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Abstract

A promising direction in computational social choice is to address research problems
using computer-aided proving techniques. In particular with SAT solvers, this approach
has been shown to be viable not only for proving classic impossibility theorems such as
Arrow’s Theorem but also for finding new impossibilities in the context of preference ex-
tensions. In this paper, we demonstrate that these computer-aided techniques can also be
applied to improve our understanding of strategyproof irresolute social choice functions.
These functions, however, require a more evolved encoding as otherwise the search space
rapidly becomes much too large. Our contribution is two-fold: We present an efficient
encoding for translating such problems to SAT and leverage this encoding to prove new
results about strategyproofness with respect to Kelly’s and Fishburn’s preference exten-
sions. For example, we show that no Pareto-optimal majoritarian social choice function
satisfies Fishburn-strategyproofness. Furthermore, we explain how human-readable proofs
of such results can be extracted from minimal unsatisfiable cores of the corresponding SAT
formulas.

1. Introduction

Ever since the famous Four Color Problem was solved using a computer-assisted approach,
it has been clear that computers can contribute significantly not only to verifying existing
but also to finding and proving new results. Due to its rigorous axiomatic foundation, social
choice theory appears to be a field in which computer-aided theorem proving is a particularly
promising line of research. Perhaps the best known result in this context stems from Tang
and Lin (2009), who reduce well-known impossibility results such as Arrow’s theorem to
finite instances, which can then be checked by a satisfiability (SAT) solver (see, e.g., Biere,
Heule, van Maaren, & Walsh, 2009). Geist and Endriss (2011) were able to extend this
method to a fully-automatic search algorithm for impossibility theorems in the context of
preference relations over sets of alternatives. In this paper, we apply these techniques to
improve our understanding of strategyproofness in the context of set-valued, or so-called
irresolute, social choice functions. These types of problems, however, are more complex
and require an evolved encoding as otherwise the search space rapidly becomes too large.
Table 1 illustrates how quickly the number of involved objects grows and that, as a result,
exhaustive search is doomed to fail.
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Alternatives 4 5 6 7

Choice sets 15 31 63 127
Tournaments 64 1,024 32,768 ∼ 2 · 106

Canonical tournaments 4 12 56 456
Majoritarian SCFs 50,625 ∼ 1018 ∼ 10101 ∼ 10959

Table 1: Number of objects involved in problems with irresolute majoritarian SCFs

Our contribution is two-fold. On the one hand, we provide an extended framework
of SAT-based computer-aided theorem proving techniques for statements in social choice
theory and related research areas. Despite its complexity, this framework allows for the
extraction of human-readable proofs, which eliminates the need for extensive (and difficult)
verification of the underlying techniques. On the other hand, rather than only reproducing
existing results, we solve some open problems, which are of independent interest, in the
context of irresolute strategyproof social choice functions. These results are unlikely to
have been found without the help of computers, which further strengthens the importance
of the approach.

The results obtained by computer-aided theorem proving have already found attention
in the social choice community (Chatterjee & Sen, 2014) and similar techniques have proven
to be quite effective for other problems in economics, too. Examples are the ongoing work
by Fréchette, Newman, and Leyton-Brown (2016) in which SAT solvers are used for the
development and execution of the FCC’s upcoming reverse spectrum auction, recent results
by Drummond, Perrault, and Bacchus (2015) who solve stable matching problems via SAT
solving, as well as work by Tang and Lin (2011) who apply SAT solving to discover classes
of two-player games with unique pure Nash equilibrium payoffs. In another recent paper,
Caminati, Kerber, Lange, and Rowat (2015) verified combinatorial Vickrey auctions via
higher-order theorem provers. In some respect, our approach bears similarities to automated
mechanism design (see, e.g., Conitzer & Sandholm, 2002), where desirable properties are
encoded and mechanisms are computed to fit specific problem instances. There is also a
body of work on logical formalizations of important theorems in social choice theory, most
prominently, Arrow’s Theorem (see, e.g., Nipkow, 2009; Grandi & Endriss, 2013; Cinà &
Endriss, 2015), which has been directed more towards formalizing and verifying existing
results.

Given the universality of the SAT-based method and its ease of adaptation (e.g., “test-
ing” of similar conjectures with minimal effort by simply replacing or altering some axioms),
we expect these and similar techniques to be applicable to other open problems in social
choice theory and related research areas in the future. Results for different variants of
the no-show paradox (Brandl, Brandt, Geist, & Hofbauer, 2015; Brandt, Geist, & Peters,
2016c) support this hypothesis. It should be noted, however, that—at least currently—an
expert user or programmer is required to operate these systems. An interesting question
that remains is whether it is possible to develop an automatic proof assistant that allows re-
searchers to quickly test hypotheses on small domains without giving up too much generality
and efficiency.
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Let us now turn towards the social choice theoretic results. Formally, a social choice
function (SCF) is defined as a function that maps individual preferences over a set of alter-
natives to a set of socially most-preferred alternatives. An SCF is strategyproof if no agent
can obtain a more preferred outcome by misrepresenting his preferences. It is well-known
from the Gibbard-Satterthwaite theorem that, when restricting attention to SCFs that al-
ways return a single alternative, only trivial SCFs can be strategyproof. The assumption
of single-valuedness, however, has been criticized for being unreasonably restrictive (see,
e.g., Gärdenfors, 1976; Kelly, 1977; Taylor, 2005; Barberà, 2010). A proper definition of
strategyproofness for the more general setting of irresolute SCFs requires the specification
of preferences over sets of alternatives. Rather than asking the agents to specify their
preferences over all sets (which requires exponential space and would be bound to various
rationality constraints), it is typically assumed that preferences over single alternatives can
be extended to preferences over sets. Of course, there are various ways how to extend
preferences to sets (see, e.g., Gärdenfors, 1979; Duggan & Schwartz, 2000; Taylor, 2005),
each of which leads to a different class of strategyproof SCFs. A function that yields a
preference relation over subsets of alternatives when given a preference relation over single
alternatives is called a set extension or preference extension. In this paper, we focus on two
set extensions attributed to Kelly (1977) and Fishburn (1972),1 which have been shown to
arise uniquely under very natural assumptions (Gärdenfors, 1979; Erdamar & Sanver, 2009;
see also Section 2.2 of this paper).

While strategyproofness for Kelly’s extension (henceforth Kelly-strategyproofness) is
known to be a rather restrictive condition (Kelly, 1977; Barberà, 1977; Nehring, 2000),
some SCFs such as the Pareto rule, the omninomination rule, the top cycle, the uncovered
set, the minimal covering set, and the bipartisan set were shown to be Kelly-strategyproof
(Brandt, 2015). Interestingly, the more prominent of these SCFs are majoritarian, i.e., they
are based on the pairwise majority relation only and can be ordered with respect to set in-
clusion. These results suggest that the bipartisan set may be the finest Kelly-strategyproof
majoritarian SCF. In this paper, we show that this is not the case by automatically gen-
erating a Kelly-strategyproof SCF that is strictly contained in the bipartisan set. Brandt
(2015) furthermore showed that, under a mild condition, Kelly-strategyproofness carries
over to coarsenings of an SCF. Thus, finding inclusion-minimal Kelly-strategyproof SCFs is
of particular interest. We address this problem by automating the search for these functions
in small domains and report on our findings.

Existing results suggest that the more demanding notion of Fishburn-strategyproofness
may only be satisfied by rather indiscriminating SCFs such as the top cycle (Feldman, 1979;
Brandt & Brill, 2011; Sanver & Zwicker, 2012).2 Using our computer-aided proving tech-
nique, we are able to confirm this suspicion by proving that, within the domain of majoritar-
ian SCFs, Fishburn-strategyproofness is incompatible with Pareto-optimality. In order to
achieve this impossibility, we manually prove a novel characterization of Pareto-optimal ma-

1. Gärdenfors (1979) attributed this extension to Fishburn because it is the weakest extension that satisfies
a certain set of axioms proposed by Fishburn (1972). Some authors, however, refer to it as the Gärdenfors
extension, a term which we reserve for the extension due to Gärdenfors (1976) himself.

2. The negative result by Ching and Zhou (2002) uses Fishburn’s extension but a much stronger notion of
strategyproofness.
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joritarian SCFs and an induction step, which allows us to generalize the computer-generated
impossibility to larger numbers of alternatives.

The paper is structured as follows. In Section 2, we present the general mathemat-
ical framework that we use throughout this paper and introduce the new condition of
tournament-strategyproofness, which we show to be equivalent to standard strategyproof-
ness for majoritarian SCFs. In Section 3, we describe our computer-aided proving method
and explain how to encode the main questions of this paper as SAT problems. We also
describe optimization techniques and other features of the approach. In Section 4, we re-
port on our main findings—an impossibility and a possibility result—and discuss possible
extensions and their limits. In Section 5, our novel approach to proof extraction from these
computer-generated results is presented. We provide a human-readable proof of our main
result that can be verified without the help of computers. Finally, in Section 6 we wrap up
our work and give an outlook on further research directions.

2. Mathematical Framework of Strategyproofness

In this section, we provide the terminology and notation required for our results and intro-
duce notions of strategyproofness for majoritarian SCFs that allow us to abstract away any
reference to preference profiles.

2.1 Social Choice Functions

Let N = {1, . . . , n} be a set of at least three voters with preferences over a finite set A of
m alternatives. For convenience, we assume that n is odd, which entails that the pairwise
majority relation is antisymmetric. The preferences of each voter i ∈ N are represented by a
complete, antisymmetric, and transitive preference relation Ri ⊆ A×A. The interpretation
of (x, y) ∈ Ri, usually denoted by x Ri y, is that voter i values alternative x at least as much
as alternative y. The set of all preference relations over A will be denoted by R(A). The
set of preference profiles, i.e., finite vectors of preference relations, is then given by R∗(A).
The typical element of R∗(A) will be R = (R1, . . . , Rn). In accordance with conventional
notation, we write Pi for the strict part of Ri, i.e., x Pi y if x Ri y but not y Ri x. Note
that the only difference between Ri and Pi is that Ri is reflexive while Pi is not. In order
to improve readability, we write Ri : x, y, z as a shorthand for x Pi y Pi z. In a preference
profile, the weight of an ordered pair of alternatives wR(x, y) is defined as the majority
margin |{i ∈ N | x Ri y}| − |{i ∈ N | y Ri x}|.

Our central objects of study are social choice functions, i.e., functions that map the
individual preferences of the voters to a nonempty set of socially preferred alternatives.

Definition 1. A social choice function (SCF) is a function f : R∗(A)→ 2A \ ∅.

An SCF is resolute if |f(R)| = 1 for all R ∈ R∗(A), otherwise it is irresolute.

