt, 2015). This extension is incomparable to the
ST extension, but only allows the comparison of lotteries whose supports overlap in at most one
alternative.
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distribution, crude manipulative attacks such as distorting the outcome from one de-
generate lottery to another—an attack that many common SDSs suffer from (see Sec-
tion 6)—or from one support to another disjoint one are futile. Also note that Theorem 4
holds for every SML scheme, i.e., ST -strategyproofness holds irrespectively of how ties
between strict maximal lotteries are broken.

Brandl et al. (2018b) have shown that ML is PC -strategyproof for all preference
profiles that admit a Condorcet winner.17

6. Negative Results

As shown in Section 4, RSD violates PC -efficiency, even when preferences are assumed
to be linear. In fact, no anonymous, PC -efficient, and PC -strategyproof SDS is known
under this assumption. Randomizing over the winning sets of various commonly used
SCFs such as Borda’s rule, Copeland’s rule, or Hare’s rule (aka instant runoff) fails
to be PC -strategyproof because all these rules can be manipulated with respect to
any lottery extension (Taylor, 2005, pp. 44–51). Known PC -strategyproof SDSs that
are assigning probabilities to alternatives in proportion to their Borda or Copeland
scores (see, e.g., Barberà, 1979b), on the other hand, trivially fail to satisfy ex post
efficiency (and therefore also PC -efficiency). Still, PC -efficiency is not unduly restrictive
as it is satisfied by ML.

We now show that PC -efficiency and PC -strategyproofness are indeed incompatible
with each other.

Theorem 5. There is no anonymous, neutral, PC -efficient, and PC -strategyproof SDS
for n ≥ 3 and m ≥ 3.

We do not know whether neutrality is required for the impossibility. Apart from neu-
trality, all axioms are necessary: serial dictatorship satisfies all axioms except anonymity,
RSD satisfies all axioms except PC -efficiency, and SML satisfies all axioms except PC -
strategyproofness. We conjecture that Theorem 5 even holds for linear preferences and
even when giving up neutrality.

Brandl et al. (2018a) have leveraged computer-aided solving techniques to prove a
similar statement for SD-efficiency and SD-strategyproofness.18 While their theorem
uses considerably weaker notions of efficiency and strategyproofness, their computer-
generated proof is extremely tedious to check. We give a more accessible manual proof
of Theorem 5 in the Appendix.

An important subclass of SDSs consists of pairwise SDSs. An SDS f is pairwise (or
a neutral C2 function) if it is neutral and f(R) = f(R′) for all R,R′ ∈ Rn such that for
all x, y ∈ A,

|{i ∈ N : x Ri y}| − |{i ∈ N : y Ri x}| = |{i ∈ N : x R′i y}| − |{i ∈ N : y R′i x}|.
17This is based on an earlier observation by Peyre (2013) and Hoang (2017), who showed a similar

statement for a variant of ML that only uses the sign of majority margins.
18Strictly speaking, Theorem 5 is not implied by the theorem of Brandl et al. (2018a) because their

theorem requires at least four agents and four alternatives.
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In other words, the outcome of a pairwise SDS only depends on the anonymized com-
parisons between pairs of alternatives (see, e.g., Young, 1974; Fishburn, 1977; Zwicker,
1991). Hence, pairwiseness is stronger than both anonymity and neutrality. Many SCFs
such as Borda’s rule, Copeland’s rule, and Kemeny’s rule are pairwise. Moreover, ML is
pairwise.

The following theorem shows that the conditions in Theorem 5 (and also those in the
theorem by Brandl et al., 2018a) can be significantly weakened when restricting attention
to pairwise SDSs.

Theorem 6. There is no pairwise, ex post efficient, and BD-strategyproof SDS for
n ≥ 4 and m ≥ 4.

The three axioms are logically independent from each other: RSD satisfies all ax-
ioms except pairwiseness, always returning the uniform lottery over all alternatives
satisfies all axioms except ex post efficiency, and SML satisfies all axioms except BD-
strategyproofness.

Our results, both positive and negative, concerning the tradeoff between efficiency and
strategyproofness are summarized in Figure 1.

7. Group-strategyproofness

A strengthening of strategyproofness that is often considered is group-strategyproofness.
It requires that no group of agents should be able to jointly benefit from misrepresenting
their preferences.

