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Rationalizability and similar notions of consistency have proved to be
highly problematic in the context of social choice, as witnessed by a range
of impossibility results, among which Arrow’s is the most prominent. We
propose to rationalize choice functions by preference relations over sets of al-
ternatives (set-rationalizability) and introduce two consistency conditions, &
and 7, which are defined in analogy to Sen’s o and . We find that a choice
function satisfies @ if and only if it is set-rationalizable and that it satisfies &
and 7 if and only if it is self-stable, a new concept based on earlier work by
Dutta. The class of self-stable social choice functions contains a number of
appealing Condorcet extensions.
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1 Introduction

Arguably the most basic model of individual and collective choice is a choice function,
which associates with each set A of feasible alternatives a non-empty subset S(A) C
A. Apparently, not every choice function complies with our intuitive understanding
of rationality. Consider, for example, the choice function S with S({a,b}) = {a} and
S({a,b,c}) = {b}. Doubts as to an agent’s rationality could be raised, if, when offered
the choice between apple pie and brownies, he were to choose the former, but the latter,
when told that créme caramel is also an option.! In microeconomic theory, the existence
of a binary relation R on all alternatives such that S returns precisely the maximal
elements according to R from any feasible set is a common rationality condition on
choice functions. Choice functions for which this is the case are called rationalizable

!Sen [41, 43] has argued against imposing internal consistency conditions on rational choice. His
examples usually involve a kind of context-dependence, like a modest person choosing a particular
piece of cake only if it is not the largest available. Usually this context-dependence can be avoided by
redefining the alternatives. Thus, for the purposes of this paper the context-independence of choice
is merely a modeling assumption.



[see, e.g., 32, 21, 10, 28].2 Rationalizable choice functions have been characterized using
two consistency conditions that relate choices within feasible sets of variable size, namely
conditions a and v [38]. Clearly, acyclicity of the strict part P of R is necessary and
sufficient for S to be rationalizable if every finite set of alternatives is feasible. Stronger
rationality conditions can be obtained by requiring the rationalizing relation R to satisfy
certain structural restrictions, such as completeness, transitivity, or quasi-transitivity
(i.e., transitivity of P).

The above considerations have had a profound impact on the theory of social choice, in
particular on the interpretation of Arrow’s general impossibility theorem [5], which states
the impossibility of social choice functions (SCFs) that satisfy four intuitive criteria,
including rationalizability via a transitive preference relation. An obvious way around
Arrow’s disturbing result is to relax this condition, e.g., by requiring SCF's to be merely
rationalizable. Although this approach does allow for some SCFs that also meet the
remaining three criteria, these functions turned out to be highly objectionable, usually
on grounds of involving a weak kind of dictatorship or violating other conditions deemed
indispensable for rational social choice [for an overview of the extensive literature, see
10, 22, 36, 39, 40, 16]. Sen [42, page 5] concludes that

[...] the arbitrariness of power of which Arrow’s case of dictatorship is
an extreme example, lingers in one form or another even when transitivity
is dropped, so long as some regularity is demanded (such as the absence of
cycles).

One possibility to escape the haunting impossibility of rationalizable social choice is
to require only « or 7 but not both at the same time. It turns out that « (and even
substantially weakened versions of «) give rise to impossibility results that retain Arrow’s
spirit [39]. By contrast, there are a number of SCFs that satisfy . The smallest one
among these based on majority rule is the uncovered set [20, 27, 30].

In this paper, we approach the matter from a slightly different angle. Choice functions
are defined so as to select subsets of alternatives from each feasible set, rather than a
single alternative. Still, the consistency and rationality conditions on choice functions
have been defined in terms of alternatives. Taking cue from this observation, we propose
an alternative notion of rationality called set-rationalizability. A choice function S is
set-rationalizable if a binary relation R on all non-empty subsets of alternatives can be
found such that for each feasible subset A, S(A) is the unique maximal set with respect
to R among all non-empty subsets of A.

We find that set-rationalizable choice functions can be characterized by @, a natural
variant of « defined in terms of sets rather than alternatives. Despite its intuitive
appeal, a has played a remarkably small role in (social) choice theory [17, 1]. Yet, it
differentiates quite a number of well-known choice functions. In particular, we show that
various prominent SCFs—such as all scoring rules, all scoring runoff rules, and all weak
Condorcet extensions—do not satisfy @, whereas a handful of Condorcet extensions—
such as weak closure maximality, the minimal covering set, and the bipartisan set—do.