We restrict our attention to majoritarian SCFs, or tournament solutions, which are
defined using the majority relation. The majority relation RM of a preference profile R is
the relation on A×A defined by

(x, y) ∈ RM if and only if wR(x, y) ≥ 0,
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for all alternatives x, y ∈ A. An SCF f is said to be majoritarian if it is neutral3 and its
outcome only depends on the majority relation, i.e., f(R) = f(R′) whenever RM = R′M .
As before, we write PM for the strict part of RM , i.e., a PM b if a RM b but not b RM a.

An alternative x is called a Condorcet winner in R if x PM y for all y ∈ A\{x}. In other
words, a Condorcet winner is a “best” alternative with respect to the majority relation and
it seems natural that majoritarian SCFs should select a Condorcet winner. Unfortunately,
such clear-cut winners do not exist in general and a variety of so-called Condorcet extensions,
i.e., SCFs that uniquely return a Condorcet winner whenever one exists but differ in their
treatment of the remaining cases, have been proposed in the literature. In this paper, we
consider the following majoritarian Condorcet extensions (see, e.g., Laslier, 1997; Brandt,
Brill, & Harrenstein, 2016a, for more information).

Top Cycle Define a dominant set to be a non-empty set of alternatives D ⊆ A such
that for any alternative x ∈ D and y ∈ A \ D we have x PM y. The top cycle TC (also
known as weak closure maximality, GETCHA, or the Smith set) is defined as the (unique)
inclusion-minimal dominant subset of A.4

Uncovered Set Let C denote the covering relation on A×A, i.e., x C y (“x covers y”)
if and only if x PM y and, for all z ∈ A, y PM z implies y PM z. The uncovered set UC
contains those alternatives that are not covered according to C, i.e., UC (R) = {x ∈ A | y C
x for no y ∈ A}.

Bipartisan Set Consider the symmetric two-player zero-sum game in which the set of
actions for both players is given by A and payoffs are defined as follows. Suppose the first
player chooses a and the second player chooses b. Then the payoff for the first player is 1
if a PM b, −1 if b PM a, and 0 otherwise. The bipartisan set BP contains all alternatives
that are played with positive probability in the unique Nash equilibrium of this game.

An SCF f is called a refinement of another SCF g if f(R) ⊆ g(R) for all preference
profiles R ∈ R∗(A). In short, we write f ⊆ g in this case. It can be shown for the above
that BP ⊆ UC ⊆ TC (see, e.g., Laslier, 1997).

For our main result, we define the well-known notion of Pareto-optimality : an SCF f
is Pareto-optimal if it never selects any Pareto-dominated alternative x ∈ A, i.e., x /∈ f(R)
whenever there exists y ∈ A such that y Pi x for all i ∈ N .

2.2 Strategyproofness

Although our investigation of strategyproof SCFs is universal in the sense that it can be
applied to any set extension, in this paper we will concentrate on two well-known set
extensions attributed to Kelly (1977) and Fishburn (1972).5 These two set extensions

3. Neutrality postulates that for any permutation π of the alternatives A the SCF produces the “same”
outcome (modulo the permutation). See also Section 3.1.1.

4. It is easily seen that the set of dominant sets is ordered with respect to set inclusion and therefore
admits a unique minimal element. Assume for a contradiction that two dominant sets X,Y ⊆ A are not
contained in each other. Then, there exists x ∈ X \ Y and y ∈ Y \X. The definition of dominant sets
requires that x PM y and y PM x, a contradiction.

5. Another natural and well-known set extension by Gärdenfors leads to an even stronger notion of strate-
gyproofness, which cannot be satisfied by any interesting majoritarian SCF (Brandt & Brill, 2011). Note
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are defined as follows: Let Ri be a preference relation over A and X,Y ⊆ A two nonempty
subsets of A.

X RK
i Y if and only if x Ri y for all x ∈ X and all y ∈ Y . (Kelly, 1977)

One interpretation of this extension is that voters are completely unaware of the mechanism
(e.g., a lottery) that will be used to pick the winning alternative (Gärdenfors, 1979; Erdamar
& Sanver, 2009). In other words, it contains exactly the pairwise comparisons which voters
can make without knowledge of the mechanism (e.g., {a, b} RK

i {c} if a Pi b Pi c).

X RF
i Y if and only if all of the following three conditions are satisfied:

x Ri y for all x ∈ X \ Y and y ∈ X ∩ Y ,

y Ri z for all y ∈ X ∩ Y and z ∈ Y \X, and (Fishburn, 1972)

x Ri z for all x ∈ X \ Y and z ∈ Y \X.

For this extension one may assume the winning alternative to be picked by a lottery accord-
ing to some underlying a priori distribution that voters are not aware of (Ching & Zhou,
2002). Alternatively, the existence of a chairman who breaks ties according to a linear, but
unknown, preference relation also rationalizes this preference extension (Erdamar & Sanver,
2009). For both of these interpretations, the extension describes exactly the conclusions a
voter who is aware of the tie-breaking method can draw (e.g., {a, b} RF

i {b, c} if a Pi b Pi c,
which does not hold for Kelly’s extension RK

i ).
It is easy to see that X RK

i Y implies X RF
i Y for any pair of sets X,Y ⊆ A.

As we plan to prove a few results for entire classes of set extensions, we call a set
extension E independent of irrelevant alternatives (IIA) if its comparison of two sets X and
Y only depends on the restriction of individual preferences to X ∪ Y . Formally, E satisfies
IIA if for all pairs of preference relations Ri, R

′
i and nonempty sets X,Y ⊆ A such that

Ri |X∪Y = R′i |X∪Y it holds that

X RE
i Y if and only if X R′i

E Y .

This is a very mild and natural condition, which is satisfied by the previously mentioned
set extensions and any other major set extension from the literature we are aware of.

Based on any set extension E, we can state a corresponding notion of P E-
strategyproofness for irresolute SCFs. Note that in contrast to some related papers (e.g.,
Ching & Zhou, 2002; Sato, 2008), we interpret preference extensions as fully specified (in-
complete) preference relations rather than minimal conditions on set preferences.

Again, we write P E
i for the asymmetric part of RE

i , for any set extension E.

Definition 2. Let E be a set extension. An SCF f is P E-manipulable by voter i if there
exist preference profiles R and R′ with Rj = R′j for all j 6= i such that f(R′) is E-preferred
to f(R) by voter i, i.e.,

f(R′) P E
i f(R).

An SCF is called P E-strategyproof if it is not P E-manipulable.

that our negative result for Fishburn-strategyproofness trivially carries over to such more demanding set
extensions.
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(a) A preference profile R

d c

b

e a

(b) The corresponding (strict)
majority relation PM

d c

b

e a

(c) The manipulated (strict) ma-
jority relation P ′M when the first
agent submits b, a, c, d, e as his
preferences. All edges that have
been impacted by this change are
depicted in bold.

Figure 1: Let the choice sets be as indicated by shaded nodes; this example is taken from the
proof of Theorem 3 (cf. Section 5.1.3). The first agent in R can PF-manipulate by submit-
ting b, a, c, d, e as his preferences (since f(R′) = {a, c, d, e} PF

1 {a, b, c, d} = f(R)), but this
does not constitute a PK-manipulation (since {a, b, c, d} and {a, c, d, e} are incomparable
according to the Kelly-extension).

It follows from the observation on set extensions above that PF-strategyproofness implies
PK-strategyproofness. An example illustrating both notions of strategyproofness is shown
in Figure 1.

Of the above SCFs, TC is PF-strategyproof, BP is PK- but not PF-strategyproof,
whereas UC was only known to satisfy PK-strategyproofness (Brandt & Brill, 2011; Brandt,
2015).

2.3 Tournament-Strategyproofness

In order to allow for a more efficient encoding, we would like to omit references to preference
profiles and replace them with a more succinct representation with the same expressive
power. For majoritarian SCFs, the natural choice is to use the (strict) majority relation,
which, for an odd number of voters, can be represented by a tournament :

A tournament is an asymmetric and complete binary relation on the set of alterna-
tives A.6 We can thus view majoritarian SCFs as functions defined on tournaments rather
than preference profiles, and, in slight abuse of notation,7 write f(T ) instead of f(R) with
T = PM being the strict part of the majority relation of R. We, furthermore, denote by
T \ T ′ := {e ∈ T : e /∈ T ′} the edge difference of two tournaments T and T ′.

For our encoding to be efficient, it will be important to formalize the notion of strat-
egyproofness using only references to tournaments rather than preference profiles. The

6. Note that tournaments can be defined by their edge set only. Since there is exactly one edge between
any pair of vertices, the vertex set can be derived from the edge set.

7. It may be noted that, while majoritarian SCFs map from profiles (with an arbitrary, but fixed number
of voters) to sets of alternatives, their interpretation via tournaments abstracts away the reference to
individual voters. This has implications for Theorems 1 and 3, which depend upon the presence of a
sufficient number of voters. We discuss the required number of voters in Section 5.2.
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following definition serves this purpose and will be shown to be equivalent to the standard
notion of strategyproofness for majoritarian SCFs.

Definition 3. A majoritarian SCF f is said to be P E-tournament-manipulable if there exist
tournaments T, T ′ and a preference relation Rµ ⊇ T \ T ′ such that

f(T ′) P E
µ f(T ).

A majoritarian SCF is called P E-tournament-strategyproof if it is not P E-tournament-
manipulable.

Theorem 1. A majoritarian SCF is P E-strategyproof if and only if it is P E-tournament-
strategyproof.

Proof. We show that a majoritarian SCF is P E-manipulable if and only if it is P E-
tournament-manipulable.

For the direction from left to right, let f be a P E-manipulable majoritarian SCF. Then
there exist preference profiles R,R′ and an integer j with Ri = R′i for all i 6= j such that
f(R′) P E

j f(R). Define tournaments T := PM and T ′ := P ′M as the strict majority relations
of R and R′, respectively. Since R and R′ only differ for voter j, it follows that T \T ′ ⊆ Rj ,
i.e., all edges that are reversed from T to T ′ must have been in Rj . Thus, with Rµ := Rj ,
we get that f is tournament-manipulable.

For the converse, let f be a P E-tournament-manipulable majoritarian SCF. The SCF f
then admits a manipulation instance, i.e., there are two tournaments T, T ′ and a preference
relation Rµ ⊇ T \ T ′ such that f(T ′) P E

µ f(T ).
As in the proof of McGarvey’s Theorem (McGarvey, 1953), we construct a preference

profile R− = (R1, . . . , Rn−1) which has T ∩T ′ as the strict part P−M of its majority relation:
we start from an empty profile and, for each strict edge (a, b) ∈ T ∩ T ′, add two voters ia,b
and ja,b with the preferences

Ria,b : a, b, x1, . . . , xm−2 and Rja,b : xm−2, . . . , x1, a, b, respectively.

Here x1, . . . , xm−2 denotes an arbitrary enumeration of the m− 2 alternatives in A \ {a, b}.
It then holds for the weights wR−(a, b) of all edges (a, b) ∈ T that

wR−(a, b) =

{
2 if (a, b) ∈ T ∩ T ′

0 if (a, b) ∈ T \ T ′.

