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Abstract

Efficiency—no agent can be made better off without mak-
ing another one worse off—and strategyproofness—no agent
can obtain a more preferred outcome by misrepresenting his
preferences—are two cornerstones of economics and ubiqui-
tous in important areas such as voting, auctions, or matching
markets. Within the context of random assignment, Bogo-
molnaia and Moulin have shown that two particular notions
of efficiency and strategyproofness based on stochastic dom-
inance are incompatible. However, there are various other
possibilities of lifting preferences over alternatives to pref-
erences over lotteries apart from stochastic dominance. In
this paper, we give an overview of common preference ex-
tensions, propose two new ones, and show that the above-
mentioned incompatibility can be extended to various other
notions of strategyproofness and efficiency in randomized so-
cial choice.

1 Introduction
Efficiency—no agent can be made better off without making
another one worse off—and strategyproofness—no agent
can obtain a more preferred outcome by misrepresenting
his preferences—are two cornerstones of economics and
ubiquitous in important areas such as voting, auctions, or
matching markets. The conflict between both notions is
already apparent in Gibbard and Satterthwaite’s seminal
theorem, which states that the only single-valued social
choice functions that satisfy non-imposition—a weakening
of efficiency—and strategyproofness are dictatorships (Gib-
bard 1973; Satterthwaite 1975). In this paper, we study ef-
ficiency and strategyproofness in the context of social deci-
sion schemes (SDSs), i.e., functions that map a preference
profile to a probability distribution (or lottery) over a fixed
set of alternatives (Gibbard 1977; Barberà 1979). Random-
ized voting methods have a surprisingly long tradition going
back to ancient Greece and have recently gained increased
attention in political science (Stone 2011). Within computer
science, randomization is a very successful technique in al-
gorithm design and is being considered more and more of-
ten in the context of voting (Conitzer and Sandholm 2006;
Procaccia 2010; Walsh and Xia 2012; Service and Adams
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2012; Birrell and Pass 2011; Aziz, Brandt, and Brill 2013b;
Aziz 2013).

There are various ways of extending preferences over al-
ternatives to preferences over lotteries. We refer to these ex-
tensions as lottery extensions. Perhaps the most wide-spread
lottery extension is stochastic dominance (SD). This exten-
sion is of particular importance because one lottery stochas-
tically dominates another one iff the former yields at least as
much expected utility as the latter for any von-Neumann-
Morgenstern (vNM) utility representation consistent with
the ordinal preferences. However, settings in which the ex-
istence of an underlying vNM utility function cannot be as-
sumed may call for other lottery extensions. For instance, in
this paper, we put forward a particularly natural new exten-
sion called pairwise comparison (PC ), which arises as the
special case of skew-symmetric bilinear (SSB) utility func-
tions as proposed by Fishburn (1982).1 According to this ex-
tension lottery p is preferred to lottery q iff it is more likely
that p yields a better alternative than q. The PC extension
is more powerful than the SD extension in the sense that,
for the same preference relation over alternatives, the SD
preference relation is contained in the PC relation. Apart
from PC , we consider two other completions of SD due to
Cho (2012), namely the upward lexicographic (UL) and the
downward lexicographic (DL) extension. We furthermore
consider a weakening of SD that we call bilinear dominance
(BD) and which is again based on Fishburn’s SSB utility
(Fishburn 1984). Clearly, each of these lottery extensions
gives to rise to different variants or degrees of efficiency and
strategyproofness.

Since many lottery extensions are incomplete, i.e., some
pairs of lotteries are incomparable, there are two funda-
mentally different ways how to define strategyproofness.
The strong notion, first advocated by Gibbard (1977), re-
quires that every misreported preference relation of an agent
will result in a lottery that is comparable and weakly less
preferred by that agent to the original lottery. Accord-
ing to the weaker notion, first used by Postlewaite and
Schmeidler (1986) and then popularized by Bogomolnaia
and Moulin (2001), no agent can misreport his preferences
to obtain another lottery that is strictly preferred to the orig-

1SSB utility functions are a generalization of vNM utility func-
tions.



inal one. In other words, the strong version always inter-
prets incomparabilities in the worst possible manner (such
that they violate strategyproofness) while the weak version
interprets them as actual incomparabilities that cannot be re-
solved. Usually, the strong notion is much more demanding
than the weak one. Whenever a lottery extension is com-
plete, however, both notions coincide.

