
The Computational Complexity of
Random Serial Dictatorship

Haris Aziza,∗, Felix Brandtb, Markus Brillb

aNICTA and UNSW, 223 Anzac Parade, Sydney, NSW 2033, Australia,
Phone: +61 2 8306 0490

bInstitut für Informatik, Technische Universität München, 85748 Garching, Germany
Phone: +49 89 289 17512

Abstract

In social choice settings with linear preferences, random dictatorship is known to
be the only social decision scheme satisfying strategyproofness and ex post effi-
ciency. When also allowing indifferences, random serial dictatorship (RSD) is a
well-known generalization of random dictatorship that retains both properties.
RSD has been particularly successful in the special domain of random assign-
ment where indifferences are unavoidable. While executing RSD is obviously
feasible, we show that computing the resulting probabilities is #P-complete and
thus intractable, both in the context of voting and assignment.

Keywords: Social choice theory, random serial dictatorship, random priority,
computational complexity, assignment problem.
JEL: C63, C70, C71, and C78

1. Introduction

Social choice theory studies how a group of agents can make collective de-
cisions based on the—possibly conflicting—preferences of its members. In the
most general setting, there is a set of abstract alternatives over which each
agent entertains preferences. A social decision scheme aggregates these prefer-
ences into a probability distribution (or lottery) over the alternatives.

Perhaps the most well-known social decision scheme is random dictatorship,
in which one of the agents is uniformly chosen at random and then picks his
most preferred alternative. Gibbard [11] has shown that random dictatorship is
the only social decision scheme that is strategyproof and ex post efficient, i.e.,
it never puts positive probability on Pareto dominated alternatives. Note that
random dictatorship is only well-defined when there are no ties in the agents’
preferences. However, ties are unavoidable in many important domains of social

∗Corresponding author
Email addresses: haris.aziz@nicta.com.au (Haris Aziz), brandtf@in.tum.de (Felix

Brandt), brill@in.tum.de (Markus Brill)

1

choice such as assignment, matching, and coalition formation since agents are
assumed to be indifferent among all outcomes in which their assignment, match,
or coalition is the same [e.g., 14].

In the presence of ties, random dictatorship is typically extended to random
serial dictatorship (RSD), where dictators are invoked sequentially and ties
between most-preferred alternatives are broken by subsequent dictators.1 RSD
retains the important properties of ex post efficiency and strategyproofness and
is well-established in the context of random assignment [see e.g., 15, 1, 5, 10].

In this paper, we focus on two important domains of social choice: (1) the
voting setting, where alternatives are candidates and agents’ preferences are
given by rankings over candidates, and (2) the aforementioned assignment set-
ting, where each alternative corresponds to an assignment of houses to agents
and agents’ preferences are given by rankings over houses. Whereas agents’
preferences over alternatives are listed explicitly in the voting setting, this is
not the case in the assignment setting. However, preferences over houses can
be easily extended to preferences over assignments by assuming that each agent
only cares about the house assigned to himself and is indifferent between all
assignments in which he is assigned the same house. As a consequence, the
assignment setting is a special case of the voting setting. However, due to the
different representations, computational statements do not carry over from one
setting to the other.

In various settings, the probability that a social decision scheme assigns to
an alternative is interpreted as the fraction of time or another resource that is
allocated to the alternative [see, e.g., 13, 6]. Similarly, in the assignment setting,
the probability with which an agent is allocated a certain object is often viewed
as the fraction of the object that this agent receives or the fraction of time that
the agent is allowed to use the shared object. As a consequence, computing
RSD lotteries is of great importance and has applications in domains such as
scheduling of resources [see, e.g., 10].

We examine the computational complexity of RSD and show that computing
the RSD lottery is #P-complete both in the voting setting and in the assignment
setting. Loosely speaking, #P is the counting equivalent of NP—the class of
decision problems whose solutions can be verified in polynomial time. #P-
completeness is commonly seen as strong evidence that a problem cannot be
solved in polynomial time.

As mentioned above, neither of the two results implies the other. We further-
more present a polynomial-time algorithm to compute the support of the RSD
lottery in the voting setting. This is not possible in the assignment setting, be-
cause the support of the RSD lottery might be of exponential size. However, we
can decide in polynomial time whether a given alternative (i.e., an assignment)
is contained in the support or not.

1RSD is referred to as random priority by Bogomolnaia and Moulin [5].

