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Two important requirements when aggregating the preferences of multiple agents are that the outcome should

be economically efficient and the aggregation mechanism should not be manipulable. In this paper, we provide

a computer-aided proof of a sweeping impossibility using these two conditions for randomized aggregation

mechanisms. More precisely, we show that every efficient aggregation mechanism can be manipulated for all
expected utility representations of the agents’ preferences. This settles an open problem and strengthens a

number of existing theorems, including statements that were shown within the special domain of assignment.

Our proof is obtained by formulating the claim as a satisfiability problem over predicates from real-valued

arithmetic, which is then checked using an SMT (satisfiability modulo theories) solver. In order to verify the

correctness of the result, a minimal unsatisfiable set of constraints returned by the SMT solver was translated

back into a proof in higher-order logic, which was automatically verified by an interactive theorem prover. To

the best of our knowledge, this is the first application of SMT solvers in computational social choice.

1 INTRODUCTION
Models and results from microeconomic theory, in particular from game theory and social choice,

have proven to be very valuable when reasoning about computational multiagent systems [see, e.g.,

Brandt et al. 2016; Nisan et al. 2007; Rothe 2015; Shoham and Leyton-Brown 2009]. Two fundamental

notions in this context are efficiency—no agent can be made better off without making another one

worse off—and strategyproofness—no agent can obtain a more preferred outcome by manipulating

his preferences. Gibbard [1973] and Satterthwaite [1975] have shown that every strategyproof social

choice function is either dictatorial or imposing. Hence, strategyproofness can only be achieved at

the cost of discriminating among the agents or among the alternatives. One natural possibility to

restore fairness is to allow for randomization. Functions that map a profile of individual preferences

to a probability distribution over alternatives (a so-called lottery) are known as social decision
schemes (SDSs). The use of lotteries for the selection of officials interestingly goes back to the

world’s first democracy in Athens, where it was widely regarded as a principal characteristic of

democracy [Headlam 1933], and has recently gained increasing attention in political science [see,

e.g., Dowlen 2009; Guerrero 2014] and social choice [see, e.g., Brandt 2017].

Generalizing his previous result, Gibbard [1977] proved that the only strategyproof and ex
post efficient social decision schemes are randomizations over dictatorships.

1
Gibbard’s notion of

strategyproofness requires that no agent is better off by manipulating his preferences for some
expected utility representation of the agents’ ordinal preferences. This condition is quite demanding

because an SDS may be deemed manipulable just because it can be manipulated for a contrived and

highly unlikely utility representation. In this paper, we adopt a weaker notion of strategyproofness,

first used by Postlewaite and Schmeidler [1986] and popularized by Bogomolnaia and Moulin

[2001]. This notion requires that no agent should be better off by manipulating his preferences

for all expected utility representations of the agents’ preferences. At the same time, we use a

1
Alternative proofs for this important theorem were provided by Duggan [1996], Nandeibam [1997], and Tanaka [2003].
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stronger notion of efficiency than Gibbard [1977]. This notion is defined in analogy to our notion of

strategyproofness and requires that no agent can be made better off for all utility representations

of the agents’ preferences, without making another one worse off for some utility representation.

This type of efficiency was introduced by Bogomolnaia and Moulin [2001] and is also known as

ordinal efficiency or SD-efficiency where SD stands for stochastic dominance.

Our main result establishes that no anonymous and neutral SDS satisfies efficiency and strate-

gyproofness. This settles a conjecture by Aziz et al. [2013b] and strengthens theorems by Aziz et al.

[2013b], Aziz et al. [2014], Brandl et al. [2016b], and—when assuming anonymity and neutrality—

Hylland [1980]. It also generalizes related statements that were shown within the special domain of

assignment, when interpreting them as social choice results [Aziz and Kasajima 2017; Bogomolnaia

and Moulin 2001; Katta and Sethuraman 2006; Kojima 2009; Nesterov 2017; Zhou 1990].

The proof of our main result heavily relies on computer-aided solving techniques. These tech-

niques were introduced in computational social choice by Tang and Lin [2009], who reduce well-

known impossibility results, such as Arrow’s theorem, to finite instances, which can then be

checked by a Boolean satisfiability (SAT) solver. More recently, this idea has been adapted to more

complex settings and axioms while focussing on proving new results rather than reproducing

existing ones [Brandl et al. 2015; Brandt and Geist 2016; Brandt et al. 2017; Geist and Endriss 2011].

An overview of computer-aided theorem proving in computational social choice is given by Geist

and Peters [2017].

In this paper, we go beyond the SAT-based techniques of previous contributions by designing an

SMT (satisfiability modulo theories) encoding that captures axioms for randomized social choice.

SMT can be viewed as an enriched form of the satisfiability problem (SAT) where Boolean variables

are replaced by statements from a theory, such as specific data types or arithmetics. Similar to SAT,

there is a range of SMT solvers developed by an active community that runs annual competitions

[Barrett et al. 2013]. Typically, SMT solvers are used as backends for verification tasks such as the

verification of software. To capture axioms about lotteries, we use the theory of (quantifier-free)

linear real arithmetic. Solving this version of SMT can be seen as an extension to linear programming
in which arbitrary Boolean operators are allowed to connect (in-)equalities.

Following the idea of Brandt and Geist [2016], we extracted a minimal unsatisfiable set (MUS) of
constraints in order to verify our result. Despite its relatively complex 94 (non-trivial) constraints,

which operate on 47 canonical preference profiles, the MUS was translated back into a proof in

higher-order logic, which in turn was verified via the interactive theorem prover Isabelle/HOL.
This releases any need to verify our program for generating the SMT formula. We also translated

this proof into a human-readable—but tedious to check—proof, which is given in the Appendix.

2 THE MODEL
LetA be a finite set ofm alternatives and N = {1, . . . ,n} a set of agents. A (weak) preference relation
is a complete and transitive binary relation on A. The preference relation reported by agent i
is denoted by ≿i , and the set of all preference relations by R. In accordance with conventional

notation, we write ≻i for the strict part of ≿i , i.e., x ≻i y if x ≿i y but not y ≿i x , and ∼i for the

indifference part of ≿i , i.e., x ∼i y if x ≿i y and y ≿i x . A preference relation ≿i is linear if x ≻i y
or y ≻i x for all distinct alternatives x ,y ∈ A. We will compactly represent a preference relation as

a comma-separated list where all alternatives among which an agent is indifferent are placed in a

set. For example, x ≻i y ∼i z is represented by ≿i : x , {y, z}. A preference profile R = (≿1, . . . ,≿n)
is an n-tuple containing a preference relation ≿i for each agent i ∈ N . The set of all preference

profiles is thus given by RN
. For a given R ∈ RN

and ≿ ∈ R, Ri 7→≿ denotes a preference profile
identical to R except that ≿i is replaced with ≿, i.e., Ri 7→≿ = R \ {(i,≿i )} ∪ {(i,≿)}.
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2.1 Social Decision Schemes
Our central objects of study are social decision schemes: functions that map a preference profile

to a lottery (or probability distribution) over the alternatives. The set of all lotteries over A is

denoted by ∆(A), i.e., ∆(A) = {p ∈ RA
≥0
:

∑
x ∈A p(x) = 1}, where p(x) is the probability that p

assigns to x . Formally, a social decision scheme (SDS) is a function f : RN → ∆(A). By supp(p) we
denote the support of a lottery p ∈ ∆(A), i.e., the set of all alternatives to which p assigns positive

probability. Two common minimal fairness conditions for SDSs are anonymity and neutrality, i.e.,

symmetry with respect to agents and alternatives, respectively. Formally, anonymity requires that

f (R) = f (R ◦ σ ) for all R ∈ RN
and permutations σ : N → N over agents. Neutrality, on the other

hand, is defined via permutations over alternatives. An SDS f is neutral if f (R)(x) = f (π (R))(π (x))
for all R ∈ RN

, permutations π : A → A, and x ∈ A.2

2.2 Efficiency and Strategyproofness
Many important properties of SDSs, such as efficiency and strategyproofness, require us to reason

about the preferences that agents have over lotteries. This is commonly achieved by assuming that

in a preference profile R every agent i , in addition to this preference relation ≿i , is equipped with

a von Neumann-Morgenstern (vNM) utility function uRi : A → R. By definition, a utility function

uRi has to be consistent with the ordinal preferences, i.e., for all x ,y ∈ A, uRi (x) ≥ uRi (y) iff x ≿i y.
A utility representation u then associates with each preference profile R an n-tuple (uR

1
, . . . ,uRn ) of

such utility functions. Whenever the preference profile R is clear from the context, the superscript

will be omitted and we write ui instead of the more cumbersome uRi .
Given a utility function ui , agent i prefers lottery p to lottery q iff the expected utility for p is

at least as high as that of q. With slight abuse of notation the domain of utility functions can be

extended to ∆(A) by taking expectations, i.e.,

ui (p) =
∑
x ∈A

p(x)ui (x).

It is straightforward to define efficiency and strategyproofness using expected utility. For a given

utility representation u and a preference profile R, a lottery p u-(Pareto-)dominates another lottery
q at R if

uRi (p) ≥ uRi (q) for all i ∈ N , and

uRi (p) > uRi (q) for some i ∈ N .

An SDS f is u-efficient if it never returns u-dominated lotteries, i.e., for all R ∈ RN
, f (R) is not

u-dominated at R. The notion of u-strategyproofness can be defined analogously: for a given

utility representation u, preference profile R, agent i , and preference relation ≿, an SDS f can be

u-manipulated at R by agent i reporting ≿ if

uRi (f (R
i 7→≿)) > uRi (f (R)).

An SDS is u-strategyproof if there is no preference profile R, agent i , and preference relation ≿ such

that it can be u-manipulated at R by agent i reporting ≿.
The assumption that the vNM utility functions of all agents (and thus their complete preferences

over lotteries) are known is quite unrealistic. Often even the agents themselves are uncertain about

2π (R) is the preference profile obtained from π by replacing ≿i with ≿
π
i for every i ∈ N , where π (x ) ≿πi π (y) if and

only if x ≿i y .
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their preferences over lotteries and are only aware of their ordinal preferences over alternatives.
3

A natural way to model this uncertainty is to leave the utility functions unspecified and instead

quantify over all utility functions that are consistent with the agents’ ordinal preferences. This

modeling assumption leads to much weaker notions of efficiency and strategyproofness.

Definition 2.1. An SDS is efficient if it never returns a lottery that is u-dominated for all utility

representations u.

As mentioned in the introduction, this notion of efficiency is also known as ordinal efficiency or

SD-efficiency [see, e.g., Aziz et al. 2015, 2017; Bogomolnaia and Moulin 2001]. The relationship to

stochastic dominance will be discussed in more detail in Section 4.2.

Example 2.2. Consider A = {a,b, c,d} and the preference profile R = (≿1, . . . ,≿4),

≿1 : {a, c}, {b,d}, ≿2 : {b,d}, {a, c},

≿3 : {a,d},b, c , ≿4 : {b, c},a,d

Observe that the lottery 7/24a + 7/24b + 5/24 c + 5/24d , which is returned by the well-known SDS

random serial dictatorship (RSD), is u-dominated by 1/2a + 1/2b for every utility representation

u. Hence, any SDS that returns this lottery for the profile R would not be efficient. On the other

hand, the lottery 1/2a + 1/2b is not u-dominated, which can, for instance, be checked via linear

programming (see Lemma 4.5).

We can also define a weak notion of strategyproofness in analogy to our notion of efficiency.

Definition 2.3. An SDS ismanipulable if there is a preference profile R, an agent i , and a preference
relation ≿ such that it is u-manipulable at R by agent i reporting ≿ for all utility representations u.
An SDS is strategyproof if it is not manipulable.