One of the best known results about SDSs is a conse-
quence of a characterization by Gibbard (1977), who at-
tributes it to Hugo Sonnenschein: when individual pref-
erences are linear, every Pareto optimal and strongly SD-
strategyproof SDS is a random dictatorship, i.e., one of
the agents is chosen at random and then picks his most
preferred alternative.2 Gibbard’s proof requires the uni-
versal domain of linear preferences and cannot be ex-
tended to arbitrary subdomains (Chatterji, Sen, and Zeng
2014). Moreover, in many important subdomains of so-
cial choice such as house allocation, matching, and coali-
tion formation, ties are unavoidable since agents are in-
different among all outcomes in which their allocation,
match, or coalition is the same (Sönmez and Ünver 2011;
Aziz, Brandt, and Seedig 2013; Bouveret and Lang 2008;
Elkind and Wooldridge 2009; Aziz, Brandt, and Seedig
2013). Within the special domain of random assignment,
Bogomolnaia and Moulin (2001) have been able to show
that there is no anonymous, SD-efficient, and strongly SD-
strategyproof SDS. As a consequence, all generalizations
of random dictatorship to weak preferences, violate SD-
efficiency or strong SD-strategyproofness.3 Aziz, Brandt,
and Brill (2013b) recently conjectured that the impossibil-
ity by Bogomolnaia and Moulin even holds when only re-
quiring weak SD-strategyproofness and proved this for the
rather limited class of majoritarian SDSs.4 We complement
and strengthen these results by proving the following theo-
rems (always assuming anonymity):

1. PC -strategyproofness is incompatible with PC -
efficiency in the context of neutral SDSs.

2. UL-strategyproofness is incompatible with UL-
efficiency.

3. BD-strategyproofness is incompatible with Pareto opti-
mality in the context of pairwise SDSs.

4. BD-group-strategyproofness is incompatible with Pareto-
optimality in the context of neutral SDSs.

The first result is a proof of a particularly natural weaken-
ing of the above mentioned conjecture by Aziz, Brandt, and
Brill (2013b). The second result might be surprising because
the corresponding statement for the DL-extension does

2While random dictatorship is strongly SD-strategyproof, it
only satisfies weak SD-group-strategyproofness.

3Random serial dictatorship, for instance, somewhat surpris-
ingly violates SD-efficiency (Bogomolnaia and Moulin 2001;
Bogomolnaia, Moulin, and Stong 2005; Aziz, Brandt, and Brill
2013b).

4Within the domain of random assignment with unit-demand
and the domain of dichotomous preferences, respectively, the con-
ditions of the conjecture are compatible (Bogomolnaia and Moulin
2001; Bogomolnaia, Moulin, and Stong 2005).

not hold (random dictatorship satisfies both DL-efficiency
and DL-strategyproofness). The third and the fourth re-
sult significantly strengthen theorems by Aziz, Brandt, and
Brill (2013b) (Theorem 1) and Bogomolnaia, Moulin, and
Stong (2005) (Proposition 3), respectively.

The assumption of anonymity is crucial as all our impos-
sibilities fail to hold when omitting anonymity. Serial dic-
tatorship, an extreme example of a non-anonymous SDS,
is defined for a fixed sequence of the agents and lets each
agent narrow down the set of alternatives by picking his most
preferred of the alternatives selected by the previous agents.
Serial dictatorship trivially satisfies all reasonable notions of
efficiency and strategyproofness. Since lotteries can guaran-
tee ex ante fairness via randomization, anonymity and neu-
trality are typically two minimal conditions that fair SDSs
are expected to satisfy.

2 Related Work
Apart from some early precursors (Zeckhauser 1969; Fish-
burn 1972), the first formal study of strategyproof random-
ized social choice was conducted by Gibbard (1977). A
recent survey of randomized social choice is contained in
a book chapter by Barberà (2010). Using stochastic domi-
nance for strategyproofness, efficiency, and fairness condi-
tions was popularized by Bogomolnaia and Moulin (2001).
They focussed on a subdomain of randomized social choice
called random assignment, in which each outcome is a
one-to-one assignment of objects to agents. Recently,
Cho (2012) extended the approach of Bogomolnaia and
Moulin (2001) by introducing new lottery extensions such
as ones based on lexicographic preferences. Aziz, Brandt,
and Brill (2013b) examined the tradeoff between efficiency
and strategyproofness for social decision schemes and initi-
ated the analysis of strict maximal lotteries, a little known
SDS due to Kreweras and Fishburn. Recently, Aziz (2013)
proposed a new SDS that compromises between RSD and
efficient but manipulable SDSs.