Definition 6. Let E ∈ {ST ,BD ,SD ,PC}. An SDS f is E-group-manipulable if there
are R,R′ ∈ Rn and S ⊆ N with Rj = R′j for all j 6∈ S and f(R′) P E

i f(R) for all i ∈ S.
An SDS is E-group-strategyproof if it is not E-group-manipulable.

Clearly, SML violates BD-group-strategyproofness because it already violates BD-
strategyproofness. It may be more surprising that RSD also violates BD-group-
strategyproofness. This can be seen by letting A = {a, b, c} and considering the following
two preference profiles.

R1 : {a, b}, c R′1 : a, {b, c}
R2 : {a, c}, b R′2 : a, {b, c}
R3 : {b, c}, a R′3 : {b, c}, a

RSD(R) = 1/3 a + 1/3 b + 1/3 c and RSD(R′) = 2/3 a + 1/6 b + 1/6 c. Furthermore,
RSD(R′) PBD

1 RSD(R) and RSD(R′) PBD
2 RSD(R). Hence, RSD is BD-group-

manipulable by agents 1 and 2.
It can easily be seen that RSD is ST -group-strategyproof because every RSD lottery

assigns positive probability to at least one most preferred alternative of every agent.
There can be no lottery that an agent prefers to this lottery according to the ST exten-
sion.
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For the case of SML, it can be verified that the proof of Theorem 4 straightforwardly
carries over to group-strategyproofness. As a consequence, RSD and SML satisfy the
same degree of group-strategyproofness (with respect to the preference extensions con-
sidered in this paper): they both satisfy ST -group-strategyproofness and violate BD-
group-strategyproofness.

Theorem 7. RSD and SML satisfy ST -group-strategyproofness.

For the next result we consider the same conditions as in Theorem 6, but replace
BD-strategyproofness with BD-group-strategyproofness. It turns out that pairwiseness
is no longer required for an impossibility.

Theorem 8. For n ≥ 3 and m ≥ 3, there is no anonymous, neutral, ex post efficient,
and BD-group-strategyproof SDS, even when preferences are dichotomous.

We do not know whether neutrality is required for this impossibility and conjecture
that it is not. The other three axioms are necessary: serial dictatorship satisfies all
axioms except anonymity, always returning the uniform lottery over all alternatives
satisfies all axioms except ex post efficiency, and SML (as well as RSD) satisfies all
axioms except BD-group-strategyproofness.

Theorem 8 is a strengthening of a theorem by Bogomolnaia et al. (2005), who showed
that same statement for SD-group-strategyproofness and at least four agents and six
alternatives.

Let BD-strong-group-strategyproofness be the strengthening of BD-group-
strategyproofness in which only one of the deviating agents has to be strictly
better off. For this notion of group-strategyproofness, the statement of Theorem 8 holds
even without requiring anonymity and neutrality.

Theorem 9. For n ≥ 3 and m ≥ 3, there is no ex post efficient and BD-strong-group-
strategyproof SDS, even when preferences are dichotomous.

The proof of Theorem 9 is based on a construction by Bogomolnaia et al. (2005), but
uses a weaker notion of strategyproofness. Independence of the axioms can be shown
using the examples given after Theorem 8.

Our results on group-strategyproofness are summarized in Figure 2.
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putational Game Theory (ETH Zürich, Switzerland, February 2017), and the Dagstuhl
Seminar on Voting (Dagstuhl, Germany, June 2017).

A preliminary version of the proof of Theorem 4 appeared in the Proceedings of
AAMAS 2013 and preliminary versions of the proofs of Theorems 5, 6, and 8 appeared
in the Proceedings of AAAI 2014. In order to enable a self-contained presentation of the
material, proofs of these theorems are contained in the Appendix.

References
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APPENDIX

A. Proofs

A.1. Random Serial Dictatorship

Theorem 1. RSD is ex post efficient and strongly SD-strategyproof.

Proof. RSD can be seen as a convex combination of serial dictatorships for all permu-
tations of agents. Serial dictatorships are Pareto-efficient because whenever x Pareto-
dominates y, y will never be removed before x and x can only be removed together with
y. The convex combination of Pareto-efficient SCFs constitutes an ex post efficient SDS.