For our second result, we introduce a new property 7, which relates to v as a does
to a. It turns out that & and 7 characterize the class of self-stable choice functions,
whose definition is inspired by earlier work of Dutta [18] and Brandt [15]. Despite

2Rationalizable choice functions have also been referred to as binary [35], normal [39], and reasonable
[3]-



the logical independence of & and 7, the class of self-stable SCF's also contains the
Condorcet extensions mentioned above. These SCFs furthermore satisfy all conditions
typically appearing in Arrovian impossibility results except rationalizability, i.e., o and
~. Accordingly, by replacing o and v with & and 7, the impossibility of rationalizable
social choice can be avoided and turned into a possibility result.

2 Preliminaries

Let U be a universe of alternatives. Throughout this paper, we assume the set of feasible
subsets of U to be given by F(U), the set of finite and non-empty subsets of U. Our
central object of study are choice functions, i.e., functions S : F(U) — F(U) such that
S(A) C A for all feasible sets A.

A choice function S is called rationalizable if there exists a binary relation R on U
such that for each feasible set A and each alternative z € A,

x € S(A) if and only if y Px for no y € A,

where P is the strict part of R. Observe that acyclicity of P is required to guarantee
that S invariably returns a non-empty set.

Two typical candidates for the rationalizing relation are the base relation Rg and the
revealed preference relation Rg, which, for all alternatives x and y, are given by

x Rgy if and only if x € S({z,y}), and
x Rgy if and only if x € S(X) for some X with y € X.

Thus, the revealed preference relation relates x to y if x is chosen in the presence of y and
possibly other alternatives, whereas the base relation only relates x to y if = is chosen
in the exclusive presence of y.

Rationalizable choice functions are characterized by a consistency axiom, which
Schwartz [35] defined such that for all feasible sets A and B and all alternatives x € ANB,

x € S(AUB) if and only if z € S(A) and =z € S(B).

The above equivalence can be factorized into two implications, viz. the conditions «
and v [38] for feasible sets A and B and alternatives z € AN B,?

if v € S(AUB) then z € S(A) and = € S(B), (@)
if x € S(A) and z € S(B) then z € S(AU B). (7)

Axiom « is a contraction consistency property, which states that alternatives that are
chosen in a feasible set are still chosen in feasible subsets. By contrast, - is an expansion
consistency property, which states that alternatives chosen in two feasible sets are also
chosen in their union. Sen [38] proved that a choice function S is rationalizable if and
only if it satisfies both « and 7, with the witnessing relations Rg and Rg, which are
identical in the presence of .

3The definitions of o and ~ given here are equivalent, but not syntactically identical, to Sen’s original
ones. They are chosen so as they reveal their similarity to @ and 5 below.



Theorem 1 (Sen, 1971). A choice function is rationalizable if and only if it satisfies
both o and ~y.

Similar results can also be obtained if stronger requirements are imposed on the ra-
tionalizing relation [see, e.g., 39, 28, 35]. For instance, Arrow [6] showed that a choice
function can be rationalized by a complete and transitive relation if and only if it satisfies
the weak aziom of revealed preference (WARP)—a consistency condition, first proposed
by Samuelson [33], which is stronger than the conjunction of @ and  and central to large
parts of microeconomic theory. There is a range of results stating the impossibility of
SCF's satisfying weaker versions of WARP in a satisfactory way [see, e.g., 22, 36, 16, 8|.
Among these, the results by Mas-Colell and Sonnenschein [26] and Blau and Deb [11]
deserve special mention as they concern rationalizability instead of WARP. For further
characterizations of rationalizable social choice the reader is referred to Moulin [29],
Banks [8], and Austen-Smith and Banks [7].

3 Set-Rationalizable Choice

In analogy to the definitions of Section 2, we now define the concept of set-
rationalizability along with the base and revealed preference relations over sets of alter-
natives, and properties @ and 7. The main result of this section is that set-rationalizable
choice is completely characterized by a.

We say a choice function is set-rationalizable if it can be rationalized via a preference
relation on sets of alternatives.

Definition 1. A choice function S is set-rationalizable if there exists a binary rela-
tion R C F(U) x F(U) such that for all feasible sets A, X € F(U),

X =85(A) if and only if Y PX for no Y € F(A),
where P is the strict part of R.

Observe that S is set-rationalizable only if for each feasible set A, S(A) is the unique
maximal feasible set X € F(A) in R. Also observe that we do not require the rationalizing
relation to be acyclic.