A line of inquiry that has been especially popular in
AI and multi-agent systems is to check how well strate-
gyproof SDSs approximate common deterministic voting
rules such as Borda’s rule (Conitzer and Sandholm 2006;
Procaccia 2010; Birrell and Pass 2011; Service and Adams
2012).

3 Preliminaries
LetN = {1, . . . , n} be a set of agents with preferences over
a finite set A with |A| = m. The preferences of agent i ∈ N
are represented by a complete and transitive preference re-
lation Ri ⊆ A × A. The set of all preference relations
will be denoted by R. In accordance with conventional no-
tation, we write Pi for the strict part of Ri, i.e., a Pi b
if a Ri b but not b Ri a and Ii for the indifference part
of Ri, i.e., a Ii b if a Ri b and b Ri a. A preference pro-
file R = (R1, . . . , Rn) is an n-tuple containing a preference
relation Ri for each agent i ∈ N . The set of all preference
profiles is thus given by Rn. We will compactly represent a
preference relation as a comma-separated list with all alter-
natives among which an agent is indifferent placed in a set.



For example a Pi b Ii c is represented by Ri : a, {b, c}. A
preference relation Ri is linear if x Pi y or y Pi x for all
distinct alternatives x, y ∈ A. A preference relation Ri is
dichotomous if x Ri y Ri z implies x Ii y or y Ii z.

Our central object of study are social decision schemes,
i.e., functions that map the individual preferences of the
agents to a lottery (or probability distribution) over alter-
natives. A social decision scheme (SDS) is a function
f : Rn → ∆(A).

A minimal fairness condition for SDSs is anonymity,
which requires that f(R) = f(R′) for all R,R′ ∈ Rn

and permutations π : N → N such that R′
i = Rπ(i) for all

i ∈ N . Another fairness requirement is neutrality. For a per-
mutation π ofA and a preference relationRi, π(x) Rπi π(y)
if and only if x Ri y. Then, an SDS f is neutral if for all
R ∈ Rn, f(R)(x) = f(Rπ)(π(x)) for all x ∈ A.

An SDS f is pairwise (or a neutral C2 function) if it is
neutral and for all preference profiles R and R′, f(R) =
f(R′) whenever for all alternatives x, y,

|{i ∈ N | x Ri y}| − |{i ∈ N | y Ri x}|
= |{i ∈ N | x R′

i y}| − |{i ∈ N | y R′
i x}|.

In other words, the outcome of a pairwise SDS only depends
on the anonymized comparisons between pairs of alterna-
tives (Young 1974; Zwicker 1991).

An SDS f is majoritarian (or a neutral C1 function) if it
is neutral and for all preference profiles R and R′, f(R) =
f(R′) whenever for all alternatives x, y,

|{i ∈ N | x Ri y}| ≥ |{i ∈ N | y Ri x}|
iff |{i ∈ N | x R′

i y}| ≥ |{i ∈ N | y R′
i x}|.

It is easy to see that the three classes of SDSs form a hierar-
chy: every majoritarian SDS is pairwise and every pairwise
SDS is anonymous.

Two anonymous SDSs that have been recently analyzed
in a framework similar to this paper are random serial dic-
tatorship (RSD) and strict maximal lotteries (SML) (Aziz,
Brandt, and Brill 2013b). RSD is the canonical generaliza-
tion of random dictatorship to weak preferences. It is de-
fined by picking a sequence of the agents uniformly at ran-
dom and then invoking serial dictatorship (i.e., each agent
narrows down the set of alternatives by picking his most pre-
ferred of the alternatives selected by the previous agents).
SML is a little known class of pairwise SDSs due to Krew-
eras and Fishburn that return a mixed quasistrict Nash equi-
librium of the plurality game. Computing RSD was recently
shown to be #P-complete (Aziz, Brandt, and Brill 2013a)
while SML can be computed efficiently using linear pro-
gramming.

4 Lottery Extensions
In order to reason about the outcomes of SDSs, we need
to make assumptions on how agents compare lotteries. A
lottery extension maps preferences over alternatives to (pos-
sibly incomplete) preferences over lotteries. We will now
define the lottery extensions considered in this paper. For a
more detailed account of the lottery extensions SD , DL, and
UL, we refer to Cho (2012).