Alternatively, there is a stronger version of strategyproofness first considered by Gibbard [1977],

which prescribes that an SDS should be u-strategyproof for all utility representations u.
For more information concerning the relationship between sets of possible utility functions and

preference extensions, such as stochastic dominance, the reader is referred to Aziz et al. [2015].

3 THE RESULT
Our main result shows that efficiency and strategyproofness are incompatible with basic fairness

properties. Aziz et al. [2013b] raised the question whether there exists an anonymous, efficient,

and strategyproof SDS. When additionally requiring neutrality, we can answer this question in the

negative.

Theorem 3.1. Ifm ≥ 4 and n ≥ 4, there is no anonymous and neutral SDS that satisfies efficiency
and strategyproofness.

The proof of Theorem 3.1, which heavily relies on computer-aided solving techniques, is discussed

in Section 4. Let us first discuss the independence of the axioms and relate the result to existing

theorems. RSD satisfies all axioms except efficiency; another SDS known asmaximal lotteries satisfies
all axioms except strategyproofness [cf. Aziz et al. 2017]. Serial dictatorship, the deterministic version

of RSD, satisfies neutrality, efficiency, and strategyproofness but violates anonymity. It is unknown
whether Theorem 3.1 still holds when dropping the assumption of neutrality. Our proof, however,

only requires a technical weakening of neutrality (cf. Section 4.1).

3
When assuming that all agents possess vNM utility functions, these utility functions could be taken as inputs for the

aggregation function. Such aggregation functions are called cardinal decision schemes (see Section 3.1). Concrete vNM utility

functions are often unavailable and their representation may require infinite space.
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3.1 Related Results for Social Choice
Theorem 3.1 generalizes several existing results and is closely related to a number of results in

subdomains of social choice. Aziz et al. [2013b] proved a weak version of Theorem 3.1 for the

rather restricted class of majoritarian SDSs, i.e., SDSs whose outcome may only depend on the

pairwise majority relation. This statement has later been generalized by Aziz et al. [2014] to all

SDSs whose outcome only depends on the weighted majority relation. More recently, Brandl et al.

[2016b] have shown that while random dictatorship satisfies efficiency and strategyproofness (as

well as anonymity and neutrality) on the domain of linear preferences, it cannot be extended to the

full domain of weak preferences without violating at least one of these properties. Their theorem is

a direct consequence of Theorem 3.1. Other impossibility results have been obtained for stronger

notions of efficiency and strategyproofness, which weakens the corresponding statements. Aziz

et al. [2014] have shown that there is no anonymous and neutral SDS that satisfies efficiency and

strategyproofness with respect to the pairwise comparison lottery extension and with respect to

the upward lexicographic extension.4 Both of these notions of efficiency and strategyproofness are

stronger than the ones used in Theorem 3.1.

In a groundbreaking paper, Hylland [1980, Theorem 2] has shown that the only cardinal de-

cision schemes, i.e., functions that map utility profiles to lotteries, satisfying u-efficiency and

u-strategyproofness are dictatorships [see also Dutta et al. 2007, 2008; Nandeibam 2013]. Under the

assumption of anonymity, this result turns into an impossibility because dictatorships clearly violate

anonymity. When additionally assuming neutrality, this impossibility is implied by Theorem 3.1

because every cardinal decision scheme can be associated with an SDS by selecting some consistent

utility function for every preference relation and returning the outcomes for the corresponding

utility profiles. This transformation turns au-efficient andu-strategyproof cardinal decision scheme

into an efficient and strategyproof SDS as these properties are purely ordinal. Hence, Theorem 3.1

implies that there is no anonymous, neutral, u-efficient, and u-strategyproof cardinal decision
scheme. Hylland’s notions of efficiency and strategyproofness are stronger than ours because he

considers cardinal decision schemes.

3.2 Related Results for Assignment
A subdomain of social choice that has been thoroughly studied in the literature is the assignment

(aka house allocation or two-sided matching with one-sided preferences) domain. Assignment

problems are concerned with the allocation of objects to agents based on the agents’ preferences

over objects. An assignment problem can be associated with a social choice problem by letting the

set of alternatives be the set of deterministic allocations and postulating that agents are indifferent

among all allocations in which they receive the same object [see, e.g., Aziz et al. 2013a].
5
Thus,

impossibility results for the assignment setting can be interpreted as impossibility results for the

social choice setting because they even hold in a smaller domain and an SDS that satisfies efficiency

and strategyproofness in the social choice domain also satisfies these properties in any subdomain.

In the following we discuss impossibility results in the assignment domain which, if interpreted

for the social choice domain and when assuming anonymity and neutrality, can be seen as weaker

versions of Theorem 3.1 because they are based on stronger notions of efficiency or strategyproof-

ness or require additional properties. In a very influential paper, Bogomolnaia and Moulin [2001]

4
The statement for the pairwise comparison extension holds for at least three agents and three alternatives, whereas

Theorem 3.1 does not hold for less then four alternatives since RSD satisfies all properties for up to three alternatives. In

contrast to Theorem 3.1, the statement for the upward lexicographic extension does not require neutrality and also holds

for linear preferences.

5
Note that this transformation turns assignment problems with linear preferences over k objects into social choice

problems with weak preferences over k ! allocations.
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have shown that no randomized assignment mechanism satisfies both efficiency and a strong notion

of strategyproofness while treating all agents equally. The underlying notion of strategyproofness is

identical to the one used by Gibbard [1977] and prescribes that the SDS cannot beu-manipulated for

any utility representation u. The result by Bogomolnaia and Moulin even holds when preferences

over objects are single-peaked [Kasajima 2013]. In a related paper, Katta and Sethuraman [2006]

proved that no assignment mechanism satisfies efficiency, strategyproofness, and envy-freeness for

the full domain of preferences.
6
Related impossibility theorems for varying notions of envy-freeness

and for multi-unit demand with additive preferences were shown by Nesterov [2017], Kojima [2009],

and Aziz and Kasajima [2017].

Settling a conjecture by Gale [1987], Zhou [1990] showed that no cardinal assignment mechanism

satisfies u-efficiency and u-strategyproofness while treating all agents equally.
7
When interpreted

as a social choice result using anonymity and neutrality, Zhou’s theorem states that there is no

anonymous, neutral, u-efficient, and u-strategyproof cardinal decision scheme. This follows from

Theorem 3.1 as described in Section 3.1.

4 PROVING THE RESULT
In this section, we first reduce the statement of Theorem 3.1 to the special case of m = 4 and

n = 4, which we then prove via SMT solving. We present an encoding for any finite instance of

Theorem 3.1 as an SMT problem in the logic of (quantifier-free) linear real arithmetic (QF_LRA). For
compatibility with different SMT solvers our encoding adheres to the SMT-LIB standard [Barrett

et al. 2010]. In total, we are going to design the following four types of SMT constraints:

• lottery definitions (Lottery),

• the orbit condition
8
(Orbit),

• strategyproofness (Strategyproofness), and

• efficiency (Efficiency).

Other conditions such as anonymity are taken care of by the representation of preference profiles.

We then apply an SMT solver to show that this set of constraints for the case ofm = 4 and n = 4

is unsatisfiable, i.e., no SDS f with the desired properties exists, and explain how the output of the

solver can be used to obtain a human-verifiable proof of this result.

Let us start with the reduction lemma before we turn to the concrete encoding in the following

subsections.

Lemma 4.1. If there is an anonymous and neutral SDS f that satisfies efficiency and strategyproofness
for |A| =m alternatives and |N | = n agents then, for allm′ ≤ m and n′ ≤ n, we can also find an SDS
f ′ defined form′ alternatives and n′ agents that satisfies the same properties.

Proof. Let f be an anonymous and neutral SDS that satisfies efficiency and strategyproofness

form alternatives and n agents. We define a projection f ′ of f onto A′ ⊆ A, |A′ | = m′ ≤ m and

N ′ = {1, . . . ,n′} ⊆ N ,n′ ≤ n that satisfies all required properties:

6
Envy-freeness is a fairness property that is stronger than equal treatment of equals as used by Bogomolnaia and Moulin

[2001].

7
The theorem by Zhou only requires that agents with the same utility function receive the same amount of expected

utility but not necessarily the same assignment. Gale’s original conjecture assumed equal treatment of equals.

8
The orbit condition models a part of neutrality.



Proving the Incompatibility of Efficiency and Strategyproofness via SMT Solving 7

For every preference profile R′
on A′

and N ′
, let f ′(R′) = f (R), where R is defined by the

following conditions:

≿i ∩ (A′ ×A′) = ≿′i for all i ∈ N ′
, (1)

x ≻i y for all x ∈ A′,y ∈ A \A′
and i ∈ N ′

, (2)

y ∼i z for all y, z ∈ A \A′
and i ∈ N ′

, and (3)

y ∼i z for all y, z ∈ A and i ∈ N \ N ′
. (4)

Informally, by (1) agents in N ′
have the same preferences over alternatives from A′

in R and R′
.

Moreover, by (2) they like every alternative in A′
strictly better than every alternative not in A′

and

by (3) they are indifferent between all alternatives not in A′
. Finally, by (4) all agents in N \ N ′

are

completely indifferent. With these conditions, R is uniquely specified given R′
, and only lotteries p

with supp(p) ⊆ A′
are efficient in R. Thus, f ′ is well-defined and it is left to show that f ′ inherits

the relevant properties from f . The SDS f ′ is anonymous since f is anonymous and agents in N
can only differ by their preferences over A′

. Neutrality follows as f is neutral and all agents are

indifferent between all alternatives not in A′
. Efficiency is satisfied by f ′ since f is efficient and the

same set of lotteries is efficient in R and R′
. Finally, f ′ is strategyproof because f is strategyproof

and the outcomes of f ′ under the two profiles R′
and (R′)i 7→≿

′

are equal to the outcomes of f under

the two (extended) profiles R and Ri 7→≿, respectively. □

4.1 Framework, Anonymity, and Neutrality
For a given number of agentsn and set of alternativesA, we encode an arbitrary SDS f : RN → ∆(A)
by a set of real-valued variables pR,x with R ∈ RN

and x ∈ A. Each pR,x then represents the

probability with which alternative x is selected for profile R, i.e., pR,x = f (R)(x).
This encoding of lotteries leads to the first simple constraints for our SMT encoding, which

ensure that for each preference profile R the corresponding variables pR,x , x ∈ A indeed encode a

lottery: ∑
x ∈A

pR,x = 1 for all R ∈ RN
, and

pR,x ≥ 0 for all R ∈ RN
and x ∈ A.

(Lottery)

We are now going to argue that, in conjunction with anonymity and neutrality (see Section 2),

it suffices to consider these constraints for a subset of preference profiles. This is because, in

contrast to the other axioms, we directly incorporate anonymity and neutrality into the structure

of the encoding rather than formulating them as actual constraints. Similar to the construction

involving canonical tournament representations by Brandt and Geist [2016], we model anonymity

and neutrality by computing for each preference profile R ∈ RN
a canonical representation Rc ∈ RN

with respect to these properties. In this representation, two preference profiles R and R′
are equal

(i.e., Rc = R′
c) iff one can be transformed into the other by renaming the agents and alternatives.

Equivalently, Rc = R′
c iff, for every anonymous and neutral SDS f , the lotteries f (R) and f (R′) are

equal (modulo the renaming of the alternatives).