Serial dictatorships are strategyproof because at any stage of the mechanism, an agent
can only get a less preferred alternative selected by lying about his preferences. The
convex combination of strategyproof SCFs constitutes a strongly SD-strategyproof SDSs
by the linearity of expectation.

Theorem 2. RSD is SD-efficient iff n ≤ 2, or m ≤ 3, or n = 3 and m ≤ 5.

Proof. For the cases where RSD is SD-efficient, we in fact show that SD-efficiency is
equivalent to ex post efficiency. The statement then follows from the fact that RSD is ex
post efficient. We assume throughout the proof that there are no two alternatives among
which every agent is indifferent. This assumption is without loss of generality, since any
two such alternatives may be regarded as the same alternative for all conclusions drawn
throughout this proof. Let R ∈ Rn be a preference profile and let p ∈ ∆(A) be ex post
efficient in R. Assume for contradiction that p is not SD-efficient, i.e., there is q ∈ ∆(A)
that SD-dominates p, i.e., q RSD

i p for all i ∈ N and q P SD
i p for some i ∈ N . Let

S− = {x ∈ A : q(x) < p(x)} and S+ = {x ∈ A : q(x) > p(x)}. Since q 6= p, both S− and
S+ are non-empty. All elements of S− are Pareto-efficient because S− ⊆ p̂. Moreover,
observe that, for every agent i ∈ N , there are x ∈ S+ and y ∈ S− such that x is ranked
highest and y is ranked lowest among the elements of S+ ∪ S−, since q Ri

SD p. We now
consider the three cases from the statement of the theorem.

• n ≤ 2: The argument for n = 1 is trivial. Consider n = 2. Since all x, x′ ∈ S− are
Pareto-efficient and n = 2, we have that x R1 x

′ implies x′ P2 x. Let x ∈ S− be
the highest ranked alternative in R1 among the alternatives in S− and let y ∈ S+

such that y R1 x. Such a y exists because q R1
SD p. Since x is Pareto-efficient, we

have that x P2 y. But this implies that x′ P2 y for all x′ ∈ S−, which contradicts
q R2

SD p.

• m ≤ 3: Clearly, S− ∩ S+ = ∅. Hence either |S−| = 1 or |S+| = 1. But then x
Pareto-dominates y for all x ∈ S+ and y ∈ S−, which contradicts ex post efficiency
of p.

• n = 3 and m ≤ 5: Clearly, S− ∩ S+ = ∅. If |S−| = 1 or |S+| = 1, then x Pareto-
dominates y for all x ∈ S+ and y ∈ S−, which contradicts ex post efficiency of p.
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Consider the case |S−| = 2 and |S+| = 2. For every x ∈ S− and y ∈ S+, there
is i ∈ N such that x Pi y, since x is Pareto optimal. From n = 3, it follows that
there is i ∈ N such that either x Pi y for some x ∈ S− and all y ∈ S+ or x Pi y
for all x ∈ S− and some y ∈ S+. Either case contradicts q Ri

SD p. Now consider
the case |S−| = 2 and |S+| = 3 and let S− = {a, b}. Without loss of generality,
a P1 b and b Ri a for i ∈ {2, 3}. As stated above, q Ri

SD p and b Ri a imply that
a is ranked last in Ri for i ∈ {2, 3}. Also, for every y ∈ S+, there is i ∈ N such
that a Pi y. It follows that a P1 y for all y ∈ S+. This contradicts the fact that
q R1

SD p. The case |S−| = 3 and |S+| = 2 is analogous.

To show that RSD does not satisfy SD-efficiency for n = 3 and m = 6, consider the
following preference profile R.

R1 : {a, d}, c, e, b, f
R2 : {b, e}, a, f, c, d
R3 : {c, f}, b, d, a, e

RSD(R) = 1/6 a + 1/6 b + 1/6 c + 1/6 d + 1/6 e + 1/6 f = p. However, for the lottery q =
1/3 a+ 1/3 b+ 1/3 c we have q P SD

i p for all i ∈ {1, 2, 3}, i.e., p is not SD-efficient.
An example showing that RSD does not satisfy SD-efficiency for n = 4 and m = 4

has been given in Section 4.
If RSD is SD-inefficient for some number of agents and alternatives, then it is also

inefficient for any larger numbers. To see this for the number of agents, observe that
adding agents who are indifferent between all alternatives does not change the set of SD-
efficient lotteries. And to see this for the number of alternatives, observe that adding
an alternative at the bottom of each agent’s preference relation does not change the set
of SD-efficient lotteries. Hence, the statements follow from induction on the number of
agents and the number of alternatives with the above examples for inefficiency of RSD
as base cases.