Note that the number of voters n− 1 in R− has to be even (and at most m2 −m− 2). By
adding Rµ as the n-th voter, we get to a profile R := (R−, Rµ) with an odd number of voters
as required. Then wR(a, b) ≥ 1 for all edges (a, b) ∈ T and, thus, R has T as its (strict)
majority relation. The second profile R′ can be defined to contain the same first n − 1
voters from R and the reversed preference Rµ as the n-th voter (i.e., R′ := (R−, Rµ)).8

The profile R′ then has T ′ as its (strict) majority relation (since wR′(a, b) = −1 for all

8. Immunity to manipulation by reversing preferences has been considered by Sanver and Zwicker (2012)
under the name of half-way monotonicity. Our proof entails that (weak) half-way monotonicity is equiv-
alent to strategyproofness for majoritarian SCFs.
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CNF encoder

Tournament
solver

nauty

LP
solver

SAT solver

Model decoder

Setting and axioms Results

Figure 2: High-level system architecture

edges (a, b) ∈ T \ T ′ and the weights of all edges in T ∩ T ′ are at least 1 again), which
completes the manipulation instance. I.e., we have found preference profiles R,R′ which
only differ for voter n (who has “truthful” preferences Rµ) and for which it holds that
f(R′) = f(T ′) P E

µ f(T ) = f(R).

3. Methodology

The method applied in this paper is similar to and yet more powerful than the ones presented
by Tang and Lin (2009) and Geist and Endriss (2011). Rather than translating the whole
problem näıvely to SAT, a more evolved approach, which resolves a large degree of freedom
already during the encoding of the problem, is employed. This approach is comparable to
the way SMT (satisfiability modulo theories) solving works: At the core there is a SAT
solver; certain aspects of the problem, however, are dealt with in a separate theory solving
unit which accepts a richer language and makes use of specific domain knowledge (Biere
et al., 2009, ch. 26). The general idea, however, remains to encode the problem into a
language suitable for SAT solving and to apply a SAT solver as an efficient and universal
problem solving machine.

While desirable, using existing tools for higher-order formalizations directly rather than
our specific approach, unfortunately, is not an option. For instance, a formalization of strate-
gyproof majoritarian SCFs in higher-order logic (HOL) as accepted by Nitpick (Blanchette
& Nipkow, 2010) is straightforward, highly flexible, and well-readable, but only successful
for proofs and counterexamples involving up to three alternatives before the search space
is exceeded.9 An optimized formalization, which we derived together with the author of
Nitpick (at the cost of reduced readability and flexibility), extends the performance to
four alternatives, which turns out to be just too low for our results.

9. On the other hand, the strict formalization required for Nitpick helped to identify a formally inaccu-
rate definition of Fishburn-strategyproofness by Gärdenfors (1979) (which was later repeated by other
authors).
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Concretely, our approach is the following (see also the high-level architecture in Fig-
ure 2): for a given domain size n we want to check whether there exists a majoritarian
SCF f that satisfies a set of axioms (e.g., PF-strategyproofness and Pareto-optimality).
We then encode the setting as well as the given axioms as a propositional formula (SAT
instance) and let a SAT solver decide whether this formula has a satisfying assignment. If
it has a satisfying assignment, we can decode it into a concrete instance of a majoritarian
SCF f which satisfies the required properties. If the formula is unsatisfiable, we know that
no such function f exists.

As we will see, depending on the problem, some preparatory tasks have to be solved
before the actual encoding: (i) sets, tournaments, and preference relations are enumerated;
(ii) isomorphisms between tournaments are determined using the tool nauty (McKay &
Piperno, 2013); (iii) choice sets for specific SCFs are computed (e.g., via matrix multipli-
cation for UC and linear programming for BP).

In the following, we describe in more detail how the general setting of majoritarian
SCFs as well as desirable properties, such as strategyproofness, can be encoded as a SAT
problem in CNF (conjunctive normal form).10 First, we describe our initial encoding, which
is expressive enough to encode all required properties, but allows for small domain sizes of
(depending on the axioms) at most four to five alternatives only. Second, we explain how
this encoding can be optimized to increase the overall performance by orders of magnitude
such that larger instances of up to seven alternatives are solvable.

3.1 Initial Encoding

By design, SAT solvers operate on propositional logic. A direct and näıve propositional
encoding of the problem would, however, require a huge number of propositional variables
since many higher-order concepts are involved (e.g., sets of alternatives, preference relations
over sets as well as over alternatives, and functions from tuples of such relations to sets).
In our approach, we use only one type of variable to encode SCFs. The variables are of the
form cT,X with T being a tournament and X being a set of alternatives.11 The semantics
of these variables are that cT,X if and only if f(T ) = X, i.e., the majoritarian SCF f selects
the set of alternatives X as the choice set for any preference profile with (strict) majority

relation T . In total, this gives us a high but manageable number of 2
m(m−1)

2 · 2m = 2
m(m+1)

2

variables in the initial encoding.

An encoding with variables cT,x for alternatives x rather than sets would require less
variable symbols. This encoding, however, leads to much more complexity in the generated
clauses, which more than offsets these savings. This imbalance is best exhibited in the
encoding of strategyproofness where statements are always made for pairs of outcomes (i.e.,
sets of alternatives). Each occurrence of cT,X could be replaced by

∧
x∈X cT,x∧

∧
y/∈X ¬cT,y.

But since this formula then contains a conjunction within a disjunction, which is not possible

10. Converting an arbitrary propositional formula näıvely to CNF can lead to an exponential blow-up in the
length of the formula. There are, however, well-known efficient techniques (e.g., Tseitin’s encoding, see
Tseitin, 1983) to avoid this at the cost of introducing linearly many auxiliary variables. We apply these
techniques manually when needed.

11. In all algorithms, a subroutine c(T,X) will take care of the compact enumeration of variables. Since we
know in advance how many tournaments and non-empty subsets there are, we can simply use a standard
enumeration method for pairs of objects.
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in CNF, either expansion (and therefore an exponential blow-up) or replacement (e.g., by
a helper variable cT,X ↔

∧
x∈X cT,x) would be required.

The following two subsections demonstrate the initial encoding of both contextual as
well as explicit axioms to CNF.

3.1.1 Context Axioms

Apart from the explicit axioms, which we are going to describe in the next subsection,
there are further axioms that need to be considered in order to fully model the context
of majoritarian SCFs. For this purpose, an arbitrary function that maps tournaments
to non-empty sets of its vertices will be called a tournament choice function. Using our
initial encoding three axioms are introduced, which will ensure that functionality of the
tournament choice function and neutrality are respected (making it a tournament solution):
(1) functionality, (2) canonical isomorphism equality, and (3) the orbit condition.

The first axiom ensures that the relational encoding of f by variables cT,X indeed models
a function rather than an arbitrary relation, i.e., for each tournament T there is exactly one
set X such that the variable cT,X is set to true. In formal terms this can be written as

(∀T ) ((∃X) cT,X ∧ (∀Y, Z) Y 6= Z → ¬(cT,Y ∧ cT,Z))

≡
∧
T

(∨
X

cT,X

)
∧
∧
Y 6=Z

(¬cT,Y ∨ ¬cT,Z)

 . (1)

As an illustrative example, the corresponding simple pseudo-code for generating the CNF
file can be found in Appendix B.

The second and third axiom together constitute neutrality of the tournament choice
function f , which, formally, can be written as

π(f(T )) = f(π(T )) for all tournaments T and permutations π : A→ A.

A direct encoding of this neutrality axiom, however, would be tedious due to the quan-
tification over all permutations. In addition, our reformulation as canonical isomorphism
equality and orbit condition enables a substantial optimization of the encoding as we will
see in Section 3.2. We require further observations in order to precisely state these two
axioms.

We use the well-known fact that graph isomorphisms define an equivalence relation
on the set of all tournaments.12 For each equivalence class, pick a representative as the
canonical tournament of this class. For any tournament T , we then have a unique canonical
representation (denoted by Tc). We also pick one of the potentially many isomorphisms
from Tc to T as the canonical isomorphism of T and denote it by πT .13 This allows us to
formulate the axiom of canonical isomorphism equality.

Definition 4. A tournament choice function f satisfies canonical isomorphism equality if

f(T ) = πT (f(Tc)) for all tournaments T . (2)

12. Two tournaments T and T ′ are isomorphic if there is a permutation π : A→ A such that π(T ) = T ′.
13. In practice, the tool nauty will automatically compute canonical representations for both tournaments

and isomorphisms.
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a b

c

d e

Figure 3: The orbits of this tournament are OT = {{a, b, c}, {d}, {e}}. A corresponding

automorphism would be α =

(
a b c d e
b c a d e

)
. C := {a, b, c} represents a component in

the sense that for all of its elements x ∈ C it holds that x PM d and e PM x.

For the last of the three context axioms, the definition of an orbit should be clarified. The
orbits of a tournament T are equivalence classes of alternatives according to the following
equivalence relation: two alternatives a, b are considered equivalent if and only if there is
an automorphism α : A→ A which maps a to b, i.e., for which α(a) = b. The set of orbits
of a tournament T is denoted by OT . An example can be found in Figure 3.

Definition 5. A tournament choice function f satisfies the orbit condition if

O ⊆ f(Tc) or O ∩ f(Tc) = ∅ (3)

for all canonical tournaments Tc and their orbits O ∈ OTc .

It can be shown that for any tournament choice function, neutrality is equivalent to
the conjunction of the orbit condition and canonical isomorphism equality, or equivalently,
that the class of tournament choice functions satisfying the orbit condition and canonical
isomorphism equality is equal to the class of tournament solutions. We formalize this
statement in Lemma 1. The proof of Lemma 1 is based on standard arguments from
category theory and is presented in Appendix A.

Lemma 1. For any tournament choice function, neutrality is equivalent to the conjunction
of the orbit condition and canonical isomorphism equality.