The SMT constraints and SMT variables are then instantiated only for these canonical repre-

sentations RN
c ⊆ RN

. Apart from enabling an encoding of anonymous and neutral SDSs without

any explicit reference to permutations, this also offers a substantial performance gain compared

to considering the full domain RN
of (non-anonymous and non-neutral) preference profiles: the

number of preference profiles form = 4 and n = 4 is 31,640,625, whereas the number of canonical
preference profiles is merely 60,865.
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Technically, we compute the canonical representation Rc as follows: Let R = (≿1, . . . ,≿n) ∈ RN

be a preference profile. First, we identify R with a function r : R → N, which we call anonymous
preference profile, and which counts the number of agents with a certain preference relation, i.e.,

r (≿) = |{i ∈ N | ≿i = ≿}|, thereby ignoring the identity of the agents. This representation fully

captures anonymity.

To additionally enforce neutrality, we had to resort to a computationally demanding, naive

solution: given r , we compute all anonymous preference profiles π (r ) that can be achieved via a

permutation π : A → A, and, among those profiles, choose the one πlexmin(r ) with lexicographically

minimal values (for some fixed ordering of preference relations). For the canonical representation

Rc we then pick any preference profile R ∈ RN
which agrees with πlexmin(r ), for instance, by again

using the same fixed ordering of preference relations. Fortunately, this approach is still feasible for

the small numbers of alternatives with which we are dealing.

While this representation of preference profiles does not completely capture neutrality—the

orbit condition [see Brandt and Geist 2016] is missing—this weaker version suffices to prove the

impossibility. In favor of simpler proofs we, however, include the simple constraints corresponding

to a randomized version of the orbit condition.

In our context, an orbit O of a preference profile R is an equivalence class of alternatives. Two

alternatives x ,y ∈ A are considered equivalent if π (x) = y for some permutation π : A → A that

maps the anonymous preference profile associated with R to itself (i.e., π is an automorphism of

the anonymous preference profile). In such a situation, every anonymous and neutral SDS has to

assign equal probabilities to x and y. We hence require that, for each orbit O ∈ OR of a (canonical)

profile R, the probabilities pR,x are equal for all alternatives x ∈ O . As an SMT constraint, this reads

pR,x = pR,y (Orbit)

for all R ∈ RN
c , O ∈ OR , and x ,y ∈ O .

Example 4.2. Consider the anonymous preference profile r based on R from Example 2.2 and

the permutation π = (ab)(cd). As π (r ) = r (and since no other non-trivial permutation has this

property) the set of orbits of R is OR = {{a,b}, {c,d}}.

4.2 Stochastic Dominance
In order to avoid quantifying over utility functions, we leverage well-known representations of

efficiency and strategyproofness via stochastic dominance (SD) [cf. Aziz et al. 2015; Bogomolnaia

and Moulin 2001; McLennan 2002]. Lottery p stochastically dominates lottery q for an agent i (short:
p ≿SDi q) if for every alternative x , p is at least as likely as q to yield an alternative at least as good

as x . Formally,

p ≿SDi q iff

∑
y≿ix

p(y) ≥
∑
y≿ix

q(y) for all x ∈ A.

When p ≿SDi q and not q ≿SDi p we write p ≻SD
i q.

As an example, consider the preference relation ≿i : a,b, c . We then have that

(2/3a + 1/3 c) ≻SD
i (1/3a + 1/3b + 1/3 c)

while 2/3a + 1/3 c and b are incomparable based on stochastic dominance.

Lemma 4.3. Let ≿i ∈ R. A lottery p SD-dominates another lottery q for an agent i iff ui (p) ≥ ui (q)
for every utility function ui consistent with ≿i . As a consequence,
(1) an SDS f is efficient iff, for all R ∈ RN , there is no lottery p such that p ≿SDi f (R) for all i ∈ N

and p ≻SD
i f (R) for some i ∈ N , and
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(2) an SDS f is manipulable iff there exist a preference profile R, an agent i , and a preference relation
≿ such that f (Ri 7→≿) ≻SD

i f (R).

Proof. For the direction from left to right, assume that p ≿SDi q. Without loss of generality, let

A = {x1, . . . ,xm} and x j ≿i xk if and only if j ≤ k for all j,k ∈ {1, . . . ,m}. Then, by definition,

for all j ∈ {1, . . . ,m},
∑j

k=1 p(xk ) ≥
∑j

k=1 q(xk ). Let ui be a utility function consistent with ≿i , i.e.,
ui (x j ) ≥ ui (xk ) if and only if j ≤ k . Then,

ui (p) − ui (q) =
m∑
j=1

(p(x j ) − q(x j ))ui (x j ) =
m∑
j=1

(ui (x j ) − ui (x j+1))︸                 ︷︷                 ︸
≥0

j∑
k=1

(p(xk ) − q(xk ))︸                 ︷︷                 ︸
≥0

≥ 0,

where ui (xm+1) is set to 0. Hence, ui (p) ≥ ui (q).
For the direction from right to left, assume that ui (p) ≥ ui (q) for all utility functions ui

consistent with ≿i . Assume for contradiction that p ̸≿SDi q, i.e., there is x ∈ A such that∑
y≿ix q(x) −

∑
y≿ix p(x) = ϵ > 0. Let ui be a utility function consistent with ≿i such that

ui (y) ∈ [1− ϵ/2, 1] for all y ≿i x and ui (y) ∈ [0, ϵ/2] for all x ≻i y. Such a ui exists, since ϵ > 0. Then,

ui (q) ≥ (1 − ϵ/2)
∑
y≿ix

q(y) ≥
∑
y≿ix

q(y) − ϵ/2 >
∑
y≿ix

p(y) + ϵ/2 ≥ ui (p),

which contradicts the assumption. □

In words, Lemma 4.3 shows that an SDS f is efficient if and only if f (R) is Pareto-efficient with

respect to stochastic dominance for all preference profiles R. Secondly, f is manipulable if and only

if some agent can misrepresent his preferences to obtain a lottery that he prefers to the lottery

obtained by sincere voting with respect to stochastic dominance.

4.2.1 Encoding Strategyproofness. Starting from the above equivalence, encoding strategyproof-

ness as an SMT constraint is now a much simpler task. For each (canonical) preference profile

R ∈ RN
c , agent i ∈ N ,

9
and preference relation ≿ ∈ R, we encode that the manipulated outcome

f (Ri 7→≿) is not SD-preferred to the truthful outcome f (R) by agent i:

¬

(
f (Ri 7→≿) ≻SD

i f (R)
)

≡ f (Ri 7→≿) ≿̸SDi f (R) ∨ f (R) ≿SDi f (Ri 7→≿)

≡

(
(∃x ∈ A)

∑
y≿ix

f (Ri 7→≿)(y) <
∑
y≿ix

f (R)(y)

)
∨

(
(∀x ∈ A)

∑
y≿ix

f (Ri 7→≿)(y)
(∗)

≤
∑
y≿ix

f (R)(y)

)
≡

(∨
x ∈A

∑
y≿ix

p
(Ri 7→≿)c,π R

i 7→≿
c (y) <

∑
y≿ix

pR,y

)
∨

(∧
x ∈A

∑
y≿ix

p
(Ri 7→≿)c,π R

i 7→≿
c (y)

(∗∗)

=
∑
y≿ix

pR,y

)
,

(Strategyproofness)

where πRi 7→≿
c stands for a permutation of alternatives that (together with a potential renaming of

alternatives) leads from Ri 7→≿ to (Ri 7→≿)c . The inequality (∗) can be replaced by the equality (∗∗) since

the case of at least one strict inequality is captured by the corresponding disjunctive condition one

line above.

9
Note that, due to anonymity, it is not necessary to iterate over all agents i . Rather it suffices to pick one agent per

unique preference relation contained in R .
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4.2.2 Encoding Efficiency. While Lemma 4.3 helps to formulate efficiency as an SMT axiom it is

not yet sufficient because a quantification over the set of all lotteries ∆(A) remains. In order to get

rid of this quantifier, we apply two lemmas by Aziz et al. [2015], for which we include (slightly

simplified) proofs in favor of a self-contained presentation. The first lemma states that efficiency of

a lottery only depends on its support. The second lemma shows that deciding whether a lottery is

efficient reduces to solving a linear program.

Lemma 4.4 (Aziz et al., [2015]). Let R ∈ RN . A lottery p ∈ ∆(A) is efficient iff every lottery
p ′ ∈ ∆(A) with supp(p ′) ⊆ supp(p) is efficient.

Proof. We prove the statement by contraposition: if p ′ ∈ ∆(A) is not efficient, then no lottery p
with supp(p ′) ⊆ supp(p) is efficient. If p ′ is not efficient, there is q′ ∈ ∆(A) such that q′ u-dominates

p ′ for all utility representations uR , i.e., for all agents i ∈ N and all utility functions ui consistent
with ≿i ,ui (q

′)−ui (p
′) ≥ 0 andui′(q

′)−ui′(p
′) > 0 for some agent i ′ ∈ N and all utility functionsui′

consistent with≿i′ . Letv = q
′−p ′ ∈ RA. Note that, for all x ∈ A,v(x) < 0 implies x ∈ supp(p ′). Now

let ϵ > 0 small enough such that q = p + ϵv ∈ ∆(A). This is possible because supp(p ′) ⊆ supp(p).
By definition of q and linearity of ui , we have that, for all i ∈ N and all ui consistent with ≿i ,
ui (q) − ui (p) = ϵui (v) = ϵ(ui (q

′) − ui (p
′)) ≥ 0 and ui′(q) − ui′(p) > 0 for all ui′ consistent with ≿i′ .

Thus, p is not efficient, contradicting the assumption. □

Lemma 4.5 (Aziz et al., [2015]). Whether a lottery p ∈ ∆(A) is efficient for a given preference
profile R can be computed in polynomial time by solving a linear program.

Proof. Given the equivalence from Lemma 4.3, a lottery p is easily seen to be efficient iff the

optimal objective value of the following linear program is zero (since then there is no lottery q that

SD-dominates p):

max

q

∑
i ∈N

∑
x ∈A

∑
y≿ix

qy − py

subject to

∑
y≿ix

qy ≥
∑
y≿ix

py for all x ∈ A, i ∈ N ,∑
x ∈A

qx = 1, qx ≥ 0 for all x ∈ A.

□

Recall that an SDS is efficient if it never returns a dominated lottery. By Lemma 4.4, this is

equivalent to never returning a lottery with inefficient support. To capture this, we encode, for each

(canonical) preference profile R ∈ RN
c , that the probability for at least one alternative in every

(inclusion-minimal) inefficient support IR ⊆ A is zero:∨
x ∈IR

pR,x = 0. (Efficiency)

Given a preference profile R and a support IR , it can be decided in polynomial time whether IR
is inefficient by checking for an arbitrary lottery with support IR whether it is efficient and then

applying Lemmas 4.4 and 4.5. The set of inclusion-minimal inefficient supports can be found by

iterating over all supports. For a small number of alternatives this is feasible even though the

number of possible supports is exponential in the number of alternatives.
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4.3 Restricted Domains
Since RSD is known to satisfy both strategyproofness and efficiency when there are only up

to 3 alternatives or only up to 3 agents and 5 alternatives [Aziz et al. 2017], the search for an

impossibility has to start atm = 4 alternatives and n = 4 agents. For these parameters, an encoding

of the full domain, unfortunately, becomes prohibitively large. Hence, form = 4 and n = 4, one

has to carefully optimize the domain under consideration, on the one hand, to include a sufficient

number of profiles for a successful proof, and, on the other hand, not to include too many profiles,

which would prevent the solver from terminating within a reasonable amount of time.