A.2. Maximal Lotteries

Theorem 3. Every SDS that returns maximal lotteries is PC -efficient.

Proof. With each preference relation Ri ∈ R we can associate a function φi : A × A →
{−1, 0, 1} such that for all x, y ∈ A,

φi(x, y) =


1 if x Pi y,

−1 if y Pi x, and

0 otherwise.

With slight abuse of notation, we extend φi to a function from ∆(A) ×∆(A) to [0, 1].
For p, q ∈ ∆(A), let

φi(p, q) =
∑
x,y∈A

p(x)q(y)φi(x, y).
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Observe that p Ri
PC q iff φi(p, q) ≥ 0. Now, let R ∈ Rn and q ∈ ML(R). If q is not

PC -efficient, there are p ∈ ∆(A) and j ∈ N such that p Pj
PC q and p Ri

PC q for all
i ∈ N . Thus, φj(p, q) > 0 and φi(p, q) ≥ 0 for all i ∈ N . This implies that

gR(p, q) =
∑
i∈N

φi(p, q) > 0.

However, this contradicts the assumption that q ∈ ML(R). Thus, q is PC -efficient.

For the proof of Theorem 4 we need the following lemma, which states that weakening
alternatives outside ŜML(R) does not affect the set of strict maximal lotteries.19

Lemma 1. Let R ∈ Rn and a ∈ A with a /∈ ŜML(R). Let furthermore R′ ∈ Rn be such
that gR′(b, a) > gR(b, a) for some b ∈ A \ {a} and gR′(x, y) = gR(x, y) for all x, y ∈ A
with {x, y} 6= {a, b}. Then, SML(R′) = SML(R).

Proof. Let R,R′, and a be as stated. First, assume for contradiction that a ∈ ŜML(R′).

It follows from Dutta and Laslier (1999), Theorem 4.4, that a ∈ ŜML(R) which is a

contradiction. Now, by definition, p ∈ SML(R) if gR(x, p) = 0 for all x ∈ ŜML(R) and

gR(x, p) < 0 for all x /∈ ŜML(R). Since for all x ∈ A \ {a},

gR(x, p) =
∑
y∈A

p(y)gR(x, y) =
∑
y∈p̂

p(y)gR(x, y) =
∑
y∈p̂

p(y)gR′(x, y) = gR′(x, p),

it follows that SML(R) = SML(R′).

Theorem 4. SML is PC -efficient and ST -strategyproof.

Proof. The first statement directly follows from Theorem 3 and the fact that SML(R) ⊆
ML(R) for all R ∈ Rn.

For a proof of the second statement, assume for contradiction that there is an SML
scheme f that is not ST -strategyproof. Then, there are two preference profiles R and
R′ and an agent i such that Rj = R′j for all j 6= i and q = f(R′) P ST

i f(R) = p.
For two alternatives x, y ∈ A we say that x is strengthened against y if

either (1) y Ri x and x P ′i y, or (2) y Pi x and x R′i y. Define ∆(R,R′) =
{(x, y) : x is strengthened against y}. This set can be partitioned into the following four
subsets.

∆1 = {(x, y) ∈ ∆(R,R′) : y /∈ p̂}
∆2 = {(x, y) ∈ ∆(R,R′) : x /∈ q̂} \∆1

∆3 = {(x, y) ∈ ∆(R,R′) : x ∈ q̂, y ∈ p̂, and {x, y} * p̂ ∩ q̂}
∆4 = {(x, y) ∈ ∆(R,R′) : x ∈ q̂, y ∈ p̂, and {x, y} ⊆ p̂ ∩ q̂}

19This proof recycles an argument that was used by Brandt (2015) to characterize set-valued social
choice functions that are strategyproof with respect to Kelly’s set extension.
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We now construct two new preference profiles R̃ and R̃′ based on R and R′. The idea
behind this construction is to make R and R′ agree on as many pairs as possible, while
maintaining the invariant that the outcomes are p and q, respectively.
R̃ is identical to R except that for all pairs (x, y) ∈ ∆1, we strengthen x against y

in the preferences of agent i such that R̃i agrees with R′i on all such pairs.20 Lemma 1
implies that f(R̃) = f(R) = p. Analogously, R̃′ is identical to R′ except that for all
pairs (x, y) ∈ ∆2, we strengthen y against x in the preferences of agent i such that R̃′i
agrees with Ri on all such pairs. Lemma 1 implies that f(R̃′) = f(R′) = q.