3.1.2 Explicit Axioms

Many axioms can be efficiently encoded in our proposed encoding language. In this section
we present the main conditions required to achieve the results in Section 4. Clearly, the most
important one is strategyproofness. In formal terms, P E-tournament-strategyproofness can
be written as

(∀T, T ′, Rµ ⊇ T \ T ′) ¬
(
f(T ′) P E

µ f(T )
)

≡
∧
T

∧
T ′

∧
Rµ⊇T\T ′

∧
Y PE

µX

(¬cT,X ∨ ¬cT,Y )
(4)

where T, T ′ are tournaments, Rµ is a preference relation, and X,Y are non-empty subsets
of A. The algorithmic encoding of strategyproofness is omitted here since we present an
optimized version in Section 3.2.
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Another property of SCFs that will play an important role in our results is the one of
being a refinement of another (known) SCF g. Fortunately, this can easily be encoded using
our framework:

(∀T )(∃X ⊆ g(T )) f(T ) = X

≡
∧
T

∨
X⊆g(T )

cT,X . (5)

If we desire that the resulting SCF f is different from g (for instance, to obtain a strict
refinement in conjunction with Axiom (5)), we encode the additional clause:

(∃T ) f(T ) 6= g(T )

≡
∨
T

¬cT,g(T ).
(6)

Finally, even properties regarding the cardinalities of choice sets can be encoded. The
following axiom—stating that |f(T )| < |g(T )| for at least one tournament T—will, for
instance, be useful in Section 4.1.1 when searching for SCFs that return small choice sets:

(∃T )(∃X) |X| < |g(T )| ∧ f(T ) = X

≡
∨
T

∨
X

|X|<|g(T )|

cT,X . (7)

3.2 Optimized Encoding for Improved Performance

In order to efficiently solve instances of more than four alternatives, we need to streamline
our initial encoding without weakening its logical and expressiv power. In this section, we
present the three optimization techniques we found most effective.

3.2.1 Obvious Redundancy Elimination

A straightforward first step is to reduce the obvious redundancy within the axioms. As an
example, consider the axiom of strategyproofness, where—in order to determine whether
an outcome Y = f(T ′) is preferred to an outcome X = f(T )—we consider all preference
relations Rµ ⊇ T \ T ′. It suffices, however, if we stop after finding the first such preference
relation with Y P E

µ X because then we already know that not both Y = f(T ′) and X = f(T )
can be true.

Similarly, in many axioms, we can exclude considering symmetric pairs of objects (e.g.,
for functionality of the tournament choice function, there is no need to consider both pairs
of sets (X,Y ) and (Y,X)).

3.2.2 Canonical Tournaments

The main efficiency gain can be achieved by making use of the canonical isomorphism
equality (see Section 3.1.1) during encoding. Recall that this condition states that for any
tournament T the choice set f(T ) can be determined from the choice set f(Tc) of the cor-
responding canonical tournament Tc by applying the respective canonical isomorphism πT .
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foreach Canonical tournament Tc do
foreach Tournament T ′ do

RTc\T ′ ← {Rµ | Rµ is a preference relation and Rµ ⊇ Tc \ T ′};
foreach Set X do

foreach Set Y do
boolean found← false;
foreach Rµ ∈ RTc\T ′ do

if ¬found ∧ setExt(Rµ,E).prefers(Y,X) then
variable not(c(Tc, X));

variable not(c(T ′c , π
−1
T ′ (Y )));

newClause();
found← true;

Algorithm 1: P E-tournament-strategyproofness (optimized)

Therefore, it suffices to formulate the axioms on a single representative of each equivalence
class of tournaments, in our case, the canonical tournament. The magnitudes in Table 1
illustrate that this formulation dramatically reduces the required number of variables, the
size of the CNF formula, and the time required for encoding it.

In particular, in all axioms we can replace any outer quantifier ∀T by a quantifier ∀Tc that
ranges over canonical tournaments only.14 In the case of strategyproofness, however, there
is a second tournament T ′ for which the restriction to canonical tournaments is potentially
not strong enough to capture the full power of the axiom. We therefore keep T ′ as an
arbitrary tournament but make sure that we only need variable symbols cT ′c ,Y for canonical
tournaments in our CNF encoding. This can be achieved through the canonical isomorphism
πT ′ since by Condition (2), f(T ′) = Y if and only if f(T ′c) = π−1

T ′ (Y ). The optimized
encoding is shown in Algorithm 1.

Furthermore, since we no longer make any statements within the CNF formula about
non-canonical tournaments, the canonical isomorphism equality condition becomes an
“empty” condition and, thus, can be dropped from the encoding.

3.2.3 Approximation through Logically Related Properties

Approximation is a standard tool in SAT/SMT which can speed up the solving process.
For instance, over-approximation can help find unsatisfiable instances faster by only solving
parts of the full problem description in CNF. If this partial CNF formula is found to be
unsatisfiable, any superset will also trivially be unsatisfiable. Since common manipulation
instances in the literature require only one edge in a tournament to be reversed, one can,
for instance, use over-approximation in the form of single-edge-strategyproofness, a slightly
weaker variant of (tournament-)strategyproofness with |T \ T ′| = 1.15

14. The tool nauty is capable of enumerating such non-isomorphic (i.e., canonical) tournaments.
15. While it was not obvious whether this condition is actually strictly weaker than tournament-

strategyproofness, we identified Pareto-optimal SCFs that are Kelly-single-edge-strategyproof but not
Kelly-tournament-strategyproof (cf. Section 4.1.1).
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If the solver returns that there is no single-edge-strategyproof SCF that satisfies some
set of properties Γ , we know immediately that there is also no strategyproof SCF that
satisfies Γ . We used this form of approximation to prove the results in Remark 2.16

In a similar fashion, one can also apply logically simpler conditions, such as the ones
by Brandt and Brill (2011), that are slightly stronger or weaker than P E-strategyproofness
for specific set extensions E in order to logically under- or over-approximate problems,
respectively. While these logically simpler conditions can help to further improve encoding
and solving times, none of them were required to obtain the results presented in this paper.

Another way to over-approximate our problems is to restrict the domain of the SCF
(e.g., by random sampling), which we explore in somewhat more detail when extracting
small proofs in Section 5.1.1.

3.3 Finding Refinements through Incremental Solving

In order to obtain results for most refined (i.e., inclusion-minimal) or otherwise minimal
SCFs, it will be important to also produce this property to the SAT solver in a satisfactory
way. Generally, since the task of a SAT solver is to generate only one satisfying assign-
ment, it does not necessarily output the finest SCF to satisfy a given set of properties.
Through iterated or incremental solving, however, we can force the SAT solver to generate
progressively finer or simply different SCFs that satisfy a set of desired properties.17 For
refinements, this can be achieved by adding clauses which encode that the desired SCF
must be (strictly) finer than previously found solution (see, e.g., the formulation in Sec-
tion 3.1.2). When the finest SCF with the desired properties has been found, adding these
clauses leads to an unsatisfiable formula, which the SAT solver detects and therefore verifies
the minimality of the solution.

With this final solving step, we have the main tools at hand required for our results, the
most significant ones of which we describe in the next section.

4. Results and Discussion

Here we present our two main findings:

• There exists a strict refinement of BP which is PK-strategyproof (Theorem 2).

• For majoritarian SCFs with m ≥ 5, PF-strategyproofness and Pareto-optimality are
incompatible (Theorem 3). For m < 5, UC satisfies PF-strategyproofness and Pareto-
optimality.

Further minor results are mentioned in the discussions proceeding the proofs and in Sec-
tion 4.2.1.

16. While for m = 7 approximation was required to reach the result, it also enabled a speed-up for smaller
instances: the running time for m = 6, for example, was reduced from almost five hours to three minutes.

17. Note that finding a refinement of an SCF is not equivalent to finding a smaller/minimal model in the
SAT sense; in our encoding all assignments have the same number of satisfied variables.
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4.1 Minimal Kelly-Strategyproof SCFs

Brandt (2015) showed that every coarsening f of a PK-strategyproof SCF f ′ is PK-
strategyproof if f(R) = f ′(R) whenever |f ′(R)| = 1. Thus, it is an interesting question
to identify finest (or inclusion-minimal) PK-strategyproof SCFs.

While previous results suggested that BP could be a—or even the—finest majoritarian
SCF which satisfies PK-strategyproofness, we first provide a counterexample to these as-
sertions using m = 5 alternatives, and second show that also for larger domain sizes there
exist majoritarian refinements of BP that are still PK-strategyproof and return significantly
smaller choice sets than BP .

Theorem 2. There exists a majoritarian Condorcet extension that refines BP and is still
PK-strategyproof. As a consequence, BP is not even a finest majoritarian Condorcet ex-
tension satisfying PK-strategyproofness.

Proof. Within seconds our implementation finds a satisfying assignment for m = 5 and the
encoding of the explicit axioms refinement of BP (implies Condorcet extension) and PK-
strategyproofness. The corresponding majoritarian SCF can be decoded from the assignment
and is defined like BP with the exception depicted in Figure 4.

a b

c

d e

Figure 4: Tournament on which a PK-strategyproof refinement of BP is possible. C :=
{a, b, c} represents a component in the sense that for all of its elements x ∈ C it holds that
x PM d and e PM x. While BP chooses the whole set A on this tournament, the refined
solution selects {a, b, c, d} only.

Using the technique described in Section 3.3, we furthermore confirmed that the ob-
tained SCF is the only refinement of BP on five alternatives which is still PK-strategyproof.
Note, however, that it does not satisfy the (natural, but strong) property of composition-
consistency (see, e.g., Laslier, 1997). Thus, it remains open whether BP might be character-
ized as an—or even the—inclusion-minimal, PK-strategyproof, and composition-consistent
majoritarian SCF.18

While we were not able to resolve this open problem completely, we proved the fol-
lowing statements by extending our approach to also cover composition-consistency. BP
is an inclusion-minimal, PK-strategyproof, and composition-consistent majoritarian SCF

18. Although already on the domain of up to five alternatives there are further inclusion-minimal, PK-
strategyproof, and composition-consistent Condorcet extensions, which we could find using the computer-
aided method, these counterexamples might not extend to larger domains.
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for m ≤ 5.19 For m ≤ 7, BP is an inclusion-minimal majoritarian SCF satisfying set-
monotonicity20 and composition-consistency. While this result might extend to larger in-
stances, it only holds for at most 5 alternatives that these properties uniquely characterize
BP .

If we, however, drop composition-consistency again, we can find multiple inclusion-
minimal majoritarian SCFs that are refinements of BP and still PK-strategyproof. Inter-
estingly, some of these SCFs turn out to be more discriminating than others in the sense
that on average they yield significantly smaller choice sets. In the following section we are
going to search for such discriminating SCFs and analyze the average size of their respective
choice sets.

4.1.1 Finding Discriminating Kelly-Strategyproof SCFs

Many PK-strategyproof tournament solutions have been criticized for not being discrim-
inating enough. It is known, for instance, that in large random tournaments, TC and
UC select all alternatives with probability approaching 1 (Scott & Fey, 2012), while BP
selects exactly half of the alternatives on average for any fixed number of alternatives
(Fisher & Reeves, 1995). More discriminating tournament solutions, on the other hand,
such as the Copeland, Markov, and Slater rules violate PK-strategyproofness. Using the
computer-aided approach, we search for the most discriminating majoritarian SCFs that
satisfy PK-strategyproofness. Though this is in the spirit of automated mechanism de-
sign (see, e.g., Conitzer & Sandholm, 2002), we apply these techniques mostly to improve
our understanding of PK–strategyproofness and related axioms rather than to propose the
generated tournament solutions for actual use.