The following incremental strategy was found to be successful. We start with a specific profile R,
from which we only consider sequences of potential manipulations as long as (in each step) the

manipulated individual preferences are not too distinct from the truthful preferences. To this end,

we measure the magnitude of manipulations by the Kendall tau distance τ , which counts pairwise

disagreements between Ri and R
′
i [see also Sato 2013]. A change in the individual preferences of an

agent will be called a k-manipulation if τ (Ri ,R
′
i ) ≤ k . Then, for example, strategically swapping

two alternatives is a 2-manipulation, and breaking or introducing a tie between two alternatives is

a 1-manipulation.

On the domain which starts from the preference profile R given in Example 2.2 and from there

allows sequences of (1, 2, 1, 2)-manipulations, we were able to prove the result within a few minutes

of running-time.
10,11

On smaller domains (e.g., when considering (1, 2, 2)-manipulations from R),
the axioms are still compatible.

4.4 Verification of Correctness
The main drawbacks of the SMT-based proof are that (i) one must trust the correctness of the SMT

solver, (ii) one must trust the correctness of the program that performs the encoding into SMT-LIB,

and (iii) the proof is unstructured and completely unlike a hand-written mathematical argument,

which makes it virtually impossible to be checked by humans.

In order to tackle the first issue, we used z3 to generate a minimal unsatisfiable set (MUS) of
constraints, i.e., an inclusion-minimal set of constraints such that this set is still unsatisfiable [see,

also, Brandt and Geist 2016]. A MUS corresponding to Theorem 3.1 consists of 94 constraints, not

counting the (trivial) lottery definitions. This MUS, annotated with e.g., the 47 required canonical

preference profiles, is available as part of an arXiv version of this paper [Brandl et al. 2016a]. The

unsatisfiability of the MUS has been verified by the solvers CVC4,MathSAT, Yices2, and z3.
We addressed the second issue by performing several sanity checks such as running solvers

on multiple variants of the encoding which represent known theorems. This way, we reproduced

(amongst others) the results by Bogomolnaia and Moulin [2001] and Katta and Sethuraman [2006],

as well as the possibility result form < 4.

To finally remove any doubt about correctness and simultaneously address the third issue, we

translated the MUS into an independent proof, which no longer relies on SMT, within the interactive

theorem prover Isabelle/HOL [Nipkow and Klein 2014; Nipkow et al. 2002]. Isabelle is a generic
interactive theorem prover where interactive means that the prover does not find the proof by itself

like an automated theorem prover—the user must give it a sequence of steps to follow and the

prover’s automation fills in the gaps. This allows proofs of more complex theorems that are outside

10
I.e., first we allow any 1-manipulation from R , then, from every resulting profile, any 2-manipulation is allowed (not

necessarily by the same agent), and so forth. Showing the result on this domain implies a slightly stronger statement where

strategyproofness only has to hold for “small” lies (of at most Kendall tau distance 2).

11
The SMT solver MathSAT [Cimatti et al. 2013] terminates quickly within less than 3 minutes with the suggested

competition settings, whereas z3 [de Moura and Bjørner 2008] requires some additional configuration, but then also supports

core extraction within the same time frame.
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Statement Number of canonical preference profiles

Theorem 3.1 47

Brandl et al. [2016b, Theorem 1] 13

Aziz et al. [2014, Theorem 3] 10

Aziz et al. [2014, Theorem 2] 7

Aziz et al. [2014, Theorem 4] 7

Aziz et al. [2013b, Theorem 1] 5

Bogomolnaia and Moulin [2001, Theorem 2] 11

Kasajima [2013, Theorem 1] 9

Nesterov [2017, Theorem 2] 8

Nesterov [2017, Theorem 1] 6

Zhou [1990, Theorem 1] 5

Aziz and Kasajima [2017, Theorem 1] 4

Aziz and Kasajima [2017, Theorem 2] 3

Kojima [2009, Theorem 1] 3

Katta and Sethuraman [2006, Section 4] 2

Nesterov [2017, Theorem 1] 2

Table 1. Proof complexity comparison of impossibility statements using efficiency and strategyproofness in
terms of the number of canonical preference profiles used in the proof. The statements in the lower part of
the table have been proven for the assignment domain.

the scope of fully-automated theorem provers. The proof of Theorem 3.1 in Isabelle is about 400 lines
long, but still fairly legible since it consists of many individual small proofs. The fact that Isabelle
can automatically simplify inequalities using all facts proven so far actually makes conducting

the proof in the system much easier, less tedious, and less error-prone than on paper. Moreover,

all aspects of the proof—including formal definitions of the social-choice-theoretic concepts, the

reduction of the general case to that ofm = 4 and n = 4, the generation of the constraints arising

from the 47 canonical preference profiles, and the proof of the inconsistency of these constraints

(which corresponds to the SMT proof)—have been verified by Isabelle/HOL.
The trustworthiness of such a proof stems from the fact that all Isabelle proofs are broken down

into small logical inference steps, which are checked by Isabelle’s kernel. Since only the kernel can

produce new theorems, it is sufficient to trust it to correctly implement these inference steps to

trust that any proof it accepts really does hold in the underlying logic. Furthermore, the mere act of

breaking down proofs into such small steps exposes many mistakes and forgotten side conditions.

The Isabelle proof is available in the Archive of Formal Proofs [Eberl 2016b], which is a peer-

reviewed online repository of Isabelle proofs. For more details on the background in Isabelle and
how the proof was obtained from the MUS, we refer to Eberl [2016a]. A human-readable version of

this proof is given in Appendix A.

5 CONCLUSION
In this paper, we have leveraged computer-aided solving techniques to prove a sweeping impossi-

bility for randomized aggregation mechanisms. In particular, we have reduced the statement to a

finite propositional formula using linear arithmetic, which was then shown to be unsatisfiable by
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an SMT solver. A crucial step in the construction of the formula was to find a restricted domain of

preference profiles that is not too large yet sufficient for the impossibility to hold.

It seems unlikely that this proof would have been found without the help of computers because

manual proofs of significantly weaker statements already turned out to be quite complex (see

Table 1 for a comparison of the proof complexity of related statements). Nevertheless, now that

the theorem has been established, our computer-aided methods may guide the search for related,

perhaps even stronger statements that allow for more intuitive proofs and provide more insights

into randomized social choice.

Generally speaking, we believe that SMT solving and subsequent verification via Isabelle is

applicable to a wide range of problems in social choice and, more generally, in microeconomic

theory [see Geist and Peters 2017]. In particular, extending our result to the special domain of

assignment (see Section 3.2) is desirable as this would strengthen a number of existing theorems.

Other interesting questions are whether the impossibility still holds when weakening efficiency

and strategyproofness even further or when omitting neutrality [see Brandt 2017].
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A PROOF OF THEOREM 3.1
A.1 Main Proof
We will now give the complete human-readable proof of Theorem 3.1. This proof is essentially a

paraphrased version of the formal Isabelle/HOL proof, which is available in the AFP entry [Eberl

2016b].

Our general approach will be to attempt to “solve” preference profiles, i.e., determine the exact

value of f (Ri )(x) (which we write as pi,x ) for a profile Ri and an alternative x . Whenever this is not

possible, we try to express pi,x in terms of other pj,y or at least find simple inequalities that the pi,x
satisfy. We do this until we have gained enough knowledge about the SDS to derive a contradiction.

A typical step in the proofs will be to pick a strategyproofness condition (which usually consist

of several disjunctions) and simplify it with all the knowledge that we have—substituting the pi,x
whose values we already know, e.g., substituting pi,d = 1 − pi,a if we know that pi,b = pi,c = 0.

We will use the fact that all pi,x are non-negative and that

∑
x ∈A pi,x = 1 without mentioning it

explicitly.

Every step of the proof (i.e., “Condition X simplifies to . . . ” or “Condition X implies . . . ”) is

elementary in the sense that it can by solved automatically by Isabelle—in fact, the proof printed

here is often considerably more verbose and with more intermediate steps than would be necessary

in Isabelle. Still, for a human, most of these steps will require a few steps of reasoning on paper. We

chose not to go into more detail of the individual steps, since it would only have made the proof

even longer and less readable.

The proof will reference orbit equations, efficiency conditions, and strategyproofness conditions

on the set of 47 preference profiles mentioned before. As an aid to the reader, the proof contains

tables listing all the knowledge that we currently have about the probabilities of the lottery

returned by the hypothetical SDS after every few steps.

We start by listing the 47 preference profiles used in the proof by giving the weak rankings of

each agent.

Profile Agent 1 Agent 2 Agent 3 Agent 4

R1 {c,d}, {a,b} {b,d},a, c a,b, {c,d} {a, c}, {b,d}
R2 {a, c}, {b,d} {c,d},a,b {b,d},a, c a,b, {c,d}
R3 {a,b}, {c,d} {c,d}, {a,b} d, {a,b}, c c,a, {b,d}
R4 {a,b}, {c,d} {a,d}, {b, c} c, {a,b},d d, c, {a,b}
R5 {c,d}, {a,b} {a,b}, {c,d} {a, c},d,b d, {a,b}, c
R6 {a,b}, {c,d} {c,d}, {a,b} {a, c}, {b,d} d,b,a, c
R7 {a,b}, {c,d} {c,d}, {a,b} a, c,d,b d, {a,b}, c
R8 {a,b}, {c,d} {a, c}, {b,d} d, {a,b}, c d, c, {a,b}
R9 {a,b}, {c,d} {a,d}, c,b d, c, {a,b} {a,b, c},d
R10 {a,b}, {c,d} {c,d}, {a,b} {a, c},d,b {b,d},a, c
R11 {a,b}, {c,d} {c,d}, {a,b} d, {a,b}, c c,a,b,d
R12 {c,d}, {a,b} {a,b}, {c,d} {a, c},d,b {a,b,d}, c
R13 {a, c}, {b,d} {c,d},a,b {b,d},a, c a,b,d, c
R14 {a,b}, {c,d} d, c, {a,b} {a,b, c},d a,d, c,b
R15 {a,b}, {c,d} {c,d}, {a,b} {b,d},a, c a, c,d,b
R16 {a,b}, {c,d} {c,d}, {a,b} a, c,d,b {a,b,d}, c
R17 {a,b}, {c,d} {c,d}, {a,b} {a, c}, {b,d} d, {a,b}, c
R18 {a,b}, {c,d} {a,d}, {b, c} {a,b, c},d d, c, {a,b}
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R19 {a,b}, {c,d} {c,d}, {a,b} {b,d},a, c {a, c}, {b,d}
R20 {b,d},a, c b,a, {c,d} a, c, {b,d} d, c, {a,b}
R21 {a,d}, c,b d, c, {a,b} c, {a,b},d a,b, {c,d}
R22 {a, c},d,b d, c, {a,b} d, {a,b}, c a,b, {c,d}
R23 {a,b}, {c,d} {c,d}, {a,b} {a, c}, {b,d} {a,b,d}, c
R24 {c,d}, {a,b} d,b,a, c c,a, {b,d} b,a, {c,d}
R25 {c,d}, {a,b} {b,d},a, c a,b, {c,d} a, c, {b,d}
R26 {b,d}, {a, c} {c,d}, {a,b} a,b, {c,d} a, c, {b,d}
R27 {a,b}, {c,d} {b,d},a, c {a, c}, {b,d} {c,d},a,b
R28 {c,d},a,b {b,d},a, c a,b, {c,d} a, c, {b,d}
R29 {a, c},d,b {b,d},a, c a,b, {c,d} d, c, {a,b}
R30 {a,d}, c,b d, c, {a,b} c, {a,b},d {a,b},d, c
R31 {b,d},a, c {a, c},d,b c,d, {a,b} {a,b}, c,d
R32 {a, c},d,b d, c, {a,b} d, {a,b}, c {a,b},d, c
R33 {c,d}, {a,b} {a, c},d,b a,b, {c,d} d, {a,b}, c
R34 {a,b}, {c,d} a, c,d,b b, {a,d}, c c,d, {a,b}
R35 {a,d}, c,b a,b, {c,d} {a,b, c},d d, c, {a,b}
R36 {c,d}, {a,b} {a, c},d,b {b,d},a, c a,b, {c,d}
R37 {a, c}, {b,d} {b,d}, {a, c} a,b, {c,d} c,d, {a,b}
R38 {c,d},a,b {b,d},a, c a,b, {c,d} {a, c},b,d
R39 {a, c},d,b {b,d},a, c a,b, {c,d} {c,d},a,b
R40 {a,d}, c,b {a,b}, c,d {a,b, c},d d, c, {a,b}
R41 {a,d}, c,b {a,b},d, c {a,b, c},d d, c, {a,b}
R42 {c,d}, {a,b} {a,b}, {c,d} d,b,a, c c,a, {b,d}
R43 {a,b}, {c,d} {c,d}, {a,b} d, {a,b}, c a, {c,d},b
R44 {c,d}, {a,b} {a, c},d,b {a,b},d, c {a,b,d}, c
R45 {a, c},d,b {b,d},a, c {a,b}, c,d {c,d},b,a
R46 {b,d},a, c d, c, {a,b} {a, c}, {b,d} b,a, {c,d}
R47 {a,b}, {c,d} {a,d}, c,b d, c, {a,b} c, {a,b},d

Table 2. The 47 preference profiles used in the proof.