By definition, R̃ and R̃′ differ only on pairs that are contained in ∆3 or ∆4. Observe,
however, that ∆3 = ∅. To see this, assume for contradiction that there is a pair (x, y) ∈
∆(R,R′) with x ∈ q̂, y ∈ p̂, and {x, y} * p̂ ∩ q̂. There are three cases:

• x ∈ q̂ \ p̂ and y ∈ p̂ \ q̂,

• x ∈ q̂ \ p̂ and y ∈ p̂ ∩ q̂, and

• x ∈ p̂ ∩ q̂ and y ∈ p̂ \ q̂.

In each case, q P ST
i p implies x Pi y. Since (x, y) ∈ ∆(R,R′) implies y Ri x, we have a

contradiction.
We thus have that ∆3 = ∅, and, consequently, that R̃ and R̃′ only differ on pairs of

alternatives that are contained in ∆4. In particular, gR̃ and gR̃′ agree on all pairs of
alternatives that do not lie in p̂ ∩ q̂, i.e.,

gR̃(a, b) = gR̃′(a, b) for all a, b with {a, b} * p̂ ∩ q̂.

For such pairs, we omit the subscript and write g(a, b) instead of gR̃(a, b). Likewise, we
write g(a, p) for gR̃(a, p) whenever a /∈ p̂ ∩ q̂ and p ∈ ∆(A).

Let x ∈ A and define a function s : A→ [0, 1] via

s(x) =


p(x) if x ∈ p̂
q(x) if x ∈ q̂
0 otherwise.

Note that s is well-defined because p(z) = q(z) for all z ∈ p̂ ∩ q̂, and that s may not
correspond to a lottery because the individual probabilities may not add up to one.

For a /∈ p̂ ∩ q̂ and a subset B ⊆ A of alternatives, let furthermore s(a,B) =∑
b∈B s(b)g(a, b). If B = q̂, we have s(a, q̂) =

∑
b∈q̂ s(b)g(a, b) =

∑
b∈q̂ q(b)g(a, b) =∑

b∈A q(b)g(a, b) = g(a, q). Analogously, s(a, p̂) equals g(a, p).
By definition, g(x, p) = 0 and g(x, q) < 0 for all x ∈ p̂ \ q̂, as well as g(y, p) < 0 and

g(y, q) = 0 for all y ∈ q̂ \ p̂. Therefore, we get

s(x, q̂) = g(x, q) < 0 = g(x, p) = s(x, p̂) for all x ∈ p̂ \ q̂, and

s(y, p̂) = g(y, p) < 0 = g(y, q) = s(y, q̂) for all y ∈ q̂ \ p̂.
20Note that R̃i might not be transitive. Therefore, we do not assume transitivity of preferences in this

proof. In fact, the statement of Theorem 4 becomes stronger but is easier to prove for general—
possibly intransitive—preferences.
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The inequality s(x, q̂) < s(x, p̂) remains valid if s(x, p̂∩ q̂) is subtracted from both sides.
Since s(x, q̂)− s(x, p̂ ∩ q̂) = s(q̂ \ p̂) and s(x, p̂)− s(x, p̂ ∩ q̂) = s(p̂ \ q̂), we obtain

s(x, q̂ \ p̂) < s(x, p̂ \ q̂) for all x ∈ p̂ \ q̂, and

s(y, p̂ \ q̂) < s(y, q̂ \ p̂) for all y ∈ q̂ \ p̂.

Multiplying both sides of these inequalities with a positive number and writing s′(a,B)
for s(a) · s(a,B) results in

s′(x, q̂ \ p̂) < s′(x, p̂ \ q̂) for all x ∈ p̂ \ q̂, and

s′(y, p̂ \ q̂) < s′(y, q̂ \ p̂) for all y ∈ q̂ \ p̂.