As a measure for the discriminating power of majoritarian SCFs, we use the average
relative size avg(f) of the choice sets returned by an SCF f . Formally we define

avg(f) :=
1

|A| · |T|
∑
T∈T
|f(T )|,

where T is the set of all labeled tournaments on |A| = m alternatives. We call an SCF f
more discriminating than another SCF g if avg(f) < avg(g). Given a set of axioms Γ , we
try to find a most discriminating SCF f (i.e., with the minimal value for avg(f)) such that
f satisfies the axioms in Γ .

While in theory it would be possible to just encode the relevant axioms and then enu-
merate all SCFs with the required properties by incrementally applying Axiom (6), the
number of such SCFs is usually much too large. If we instead refine the initial solution
further and further by applying Axioms (5) and (6) as indicated in Section 3.3, we will
find an inclusion-minimal SCF, but not necessarily a most discriminating SCF f . We thus
proceed via Algorithm 2, which is guaranteed to find a most discriminating SCF f without
enumerating all candidates of SCFs. The algorithm starts by constructing an initial candi-
date of an SCF which satisfies the required axioms, iteratively refines it as much as possible
(via the conjunction of Axioms (5) and (6)), and then encodes an additional axiom stating

19. For m = 6 we can already find a refinement with the same properties.
20. Set-monotonicity postulates that the choice set is invariant under the weakening of unchosen alternatives;

it implies PK-strategyproofness (Brandt, 2015).
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that all future solutions must yield a choice set with strictly smaller cardinality for at least
one tournament T (Axiom (7)). The algorithm then repeats the refinement and encoding
process until no further solution can be found. Since Axiom (7) is a necessary condition for
avg(f) < avg(g), we can be sure that a finest SCF f is returned.

SCF smallestSolution← null;
CNF minimalRequirements← encodeAxioms();
minimalRequirements← preprocess(minimalRequirements); // optional

while isSatisfiable(minimalRequirements) do
CNF currentRequirements← minimalRequirements;
SCF currentSolution← solve(currentRequirements);
while canBeRefined(currentSolution) do

Append Axioms (5) and (6) to currentRequirements with g = currentSolution;
currentSolution← solve(currentRequirements);

// an inclusion-minimal solution has been found

if avgSize(currentSolution) < avgSize(smallestSolution) then
smallestSolution← currentSolution;

Append Axiom (7) to minimalRequirements with g = currentSolution;

return smallestSolution;
Algorithm 2: A search algorithm to find a cardinality-minimal SCF f (i.e., with minimal
value for avg(f)) that satisfies a given set of axioms. As a reminder, Axioms (5) and (6)
encode a strict refinement of g; Axiom (7) encodes |f(T )| < |g(T )| for some tournament
T .

Preprocessing is generally optional in Algorithm 2; for m = 6 we, however, had to use
unit propagation in order to reduce the size of the resulting SAT instance.21 Note that the
optimization techniques as described in Section 3.2 (in particular, canonical tournaments)
can also be applied here.

The results of our analysis are exhibited in Figure 5. While on up to four alternatives
all axioms under consideration lead to the same minimal size of avg(f), on larger domains,
PK-strategyproofness allows for smaller choice sets than BP (e.g., 45% instead of 50% of
the alternatives for m = 6). Interestingly, the gap between BP and these more discrimi-
nating SCFs that satisfy PK-strategyproofness is not extraordinarily large; in particular,
moving from PK-strategyproofness to PK-single-edge-strategyproofness allows for a more
sizable reduction of avg(f). For the related property of Kelly-participation, Brandl et al.
(2015) remarked that the average size of choice sets can be reduced by almost 50% com-
pared to BP , which supports the intuition that participation is a “weaker” property than
strategyproofness (even though logically the two are independent).

BP and set-monotonicity yield the exact same values of avg(f) for m ≤ 6, which is
somewhat surprising as we found SCFs that are not coarsenings of BP and are yet set-
monotonic on this domain size. These SCFs, however, have no set-monotonic refinements
that are more discriminating than BP . Interestingly, this does not generalize to larger

21. For the case of Kelly-strategyproofness, unit propagation and deletion of duplicate clauses reduced the
CNF formula from about 600 million to just below three million clauses.
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PK-single-edge-
strategyproofness

PK-strategyproofness

Bipartisan set BP

Set-monotonicity

Uncovered set UC

18%

38%

45%

50%
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Number of alternatives |A| = m

m
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f
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v
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Figure 5: A comparison of the minimal values (rounded) of avg(f) for majoritarian, Pareto-
optimal SCFs f that satisfy the given axioms (e.g., PK-strategyproofness). Interestingly,
the values for set-monotonicity are identical to the ones for BP . Non-solid dots represent
upper bounds, i.e., cases where we could only compute an SCF f with this value of avg(f)
but have no guarantee that it is indeed minimal.
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domains since we found a most discriminating majoritarian SCF f for m = 7 that satisfies
set-monotonicity and Pareto optimality while only selecting 49.73% of the alternatives on
average.

As more demanding axioms usually lead to larger choice sets (for instance, the SCF that
always returns all alternatives trivially satisfies many axioms), one might view the minimal
value of avg(f) as an attempt to “quantify” the strength of an axiom. We leave a more
detailed study of such a quantification as future work.

4.2 Incompatibility of Fishburn-Strategyproofness and Pareto-Optimality

In order to prove our main result on the incompatibility of Pareto-optimality and PF-
strategyproofness we first show the following lemma, which establishes that, for majoritarian
SCFs, the notion of Pareto-optimality is equivalent to being a refinement of the uncovered
set (UC ).22

Lemma 2. A majoritarian SCF f is Pareto-optimal if and only if it is a refinement of
UC .

Proof. It is well-known, and was already observed by Fishburn (1977), that UC is Pareto-
optimal, which implies that all its refinements are also Pareto-optimal.

For the direction from left to right, let f be a Pareto-optimal majoritarian SCF and T an
arbitrary tournament. It suffices to show that f(T ) can never contain a covered alternative
(since then f(T ) ⊆ UC (T ) contains uncovered alternatives only). So let b be an alternative
that is covered by another alternative a. We are going to construct a preference profile
R which has T as its (strict) majority relation and in which b is Pareto-dominated by a.
Together with the Pareto-optimality of f this implies that b /∈ f(T ). We use a variant
of the well-known construction by McGarvey (1953), but for triples rather than pairs of
alternatives. Note that for each voter we need to ensure that he strictly prefers a to b in
order to obtain the desired Pareto-dominance of a over b. Starting with an empty profile,
for each alternative x /∈ {a, b} we add two voters Rx1 , Rx2 to the profile. These two voters
are defined depending on how x is ranked relative to a and b in order to establish the edges
between a, x and b, x. Note that since x T a implies x T b (because of a C b), edge (a, b)
cannot be contained in a three-cycle with x and, thus, forms a transitive triple with x.

• Case 1: x T a (implies x T b)
Rx1 : x, a, b, v1, . . . , vm−3; Rx2 : vm−3, . . . , v1, x, a, b

• Case 2a: a T x and x T b
Rx1 : a, x, b, v1, . . . , vm−3; Rx2 : vm−3, . . . , v1, a, x, b

• Case 2b: a T x and b T x
Rx1 : a, b, x, v1, . . . , vm−3; Rx2 : vm−3, . . . , v1, a, b, x

Here v1, . . . , vm−3 denotes an arbitrary enumeration of the m−3 alternatives in A\{a, b, x}.
In all cases, the two voters cancel out each other for all pairwise comparisons other than

(a, b), (x, a) and (x, b). For each of the remaining edges (y, z) ∈ T (with {y, z}∩ {a, b} = ∅)

22. A stronger version of this lemma was shown by Brandt, Geist, and Harrenstein (2016b).
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we further add two voters (now even closer to the construction by McGarvey.)

R(y,z)1 : y, z, a, b, v1, . . . , vm−4 and

R(y,z)2 : vm−4, . . . , v1, a, b, y, z,

which together establish edge (y, z), reinforce (a, b) and cancel otherwise. Note that in order
to achieve an odd number of voters, an arbitrary voter can be added without changing the
majority relation (as all edges had a weight of at least two so far). This completes the
construction of a preference profile R which has T as its (strict) majority relation and in
which b is Pareto-dominated by a.

To establish the full result (which does not admit a proof by counterexample as in
Theorem 2) we—similarly to previous approaches—make use of an inductive argument.

Lemma 3. For any set extension E that satisfies IIA, if there exists a majoritarian SCF f
for m+ 1 alternatives that is P E-strategyproof and Pareto-optimal, then there also exists a
majoritarian SCF f ′ for just m alternatives that satisfies these two properties.

Proof. Let f ⊆ UC be a majoritarian SCF for m + 1 ≥ 2 alternatives that is P E-
strategyproof. Then we define fe to be the restriction of f to m alternatives based on
tournaments in which alternative e is a Condorcet loser, i.e., an alternative x for which
(y, x) ∈ T for all y ∈ A \ {x}. In formal terms, define

fe(T ) := f(T+e),

where T+e is the tournament obtained from T by adding an alternative e as a Condorcet
loser. This restriction of f is a well-defined SCF since alternative e cannot be contained in
f(T+e) ⊆ UC (T+e) = UC (T ), where the last equation follows from the simple observation
that the covering relation is unaffected by deleting Condorcet losers.

We now need to show that for some alternative e the restriction fe is a majoritarian
SCF that is P E-strategyproof and Pareto-optimal. Since this holds for any e ∈ A, we just
pick e arbitrarily.

• Majoritarian: The fact that fe is a majoritarian SCF carries over trivially from f .

• P E-strategyproofness: Assume for a contradiction that fe is not P E-strategyproof.
Then, by Theorem 1 there exist tournaments T and T ′ on m alternatives such that
fe(T

′) P E
µ fe(T ) with Rµ ⊇ T \ T ′. But since fe(T

′) = f(T ′+e) and fe(T ) = f(T+e)
(and by the fact that E satisfies IIA), we get

f(T ′+e) P E
µ f(T+e),

which contradicts P E-tournament-strategyproofness of f (as the two tournaments T ′+e

and T+e form a manipulation instance), and thus P E-strategyproofness.

• Pareto-optimality: By Lemma 2, this is equivalent to being a refinement of UC .
Thus, let T be an arbitrary tournament on m alternatives and consider the following
chain of set inclusions, which proves that fe ⊆ UC :

fe(T ) = f(T+e) ⊆ UC (T+e) = UC (T ).
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By virtue of Lemma 3 it now suffices to check the claim for the restricted domain of
m = 5, which we do in the following lemma.

Lemma 4. For exactly five alternatives (i.e., m = 5) there is no majoritarian SCF f that
satisfies PF-strategyproofness and Pareto-optimality.

Proof. This base case of m = 5 alternatives was verified using our computer-aided approach,
i.e., we checked that, with |A| = 5 alternatives, there is no satisfying assignment for an
encoding of PF-tournament-strategyproofness (cf. Theorem 1) and being a refinement of
UC (cf. Lemma 2), which the SAT solver confirmed within seconds. A human-readable
proof of this claim has been extracted from the computer-aided approach and is presented
in Section 5.1.2.