RBD
i

RSD
i

RPC
iRDL

i RUL
i

Figure 1: Inclusion relationships between lottery extensions.
An arrow denotes set inclusion between two relations, e.g.,
RBD
i ⊂ RSD

i . DL, PC , and UL are extensions that yield
complete preference relations over sets.

Throughout this section, let Ri ∈ R be a preference rela-
tion and p, q ∈ ∆(A).

The first extension we propose is called bilinear domi-
nance (BD) and requires that for every pair of alternatives
the probability that p yields the more preferred alternative
and q the less preferred alternative is at least as large as the
other way round. Formally, p RBD

i q iff

∀x, y, x Pi y : p(x)q(y) ≥ p(y)q(x). (BD)

Apart from its intuitive appeal, the main motivation for BD
is that p bilinearly dominates q iff p is preferable to q for ev-
ery SSB utility function consistent with Ri (Fishburn 1984).

Stochastic dominance (SD) prescribes that for each alter-
native x ∈ A, the probability that p selects an alternative that
is at least as good as x is greater or equal to the probability
that q selects such an alternative. Formally, p RSD

i q iff

∀x :
∑

y : yRix

p(y) ≥
∑

y : yRix

q(y). (SD)

It is well-known that p RSD
i q iff the expected utility for

p is at least as large as that for q for every von-Neumann-
Morgenstern utility function compatible with Ri.

A novel strengthening of SD , considered in this paper for
the first time, is the pairwise comparison (PC) extension.
The reasoning behind PC is to prefer p to q if the proba-
bility that p yields an alternative preferred to the alternative
returned by q is at least as large than the other way round.5
Formally, p RPC

i q iff∑
xRiy

p(x)q(y) ≥
∑
xRiy

q(x)p(y). (PC )

Finally, we define the downward lexicographic (DL) ex-
tension and the upward lexicographic (UL) extension intro-
duced by Cho (2012). According to DL the lottery with
higher probability on the top ranked alternative is preferred,
in case of equality, the one with higher probability on the
second ranked alternative, and so on. Formally, p RDL

i q if
p = q or

∃x : (p(x) > q(x) and ∀y, y Ri x : p(y) = q(y)). (DL)

5Interestingly, this extension may lead to intransitive prefer-
ences over lotteries, even when the preferences over alternatives
are transitive (Blyth 1972; Fishburn 1988).



Upward lexicographic ordering is dual to the former, i.e.,
p RUL

i q if p = q or

∃x : (p(x) < q(x) and ∀y, x Ri y : p(y) = q(y)). (UL)

The following example illustrates the definitions of the
extensions. Consider the preference relation Ri : a, b, c and
lotteries

p = 2/3a+ 0b+ 1/3c and
q = 0a+ 1b+ 0c.

Then, p PPCi q; p PDLi q; q PULi p; ¬[p RSDi q]; ¬[q RSDi
p]; ¬[p RBDi q]; and ¬[q RBDi p].

The inclusion relationships between the lottery extensions
are depicted in Figure 1.

5 Efficiency and Strategyproofness
In this section, we present general definitions of efficiency
and strategyproofness which give rise to varying levels of
efficiency and strategyproofness depending on which lottery
extension is used to define them. The relationships between
these concepts are depicted in Figure 2.

Efficiency prescribes that there is no lottery that all agents
prefer to the one returned by the SDS. Each lottery exten-
sion yields a corresponding notion of efficiency. Let E be a
lottery extension. Given a preference profile R, a lottery p
E-dominates another lottery q if p RE

i q for all i ∈ N and
p PE

i q for some i ∈ N . An SDS f is E-efficient if, for ev-
ery R ∈ Rn, there does not exist a lottery that E-dominates
f(R). An alternative is Pareto dominated if there exists an-
other alternative such that all agents strictly prefer the latter
to the former. An SDS is Pareto optimal (or ex post efficient)
if it puts probability zero on all Pareto dominated alterna-
tives. It is well-known that SD-efficiency implies Pareto op-
timality. Our first theorem, the proof of which is omitted due
to space restrictions, shows that Pareto optimality is stronger
than BD-efficiency.
Theorem 1. Pareto optimality implies BD-efficiency but the
converse does not hold.