2

2. Preliminaries

In the general social choice setting, there is a set N = {1, . . . , n} of agents,
who have preferences over a finite set A of alternatives. The preferences of
agent i ∈ N are represented by a complete and transitive preference rela-
tion Ri ⊆ A× A. The interpretation of (a, b) ∈ Ri, usually denoted by a Ri b,
is that agent i values alternative a at least as much as alternative b. In accor-
dance with conventional notation, we write Pi for the strict part of Ri, i.e., a Pi b
if a Ri b but not b Ri a, and Ii for the symmetric part of Ri, i.e., a Ii b if a Ri b
and b Ri a. A preference profile R = (R1, . . . , Rn) is an n-tuple containing a
preference relation Ri for every agent i ∈ N .

A preference relation Ri is linear if a Pi b or b Pi a for all distinct alternatives
a, b ∈ A. A preference relation Ri is dichotomous if a Ri b Ri c implies a Ii b or
b Ii c.

We let ΠN denote the set of all permutations of N and write a permutation
π ∈ ΠN as π = π(1) . . . π(n). For k ≤ n, we furthermore let π|k denote the
prefix of π of length k, i.e., π|k = π(1) . . . π(k).

If Ri is a preference relation and B ⊆ A a subset of alternatives, then
maxRi(B) = {a ∈ B : a Ri b for all b ∈ B} is the set of most preferred alterna-
tives from B according to Ri. Hence, a Ii b for all a, b ∈ maxRi(B) and a Pi b
for all a ∈ maxRi(B), b ∈ B \maxRi(B).

In order to define the social decision scheme known as random serial dic-
tatorship (RSD), let us first define its deterministic variant serial dictatorship
(SD). For a given preference profile R and a permutation π ∈ ΠN , SD(R, π)
is defined via the following procedure. Agent π(1) chooses the set of most pre-
ferred alternatives from A, π(2) chooses his most preferred alternatives from
the refined set and so on until all agents have been considered. The resulting
set of alternatives is returned. Formally, SD(R, π) is defined inductively via
SD(R, π|0) = A and SD(R, π|i) = maxRπ(i)

(SD(R, π|i−1)).
Throughout this paper, we assume that the preferences of the agents are

such that there is no pair a, b ∈ A with a 6= b and a Ii b for all i ∈ N .2 This
assumption ensures that the set SD(R, π) is always a singleton. We will usually
write SD(R, π) = a instead of SD(R, π) = {a}.

We are now ready to define RSD . For a given preference profile R, RSD
returns SD(R, π), where π is chosen uniformly at random from ΠN . The prob-
ability RSD(R)(a) of alternative a ∈ A is thus proportional to the number of
permutations π for which SD(R, π) = a:

RSD(R)(a) =
1

n!

∣∣{π ∈ ΠN : SD(R, π) = a
}∣∣ .

We refer to the probability RSD(R)(a) as the RSD probability of alternative a
and to the probability distribution RSD(R) as the RSD lottery.

2In the assignment setting, this assumption always holds if the agents have linear prefer-
ences over houses. SD (and RSD) can be defined without this assumption [see, e.g., 3].

3

Our proofs leverage the fact that a certain matrix related to the Pascal
triangle has a non-zero determinant.

Lemma 1 (Bacher [4]). The n×n matrix M = (mij)i,j given by mij = (i+j−2)!
has a non-zero determinant. That is,

det


0! 1! · · · (n− 1)!
1! 2! · · · n!
...

...
. . .

...
(n− 1)! n! · · · (2n− 2)!

 6= 0.

3. Voting Setting

A voting problem is given by a triple (N,A,R), where N = {1, . . . , n} is a set
of agents, A is a set of alternatives, and R = (R1, . . . , Rn) is a preference profile
that contains, for each agent i, a preference relation on the set of alternatives.
The goal is to choose an alternative that is socially acceptable according to the
preferences of the agents.

If each agent has a unique most preferred alternative, the RSD lottery can be
computed in linear time. Therefore, computational aspects of RSD only become
interesting when at least some of the agents express indifferences among their
most preferred alternatives. The straightforward approach to compute the RSD
lottery involves the enumeration of permutations. This approach obviously takes
exponential time. At first sight, it seems that even finding the support of the
RSD lottery requires the enumeration of all permutations. However, we outline
a surprisingly simple algorithm that checks in polynomial time whether a given
alternative a is contained in the support (Algorithm 1).