We finally summarize over q̂ \ p̂ and p̂ \ q̂, respectively, and get∑
x∈p̂\q̂

s′(x, q̂ \ p̂) <
∑
x∈p̂\q̂

s′(x, p̂ \ q̂), and (1)

∑
y∈q̂\p̂

s′(y, p̂ \ q̂) <
∑
y∈q̂\p̂

s′(y, q̂ \ p̂). (2)

In order to arrive at a contradiction, we state two straightforward identities that are
based on the skew-symmetry of g.∑

a∈B
s′(a,B) = 0 for all B ⊆ A \ (p̂ ∩ q̂), and (3)∑

b∈B
s′(b, C) +

∑
c∈C

s′(c,B) = 0 for all B,C ⊆ A \ (p̂ ∩ q̂). (4)

Now (3) implies that the right hand side of both (1) and (2) is zero, and therefore∑
x∈p̂\q̂

s′(x, q̂ \ p̂) < 0, and

∑
y∈q̂\p̂

s′(y, p̂ \ q̂) < 0.

However, (4) implies that∑
x∈p̂\q̂

s′(x, q̂ \ p̂) +
∑
y∈q̂\p̂

s′(y, p̂ \ q̂) = 0,

a contradiction.

A.3. Negative Results

Theorem 5. There is no anonymous, neutral, PC -efficient, and PC -strategyproof SDS
for n ≥ 3 and m ≥ 3.
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Proof. This result is established by reasoning about a set of preference profiles for a
fixed number of agents and alternatives and deriving a contradiction. We prove the
statement for n = 3 and m = 3. It can be generalized to any larger number of agents
and alternatives as described in the proof of Theorem 2. To show a statement for more
agents, we add agents that are indifferent between all alternatives. To show a statement
for more alternatives, we add alternatives at the bottom of each agent’s preference
ranking. Both constructions do not affect the incentives of agents and the set of efficient
lotteries. Hence, the proof carries through with the same arguments.

Let f be an SDS that satisfies anonymity, neutrality, PC -efficiency, and PC -
strategyproofness. First, we consider the following preference profile.

R1
1 : a, {b, c} R1

2 : b, a, c R1
3 : c, a, b

Anonymity and neutrality imply that f(R1)(b) = f(R1)(c). The only PC -efficient lottery
which puts equal weight on b and c is the degenerate lottery a, since every other lottery
of this form is dominated by a (agent 2 and 3 are indifferent while agent 1 is strictly
better off). Hence, f(R1) = a. Now, consider the following profile.

R2
1 : a, {b, c} R2

2 : b, a, c R2
3 : {a, c}, b

In this profile, a Pareto-dominates c, hence f(R2)(c) = 0. If agent 3 reports R1
3 instead

of R2
3, he receives one of his most preferred alternatives, namely a, with probability 1.

Therefore, PC -strategyproofness implies that f(R2) = a. Next, consider the following
preference profile.

R3
1 : a, {b, c} R3

2 : b, {a, c} R3
3 : {a, c}, b

Again, PC -efficiency implies that f(R3)(c) = 0, since a Pareto-dominates c. If
f(R3)(b) > 0, agent 2 has an incentive to report R3

2 instead of R2
2 in R2. Thus, f(R3) = a.

Since we will need it later, we state an observation for the following preference profile.

R4
1 : c, a, b R4

2 : a, b, c R4
3 : b, c, a

Anonymity and neutrality imply that f(R4) = 1/3 a+1/3 b+1/3 c. Also notice that agent 1
prefers any lottery with higher probability on c than on b to the uniform lottery according
to the PC -extension if his preferences are R4

1. Now, consider another preference profile.

R5
1 : {a, c}, b R5

2 : a, b, c R5
3 : b, c, a

Here we distinguish two cases. First, assume f(R5) = a and consider a deviation by
agent 3.

R6
1 : {a, c}, b R6

2 : a, b, c R6
3 : c, b, a

Anonymity and neutrality imply that f(R6)(a) = f(R6)(c). Any lottery of this form
other than 1/2 a+ 1/2 c is PC -dominated by the latter. Thus, PC -efficiency implies that
f(R6) = 1/2 a + 1/2 c. But agent 3 prefers 1/2 a + 1/2 c to a if his preferences are R5

3.
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This is a contradiction to PC -strategyproofness. The second case is f(R5) 6= a. If
f(R5)(c) > f(R5)(b), then by the above observation, agent 1 prefers f(R5) to f(R4)
if his preferences are R4

1. This is a contradiction to PC -strategyproofness. Hence,
f(R5)(c) ≤ f(R5)(b) and, since f(R5) 6= a, f(R5)(b) > 0.

R7
1 : {a, c}, b R7

2 : a, b, c R7
3 : b, {a, c}

It follows from f(R5)(b) > 0 that f(R7)(b) > 0, since otherwise agent 3 can benefit
from reporting R7

3 instead of R5
3. In particular, we get f(R7) 6= a. Finally, consider the

following preference profile.