Finally, this paper’s main result regarding PF-strategyproofness follows directly from
Lemmas 3 and 4.

Theorem 3. For any number of alternatives m ≥ 5 there is no majoritarian SCF f that
satisfies PF-strategyproofness and Pareto-optimality.

Proof. We prove the statement inductively. The base case of m = 5 is covered by Lemma 4.
For the induction step, we apply the contrapositive of Lemma 3 with E := F, which directly
yields the desired results.

While the number of voters required for this impossibility has been kept implicit so far,
an upper bound of at most m2 −m − 1 = 19 voters can be derived from the construction
in the proof of Theorem 1. In Section 5 we will see, however, that a human-readable proof
of Theorem 3 can be extracted, which only requires seven voters.

As a consequence of Theorem 3, virtually all common tournament solutions—except the
top cycle (see Remark 2)—fail to be PF-strategyproof.

4.2.1 Remarks

Before we turn towards the technique of proof extraction, let us discuss some further insights
regarding Theorem 3, which have been, to a large extent, enabled by the universality of the
presented method.

Remark 1 (Strengthenings). It can be shown with the computer-aided method that
Theorem 3 holds even without the assumption of neutrality. Since then, however, the
optimizations based on canonical tournaments can no longer be used, extracted proofs
(cf. Section 5) are much more complex and we therefore decided to present the result with
neutrality here.23

The theorem can be further strengthened by additionally only requiring PF-single-edge-
strategyproofness (cf. Section 3.2) or an even weaker variant of PF-strategyproofness where
the manipulator is only allowed to swap two adjacent alternatives (see, e.g., Sato, 2013).

23. In addition, running times are much longer, which, however, is not a major concern given that not many
conjectures had to be tested for this result.
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Remark 2 (The Top Cycle TC ). Note that Theorem 3 is not in conflict with the fact
that TC is PF-strategyproof, as, for m ≥ 4 alternatives, TC is strictly coarser than UC
and therefore not Pareto-optimal. Possibly, TC is even the finest majoritarian Condorcet
extension that satisfies PF-strategyproofness for m ≥ 5. We were able to verify this for
5 ≤ m ≤ 7 using our computer program. In the case of four alternatives, UC is a strict
refinement of TC and (as our method shows) still PF-strategyproof. For m = 8 the time and
space requirements appear to be prohibitive; already for m = 7 (despite all optimizations
and approximations) encoding and solving the problem takes almost 24 hours, while for
m = 6 it runs in about three minutes. It is not obvious whether an inductive argument can
extend these verified instances to larger numbers of alternatives (as, for instance, such an
induction step would require at least five alternatives).

Remark 3 (Other Preference Extensions). An advantage of the computer-aided ap-
proach is its universality. We can, for instance, very easily adapt the implementation to
check set extensions other than the ones by Kelly and Fishburn.

Interestingly, our main result only relies on a small fraction of the power of the Fishburn
extension: it suffices to only compare disjoint sets and sets that are contained in one another.
In formal terms, the following set extension suffices for the impossibility:

X RF−
i Y if and only if


X RK

i Y when X ∩ Y = ∅,
X RF

i Y when X ⊆ Y or Y ⊆ X,

⊥ otherwise.

Actually, it would even suffice to only compare sets X and Y such that |X ∩ Y | ≤ 3.
We also checked a strengthening of the Fishburn extension: a voter prefers a set X to

a set Y if X is better than Y under both optimistic and pessimistic expectations.
Formally, X ROP

i Y if and only if

x Ri y for all x ∈ X and some y ∈ Y , and

y Ri x for all y ∈ Y and some x ∈ X.

This extension is a weakening of both the optimistic and the pessimistic notions of strate-
gyproofness in the Duggan-Schwartz Theorem (Duggan & Schwartz, 2000). In the majori-
tarian setting, POP-strategyproofness leads to an analogous impossibility as in Theorem 3
for m ≥ 4 already.

Remark 4 (Generality of Lemma 3). Note that the proofs of the individual properties
within the inductive proof of Lemma 3 do only rely on the definition of fe and stand
independently of each other. Furthermore, it may be noted that Lemma 3 can even be
shown for refinements of arbitrary majoritarian SCFs g whose choice set g(T ) does not
shrink when Condorcet losers are removed from T (rather than Pareto-optimal majoritarian
SCFs).

5. Proof Extraction

A major concern regarding computer-aided proofs is the difficulty of checking their correct-
ness. While our implementation correctly confirmed a number of existing results and this
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can be considered as testing, some doubts about the correctness of new results naturally
remain. Most SAT solvers offer some kind of proof trace, which can be checked by third-
party-software. This, however, does not guarantee correctness of the encoding but only
confirms the unsatisfiability of the corresponding CNF formula.

In this section, we show how human-readable proofs of the desired statements can be
extracted from our approach, which can then be verified just as any manual mathematical
proof. The general idea of this proof extraction technique lies in finding and analyzing a
minimal unsatisfiable core (also referred to as a minimal unsatisfiable set (MUS)) of the
SAT instance. An unsatisfiable core of a CNF formula is a subset of clauses that is already
unsatisfiable by itself. If any subset of clauses of the unsatisfiable core is satisfiable, then
the core is called minimal. In our case, the minimal unsatisfiable core contains information
about the concrete instances of axioms that have to be employed to obtain an impossibility
(e.g., manipulation instances, applications of Pareto optimality, etc). This information can
be extracted in a straightforward way and reveals the structure and arguments of the proof.

We exemplify this technique in Section 5.1, in which we extract a human-readable proof
of our main result (Theorem 3). In Section 5.2 we additionally enrich this proof by a set of
minimal corresponding preference profiles, which then shows that the result of Theorem 3
holds for any setting with at least seven voters.

In general, extracting human-readable proofs serves two separate purposes. On the
one hand, a human-readable proof can significantly raise confidence in the correctness of
the results, basically by making verification of the approach obsolete since now the results
themselves are directly verifiable. On the other hand, the extracted proofs sometimes
provide additional insight into the problems via their arguments and structure. In our case,
the number of voters required for the impossibility would not have been (easily) accessible
directly.

5.1 A Human-Readable Proof of Theorem 3

In order to extract a human-readable proof of Theorem 3, or actually its main ingredient
Lemma 4, we have to follow a series of three steps:

1. Obtain a suitable MUS of the CNF formula that encodes a PF-tournament-
strategyproof refinement of UC on five alternatives

2. Decode the MUS into a human-readable format

3. Interpret the human-readable MUS to obtain a human-readable proof

While the first two steps are computer-aided and can be largely automated, step three
requires some manual effort.

5.1.1 Obtaining a Suitable MUS of the CNF Formula

Extracting a minimal unsatisfiable core is a feature offered by a range of SAT solvers. In
this paper, we use PicoMUS (part of PicoSAT, Biere, 2008) for this job.24 It should be

24. Compiled with trace support in order to use core extraction in addition to clause selector variables. This
significantly improves the size of the resulting MUS.
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noted, however, that while an MUS is inclusion-minimal, it does not necessarily represent
a smallest unsatisfiable set (i.e., with a minimal number of clauses or variables).25

As the number of clauses turned out to be a good proxy for proof complexity and length,
we tried to find an MUS with a small number of clauses. When run on the complete,
optimized SAT encoding as described in Section 3.2, PicoMUS returns an MUS with
55 clauses. This is already a massive reduction compared to more than three million clauses
in the original problem instance, but we found an even smaller MUS with only 16 clauses
by randomly sampling sets of tournaments to be used instead of the full domain of all
tournaments when generating our problem files. Another heuristic approach of considering
“neighborhoods” of single tournaments (for instance, all tournaments that can be reached
by changing at most two edges in the transitive tournament) yielded a less significant
improvement with a total of 25 clauses.

While it seems natural that larger domains are generally better as they lead to the re-
quired impossibility more often than smaller domains, larger domains actually tend towards
larger proofs and even miss very small proofs. For instance, for the domain size s = 200
(consisting of s labeled tournaments) no proof smaller than 18 clauses was found, while the
same number of runs with s = 50 produced four proofs with just 16 clauses each.26

Therefore, in our setting, a medium-sized domain (s = 50 or s = 100 in our experiments)
appears to be best suited. The complete results of running time and proof size analysis given
different domain sizes s can be obtained from Figures 8 and 9 in Appendix C.

5.1.2 Decoding the MUS into a Human-Readable Format

The next step is to make the obtained MUS more accessible to humans. To this end, we first
(automatically) add comments to the original CNF for each manipulation clause during its
creation, and then select those comments that belong to clauses in the MUS. The comments
contain witnesses for the manipulation instances found, i.e., information about the original
tournament T , the manipulated tournament T ′, the respective choice sets f(T ) and f(T ′),
and the original preferences of the manipulator Rµ (compare Definition 3). Furthermore,
any variable symbol can easily be decoded into the tournament and choice set it represents,
which is helpful in particular for all non-manipulation clauses (orbit condition and Pareto-
optimality).

The result of this step is presented in Figure 6, where each tournament is represented
by a lower triangular representation of its adjacency matrix (see the proof of Lemma 4 in
Section 5.1.3 for graphical representations).

5.1.3 Interpreting the MUS and Obtaining a Human-Readable Proof

From the witnessed MUS it is just a small step to a textual, human-readable proof. With
a bit of practice, one can quickly understand the structure of the proof: it starts from the
orbit condition in the first line and the refinement condition in the last line, which each

25. While the tool CAMUS by Liffiton and Sakallah (2008) is theoretically capable of finding a smallest
MUS (with a minimal number of clauses), it did not terminate in a reasonable amount of time on our
very large CNF instances.