Strategyproofness prescribes that no agent can obtain a
more preferred outcome by misrepresenting his preferences.
Again, we obtain varying degrees of this property depend-
ing on the underlying lottery extension. Let E be a lottery
extension. An SDS f is E-manipulable if there exist pref-
erence profiles R and R′ with Rj = R′

j for all j 6= i such
that f(R′) PE

i f(R). An SDS is E-strategyproof if it is
not E-manipulable. An SDS is strongly E-strategyproof if
for all R and R′ with Rj = R′

j for all j 6= i such that
f(R) RE

i f(R′).6 For complete lottery extensions (DL,
PC , and UL), the weak and the strong notions of strate-
gyproofness coincide.

An SDS f is E-group-manipulable if there exists an S ⊆
N and preference profiles R and R′ with Rj = R′

j for all
j ∈ N \ S such that f(R′) PE

i f(R) for all i ∈ S. An SDS
is E-group-strategyproof if it is not E-group-manipulable.

6Please note that in some papers (e.g., Bogomolnaia and
Moulin 2001) the term “strategyproofness” refers to the strong no-
tion of strategyproofness.

6 Results and Discussion
Recent research has shown that there exists an interesting
tradeoff between efficiency and strategyproofness in ran-
domized social choice (Aziz, Brandt, and Brill 2013b).
For example, RSD satisfies strong SD-strategyproofness
and Pareto optimality, but violates SD-efficiency. SML,
on the other hand, satisfies PC -efficiency and ST -
strategyproofness, where ST is a weakening of BD , but
violates SD-strategyproofness. This section contains four
impossibility results that improve our understanding of the
interplay between efficiency and strategyproofness and have
nontrivial consequences on concrete SDSs such as RSD and
SML.

We prove each of these results by reasoning about a set
of preference profiles and deriving a contradiction. In par-
ticular, the proofs assume a specific number of agents and
alternatives, but can be generalized to any (larger) number
of agents and alternatives as follows. For more alternatives,
we add the additional alternatives as tied for last rank in each
agent’s preference relation and every preference profile. No-
tice that we do not leave the domain in case of dichotomous
preferences. To show a statement for more agents, we add
agents that are indifferent between all alternatives. Both
constructions do not affect the set of efficient lotteries and
incentives of agents. Hence, the proofs with the same argu-
ments carry through.

Our first result states that efficiency and strategyproofness
are incompatible when preferences over lotteries are given
by the natural PC extension.

Theorem 2. There is no anonymous, neutral, PC -efficient,
and PC -strategyproof SDS for n ≥ 3 and m ≥ 3.

Proof. Assume for a contradiction that f is an SDS with
properties as stated above and consider the following prefer-
ence profile.

R1
1 : a, {b, c} R1

2 : b, a, c R1
3 : c, a, b

Anonymity and neutrality imply that f(R1)(b) = f(R1)(c).
The only PC -efficient lottery which puts equal weight on b
and c is the degenerate lottery a, since every other lottery of
this form is dominated by a (agent 2 and 3 are indifferent
while agent 1 is strictly better off). Hence, f(R1) = a. Now
consider the following profile.

R2
1 : a, {b, c} R2

2 : b, a, c R2
3 : {a, c}, b

In this profile a Pareto dominates c, hence f(R2)(c) = 0.
If agent 3 reports R1

3 instead of R2
3, he receives one of his

most preferred alternatives, namely a, with probability 1.
Therefore by PC -strategyproofness, f(R2) = a. Next, we
consider the profile R3.

R3
1 : a, {b, c} R3

2 : b, {a, c} R3
3 : {a, c}, b

PC -efficiency implies that f puts probability 0 on c when
applied to R3, since a Pareto dominates c. If f(R3) 6=
f(R2), agent 2 would have an incentive to deviate in one
direction or the other. Thus, f(R3) = a.
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Figure 2: Relationships between efficiency and strategyproofness concepts.

Since we will need it later, we state an observation at this
point. By anonymity and neutrality, f has to choose the uni-
form lottery 1/3a+ 1/3b+ 1/3c in the following profile.

R4
1 : c, a, b R4

2 : a, b, c R4
3 : b, c, a

Also notice that in this profile agent 1 prefers any lottery
with higher probability on c than on b to the uniform lottery
according to (R4

1)PC .
Now we consider another preference profile.

R5
1 : {a, c}, b R5

2 : a, b, c R5
3 : b, c, a

Here we distinguish two cases. First, we assume f(R5) = a
and consider a deviation by agent 3.