R8
1 : {a, c}, b R8

2 : a, {b, c} R8
3 : b, {a, c}

It follows from anonymity that f(R8) = f(R3) = a. But this implies that agent 2
can successfully deviate from R7

2 to R8
2, since he prefers a to any other lottery if his

preferences are R7
2. Hence, we obtain the desired contradiction.

Theorem 6. There is no pairwise, ex post efficient, and BD-strategyproof SDS for
n ≥ 4 and m ≥ 4.

Proof. We prove the statement for n = 4 and m = 4. It can be generalized to any larger
number of agents and alternatives as described in the proof of Theorem 2. Let f be a
pairwise, ex post efficient, and BD-strategyproof SDS. We first consider the preference
profile R1 and its weighted majority graph depicted in Figure 3 (i).

R1
1 : a, c, {b, d} R1

2 : b, d, {a, c}

Both, c and d are Pareto-dominated in R1 and, thus, ex post efficiency implies f(R1)(c) =
f(R1)(d) = 0. Since f is pairwise and, in particular, anonymous and neutral, it follows
that f(R1) = 1/2 a+1/2 b = p. Now we consider the preference profile R2 and its weighted
majority graph as in Figure 3 (ii).

R2
1 : a, c, {b, d} R2

2 : {b, d}, {a, c}

Both agents are indifferent between b and d and again c is Pareto-dominated. Thus,
pairwiseness and ex post efficiency imply that f(R2)(b) = f(R2)(d) and f(R2)(c) = 0.
Hence, f(R2) = (1− 2λ) a+ λ b+ λ d = q for some λ ∈ [0, 1/2].

First, assume for contradiction that λ > 1/3. We consider the following preference
profile and its weighted majority graph depicted in Figure 3 (iii).

R3
1 : a, {b, c, d} R3

2 : {b, d}, {a, c}

Pairwiseness implies that f(R3) = 1/3 a + 1/3 b + 1/3 d = r. But r (P 2
1 )BD q if λ > 1/3,

which contradicts BD-strategyproofness of f since agent 1 can manipulate in R2 by
reporting R3

1 instead of R2
1.
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Figure 3: Graphs depicting pairwise comparisons. An edge from x to y is labeled with
gR(x, y), the number of agents preferring x to y minus the number of agents
preferring y to x in preference profile R. All missing edges denote majority
ties.

Now assume for a contradiction that λ = 1/3.

R4
1 : a, c, b, d R4

2 : {b, d}, {a, c}
R4

3 : a, c, {b, d} R4
4 : {b, d}, c, a

The weighted majority graph of R4 is equal to that of R1 and, thus, f(R4) = f(R1) = p.

R5
1 : a, c, b, d R5

2 : {b, d}, {a, c}
R5

3 : a, c, {b, d} R5
4 : d, b, c, a

The majority graph of R5 is equal to that of R2 and, hence, f(R5) = q. But then, agent
4 in R4 can manipulate by reporting R5

4 instead of R4
4 since q (P 4

4 )BD p. This again
contradicts BD-strategyproofness of f .

Finally, we assume λ < 1/3 and consider the preference profile R6.

R6
1 : a, c, {b, d} R6

2 : {b, d}, {a, c}
R6

3 : {b, c, d}, a R6
4 : a, {b, c, d}

The weighted majority graph of R6 is equal to that of R2 and, therefore, f(R6) =
f(R2) = q. We consider one last preference profile.

R7
1 : a, c, {b, d} R7

2 : {b, d}, {a, c}
R7

3 : {b, d}, c, a R7
4 : a, {b, c, d}

The majority graph of R7 is equal to that of R1, which implies that f(R7) = f(R3) = r.
But r (P 6

3 )BD q if λ < 1/3. Thus, agent 3 in R6 can benefit from reporting R7
3 instead of

R6
3. In any case, we found a successful manipulation, contradicting BD-strategyproofness

of f .