Now, to begin with the proof, we shall first focus on those profiles that have rich symmetries

(i.e., orbit conditions) and restrictive efficiency conditions (e.g., by admitting Pareto dominated

alternatives).

Table 3 lists profile automorphisms, i.e., permutations of the alternatives such that applying the

permutation to the profile yields a profile that is anonymity-equivalent to the original profile. Given

such a profile, an anonymous and neutral SDS must return the same probability for all alternatives

contained in the same orbit of the permutation. To increase readability, the permutations are already

written as a product of their orbits; for instance, the first orbit condition states that p10,a = p10,d
and p10,b = p10,c .

Profile Permutation

R10 (a d)(b c)
R26 (a)(b c)(d)
R27 (a)(b c)(d)
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R28 (a)(b c)(d)
R29 (a d)(b c)
R43 (a d)(b c)
R45 (a b d c)

Table 3. The relevant profile automorphisms, written as a product of their orbits.

There are efficiency conditions of two different types: those derived from ex post efficiency alone

assert that Pareto dominated alternatives have to be assigned probability 0, whereas those derived

from SD-efficiency (but not ex post efficiency) assert that at least one of two alternatives has to be

assigned probability 0.

Alternative b is Pareto dominated in the following profiles and must therefore be assigned

probability 0 by any ex post efficient SDS (and thereby also by any SD-efficient SDS):

R3, R4, R5, R7, R8, R9, R11, R12, R14, R16, R17, R18, R21, R22, R23, R30, R32, R33, R35, R40, R41,

R43, R44, R47

We will use the fact that f (R)(b) = 0 for all of these profiles without mentioning it explicitly.

Moreover, {b, c} is an SD-inefficient support in the following profiles (i.e., any SD-efficient SDS

must assign probability 0 to at least one of b and c):

R10, R15, R19, R25, R26, R27, R28, R29, R39

To see that this is true, note that the lottery 1/2a+1/2d strictly Pareto dominates the lottery 1/2b+1/2 c
for each of these profiles.

Using the orbit and efficiency conditions we arrive at the following conclusions:

• The orbit conditions of R45 imply p45,a = p45,b = p45,c = p45,d = 1/4.

• The efficiency conditions for R10 state that at least one of p10,b and p10,c is 0, and since the

orbit conditions state that p10,b = p10,c , we have p10,b = p10,c = 0.

• In the same fashion, we can show that pi,x = 0 for i ∈ {26, 27, 28, 29} and x ∈ {b, c}. For R29,

the orbit condition then additionally implies p29,a = p29,d = 1/2, and analogously for R10.

• The efficiency conditions for R43 state p43,b = p43,c = 0, and with the orbit condition

p43,a = p43,d we have p43,a = p43,d = 1/2.

In summary, we have now derived the following information about the profiles:

R10 R26 R27 R28 R29 R43 R45

a 1/2 1/2 1/2 1/4

b 0 0 0 0 0 0 1/4

c 0 0 0 0 0 0 1/4

d 1/2 1/2 1/2 1/4

• Suppose p39,c = 0. Then (S29,39) implies p39,d ≤ 1/2 and (S39,29) then implies p39,b = 0. Since

the efficiency condition for R39 states that p39,b = 0 or p39,c = 0, we can conclude that, in any

case, p39,b = 0.

• Using this, (S39,29) now simplifies to p39,a ≤ 1/2.

• (S10,36) simplifies to p36,a +p36,b ≤ 1/2. Using this, (S36,10) simplifies to p36,a = 1/2 and p36,b = 0.

• (S36,39) simplifies to p39,a ≥ 1/2. Using this, (S39,36) simplifies to p39,a = 1/2.

• (S12,10) simplifies to p12,a + p12,d ≥ 1, which implies p12,c = 0.

• (S10,12) then simplifies to p12,a ≥ 1/2.

• (S12,44) simplifies to p44,a ≤ p12,a . Using this, (S44,12) simplifies to p44,a = p12,a and p44,c = 0.

• (S9,35) simplifies to p35,a ≤ p9,a , and then (S35,9) simplifies to p9,a = p35,a .
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• (S9,18) states that p9,a + p9,d ≤ p18,a + p18,d , and then (S9,18) simplifies to p18,c = p9,c .

To summarize:

R9 R10 R12 R18 R26 R27 R28 R29 R36 R39 R43 R44 R45

a p35,a 1/2 ≥ 1/2 1/2 1/2 1/2 1/2 p12,a 1/4

b 0 0 0 0 0 0 0 0 0 0 0 0 1/4

c 0 0 p9,c 0 0 0 0 0 0 1/4

d 1/2 ≤ 1/2 1/2 1/2 1 − p12,a 1/4

• (S5,10) implies p5,d ≥ 1/2.

• (S5,17) implies p5,d ≤ p17,d , and (S17,7) simplifies to p17,d ≤ p7,d . Combined with p5,d ≥ 1/2

from above, we have p7,d ≥ 1/2. Using this, (S7,43) implies p7,a = 1/2 and p7,c = 0, and therefore

p7,d = 1/2.

• (S5,7) now simplifies to p5,d ≤ 1/2, and p5,d ≥ 1/2 was already shown, so we have p5,d = 1/2.

• (S5,10) now simplifies to p5,c = 0, and it is then clear that p5,a = 1/2.

• Suppose p15,b = 0. Then (S10,15) simplifies to p15,a +p15,c ≤ 1/2 and, using that, (S15,10) implies

p15,c = 0. Since the efficiency conditions for R15 tell us that p15,b = 0 or p15,c = 0, we can

conclude p15,c = 0.

• (S15,5) then implies p15,a ≥ 1/2 and (S15,7) implies p15,a ≤ 1/2. We can conclude that p15,a = 1/2.

• (S15,5) now simplifies to p15,d = 1/2 and p15,b = 0.

• (S27,13) simplifies to p13,a +p13,b ≤ p27,a . Using that, (S13,27) simplifies to p13,b = p13,c = 0 and

p27,a = p13,a .
• (S15,13) now implies p13,a ≥ 1/2 and (S13,15) simplifies to p13,a ≤ 1/2, so that we can conclude

p13,a = p13,d = p27,a = p27,d = 1/2.

We summarize what we have learned so far:

R5 R7 R9 R10 R12 R13 R15 R18 R26 R27 R28 R29

a 1/2 1/2 p35,a 1/2 ≥ 1/2 1/2 1/2 1/2 1/2

b 0 0 0 0 0 0 0 0 0 0 0 0

c 0 0 0 0 0 0 p9,c 0 0 0 0

d 1/2 1/2 1/2 ≤ 1/2 1/2 1/2 1/2 1/2

R36 R39 R43 R44 R45

a 1/2 1/2 1/2 p12,a 1/4

b 0 0 0 0 1/4

c 0 0 1/4

d 1/2 1 − p12,a 1/4

• Wewill now determine the probabilities for R19. The efficiency condition tells us that p19,b = 0

or p19,c = 0.

– Suppose p19,b = 0. Then (S10,19) simplifies to p19,a + p19,c ≤ 1/2 and (S19,10) simplifies to

p19,a + p19,c = 1/2. We can therefore conclude that p19,d = 1/2. Using this, (S27,19) then
simplifies to p19,a = 1/2 and p19,c = 0 and therefore p19,d = 1/2.

– Suppose p19,c = 0. Then (S19,10) simplifies to p19,a ≥ 1/2 and (S19,27) simplifies to p19,d ≥ 1/2.

This clearly implies p19,a = p19,d = 1/2 and p19,b = 0.

• Using this, (S19,1) simplifies to p1,a + p1,b ≤ 1/2, and with that, (S1,19) simplifies to p1,a = 1/2

and p1,b = 0.

• (S33,5) simplifies to p33,a ≥ 1/2. Moreover, (S33,22) simplifies to p22,c + p22,d ≤ p33,c + p33,d , i.e.,
p33,a ≤ p22,a . We therefore have p22,a ≥ 1/2. Using this, (S22,29) simplifies to p22,a = p22,d = 1/2

and therefore also p22,c = 0.
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• (S32,28) implies p28,a ≤ p32,d . Then (S28,32) implies p32,d = p28,a . Moreover, (S22,32) simplifies to

p32,a ≤ 1. Using these two facts, (S32,22) implies p32,d = 1/2 and therefore also p28,a = p28,d =
1/2.

• (S28,39) now simplifies to p39,c = 0, and since we have already determined p39,a = 1/2 and

p39,b = 0, we can conclude p39,d = 1/2.

• (S1,2) states that p2,c + p2,d ≤ p1,c + p2,d . Using this, (S2,1) simplifies to p2,a = p2,c + p2,d = 1/2

and therefore also p2,b = 0. Using this, (S39,2) simplifies to p2,c = 0 and p2,d = 1/2.

• We will now determine R42:

– (S17,5) simplifies to p17,a + p17,c ≥ 1/2 and (S5,17) simplifies to p17,a + p17,c ≤ 1/2, so we can

conclude p17,d = 1/2.

– (S6,42) states that p42,a + p42,c ≤ p6,a + p6,c and (S6,19) implies p6,a + p6,c ≤ 1/2. We can

therefore conclude that p42,a + p42,c ≤ 1/2.

– (S17,11) states that p11,a + p11,c ≤ p17,a + p17,c . Since p11,b = p17,b = 0, this is equivalent to

p11,d ≥ p17,d = 1/2 ≥ p42,a + p42,c . With this, (S42,11) implies p42,c ≥ p11,d ≥ 1/2.

– (S17,3) simplifies to p3,a + p3,c ≤ p17,a + p17,c ; i.e., p3,d ≥ p17,d = 1/2.

– Finally, using p42,c ≥ 1/2 and p3,d ≥ 1/2, (S42,3) simplifies to p42,c ≥ 1/2 and p42,d ≥ 1/2 and

therefore p42,a = p42,b = 0 and p42,c = p42,d = 1/2.

• Using these values for R42, the two conditions (S37,42 (1)) and (S37,42 (2)) now simplify to

p37,a = 1/2 or p37,a +p37,b > 1/2, and p37,c = 1/2 or p37,c +p37,d > 1/2. Together, these obviously

imply p37,a = p37,c = 1/2 and p37,b = p37,d = 0.

• Similarly, R24 simplifies to p24,a + p24,b ≤ 0 and therefore p24,a = p24,b = 0.