R6
1 : {a, c}, b R6

2 : a, b, c R6
3 : c, b, a

Anonymity and neutrality imply that f(R6)(a) = f(R6)(c).
Any lottery of this form other than 1/2a + 1/2c is PC -
dominated by the latter. Thus, f(R6) = 1/2a + 1/2c
by PC -efficiency. But agent 3 prefers 1/2a + 1/2c to a
if his preferences are R5

3. Hence, a contradiction to PC -
strategyproofness. The second case is f(R5) 6= a. If
f(R5)(c) > f(R5)(b), then by the above observation, agent
1 prefers f(R5) to f(R4) if his preferences are R4

1. A con-
tradiction to PC -strategyproofness. Hence, f(R5)(c) ≤
f(R5)(b) and thus, by the assumption in the second case,
f(R5)(b) > 0.

R7
1 : {a, c}, b R7

2 : a, b, c R7
3 : b, {a, c}

It follows from f(R5)(b) > 0 that f(R7)(b) > 0, otherwise
agent 3 would deviate fromR7

3 toR5
3. In particular f(R7) 6=

a. Finally, consider the following profile.
R8

1 : {a, c}, b R8
2 : a, {b, c} R8

3 : b, {a, c}
By anonymity, f(R8) = f(R3) = a. But this implies that
agent 2 can successfully deviate from R7

2 to R8
2 and receive

a instead. Hence, the desired contradiction.

It can be shown that random dictatorship violates PC -
efficiency, even when preferences are linear. This empha-
sizes the efficiency problems of random dictatorship. Previ-
ously, it was only known that RSD violates SD-efficiency
for weak preferences. Still, PC -efficiency is not unduly re-
strictive as SML is known to satisfy it.

Next, we prove a similarly negative result for the UL-
extension, which only requires two agents.

Theorem 3. There is no anonymous, UL-efficient, and UL-
strategyproof SDS for n ≥ 2 and m ≥ 3.

The proof of this theorem is omitted to meet space con-
straints.

Interestingly, DL-efficiency—the dual notion of UL-
efficiency—is compatible with SD-strategyproofness (and
hence DL-strategyproofness) because random dictatorship
satisfies both conditions when preferences are linear.

The next result is a strengthening of Theorem 1 by Aziz,
Brandt, and Brill (2013b) in two respects: it uses a weaker
notion of strategyproofness and it holds for the set of all pair-
wise SDSs rather than only majoritarian SDSs.7

Theorem 4. There is no pairwise, Pareto optimal, and BD-
strategyproof SDS for n ≥ 4 and m ≥ 4.

Proof. Let f be a pairwise, Pareto optimal, and BD-
strategyproof SDS. We first consider the preference profile
R and its (weighted) majority graph depicted in Figure 3 (i).

R1
1 : a, c, {b, d} R1

2 : b, d, {a, c}

Since f is Pareto optimal and pairwise, f(R1) = p =
1/2a+ 1/2b. Now we consider the profile R2 with majority
graph as in Figure 3 (ii).

R2
1 : a, c, {b, d} R2

2 : {b, d}, {a, c}

Both agents are indifferent between b and d and again c is
Pareto dominated. Hence, f(R2) = q = (1−2λ)a+λb+λd
for some λ ∈ [0, 1].

First assume for a contradiction λ > 1/3. We consider
profile R3.

R3
1 : a, {b, c, d} R3

2 : {b, d}, {a, c}

The majority graph of R3 is as in Figure 3 (iii). Hence, by
anonymity and neutrality, f(R3) = r = 1/3a + 1/3b +
1/3d. But r (P 2

1 )BD q if λ > 1/3, which contradicts BD-
strategyproofness of f since voter 1 in R2 can manipulate
by reporting R3

1 instead of R2
1.

7Note, however, that the proof of Theorem 1 by Aziz, Brandt,
and Brill (2013b) only requires linear preferences.
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Figure 3: Graphs depicting pairwise comparisons. An edge
from x to y is labeled with the number of agents preferring
x to y minus the number of agents preferring y to x. All
missing edges denote majority ties.

Now assume for a contradiction that λ = 1/3.

R4
1 : a, c, b, d R4

2 : {b, d}, {a, c}
R4

3 : a, c, {b, d} R4
4 : {b, d}, c, a

The profile R4 has a majority graph as in Figure 3 (i), thus
f(R4) = p.