Algorithm 1 Is the RSD probability of alternative a positive?

1 N ′ ←− N
2 A′ ←− A
3 π∗ ←− empty list
4 while N ′ 6= ∅ do
5 if a /∈ maxRi(A

′) for all i ∈ N ′ then
6 return “no”
7 else
8 Take the smallest i ∈ N ′ such that a ∈ maxRi(A

′)
9 N ′ ←− N ′ \ {i}

10 A′ ←− maxRi(A
′)

11 Append i to π∗

12 end if
13 end while
14 return “yes”

The algorithm is based on a greedy approach and maintains a working set
of alternatives A′ and a working set of agents N ′, which are initialized as A

4

and N , respectively. If no agent in N ′ has a as a most preferred alternative
in A′, then the algorithm returns “no.” Otherwise let i ∈ N ′ be the smallest
index such that agent i has a as a most preferred alternative in A′.3 The set
A′ is refined by deleting all alternatives that are not among the most preferred
alternatives in A′ according to agent i. The process is then repeated until all
agents have been considered.

The following lemma will be essential for showing the correctness of Algo-
rithm 1.

Lemma 2. Consider a permutation π ∈ ΠN and let 1 ≤ k < j ≤ n be such that
a ∈ maxRπ(j)

SD(R, π|k). Define another permutation π′ ∈ ΠN by moving π(j)
to position k+1, i.e., π′ = π(1) . . . π(k)π(j)π(k+1) . . . π(j−1)π(j+1) . . . π(n).
If SD(R, π) = a, then SD(R, π′) = a.

Proof. Assume for contradiction that SD(R, π′) 6= a. Then, there exists
i ≤ n such that a ∈ SD(R, π′|i−1) and a /∈ SD(R, π′|i). That is, a /∈
maxRπ′(i)(SD(R, π′|i−1)). Since π and π′ agree on the first k positions and

SD(R, π) = a, it follows that i > k.
Now consider the set that agent π′(i) faces when it is his turn in the original

permutation π. This set, call it B, is identical to the set SD(R, π′|i−1) the agent
faces in permutation π′, except that agent π(j) might not have refined the set
yet. Thus SD(R, π′|i−1) ⊆ B. Since a was not among the most preferred
alternatives in SD(R, π′|i−1) (according to the preferences of agent π′(i)), it
follows that a is not among the most preferred alternatives in B. The latter
statement however contradicts the assumption that SD(R, π) = a.

Theorem 1. In the voting setting, the support of the RSD lottery can be com-
puted in polynomial time.

Proof. It is obvious that Algorithm 1 runs in polynomial time. Since the number
of alternatives is linear, we can run Algorithm 1 for each alternative and return
the set of alternatives for which the algorithm returns “yes.” We now show that
Algorithm 1 returns “yes” if and only if a is in the support of the RSD lottery.

If Algorithm 1 returns “yes,” it also constructs a corresponding permuta-
tion π∗ such that for each j ∈ N , a is one of the most preferred alternatives of
π∗(j) in the working set of alternatives. Hence, a ∈ SD(R, π∗).

For the other direction, assume that a is in the support of the RSD lottery.
Then, there exists a permutation πa such that SD(R, πa) = a. This permutation
can be transformed into the permutation π∗ constructed by Algorithm 1 by
only using steps that are covered by Lemma 2. In particular, we start with
permutation πa and move agent π∗(1) to position 1. Then, agent π∗(2) is
moved to position 2, and so on until all agents are in position.

Repeated application of Lemma 2 yields that SD(R, π∗) = a. Therefore,
Algorithm 1 returns “yes.”

3One may choose any i ∈ N ′ for which a is a most preferred alternative in A′ and the
algorithm still works. Our choice of i with the smallest index simplifies the proof.

5

We now show that the problem of computing the actual RSD lottery is
intractable, even when preferences are severely restricted.

Theorem 2. In the voting setting, computing the RSD probability of an alter-
native is #P-complete, even for dichotomous preferences.

Proof. We show that computing the probability RSD(R)(a) of RSD choosing
alternative a ∈ A is #P-complete. Membership of this problem in the complex-
ity class #P is straightforward. For hardness, we present a polynomial-time
Turing reduction from the #P-complete problem #SetCovers-k:

Given a set U and a collection S = {S1, . . . , Sn} of subsets of U ,
count the number of set covers of U of size k. Here, S′ ⊆ S is a set
cover if

⋃
Si∈S′ Si = U and the size of a set cover S′ is |S′|.