26. In addition, medium-sized domains are more efficient regarding their running time per generated proof,
which admittedly plays only a minor, but still important role given that the total running time for large
domains is about 20 hours.
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p cnf 341 16
218 231 232 233 234 247 248 0
−202 −330 0
c T: 1111111111 −> [ e ] ; T ’ : 1011100111 −> [ d , e ] ; P i : b , d , c , e , a
−233 −202 0
c T: 1101100111 −> [ e ] ; T ’ : 0010100111 −> [ a ] ; P i : b , c , d , a , e
−234 −202 0
c T: 1101100111 −> [ a , e ] ; T ’ : 0010100111 −> [ a ] ; P i : b , c , d , a , e
−218 −218 0
c T: 1101100111 −> [ a ] ; T ’ : 1001000100 −> [ e ] ; P i : e , c , a , d , b
−232 −232 0
c T: 1101100111 −> [ a , b , c , d ] ; T ’ : 1001000100 −> [ a , c , d , e ] ; P i : e , c , a , d , b
−248 −338 0
c T: 1101100111 −> [ a , b , c , d , e ] ; T ’ : 1100100101 −> [ b , c , e ] ; P i : b , e , c , d , a
−231 −202 0
c T: 1101100111 −> [ b , c , d ] ; T ’ : 1111111111 −> [ e ] ; P i : a , e , b , c , d
−247 −202 0
c T: 1101100111 −> [ b , c , d , e ] ; T ’ : 1111111111 −> [ e ] ; P i : a , e , b , c , d
−314 −314 0
c T: 1100101110 −> [ c ] ; T ’ : 1100100101 −> [ e ] ; P i : b , d , e , a , c
c T: 1100101110 −> [ c ] ; T ’ : 1100110110 −> [ b ] ; P i : b , c , d , e , a
−318 −318 0
c T: 1100101110 −> [ d ] ; T ’ : 1100100101 −> [ b ] ; P i : b , d , e , a , c
c T: 1100101110 −> [ d ] ; T ’ : 1100110110 −> [ a ] ; P i : b , c , e , a , d
−322 −322 0
c T: 1100101110 −> [ c , d ] ; T ’ : 1100110110 −> [ a , b ] ; P i : b , e , a , c , d
−326 −326 0
c T: 1100101110 −> [ e ] ; T ’ : 1100110110 −> [ d ] ; P i : b , c , d , e , a
−334 −202 0
c T: 1100101110 −> [ d , e ] ; T ’ : 1001111010 −> [ d ] ; P i : c , a , d , e , b
202 0
314 318 322 326 330 334 338 0

Figure 6: A version of the extracted MUS, in which all manipulation instances (here: binary
clauses) have been decoded into a human-readable format: two mappings of tournaments
(original T and manipulated T ′) to choice sets and the truthful preferences of the manipula-
tor Pµ. This information covers all variables and thus suffices to also decode the remaining
clauses.
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Truthful choice Manipulated choice
Manipulator’s

preferences

f(T1) =



{e}  
{a} ∪ {e}  
{b, c, d}  
{b, c, d} ∪ {e}  
{a}  
{a} ∪ {b, c, d}  

f(Ta) ⊆ UC (Ta) = {a} b, c, d, a, e

f(Te) ⊆ UC (Te) = {e} a, e, b, c, d

f(T ′1) =

{
{e} T ′1 is iso-

{a, c, d, e} morphic27 to T1

e, c, a, d, b

f(T2) =



{c}  
{d}  
{c, d}  
{e}  
{d, e}  

f(T ′2) =


{b}
{a} T ′2 is iso-

{a, b} morphic27 to T2

{d}

b, e, a, c, d

b, c, d, e, a

f(Td) ⊆ UC (Td) = {d} c, a, d, e, b

f(T ′e) ⊆ UC (T ′e) = {e} f(T2) = {c, e}  28 a, c, b, e, d

Table 2: Set of manipulation instances (one per line) to conclude that f(T1) = A =
{a, b, c, d, e} and f(T2) = {c, d, e}. Each of the truthful choices considered here leads
to a PF-tournament-manipulation instance (a contradiction to the assumption of PF-
tournament-strategyproofness). The tournaments are defined in Figure 7.

leave some (limited) possibilities for respective choice sets, and then excludes all possible
choices one after another by suitable manipulation instances. The full proof runs as follows.

Proof of Lemma 4. For a contradiction, let f be a majoritarian SCF on A = {a, b, c, d, e}
that satisfies PF-strategyproofness and Pareto-optimality. Recall that, by Theorem 1, f
is PF-tournament-strategyproof, too, and by Lemma 2 it has to be a refinement of UC
(i.e., f ⊆ UC ). Let furthermore T1 and T2 be the tournaments depicted in Figure 7. We
proceed in three steps: first, we show that f(T1) = UC (T1) = A. Second, we argue that
f(T2) = UC (T2) = {c, d, e}. And last, we prove that these two insights actually forms the
basis of a manipulation instance, which leads to the desired contradiction.

Let us start with f(T1) = UC (T1) = A. First, note that since the alternatives {b, c, d}
form an orbit we know that either {b, c, d} ⊆ f(T1) or {b, c, d}∩f(T1) = ∅ (cf. Definition 5).
We are going to exclude all remaining choice sets through PF-tournament-manipulation in-
stances. As a first example, suppose f(T1) = {e}. Then a voter with individual preferences
Pµ : b, c, d, a, e could reverse the edges (b, a) and (b, c) in T1 such that a transitive tourna-
ment Ta with Condorcet winner a results (which needs to be uniquely selected by f since
f ⊆ UC ). Since, however, {a} PF

µ {e}, this contradicts PF-tournament-strategyproofness.
The same example also works to exclude f(T1) = {a, e}. Note how these arguments cor-
respond to lines 5 to 8 of the extracted MUS in Figure 6. The (analogous) manipulation
instances for all possible choice sets other than A = {a, b, c, d, e} are given in Table 2 and
Figure 7.
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d c

b

e a

(a) T1

d c

b

e a

(b) T2

d c

b

e a

(c) Ta

d c

b

e a

(d) Te

d c

b

e a

(e) T ′1

d c

b

e a

(f) T ′2

d c

b

e a

(g) Td

d c

b

e a

(h) T ′′2

d c

b

e a

(i) T ′e

Figure 7: Tournaments which are required in the proof of Lemma 4. The uncovered sets are
marked in grey; edges that have been (for T ′e: will be) reversed by the manipulating voter
(cf. Table 2) are depicted as thick edges. Note the proof would also succeed with less edge
reversals in Ta, Te, Td, and T ′e (such that these tournaments only have Condorcet winners
rather than being transitive). These transitive tournaments are isomorphic, however, and
thus can be succinctly represented as the single clause 202 in the extracted MUS.

For f(T2) = UC (T2) = {c, d, e}, first observe that f(T2) ⊆ UC (T2) = {c, d, e} and hence
we only need to exclude any strict subset of {c, d, e}. Again we proceed by giving a possible
manipulation instance for each of those subsets. The complete list is to be found in Table 2
and Figure 7. Observe how the last line in Table 2 excludes f(T2) = {c, e} by considering
it as the manipulated choice for the (known) truthful choice f(T ′e) ⊆ UC (T ′e) = {e}.

As a last step, we provide a manipulation instance based on f(T1) = A and f(T2) =
{c, d, e}. For this, first observe that by renaming the alternatives we get f(T ′′2 ) = {b, c, e}
and so the manipulation instance results from a voter with preferences P ′µ : b, e, c, d, a. This

27. The isomorphisms are π1 =

(
a b c d e

b e c d a

)
and π2 =

(
a b c d e

d c a e b

)
, respectively.

28. The SAT solver actually returned an isomorphic copy of this instance, which we restructured to improve
readability.
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voter can reverse the edges (d, a) and (e, c) in T1 to create T ′′2 and obtain the PF-preferred
outcome {b, c, e}, a contradiction to the PF-strategyproofness of f .

Note that actually only the manipulation instance with f(T1) = {a} ∪ {b, c, d} and
f(T ′1) = {a, c, d, e} requires the Fishburn-extension; for the other instances the Kelly-
extension suffices.

5.2 Number of Voters Required

In the previous parts of the paper we have taken advantage of the fact that our condition
of tournament-strategyproofness abstracted away any reference to voters. It is interesting
to ask, however, how many voters are at least required for the obtained impossibility of
Theorem 3 to hold. The construction in the proof of Theorem 1 gives an implicit upper
bound of m2 −m− 1 = 19 voters, but this can be further improved to seven voters.

By slightly modifying the techniques described by Brandt, Geist, and Seedig (2014), we
were able to (automatically) construct minimal preference profiles for all steps in Proof 5.1.3.
While Brandt et al. (2014) provided a SAT-formulation of whether a given majority relation
can be induced by a given number of voters, we extended this framework to include axioms
for manipulation instances. In more detail, we re-used the axioms for linear preferences
and majority implications, but added axioms for the truthful preferences of the manipulator
and majority implications for the manipulated profile.

The profiles that we generated for all steps in the proof of Lemma 4 in Section 5.1.3
are given in Appendix D. The largest of these profiles contains seven voters, and all other
profiles can easily be extended to seven voters by adding pairs of voters with opposite
preferences. While this observation shows that seven is the smallest number of voters which
can be achieved with our extracted proof, it remains open whether, by another proof, the
number of voters can be further reduced below seven.

6. Conclusion

We have extended and applied computer-aided theorem proving based on SAT solving to
extensively analyze Kelly- and Fishburn-strategyproof majoritarian SCFs. This has led to a
range of results, both positive and negative. An important novel contribution of our work is
the ability to extract a human-readable proof from negative SAT instances. This eliminates
the need to verify the computer-aided method since impossibility results can directly be
checked based on their human-readable proofs. Based on the ease of adaptation of the
proposed method, we anticipate further insights to spring from the overall approach in the
future. Apart from simply applying our system to further investigate strategyproofness,
other potential applications related to our line of work include:

Unrestricted SCFs In order to reduce complexity, we have studied majoritarian SCFs
only. The framework, however, is applicable in the same way to general SCFs, which
“operate” on full preference profiles (rather than majority relations). The challenge then is
to find a suitable representation of such preference profiles and potentially corresponding
inductive arguments on the number of voters.
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Further axioms Some preliminary experiments suggest that our technique can easily
be applied to a range of properties other than strategyproofness, these deserve further
investigation. In many cases it suffices to just formalize and implement the additional
axioms. Of particular interest could be such properties that link the behavior of SCFs for
different domain sizes. As initial steps in this direction, we were able to extend the approach
to cover the property of participation (Brandl et al., 2015; Brandt et al., 2016c) as well as
a weak version of composition-consistency (cf. Section 4.1).

Smallest number of voters required As mentioned in Section 5.2, Theorem 3 holds
for any number of voters n ≥ 7, but it is not known whether this number is minimal. One
could adapt proof extraction as presented in Section 5 to search for a smallest proof in the
number of voters, rather than in the number of clauses, to settle this question.

Generalization of the inductive argument It appears reasonable to investigate
whether the inductive argument of Lemma 3 can be further generalized to a whole class of
properties/axioms, ideally based on their logical form. As in the work of Geist and Endriss
(2011), this would then enable an automated search for further theorems about SCFs.

Apart from these concrete ideas, applications of the general approach can be envisioned
in many areas of theoretical economics.
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Appendix A. Proof of Lemma 1

We first show that the orbit condition is equivalent to a statement about automorphisms:

Lemma 5. Let f be a tournament choice function. Then the following statement is equiv-
alent to the orbit condition:

α(f(Tc)) = f(Tc) for all canonical tournaments Tc and their automorphisms α. (8)

Proof. Let f be a tournament choice function and Tc a canonical tournament. For the di-
rection from left to right, let furthermore O ∈ OTc an orbit on Tc. Now pick two alternatives
a, b ∈ O. We show that either both alternatives are chosen by f or neither one is. Since a
and b are in the same orbit, there must be an automorphism α on Tc for which α(a) = b.
Observe that a ∈ f(Tc) if and only if b ∈ α(f(Tc)) if and only if b ∈ f(Tc), where the last
step is an application of Condition (8).
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For the converse, let α be an automorphism on Tc, pick an arbitrary alternative a ∈ A
and consider its inverse image α−1(a) =: b. Since a and b are in the same orbit, it holds by
the orbit condition that a ∈ f(Tc) if and only if b ∈ f(Tc). Furthermore, as α(b) = a we
get that a ∈ f(Tc) if and only if a ∈ α(f(Tc)). Thus, f(Tc) = α(f(Tc)), which is what we
wanted to prove.