R1 R2 R5 R7 R9 R10 R12 R13 R15 R18 R19 R22 R24

a 1/2 1/2 1/2 1/2 p35,a 1/2 ≥ 1/2 1/2 1/2 1/2 1/2 0

b 0 0 0 0 0 0 0 0 0 0 0 0 0

c 0 0 0 0 0 0 0 p9,c 0 0

d 1/2 1/2 1/2 1/2 ≤ 1/2 1/2 1/2 1/2 1/2

R26 R27 R28 R29 R36 R37 R39 R42 R43 R44 R45

a 1/2 1/2 1/2 1/2 1/2 1/2 0 1/2 p12,a 1/4

b 0 0 0 0 0 0 0 0 0 0 1/4

c 0 0 0 0 1/2 0 1/2 0 0 1/4

d 1/2 1/2 1/2 0 1/2 1/2 1/2 1 − p12,a 1/4

• (S24,34) implies p34,b ≤ p24,c and (S34,24) implies p24,c ≤ p34,b ; we therefore have p34,b = p24,c .
Using this, (S34,24) simplifies to p34,c = 0 and (S24,34) simplifies to p34,d = 0.

• (S14,34) now simplifies to p14,a + p14,c ≥ 1, so we have p14,b = p14,d = 0.

• (S46,37) simplifies to p46,a = p46,c = 0.

• (S46,20) now simplifies to p20,a + p20,c ≤ 0, so we have p20,a = p20,c = 0.

• (S20,21) now simplifies to p21,b = p21,c = 0.

• (S12,16) simplifies to p16,a + p16,c ≤ p12,a .
• We now determine the probabilities for p16,c :
– (S44,40) simplifies to p12,a ≤ p40,a . Moreover, (S9,40) simplifies to p40,a ≤ p9,a . Combined

with p16,a + p16,c ≤ p12,a , this implies p16,a + p16,c ≤ p9,a .
– (S14,16) implies p16,a ≥ p14,a .
– Combining the last two facts, we obtain p16,c ≤ p9,a − p14,a . Moreover, (S14,9) implies

p9,a − p14,a ≤ 0. Combining this, we have p16,c = 0.
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• Therefore, the fact p16,a + p16,c ≤ p12,a , which we have shown before, now simplifies to

p16,a ≤ p12,a .
• Since (S14,16) simplifies to p14,a ≤ p16,a , we then have p14,a ≤ p12,a .

R1 R2 R5 R7 R9 R10 R12 R13 R14 R15 R16 R18 R19

a 1/2 1/2 1/2 1/2 p35,a 1/2 ≥ 1/2 1/2 ≤p12,a 1/2 1/2

b 0 0 0 0 0 0 0 0 0 0 0 0 0

c 0 0 0 0 0 0 0 0 p9,c 0

d 1/2 1/2 1/2 1/2 ≤ 1/2 1/2 0 1/2 1/2

R20 R21 R22 R24 R26 R27 R28 R29 R34 R36 R37 R39

a 0 1/2 0 1/2 1/2 1/2 1 − p24,c 1/2 1/2 1/2

b 0 0 0 0 0 0 0 p24,c 0 0 0

c 0 0 0 0 0 0 0 0 1/2 0

d 1/2 1/2 1/2 1/2 0 0 1/2

R42 R43 R44 R45 R46

a 0 1/2 p12,a 1/4 0

b 0 0 0 1/4

c 1/2 0 0 1/4 0

d 1/2 1/2 1 − p12,a 1/4

• We now show that p12,a = p9,a = p35,a :
– (S14,9) implies p9,a ≤ p14,a . Since p14,a ≤ p12,a , we have p9,a ≤ p12,a .
– (S44,40) simplifies to p12,a ≤ p40,a . Moreover, (S9,40) simplifies to p40,a ≤ p9,a ; therefore, we
have p12,a ≤ p9,a .

– Combining these two inequalities yields p12,a = p9,a .
• Recall that p14,a ≤ p12,a = p9,a . Then (S14,9) simplifies to p9,a = p14,a and p9,d = 0.

• (S23,19) simplifies to p23,a + p23,d ≥ 1 and therefore p23,b = p23,c = 0.

• (S35,21) simplifies to p21,a ≤ p35,a + p35,c . Then (S21,35) simplifies to p35,c = 0 and p35,a = p21,a .
• Next, we derive the probabilities for R18:

– (S23,12) simplifies to p21,a ≤ p23,a .
– (S23,18) simplifies top18,c+p18,d ≤ 1−p23,a . Sincep18,c = p9,c = 1−p9,a = 1−p35,a = 1−p21,a ,
this is equivalent to p18,d ≤ p21,a − p23,a . Recall that p9,b = p9,c = 0, i.e., p18,c = p9,c =
1 − p9,a = 1 − p35,a = 1 − p21,a . Substituting this in the inequality we have just derived and

rearranging yields p18,d ≤ p21,a − p23,a .
– Since p21,a ≤ p23,a , the right-hand side of the above inequality is 0 and therefore p18,d = 0.

Now we can derive the probabilities for R4:

– (S47,30) simplifies to p30,a ≤ p47,a .
– (S4,47) simplifies to p47,a + p47,d ≤ p4,a + p4,d , i.e., p4,c ≤ p47,c .
– Adding these two inequalities, we obtain p4,c + p30,a ≤ 1 − p47,d .
– (S30,21) simplifies to p21,a ≤ p30,a , and with the previous inequality, we obtain p4,c +p21,a ≤

1 − p47,d ≤ 1. Substituting p21,a = p14,a yields p4,c + p14,a ≤ 1.

– (S4,18) now simplifies to p4,d = 0 and p4,c = p21,d .
• (S8,26) implies p26,a ≤ p8,d . Using this, (S26,8) simplifies to p26,a = p8,d . Using this, we look

at (S8,26) again and find that it now simplifies to p8,a + p8,d = 1, i.e., p8,c = p8,b = 0 and

p26,a = 1 − p8,a .
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R1 R2 R4 R5 R7 R8 R9 R10 R12 R13 R14

a 1/2 1/2 p21,a 1/2 1/2 p21,a 1/2 p21,a 1/2 p21,a
b 0 0 0 0 0 0 0 0 0 0 0

c 0 1 − p21,a 0 0 0 1 − p21,a 0 0 0 1 − p21,a
d 1/2 0 1/2 1/2 0 1/2 1 − p21,a 1/2 0

R15 R16 R18 R19 R20 R21 R22 R23 R24 R26 R27 R28

a 1/2 p21,a 1/2 0 1/2 0 1 − p8,a 1/2 1/2

b 0 0 0 0 0 0 0 0 0 0 0

c 0 0 1 − p21,a 0 0 0 0 0 0 0 0

d 1/2 0 1/2 1/2 p8,a 1/2 1/2

R29 R34 R35 R36 R37 R39 R42 R43 R44 R45 R46

a 1/2 1 − p24,c p21,a 1/2 1/2 1/2 0 1/2 p12,a 1/4 0

b 0 p24,c 0 0 0 0 0 0 0 1/4

c 0 0 0 1/2 0 1/2 0 0 1/4 0

d 1/2 0 1 − p21,a 0 1/2 1/2 1/2 1 − p12,a 1/4

• (S4,47) simplifies to p21,d ≤ p47,c .
• (S47,30) simplifies to p30,a ≤ p47,a . With this and the previous inequality, (S30,21) simplifies to

p30,b = p30,c = 0 and p30,a = p47,a .
• The last big and crucial step is to show that p31,c ≥ 1/2:

– The efficiency conditions for R25 tell us that p25,b = 0 or p25,c = 0. If p25,c = 0, then

(S25,36) immediately implies p25,a ≥ 1/2. If, on the other hand, p25,b = 0, then (S36,25) implies

p25,a + p25,c ≤ p36,c + 1/2, with which (S25,36) then also implies p25,a ≥ 1/2.

– Using p25,a ≥ 1/2, the condition (S25,26) implies p26,a ≥ 1/2, and therefore also 1/2 ≤ p26,a +
p47,d = 1 − p8,a + p47,d .

– Now observe that (S4,8) simplifies to p21,a ≤ p8,a , which is equivalent to 1 − p8,a ≤ p21,d .
Combined with p21,d ≤ p47,c , which we have shown before, we now have 1/2 ≤ p47,c +p47,d .

– (S30,41) implies p41,a + p41,c ≤ p47,a , which is equivalent to p47,c + p47,d ≤ p41,d .
– (S41,31) simplifies to p31,a + p31,b + p31,d ≤ p41,a + p41,c , which is equivalent to p41,d ≤ p31,c .
– Combining this chain of inequalities, we finally have p31,c ≥ 1/2.

• (S2,38) simplifies to p38,a + p38,c ≤ 1/2, i.e., p38,b + p38,d ≥ 1/2. Using this and p31,c ≥ 1/2, the

condition (S31,38) simplifies to p38,b + p38,d = p31,b + p31,d . This means that p31,b + p31,d ≥ 1/2,

and since p31,c ≥ 1/2, we can conclude p31,b + p31,d = p31,c = 1/2 and p31,a = 0.

It is now easy to see that each of the three cases in (S45,31) is a contradiction. We have thus shown

that the conditions are inconsistent, and therefore, there is no anonymous and neutral SDS for four

agents and alternatives that satisfies both strategyproofness and efficiency. □

A.2 Strategyproofness Conditions
Table 4 lists the strategyproofness conditions that were used in the impossibility proof. As explained

in Section 4.3, all manipulations are either 1-manipulations or 2-manipulations, i.e., a manipulator

breaks or introduces a tie between two alternatives or swaps two alternatives. They are a subset

of the conditions derived by the derive_strategyproofness_conditions command with a distance

threshold of 2, i.e., the required manipulations all have a size ≤ 2. The first number in the name of

the condition indicates the original profile and the second one is the manipulated profile (possibly

with a permutation applied to the alternatives).
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p2,d + p2,c ≤ p1,d + p1,c (S1,2)

p19,a < p1,a ∨ p19,a + p19,b < p1,a + p1,b ∨ (p19,a = p1,a ∧ p19,a + p19,b = p1,a + p1,b ) (S1,19)

p1,d + p1,c < p2,d + p2,c ∨ p1,d + p1,c + p1,a < p2,d + p2,c + p2,a
∨ (p1,d + p1,c = p2,d + p2,c ∧ p1,d + p1,c + p1,a = p2,d + p2,c + p2,a)

(S2,1)

p38,c + p38,a ≤ p2,c + p2,a (S2,38)

p8,c < p4,d ∨ p8,c + p8,d < p4,d + p4,c ∨ (p8,c = p4,d ∧ p8,c + p8,d = p4,d + p4,c ) (S4,8)

p18,c < p4,c ∨ p18,c + p18,b + p18,a < p4,c + p4,b + p4,a
∨ (p18,c = p4,c ∧ p18,c + p18,b + p18,a = p4,c + p4,b + p4,a)

(S4,18)

p47,d + p47,a ≤ p4,d + p4,a (S4,47)

p7,c + p7,a < p5,c + p5,a ∨ p7,c + p7,a + p7,d < p5,c + p5,a + p5,d
∨ (p7,c + p7,a = p5,c + p5,a ∧ p7,c + p7,a + p7,d = p5,c + p5,a + p5,d )

(S5,7)

p10,a < p5,d ∨ p10,a + p10,c + p10,d < p5,d + p5,b + p5,a
∨ (p10,a = p5,d ∧ p10,a + p10,c + p10,d = p5,d + p5,b + p5,a)