A.4. Group-strategyproofness

Theorem 8. For n ≥ 3 and m ≥ 3, there is no anonymous, neutral, ex post efficient,
and BD-group-strategyproof SDS, even when preferences are dichotomous.
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Proof. We prove the statement for n = 3 and m = 3. It can be generalized to any larger
number of agents and alternatives as described in the proof of Theorem 2. Assume for
contradiction there is an SDS f with the properties as stated and consider the following
preference profile.

R1
1 : {a, b}, c R1

2 : {a, c}, b R1
3 : {b, c}, a

By neutrality and anonymity, f(R1) = 1/3 a+ 1/3 b+ 1/3 c. Now let agents 1 and 2 change
their preferences and consider the profile R2.

R2
1 : a, {b, c} R2

2 : a, {b, c} R2
3 : {b, c}, a

Again by neutrality and anonymity, f(R2) = (1− 2λ)a+λb+λc. If λ > 1/3, then agents
1 and 2 would rather report R1

1 and R1
2 respectively if their true preferences were R2

1

and R2
2. On the other hand, if λ < 1/3 and their true preferences were R1

1 and R1
2, they

would rather report R2
1 and R2

2. Hence, λ = 1/3 and f(R2) = 1/3 a+ 1/3 b+ 1/3 c.

R3
1 : a, {b, c} R3

2 : {a, b}, c R3
3 : b, {a, c}

In R3, c is Pareto-dominated, thus by neutrality and anonymity, f(R3) = 1/2 a + 1/2 b.
To this end, we consider the following profile.

R4
1 : a, {b, c} R4

2 : {a, b}, c R4
3 : {b, c}, a

If agent 3 changes his preferences from R3
3 to R4

3, c is still Pareto-dominated and his
preferences over a and b remain unchanged. Hence, by BD-strategyproofness, f(R4) =
f(R3). But then agent 2 in R2 would have an incentive to report R4

2 instead of R2
2, a

contradiction.

Theorem 9. There is no ex post efficient and BD-strong-group-strategyproof SDS for
n ≥ 3 and m ≥ 3, even when preferences are dichotomous.

Proof. We prove the statement for n = 3 and m = 3. It can be generalized to any larger
number of agents and alternatives as described in the proof of Theorem 2. Assume
for contradiction that f is an SDS with properties as stated and consider the following
preference profile.

R1
1 : a, {b, c} R1

2 : b, {a, c} R1
3 : c, {a, b}

Let f(R1) = p. We assume without loss of generality that p(a) > 0. Now consider a
variation of the previous preference profile in which agent 1 is completely indifferent and
let f(R2) = q.

R2
1 : {a, b, c} R2

2 : b, {a, c} R2
3 : c, {a, b}

Clearly, a is Pareto-dominated by both b and c and therefore q(a) = 0. If agent 1 claims
his preferences are as in R3

1, alternative a remains Pareto-dominated by b.

R3
1 : {a, b}, {c} R3

2 : b, {a, c} R3
3 : c, {a, b}
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Let f(R3) = r where r(a) = 0. If we assume that R2
1 is the true preference relation of

agent 1, group-strategyproofness requires that agent 2 should not prefer r to q because
otherwise this may be seen as a beneficial group deviation of agents 1 and 2. As a
consequence, r(b) ≤ q(b). Similarly, a group deviation by agents 1 and 3 implies that
r(c) ≤ q(c) and consequently that r = q.

R4
1 : {a, c}, {b} R4

2 : b, {a, c} R4
3 : c, {a, b}

If we consider the profile R4, a is Pareto-dominated by c and analogous arguments imply
that f(R4) = q.

Finally, consider the preference profile R3 again. Strategyproofness implies that agent
1 should not benefit from deviating to R1

1. It can be shown that

¬(p (R3
1)BD q) iff q(c) <

p(c)

p(b) + p(c)
.

Similarly, agent 1 should not benefit from deviating to R1
1 in profile R4 and

¬(p (R4
1)BD q) iff q(b) <

p(b)

p(b) + p(c)
.

Adding both inequalities yields that

q(b) + q(c) = 1 <
p(b)

p(b) + p(c)
+

p(c)

p(b) + p(c)
= 1,

a contradiction.
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