#P-completeness of #SetCovers-k follows from the fact that counting set
covers of arbitrary size is #P-complete which in turn follows from the result of
Vadhan [16] that even the problem of counting vertex covers (a special case of
set covers) is #P-complete.

We are now in a position to outline our Turing reduction.4 Given an instance
(U, S) of #SetCovers-k, we construct a preference profile Rk for each k ∈
{1, . . . , n}. The set of alternatives in Rk is A = U ∪ {a} where a /∈ U and the
set of agents is Nk = {1, . . . , n+k}. The dichotomous preferences of the agents
are specified such that

for all i ≤ n, max
Ri

(A) = (U \ Si) ∪ {a}, and

for all i > n, max
Ri

(A) = U .

We now construct a system of equations in order to show that efficient com-
putability of RSD probabilities implies efficient computability of the number of
set covers of a given size. For each k ∈ {1, . . . , n}, let pk denote the number of

permutations π ∈ ΠNk

for which SD(Rk, π) = a. Furthermore, let xj denote
the number of set covers of U of size j. We show that for all k ∈ {1, . . . , n},

pk = RSD(Rk)(a)× (n+ k)! =

n∑
j=1

j!× k × (n+ k − j − 1)!× xj . (1)

The first equality follows directly from the definition of RSD . In order to
verify that the third term in equation (1) equals pk, envision j+1 as the earliest
position in the permutation at which an agent ` ∈ {n+ 1, . . . , n+ k} is present.
If alternative a is chosen by SD for a given permutation, then it must be the case
that the j agents preceding ` in the permutation must have already filtered out
all the alternatives in U which means that their corresponding sets must cover U .

4Similar reduction techniques are used by Valiant [17].

6

(If the first j agents in a permutation do not filter out all the elements in U , then
the agent in position j+ 1 ensures that a is not chosen since all the alternatives
in U are strictly more preferred to a by this agent.) In this case, neither the
ordering of the first j agents nor the identity of ` ∈ {n+ 1, . . . , n+ k} matters.
Hence, the number of permutations in which the earliest ` ∈ {n+ 1, . . . , n+ k}
is at position j+1 and a gets selected is xj× j!×k× (n+k− j−1)!. Therefore,
the total number of permutations of Nk in which a gets selected is

∑n
j=1 j! ×

k × (n+ k − j − 1)!× xj .
It follows from (1) that for all k ∈ {1, . . . , n},

n∑
j=1

j!× (n− j + k − 1)!× xj = RSD(Rk)(a)× (n+ k)!

k
.

We get the following system of equations. (n)!(0)! · · · 1!(n− 1)!
...

. . .
...

(n)!(n− 1)! · · · 1!(n− 1 + n− 1)!


xn...
x1

 =

RSD(R1)(a)× (n+ 1)!/1
...

RSD(Rn)(a)× (2n)!/n


If the RSD probabilities can be computed in polynomial time, so can the

n × 1 matrix on the right hand side of the equation. Furthermore, Lemma 1
implies that the n×n matrix on the left hand side of the equation is non-singular.
Hence, the values x1, . . . , xn can be computed in polynomial time via Gaussian
elimination. The largest constants in the system of equations are of order (2n)!
and can be represented by O(n log n) bits. Since the variables x1, . . . , xn can be
computed in polynomial time, it follows that #SetCovers-k can be solved in
polynomial time.

Corollary 1. The following problem is NP-hard: Given an alternative a ∈ A
and q ∈ (0, 1), is the RSD probability of a greater than or equal to q?

Proof. Let p = RSD(R) and note that p(a) = c/n! for some integer c ∈ [0, n!].
Therefore p(a) can take n! + 1 different values. If there was a polynomial-time
algorithm to check whether p(a) ≥ q, then we can actually compute p(a) via
binary search in log (n! + 1) < log nn = n log n queries.

4. Assignment Setting

We now turn to the setting in which random serial dictatorship is most
commonly studied. An assignment problem is given by a triple (N,H,R), where
N = {1, . . . , n} is a set of agents, H is a set of houses with |H| = n, and
R = (R1, . . . , Rn) is a preference profile that contains, for each agent i, a linear
preference relation on the set of houses. The goal is to find an assignment of
agents to houses.