(S5,10)

p17,c + p17,a < p5,c + p5,a ∨ p17,c + p17,a + p17,d < p5,c + p5,a + p5,d
∨ (p17,c + p17,a = p5,c + p5,a ∧ p17,c + p17,a + p17,d = p5,c + p5,a + p5,d )

(S5,17)

p19,d < p6,d ∨ p19,d + p19,b < p6,d + p6,b ∨ p19,d + p19,b + p19,a < p6,d + p6,b + p6,a
∨ (p19,d = p6,d ∧ p19,d + p19,b = p6,d + p6,b ∧ p19,d + p19,b + p19,a = p6,d + p6,b + p6,a)

(S6,19)

p42,c + p42,a ≤ p6,c + p6,a (S6,42)

p43,d < p7,a ∨ p43,d + p43,b < p7,a + p7,c ∨ p43,d + p43,b + p43,a < p7,a + p7,c + p7,d
∨ (p43,d = p7,a ∧ p43,d + p43,b = p7,a + p7,c ∧ p43,d + p43,b + p43,a = p7,a + p7,c + p7,d )

(S7,43)

p26,a < p8,d ∨ p26,a + p26,b + p26,d < p8,d + p8,b + p8,a
∨ (p26,a = p8,d ∧ p26,a + p26,b + p26,d = p8,d + p8,b + p8,a)

(S8,26)

p18,d + p18,a < p9,d + p9,a ∨ p18,d + p18,a + p18,c < p9,d + p9,a + p9,c
∨ (p18,d + p18,a = p9,d + p9,a ∧ p18,d + p18,a + p18,c = p9,d + p9,a + p9,c )

(S9,18)

p35,b + p35,a ≤ p9,b + p9,a (S9,35)

p40,b + p40,a ≤ p9,b + p9,a (S9,40)

p12,b + p12,d < p10,c + p10,a ∨ p12,b + p12,d + p12,a < p10,c + p10,a + p10,d
∨ (p12,b + p12,d = p10,c + p10,a ∧ p12,b + p12,d + p12,a = p10,c + p10,a + p10,d )

(S10,12)

p15,a + p15,c < p10,d + p10,b ∨ p15,a + p15,c + p15,d < p10,d + p10,b + p10,a
∨ (p15,a + p15,c = p10,d + p10,b ∧ p15,a + p15,c + p15,d = p10,d + p10,b + p10,a)

(S10,15)

p19,a + p19,c < p10,d + p10,b ∨ p19,a + p19,c + p19,d < p10,d + p10,b + p10,a
∨ (p19,a + p19,c = p10,d + p10,b ∧ p19,a + p19,c + p19,d = p10,d + p10,b + p10,a)

(S10,19)

p36,a + p36,b ≤ p10,d + p10,c (S10,36)

p10,a + p10,c + p10,d ≤ p12,d + p12,b + p12,a (S12,10)

p16,c + p16,a < p12,c + p12,a ∨ p16,c + p16,a + p16,d < p12,c + p12,a + p12,d
∨ (p16,c + p16,a = p12,c + p12,a ∧ p16,c + p16,a + p16,d = p12,c + p12,a + p12,d )

(S12,16)

p44,b + p44,a ≤ p12,b + p12,a (S12,44)
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p15,d + p15,c < p13,d + p13,b ∨ p15,d + p15,c + p15,a < p13,d + p13,b + p13,a
∨ (p15,d + p15,c = p13,d + p13,b ∧ p15,d + p15,c + p15,a = p13,d + p13,b + p13,a)

(S13,15)

p27,a < p13,a ∨ p27,a + p27,c < p13,a + p13,b ∨ p27,a + p27,c + p27,d < p13,a + p13,b + p13,d
∨ (p27,a = p13,a ∧ p27,a + p27,c = p13,a + p13,b ∧

p27,a + p27,c + p27,d = p13,a + p13,b + p13,d )
(S13,27)

p9,a < p14,a ∨ p9,a + p9,d < p14,a + p14,d ∨ p9,a + p9,d + p9,c < p14,a + p14,d + p14,c
∨ (p9,a = p14,a ∧ p9,a + p9,d = p14,a + p14,d ∧ p9,a + p9,d + p9,c = p14,a + p14,d + p14,c )

(S14,9)

p16,c < p14,d ∨ p16,c + p16,d < p14,d + p14,c ∨

(p16,c = p14,d ∧ p16,c + p16,d = p14,d + p14,c )
(S14,16)

p34,d + p34,b + p34,a ≤ p14,c + p14,b + p14,a (S14,34)

p5,d < p15,a ∨ p5,d + p5,b < p15,a + p15,c ∨ p5,d + p5,b + p5,a < p15,a + p15,c + p15,d
∨ (p5,d = p15,a ∧ p5,d + p5,b = p15,a + p15,c ∧ p5,d + p5,b + p5,a = p15,a + p15,c + p15,d )

(S15,5)

p7,d + p7,b < p15,d + p15,b ∨ p7,d + p7,b + p7,a < p15,d + p15,b + p15,a
∨ (p7,d + p7,b = p15,d + p15,b ∧ p7,d + p7,b + p7,a = p15,d + p15,b + p15,a)

(S15,7)

p10,d < p15,a ∨ p10,d + p10,b < p15,a + p15,c ∨ p10,d + p10,b + p10,a < p15,a + p15,c + p15,d
∨ (p10,d = p15,a ∧ p10,d + p10,b = p15,a + p15,c ∧

p10,d + p10,b + p10,a = p15,a + p15,c + p15,d )
(S15,10)

p13,d + p13,b ≤ p15,d + p15,c (S15,13)

p3,c + p3,a ≤ p17,c + p17,a (S17,3)

p5,c + p5,a ≤ p17,c + p17,a (S17,5)

p7,c + p7,a ≤ p17,c + p17,a (S17,7)

p11,c + p11,a ≤ p17,c + p17,a (S17,11)

p9,d + p9,a ≤ p18,d + p18,a (S18,9)

p1,b + p1,a ≤ p19,b + p19,a (S19,1)

p10,b + p10,d ≤ p19,c + p19,a (S19,10)

p27,d + p27,b ≤ p19,d + p19,c (S19,27)

p21,c < p20,a ∨ p21,c + p21,b < p20,a + p20,c
∨ (p21,c = p20,a ∧ p21,c + p21,b = p20,a + p20,c )

(S20,21)

p35,c < p21,c ∨ p35,c + p35,b + p35,a < p21,c + p21,b + p21,a
∨ (p35,c = p21,c ∧ p35,c + p35,b + p35,a = p21,c + p21,b + p21,a)

(S21,35)

p29,a < p22,d ∨ p29,a + p29,c + p29,d < p22,d + p22,b + p22,a
∨ (p29,a = p22,d ∧ p29,a + p29,c + p29,d = p22,d + p22,b + p22,a)

(S22,29)

p32,a < p22,a ∨ p32,a + p32,b < p22,a + p22,b
∨ (p32,a = p22,a ∧ p32,a + p32,b = p22,a + p22,b )

(S22,32)

p12,c + p12,a ≤ p23,c + p23,a (S23,12)

p18,c + p18,d ≤ p23,d + p23,c (S23,18)

p19,d + p19,b + p19,a ≤ p23,d + p23,b + p23,a (S23,19)
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p34,b < p24,c ∨ p34,b + p34,d < p24,c + p24,a
∨ (p34,b = p24,c ∧ p34,b + p34,d = p24,c + p24,a)

(S24,34)

p26,d + p26,c < p25,d + p25,b ∨ p26,d + p26,c + p26,a < p25,d + p25,b + p25,a
∨ (p26,d + p26,c = p25,d + p25,b ∧ p26,d + p26,c + p26,a = p25,d + p25,b + p25,a)

(S25,26)

p36,a < p25,a ∨ p36,a + p36,c < p25,a + p25,c
∨ (p36,a = p25,a ∧ p36,a + p36,c = p25,a + p25,c )

(S25,36)

p8,d < p26,a ∨ p8,d + p8,b < p26,a + p26,c
∨ (p8,d = p26,a ∧ p8,d + p8,b = p26,a + p26,c )

(S26,8)

p13,b + p13,a ≤ p27,c + p27,a (S27,13)

p19,d + p19,c < p27,d + p27,b ∨ p19,d + p19,c + p19,a < p27,d + p27,b + p27,a
∨ (p19,d + p19,c = p27,d + p27,b ∧ p19,d + p19,c + p19,a = p27,d + p27,b + p27,a)

(S27,19)

p32,d < p28,a ∨ p32,d + p32,b < p28,a + p28,c
∨ (p32,d = p28,a ∧ p32,d + p32,b = p28,a + p28,c )

(S28,32)

p39,a < p28,a ∨ p39,a + p39,c < p28,a + p28,b
∨ (p39,a = p28,a ∧ p39,a + p39,c = p28,a + p28,b )

(S28,39)

p39,d < p29,a ∨ p39,d + p39,c < p29,a + p29,b
∨ (p39,d = p29,a ∧ p39,d + p39,c = p29,a + p29,b )

(S29,39)

p21,b + p21,a < p30,b + p30,a ∨ p21,b + p21,a + p21,d < p30,b + p30,a + p30,d
∨ (p21,b + p21,a = p30,b + p30,a ∧ p21,b + p21,a + p21,d = p30,b + p30,a + p30,d )

(S30,21)

p41,c < p30,c ∨ p41,c + p41,b + p41,a < p30,c + p30,b + p30,a
∨ (p41,c = p30,c ∧ p41,c + p41,b + p41,a = p30,c + p30,b + p30,a)

(S30,41)

p38,b + p38,d < p31,d + p31,b ∨ p38,b + p38,d + p38,c < p31,d + p31,b + p31,a
∨ (p38,b + p38,d = p31,d + p31,b ∧ p38,b + p38,d + p38,c = p31,d + p31,b + p31,a)

(S31,38)

p22,b + p22,a < p32,b + p32,a ∨ p22,b + p22,a + p22,d < p32,b + p32,a + p32,d
∨ (p22,b + p22,a = p32,b + p32,a ∧ p22,b + p22,a + p22,d = p32,b + p32,a + p32,d )

(S32,22)

p28,a < p32,d ∨ p28,a + p28,c + p28,d < p32,d + p32,b + p32,a
∨ (p28,a = p32,d ∧ p28,a + p28,c + p28,d = p32,d + p32,b + p32,a)

(S32,28)

p5,a < p33,a ∨ p5,a + p5,b < p33,a + p33,b
∨ (p5,a = p33,a ∧ p5,a + p5,b = p33,a + p33,b )

(S33,5)

p22,d + p22,c ≤ p33,d + p33,c (S33,22)

p24,c < p34,b ∨ p24,c + p24,a + p24,d < p34,b + p34,d + p34,a
∨ (p24,c = p34,b ∧ p24,c + p24,a + p24,d = p34,b + p34,d + p34,a)

(S34,24)

p9,a < p35,a ∨ p9,a + p9,b < p35,a + p35,b
∨ (p9,a = p35,a ∧ p9,a + p9,b = p35,a + p35,b )

(S35,9)

p21,c + p21,b + p21,a ≤ p35,c + p35,b + p35,a (S35,21)

p10,d < p36,a ∨ p10,d + p10,c < p36,a + p36,b
∨ (p10,d = p36,a ∧ p10,d + p10,c = p36,a + p36,b )

(S36,10)

p25,c + p25,a < p36,c + p36,a ∨ p25,c + p25,a + p25,d < p36,c + p36,a + p36,d
∨ (p25,c + p25,a = p36,c + p36,a ∧ p25,c + p25,a + p25,d = p36,c + p36,a + p36,d )

(S36,25)

p39,d + p39,c ≤ p36,d + p36,c (S36,39)
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p42,d < p37,a ∨ p42,d + p42,b < p37,a + p37,b
∨ (p42,d = p37,a ∧ p42,d + p42,b = p37,a + p37,b )