Next we prove a general statement about how to split any isomorphism into a canonical
isomorphism and an automorphism.

Lemma 6. Any isomorphism π : Tc → T can be decomposed into the canonical isomorphism
πT and an automorphism α : Tc → Tc. I.e., for any isomorphism π : Tc → T there is an
automorphism α : Tc → Tc such that π = πT ◦ α.

Proof. Define α : Tc → Tc by setting α := π−1
T ◦ π. Since inverses and compositions of

isomorphisms are themselves isomorphisms, it follows directly that α is an automorphism.
Furthermore, πT ◦ α = πT ◦

(
π−1
T ◦ π

)
=
(
πT ◦ π−1

T

)
◦ π = π.

Lemmas 5 and 6 together can then be used to prove Lemma 1:

Lemma 1. For any tournament choice function, neutrality is equivalent to the conjunction
of the orbit condition and canonical isomorphism equality.

Proof. Let f be a tournament choice function and first note that by Lemma 5 we might use
Condition (8) rather than the orbit condition. Therefore, the direction from left to right is
trivially true.

For the direction from right to left, we first only show that canonical isomorphism
equality (2) together with Condition (8) implies neutrality for canonical tournaments: So
let Tc be a canonical tournament, π a permutation and define T ′ := π(Tc). By Lemma 6, we
can decompose the isomorphism π : Tc → T ′ such that π = π′T ◦ α for some automorphism
α on Tc. Then the following chain of equalities holds, which proves the claim for canonical
tournaments:

f(π(Tc)) = f(T ′)
(2)
= πT ′(f(T ′c)) = πT ′(f(Tc))

(8)
= πT ′(α(f(Tc))) = π(f(Tc)). (9)

For arbitrary tournaments T and permutations π, we write T as πT (Tc) and obtain

f(π(T )) = f(π(πT (Tc))) = f((π ◦ πT )(Tc)),

which, since Tc is canonical, is equal to

(π ◦ πT )(f(Tc))) = π(πT (f(Tc)))
(2)
= π(f(T ))

by Condition (9). This finishes the proof.
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Appendix B. Pseudo-Code for Encoding

We present (as an illustrative example) the simple pseudo-code of Algorithm 3 to gener-
ate the CNF form of Axiom 1 (functionality of the tournament choice function; cf. Sec-
tion 3.1.1).

foreach Tournament T do
foreach Set X do

variable(c(T,X));

newClause();
foreach Set Y do

foreach Set Z 6= Y do
variable not(c(T, Y ));
variable not(c(T,Z));
newClause();

Algorithm 3: Functionality of the tournament choice function

Appendix C. MUS Search Analysis (Running Time and Size of MUS)

In this appendix, we present the complete results of the running time (Figure 8) and MUS
size (measured in number of clauses; Figure 9) analyses given different sizes s of randomly
sampled domains. In our setting, sizes of s = 50 or s = 100 appear to offer good results
both in terms of running time and actually finding small proofs.
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Figure 8: Number of unsatisfiable instances (i.e., proofs found) and running time results
under heuristics with different numbers s of sampled tournaments (labeled, 1000 runs).
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Appendix D. Profiles for the Extracted Proof of Theorem 3

Here we display the MUS of Figure 6 enriched with minimal preference profiles for each
step in the proof of Theorem 3. The profiles were generated and checked for minimality on
a computer (and using a SAT solver) in less than a second each.

p cnf 341 16
218 231 232 233 234 247 248 0
Agent 0 : b , c , d , a , e
Agent 1 : a , e , c , d , b
Agent 2 : e , d , b , c , a

−202 −330 0
c T: 1111111111 −> [ e ] ; T ’ : 1011100111 −> [ d , e ] ; P i : b , d , c , e , a
Agent 0 : b , d , c , e , a
Agent 1 : c , d , a , e , b
Agent 2 : e , c , d , b , a
Agent 3 : a , e , d , c , b
Agent 4 : e , d , b , a , c
Manipulated p r e f e r e n c e s o f agent 0 : b , a , c , d , e

−233 −202 0
c T: 1101100111 −> [ e ] ; T ’ : 0010100111 −> [ a ] ; P i : b , c , d , a , e
−234 −202 0
c T: 1101100111 −> [ a , e ] ; T ’ : 0010100111 −> [ a ] ; P i : b , c , d , a , e
Agent 0 : b , c , d , a , e
Agent 1 : a , e , d , b , c
Agent 2 : e , c , d , b , a
Manipulated p r e f e r e n c e s o f agent 0 : a , c , b , d , e

−218 −218 0
c T: 1101100111 −> [ a ] ; T ’ : 1001000100 −> [ e ] ; P i : e , c , a , d , b
−232 −232 0
c T: 1101100111 −> [ a , b , c , d ] ; T ’ : 1001000100 −> [ a , c , d , e ] ; P i : e , c , a , d , b
Agent 0 : e , c , a , d , b
Agent 1 : d , a , e , b , c
Agent 2 : d , a , e , b , c
Agent 3 : d , e , b , c , a
Agent 4 : c , e , b , d , a
Agent 5 : b , c , a , e , d
Agent 6 : b , a , c , e , d
Manipulated p r e f e r e n c e s o f agent 0 : b , a , c , d , e

−248 −338 0
c T: 1101100111 −> [ a , b , c , d , e ] ; T ’ : 1100100101 −> [ b , c , e ] ; P i : 1 > 4 >

2 > 3 > 0
Agent 0 : 1 > 4 > 2 > 3 > 0
Agent 1 : 2 > 3 > 0 > 4 > 1
Agent 2 : 2 > 4 > 3 > 1 > 0
Agent 3 : 0 > 4 > 3 > 1 > 2
Agent 4 : 1 > 0 > 4 > 2 > 3
Manipulated p r e f e r e n c e s o f agent 0 :
1 > 2 > 0 > 4 > 3

−231 −202 0
c T: 1101100111 −> [ b , c , d ] ; T ’ : 1111111111 −> [ e ] ; P i : 0 > 4 > 1 > 2 > 3
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−247 −202 0
c T: 1101100111 −> [ b , c , d , e ] ; T ’ : 1111111111 −> [ e ] ; P i : 0 > 4 > 1 > 2 > 3
Agent 0 : 0 > 4 > 1 > 2 > 3
Agent 1 : 3 > 1 > 2 > 0 > 4
Agent 2 : 4 > 2 > 3 > 1 > 0
Manipulated p r e f e r e n c e s o f agent 0 :
4 > 0 > 3 > 2 > 1

−314 −314 0
c T: 1100101110 −> [ c ] ; T ’ : 1100100101 −> [ e ] ; P i : 1 > 3 > 4 > 0 > 2
Agent 0 : 1 > 3 > 4 > 0 > 2
Agent 1 : 4 > 3 > 1 > 2 > 0
Agent 2 : 4 > 1 > 2 > 0 > 3
Agent 3 : 2 > 0 > 3 > 4 > 1
Agent 4 : 2 > 0 > 3 > 4 > 1
Manipulated p r e f e r e n c e s o f agent 0 :
1 > 2 > 0 > 4 > 3
c T: 1100101110 −> [ c ] ; T ’ : 1100110110 −> [ b ] ; P i : 1 > 2 > 3 > 4 > 0
Agent 0 : 1 > 2 > 3 > 4 > 0
Agent 1 : 0 > 3 > 4 > 2 > 1
Agent 2 : 0 > 4 > 2 > 3 > 1
Agent 3 : 4 > 1 > 2 > 0 > 3
Agent 4 : 3 > 4 > 1 > 2 > 0
Manipulated p r e f e r e n c e s o f agent 0 :
3 > 1 > 2 > 0 > 4

−318 −318 0
c T: 1100101110 −> [ d ] ; T ’ : 1100100101 −> [ b ] ; P i : 1 > 3 > 4 > 0 > 2
c T: 1100101110 −> [ d ] ; T ’ : 1100110110 −> [ a ] ; P i : 1 > 2 > 4 > 0 > 3
Agent 0 : 1 > 2 > 4 > 0 > 3
Agent 1 : 3 > 4 > 1 > 2 > 0
Agent 2 : 4 > 0 > 2 > 3 > 1
Agent 3 : 2 > 0 > 3 > 4 > 1
Agent 4 : 1 > 0 > 3 > 4 > 2
Manipulated p r e f e r e n c e s o f agent 0 :
3 > 1 > 2 > 0 > 4

−322 −322 0
c T: 1100101110 −> [ c , d ] ; T ’ : 1100110110 −> [ a , b ] ; P i : 1 > 4 > 0 > 2 > 3
Agent 0 : 1 > 4 > 0 > 2 > 3
Agent 1 : 2 > 0 > 3 > 4 > 1
Agent 2 : 3 > 4 > 1 > 2 > 0
Manipulated p r e f e r e n c e s o f agent 0 :
1 > 0 > 3 > 4 > 2

−326 −326 0
c T: 1100101110 −> [ e ] ; T ’ : 1100110110 −> [ d ] ; P i : 1 > 2 > 3 > 4 > 0
Agent 0 : 1 > 2 > 3 > 4 > 0
Agent 1 : 0 > 3 > 4 > 2 > 1
Agent 2 : 0 > 4 > 2 > 3 > 1
Agent 3 : 4 > 1 > 2 > 0 > 3
Agent 4 : 3 > 4 > 1 > 2 > 0
Manipulated p r e f e r e n c e s o f agent 0 :
3 > 1 > 2 > 0 > 4
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−334 −202 0
c T: 1100101110 −> [ d , e ] ; T ’ : 1001111010 −> [ d ] ; P i : 2 > 0 > 3 > 4 > 1
Agent 0 : 2 > 0 > 3 > 4 > 1
Agent 1 : 1 > 4 > 0 > 2 > 3
Agent 2 : 3 > 4 > 1 > 2 > 0
Manipulated p r e f e r e n c e s o f agent 0 :
3 > 1 > 0 > 4 > 2

202 0
Agent 0 : 4 > 3 > 2 > 1 > 0

314 318 322 326 330 334 338 0
Agent 0 : 2 > 0 > 3 > 4 > 1
Agent 1 : 3 > 4 > 1 > 2 > 0
Agent 2 : 4 > 1 > 2 > 0 > 3
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