A deterministic assignment is a one-to-one mapping σ : A → H. Apart
from deterministic assignments, assignment mechanisms are usually allowed to

7

return randomized assignments, i.e., lotteries over the set of deterministic as-
signments. Every randomized assignment yields a fractional assignment that
specifies, for every agent i and every house h, the probability pih with which
house h is assigned to agent i. The fractional assignment can be seen as a
compact representation of the randomized assignment.

Observe that the assignment setting corresponds to a special case of the
general social choice problem where the set A of alternatives is given by the
set of deterministic assignments and agents’ preferences over A are obtained by
extending their preferences over H in such a way that each agent is indifferent
between all deterministic assignments in which he is assigned the same house.5

Executing RSD in the assignment setting has a particularly natural inter-
pretation: choose an ordering of the agents uniformly at random and let every
agent select his most preferred among all remaining houses.

In this section, we examine the computational complexity of RSD in the
assignment setting. Listing the probability of each deterministic assignment
explicitly is prohibitive because the number of deterministic assignments is ex-
ponential in the size of the problem instance. However, it can be checked in
polynomial time whether a distinguished deterministic assignment is realized
with a positive probability.

Theorem 3. It can be checked in polynomial time whether some deterministic
assignment is in the support of the RSD lottery.

We omit the straightforward proof, which invokes a simplified version of
Algorithm 1.

We now show that computing the fractional assignment is intractable.6 We
first present a useful lemma. Fix a house h ∈ H and let sj denote the number
of sets N ′ ⊆ N with |N ′| = j such that there exists a deterministic assignment
in which each agent in N ′ gets a house that he prefers to h.

Lemma 3. Computing sj is #P-complete.

Proof. Colbourn et al. [9] proved that the following problem is #P-complete:

Given an undirected and unweighted bipartite graph G = (S∪T,E)
with E ⊆ S×T , compute x, the number of subsets B ⊆ S such that
(B ∪ T,E) contains a perfect matching.

We propose a polynomial-time Turing reduction from computing x to comput-
ing sj . Consider an assignment problem (N,H,R) in whichN = S, H = T∪{h},
and for any i ∈ S and h′ ∈ T , h′ Pi h if and only if {i, h′} ∈ E. Then,

x =
∑|S|

j=1 sj . Therefore, if there exists a polynomial-time algorithm to com-
pute sj , then there exists a polynomial-time algorithm to compute x.

5While agents’ preferences over H are linear, their extended preferences over A are not.
6It was brought to our attention that, in recent unpublished work, Daniela Saban and Jay

Sethuraman proved the statement in Theorem 4 using a different proof. They also showed
that checking whether an agent gets a house with non-zero probability is NP-complete.

8

Theorem 4. Computing the probability with which an agent gets a certain house
under RSD is #P-complete.

Proof. For an instance G = (N,H,R) of the assignment problem, we denote by
(pih(G))i∈N,h∈H the fractional assignment resulting from RSD .

Consider an instance G0 = (N,H,R) of the assignment problem and fix an
agent i ∈ N . Let h be the most preferred house of agent i. We show that
computing the probability pih is #P-complete.

By Gk we will denote a modification of G0 in which k additional agents Nk

and houses have been added. The k new agents have the same preferences
over H as agent i. The k additional houses are each less preferred than houses
in H by all agents in N ∪Nk in any arbitrary order.

We now present a polynomial-time reduction from computing sj to comput-
ing the probability pih in G0. In problem Gk, for i to get house h, it is clear
that i should be earlier in the permutation than all agents in Nk. Furthermore,
agents in N \ {i} which are earlier than i, should all be able to get a house that
they prefer to house h. Based on this insight, we obtain the following equations.

pih(G0) =
1

n!

n−1∑
j=0

sj × j!× (n− j − 1)!

pih(G1) =
1

(n+ 1)!

n−1∑
j=0

sj × j!× (n− j − 1 + 1)!

...

pih(Gn−1) =
1

(2n− 1)!

n−1∑
j=0

sj × j!× (n− j − 1 + n− 1)!

The system of equations can be written as

M


sn−1
sn−2

...
s0

 =


pih(G0)× n!

pih(G1)× (n+ 1)!
...

pih(Gn−1)× (2n− 1)!

 ,

where

M =


(n− 1)!0! (n− 2)!1! · · · 0!(n− 1)!
(n− 1)!1! (n− 2)!2! · · · 0!n!

...
...

. . .
...

(n− 1)!(n− 1)! (n− 2)!n! · · · 0!(2n− 2)!