(S37,42 (1))

p42,d < p37,c ∨ p42,d + p42,b < p37,c + p37,d
∨ (p42,d = p37,c ∧ p42,d + p42,b = p37,c + p37,d )

(S37,42 (2))

p2,c + p2,a < p39,c + p39,a ∨ p2,c + p2,a + p2,d < p39,c + p39,a + p39,d
∨ (p2,c + p2,a = p39,c + p39,a ∧ p2,c + p2,a + p2,d = p39,c + p39,a + p39,d )

(S39,2)

p29,a + p29,b < p39,d + p39,c ∨ p29,a + p29,b + p29,d < p39,d + p39,c + p39,a
∨ (p29,a + p29,b = p39,d + p39,c ∧ p29,a + p29,b + p29,d = p39,d + p39,c + p39,a)

(S39,29)

p36,d + p36,c < p39,d + p39,c ∨ p36,d + p36,c + p36,a < p39,d + p39,c + p39,a
∨ (p36,d + p36,c = p39,d + p39,c ∧ p36,d + p36,c + p36,a = p39,d + p39,c + p39,a)

(S39,36)

p31,d + p31,b + p31,a ≤ p41,c + p41,b + p41,a (S41,31)

p3,d < p42,d ∨ p3,d + p3,b < p42,d + p42,b ∨ p3,d + p3,b + p3,a < p42,d + p42,b + p42,a
∨ (p3,d = p42,d ∧ p3,d + p3,b = p42,d + p42,b ∧ p3,d + p3,b + p3,a = p42,d + p42,b + p42,a)

(S42,3)

p11,d < p42,c ∨ p11,d + p11,b < p42,c + p42,a
∨ (p11,d = p42,c ∧ p11,d + p11,b = p42,c + p42,a)

(S42,11)

p24,b + p24,a ≤ p42,b + p42,a (S42,24)

p12,b + p12,a < p44,b + p44,a ∨ p12,b + p12,a + p12,d < p44,b + p44,a + p44,d
∨ (p12,b + p12,a = p44,b + p44,a ∧ p12,b + p12,a + p12,d = p44,b + p44,a + p44,d )

(S44,12)

p40,c + p40,d ≤ p44,d + p44,c (S44,40)

p31,c + p31,d < p45,b + p45,a ∨ p31,c + p31,d + p31,b < p45,b + p45,a + p45,c
∨ (p31,c + p31,d = p45,b + p45,a ∧ p31,c + p31,d + p31,b = p45,b + p45,a + p45,c )

(S45,31)

p20,c + p20,a ≤ p46,c + p46,a (S46,20)

p37,a + p37,c < p46,d + p46,b ∨ p37,a + p37,c + p37,d < p46,d + p46,b + p46,a
∨ (p37,a + p37,c = p46,d + p46,b ∧ p37,a + p37,c + p37,d = p46,d + p46,b + p46,a)

(S46,37)

p30,b + p30,a ≤ p47,b + p47,a (S47,30)

Table 4. The strategyproofness conditions used in the impossibility proof.

Table 5 lists the manipulations that were used to obtain these strategyproofness conditions: the

first column gives the name of the manipulation condition in the form (Si, j ), which also contains

the information which two profiles are involved in the manipulation (Ri and R j ). The next columns

contain the manipulating agent, his preferences, and the false preferences that he needs to submit.

The last column gives the permutation of the alternatives that yields R j when applied to the

manipulated instance of Ri .

Condition Agent Old Preferences New Preferences Permutation

(S1,2) 1 {c,d}, {a,b} {c,d},a,b (a)(b)(c)(d)
(S1,19) 3 a,b, {c,d} {a,b}, {c,d} (a)(b)(c)(d)
(S2,1) 2 {c,d},a,b {c,d}, {a,b} (a)(b)(c)(d)
(S2,38) 1 {a, c}, {b,d} {a, c},b,d (a)(b)(c)(d)
(S4,8) 4 d, c, {a,b} c,d, {a,b} (a)(b)(c d)
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(S4,18) 3 c, {a,b},d {a,b, c},d (a)(b)(c)(d)
(S4,47) 2 {a,d}, {b, c} {a,d}, c,b (a)(b)(c)(d)
(S5,7) 3 {a, c},d,b a, c,d,b (a)(b)(c)(d)
(S5,10) 4 d, {a,b}, c {b,d},a, c (a d)(b c)
(S5,17) 3 {a, c},d,b {a, c}, {b,d} (a)(b)(c)(d)
(S6,19) 4 d,b,a, c {b,d},a, c (a)(b)(c)(d)
(S6,42) 3 {a, c}, {b,d} c,a, {b,d} (a)(b)(c)(d)
(S7,43) 3 a, c,d,b a, {c,d},b (a d)(b c)
(S8,26) 3 d, {a,b}, c d,b, {a, c} (a d)(b c)
(S9,18) 2 {a,d}, c,b {a,d}, {b, c} (a)(b)(c)(d)
(S9,35) 1 {a,b}, {c,d} a,b, {c,d} (a)(b)(c)(d)
(S9,40) 1 {a,b}, {c,d} {a,b}, c,d (a)(b)(c)(d)
(S10,12) 3 {a, c},d,b {a, c,d},b (a d)(b c)
(S10,15) 4 {b,d},a, c d,b,a, c (a d)(b c)
(S10,19) 4 {b,d},a, c {b,d}, {a, c} (a d)(b c)
(S10,36) 2 {c,d}, {a,b} d, c, {a,b} (a d)(b c)
(S12,10) 4 {a,b,d}, c {b,d},a, c (a d)(b c)
(S12,16) 3 {a, c},d,b a, c,d,b (a)(b)(c)(d)
(S12,44) 2 {a,b}, {c,d} {a,b},d, c (a)(b)(c)(d)
(S13,15) 3 {b,d},a, c {b,d}, {a, c} (a)(b c)(d)
(S13,27) 4 a,b,d, c {a,b}, {c,d} (a)(b c)(d)
(S14,9) 4 a,d, c,b {a,d}, c,b (a)(b)(c)(d)
(S14,16) 2 d, c, {a,b} {c,d}, {a,b} (a)(b)(c d)
(S14,34) 3 {a,b, c},d b, {a, c},d (a)(b)(c d)
(S15,5) 4 a, c,d,b a, {c,d},b (a d)(b c)
(S15,7) 3 {b,d},a, c d, {a,b}, c (a)(b)(c)(d)
(S15,10) 4 a, c,d,b {a, c},d,b (a d)(b c)
(S15,13) 2 {c,d}, {a,b} {c,d},a,b (a)(b c)(d)
(S17,3) 3 {a, c}, {b,d} c,a, {b,d} (a)(b)(c)(d)
(S17,5) 3 {a, c}, {b,d} {a, c},d,b (a)(b)(c)(d)
(S17,7) 3 {a, c}, {b,d} a, c,d,b (a)(b)(c)(d)
(S17,11) 3 {a, c}, {b,d} c,a,b,d (a)(b)(c)(d)
(S18,9) 2 {a,d}, {b, c} {a,d}, c,b (a)(b)(c)(d)
(S19,1) 1 {a,b}, {c,d} a,b, {c,d} (a)(b)(c)(d)
(S19,10) 4 {a, c}, {b,d} {a, c},d,b (a d)(b c)
(S19,27) 2 {c,d}, {a,b} {c,d},a,b (a)(b c)(d)
(S20,21) 3 a, c, {b,d} a, {c,d},b (a c b d)
(S21,35) 3 c, {a,b},d {a,b, c},d (a)(b)(c)(d)
(S22,29) 3 d, {a,b}, c {b,d},a, c (a d)(b c)
(S22,32) 4 a,b, {c,d} {a,b},d, c (a)(b)(c)(d)
(S23,12) 3 {a, c}, {b,d} {a, c},d,b (a)(b)(c)(d)
(S23,18) 2 {c,d}, {a,b} c,d, {a,b} (a)(b)(c d)
(S23,19) 4 {a,b,d}, c {b,d},a, c (a)(b)(c)(d)
(S24,34) 3 c,a, {b,d} c, {a,d},b (a d)(b c)
(S25,26) 2 {b,d},a, c {b,d}, {a, c} (a)(b c)(d)
(S25,36) 4 a, c, {b,d} {a, c},d,b (a)(b)(c)(d)
(S26,8) 4 a, c, {b,d} a, {c,d},b (a d)(b c)
(S27,13) 3 {a, c}, {b,d} a, c,d,b (a)(b c)(d)
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(S27,19) 2 {b,d},a, c {b,d}, {a, c} (a)(b c)(d)
(S28,32) 4 a, c, {b,d} a, {c,d},b (a d)(b c)
(S28,39) 3 a,b, {c,d} {a,b},d, c (a)(b c)(d)
(S29,39) 3 a,b, {c,d} {a,b},d, c (a d)(b c)
(S30,21) 4 {a,b},d, c a,b, {c,d} (a)(b)(c)(d)
(S30,41) 3 c, {a,b},d {a,b, c},d (a)(b)(c)(d)
(S31,38) 1 {b,d},a, c {b,d}, c,a (a c)(b d)
(S32,22) 4 {a,b},d, c a,b, {c,d} (a)(b)(c)(d)
(S32,28) 3 d, {a,b}, c d,b, {a, c} (a d)(b c)
(S33,5) 3 a,b, {c,d} {a,b}, {c,d} (a)(b)(c)(d)
(S33,22) 1 {c,d}, {a,b} d, c, {a,b} (a)(b)(c)(d)
(S34,24) 3 b, {a,d}, c b,d, {a, c} (a d)(b c)
(S35,9) 2 a,b, {c,d} {a,b}, {c,d} (a)(b)(c)(d)
(S35,21) 3 {a,b, c},d c, {a,b},d (a)(b)(c)(d)
(S36,10) 4 a,b, {c,d} {a,b}, {c,d} (a d)(b c)
(S36,25) 2 {a, c},d,b a, c, {b,d} (a)(b)(c)(d)
(S36,39) 1 {c,d}, {a,b} {c,d},a,b (a)(b)(c)(d)

(S37,42 (1)) 3 a,b, {c,d} a,b,d, c (a d)(b)(c)
(S37,42 (2)) 4 c,d, {a,b} c,d,b,a (a c d b)
(S39,2) 1 {a, c},d,b {a, c}, {b,d} (a)(b)(c)(d)
(S39,29) 4 {c,d},a,b d, c, {a,b} (a d)(b c)
(S39,36) 4 {c,d},a,b {c,d}, {a,b} (a)(b)(c)(d)
(S41,31) 3 {a,b, c},d {b, c},a,d (a)(b)(c d)
(S42,3) 3 d,b,a, c d, {a,b}, c (a)(b)(c)(d)
(S42,11) 4 c,a, {b,d} c, {a,b},d (a b)(c d)
(S42,24) 2 {a,b}, {c,d} b,a, {c,d} (a)(b)(c)(d)
(S44,12) 3 {a,b},d, c {a,b}, {c,d} (a)(b)(c)(d)
(S44,40) 1 {c,d}, {a,b} c,d, {a,b} (a)(b)(c d)
(S45,31) 3 {a,b}, c,d b,a, {c,d} (a d)(b c)
(S46,20) 3 {a, c}, {b,d} a, c, {b,d} (a)(b)(c)(d)
(S46,37) 1 {b,d},a, c {b,d}, {a, c} (a d)(b c)
(S47,30) 1 {a,b}, {c,d} {a,b},d, c (a)(b)(c)(d)

Table 5. The manipulations required to obtain the strategyproofness conditions in Table 4.
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