R5
1 : a, c, b, d R5

2 : {b, d}, {a, c}
R5

3 : a, c, {b, d} R5
4 : d, b, c, a

The majority graph of R5 is as in Figure 3 (ii) and hence
f(R5) = q. But then voter 4 in R4 can manipulate by re-
porting R5

4 instead of R4
4 since q (P 4

4 )BD p. This again
contradicts BD-strategyproofness of f .

Finally, we assume λ < 1/3 and consider profile R6.

R6
1 : a, c, {b, d} R6

2 : {b, d}, {a, c}
R6

3 : {b, c, d}, a R6
4 : a, {b, c, d}

Its majority graph is as in Figure 3 (ii) and therefore
f(R6) = q. We consider one last profile.

R7
1 : a, c, {b, d} R7

2 : {b, d}, {a, c}
R7

3 : {b, d}, c, a R7
4 : a, {b, c, d}

The majority graph of this profile is as in Figure 3 (i) which
implies f(R7) = r. But r (P 6

3 )BD q if λ < 1/3. Thus,
agent 3 in R6 benefits from reporting R7

3 instead of R6
3. In

any case, we found a successful manipulation, contradicting
BD-strategyproofness of f .

As a consequence of the previous theorem, the pairwise
SDS SML does not satisfy BD-strategyproofness and, as a
matter of fact, no reasonable pairwise SDS can.

For our final result we again consider the rather weak
notion of BD-strategyproofness, but also consider devia-
tions by groups of agents. It turns out that BD-group-
strategyproofness is already incompatible with Pareto opti-
mality when also requiring anonymity and neutrality.8

8Bogomolnaia, Moulin, and Stong (2005) (Proposition 3)
proved that for n ≥ 4 and m ≥ 6, there exists no anonymous, neu-
tral, Pareto optimal, and SD-group-strategyproof SDS for dichoto-
mous preferences. We strengthen their result by weakening SD-
group-strategyproofness to the significantly weaker notion of BD-
group-strategyproofness and by using less alternatives and agents.

Theorem 5. There is no anonymous, neutral, Pareto-
optimal, and BD-group-strategyproof SDS for n ≥ 3 and
m ≥ 3, even when preferences are dichotomous.

Proof. Assume for contradiction that f is an SDS with the
properties as stated. Consider a setting with three agents and
three alternatives and the following preference profile.

R1
1 : {a, b}, c R1

2 : {a, c}, b R1
3 : {b, c}, a

By neutrality and anonymity, f(R1) = 1/3a+1/3b+1/3c.
Now let agents 1 and 2 change their preferences and consider
the profile R2.

R2
1 : a, {b, c} R2

2 : a, {b, c} R2
3 : {b, c}, a

Again by neutrality and anonymity, f(R2) = (1 − 2λ)a +
λb + λc. If λ > 1/3, then agents 1 and 2 would rather
report R1

1 and R1
2 respectively if their true preferences were

R2
1 and R2

2. On the other hand, if λ < 1/3 and their true
preferences were R1

1 and R1
2, they would rather report R2

1
and R2

2. Hence, λ = 1/3 and f(R2) = 1/3a+1/3b+1/3c.

R3
1 : a, {b, c} R3

2 : {a, b}, c R3
3 : b, {a, c}

In R3, c is Pareto-dominated, thus by neutrality and
anonymity, f(R3) = 1/2a + 1/2b. To this end, we con-
sider the following profile.

R4
1 : a, {b, c} R4

2 : {a, b}, c R4
3 : {b, c}, a

If agent 3 changes his preferences from R3
3 to R4

3, c is still
Pareto-dominated and his preferences over a and b remain
unchanged. Hence, by BD-strategyproofness, f(R4) =
f(R3). But then agent 2 in R2 would have an incentive to
report R4

2 instead of R2
2, a contradiction.

For the stronger (but less reasonable) notion of group-
strategyproofness in which only one of the deviating agents
has to be strictly better off, we were able to show the pre-
vious impossibility even without requiring anonymity and
neutrality. The proof is omitted due to limited space.

Theorem 5 implies that RSD violates BD-group-
strategyproofness. As a matter of fact, both RSD and
SML only satisfy the rather weak notion of ST -group-
strategyproofness where ST is a weakening of BD intro-
duced by Aziz, Brandt, and Brill (2013b). Put in a nutshell,
RSD does better in terms of individual strategyproofness
(strong SD-strategyproofness vs. ST -strategyproofness)
while SML is more efficient (PC -efficiency vs. Pareto opti-
mality).
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