 .

Lemma 1 yields that the n × n matrix M is non-singular. The remaining
arguments are similar to those in the proof of Theorem 2.

As in the voting setting, we get an NP-hardness result as an immediate
corollary. The proof mirrors that of Corollary 1.

9

Corollary 2. The following problem is NP-hard: Given an agent i ∈ N , a
house h ∈ H, and q ∈ (0, 1), is the probability pih greater or equal to q?

Theorem 4 also implies that computing the fractional assignment achieved
by the employment by lotto method [2, 12] is #P-complete. This is due to the
fact that employment by lotto is an extension of RSD to two-sided matching in
which the set of feasible matchings is a subset of stable matchings. Employment
by lotto reduces to RSD in the assignment model if one side is indifferent among
all matchings. Another corollary is that computing the fractional assignment
achieved by the draft mechanism [see e.g., 7, 8] is #P-complete since the draft
mechanism is equivalent to RSD for the case in which each agent can get a
maximum of one house.

Although dichotomous preferences are a very restricted class of preferences,
they are not a subset of strict preferences. The proof of Theorem 4 can be
adapted to prove that computing the fractional assignment achieved by RSD is
#P-complete even if agents have dichotomous preferences over houses.

Acknowledgments

This material is based upon work supported by the Australian Government’s
Department of Broadband, Communications and the Digital Economy, the Aus-
tralian Research Council, the Asian Office of Aerospace Research and Develop-
ment through grant AOARD-124056, and the Deutsche Forschungsgemeinschaft
under grants BR 2312/7-1 and BR 2312/10-1.

References

[1] Abdulkadiroğlu, A., Sönmez, T., 1998. Random serial dictatorship and the
core from random endowments in house allocation problems. Econometrica
66 (3), 689–702.

[2] Aldershof, B., Carducci, O. M., Lorenc, D. C., 1999. Refined inequalities
for stable marriage. Constraints 4, 281–292.

[3] Aziz, H., Brandt, F., Brill, M., 2013. On the tradeoff between economic
efficiency and strategyproofness in randomized social choice. In: Proceed-
ings of the 12th International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS). IFAAMAS, pp. 455–462.

[4] Bacher, R., 2002. Determinants of matrices related to the Pascal triangle.
Journal de théorie des nombres de Bordeaux 14, 19–41.

[5] Bogomolnaia, A., Moulin, H., 2001. A new solution to the random assign-
ment problem. Journal of Economic Theory 100 (2), 295–328.

[6] Bogomolnaia, A., Moulin, H., Stong, R., 2005. Collective choice under di-
chotomous preferences. Journal of Economic Theory 122 (2), 165–184.

10

[7] Budish, E., 2012. Matching “versus” mechanism design. SIGecom Ex-
changes 11 (2), 4–15.

[8] Budish, E., Cantillion, E., 2012. The multi-unit assignment problem: The-
ory and evidence from course allocation at Harvard. American Economic
Review 102 (5), 2237–2271.

[9] Colbourn, C. J., Provan, J. S., Vertigan, D., 1995. The complexity of
computing the Tutte polynomial on transversal matroids. Combinatorica
15 (1), 1–10.

[10] Crès, H., Moulin, H., 2001. Scheduling with opting out: Improving upon
random priority. Operations Research 49 (4), 565–577.

[11] Gibbard, A., 1977. Manipulation of schemes that mix voting with chance.
Econometrica 45 (3), 665–681.

[12] Klaus, B., Klijn, F., 2006. Procedurally fair and stable matching. Economic
Theory 27, 431–447.

[13] Moulin, H., 2003. Fair Division and Collective Welfare. The MIT Press.

[14] Sönmez, T., Ünver, M. U., 2011. Matching, allocation, and exchange of
discrete resources. In: Benhabib, J., Jackson, M. O., Bisin, A. (Eds.),
Handbook of Social Economics. Vol. 1. Elsevier, Ch. 17, pp. 781–852.

[15] Svensson, L.-G., 1994. Queue allocation of indivisible goods. Social Choice
and Welfare 11, 323–330.

[16] Vadhan, S., 1997. The complexity of counting in sparse, regular, and planar
graphs. SIAM Journal on Computing 31, 398–427.

[17] Valiant, L. G., 1979. The complexity of enumeration and reliability prob-
lems. SIAM Journal on Computing 8 (3), 410–421.

11