We define the base relation Rg and the revealed preference relation ffs of a choice
function S on sets as follows:*

ARg B if and only if A = S(AU B),
ARg B if and only if A = S(X) for some X with B C X.

Condition @ is defined as a natural variant of o that makes reference to the entire set
of chosen alternatives rather than its individual elements.

Definition 2. A choice function S satisfies &, if for all feasible sets A, B, and X with
X CANB,
if X =S(AUB) then X = S(A) and X = S(B). (@)

4Given a choice function S, the base relation on sets is a natural extension of the base relation on
alternatives and, hence, both are denoted by Rs.



The standard contraction consistency condition « is logically independent from &: the
former does not imply the latter, nor the latter the former (see Example 2). Moreover,
@ is not a contraction consistency property according to Sen’s original terminology [see,
e.g., 39]. It does not only require that chosen alternatives remain in the choice set when
the feasible set is reduced, but also that unchosen alternatives remain outside the choice
set. Thus, it has the flavor of both contraction and expansion consistency (see Remarks 1
and 2).

In this paper, however, we are concerned with the choice set as a whole and @ merely
says that the set S(A) chosen from a feasible set A is also chosen from any subset B
of A, provided the former contains S(A). This reading is reflected by the useful char-
acterization of @ given in the following lemma, which reveals that & is equivalent to an
established condition known as Chernoff’s postulate 5* [17], the strong superset property
[13], or outcast [1].

Lemma 1. A choice function S satisfies & if and only if for all feasible sets A and B,
if S(A) € B C A then S(A) = S(B).

Proof. For the direction from left to right, let S(A) C B C A. Then, both AUB = A and
B =AnNB. Hence, S(AUB) = S(A) C B= AN B. Since S satisfies a, S(4) = S(B).
For the opposite direction, assume for an arbitrary non-empty set X, both X C ANB
and X = S(AU B). Then, obviously, both S(AUB) CAC AUB and S(AUB) C B C
AU B. It follows that S(AU B) = S(A) and S(AU B) = S(B). O

As a corollary of Lemma 1, we have that choice functions S satisfying a, like those
satisfying «, are idempotent, i.e., S(S(A)) = S(A) for all feasible sets A.
We define 7 in analogy to « as follows.

Definition 3. A choice function S satisfies 7 if for all feasible sets A, B, and X,
if X =5(A) and X = S(B) then X = S(AUB). )

Thus, a choice function satisfies 7, if, whenever it chooses X from two different sets,
it also chooses X from their union. As in the case of a and @, v and 7 are logically
independent. However, 7 is implied by the conjunction of o and ~y (see Remark 4).

Condition 7 is reminiscent of the generalized Condorcet condition [see, e.g., 10], which
requires that for all feasible sets A and all a € A,

if S({a,b}) ={a} for all b € A then S(A) = {a}.

Choice functions that satisfy this condition we will refer to as generalized Condorcet
extensions. It is easily appreciated that 7 implies the generalized Condorcet condition.
In the setting of social choice, Condorcet extensions are commonly understood to be
SCFs for which additionally choice over pairs is determined by majority rule.

As in the case of a and ~, a single intuitive consistency condition summarizes the
conjunction of & and 7: for all feasible sets A, B, and X with X C AN B,

X =5(A) and X = S(B) if and only if X = S(AU B).

For illustrative purposes, consider the following two examples.



Example 1. Let the choice function S over the universe {a, b, c} be given by the following
table.

()
{a,b,c}

X S(X) / \
{a,b}  {a} '

{b,c}  {b} {a.b} {b,c} {a,c}

{a,c}  {c}
{a,b,c} {a,b,c}

The revealed preference relation on sets ]:?5 and the base relation on sets Rg coincide
and are depicted in the graph on the right. A routine check reveals that S satisfies both
and 7 (while it fails to satisfy ). Also observe that each feasible set X contains a subset

that is maximal (with respect to Rg) among the non-empty subsets of X, e.g., {a,b,c}
in {a,b,c} and {a} in {a,b}.

Example 2. Let the choice function S over the universe {a, b, c} be given by the following
table.

X S(X)

{a, b} {a,b}
{b.c}  A{c}
{a,c}  {a}
{a,b,c} {a}

S is rationalizable via the relation given by a PcPb and aIb. Nevertheless, the re-
vealed preference relation over sets, as depicted on the right, does not set-rationalize this
choice function. Observe that both {a} and {a,b} are mazimal in {a,b} with respect to
the strict part of Rs. As S({a,b,c}) = {a} and S({a,b}) = {a,b}, S clearly does not
satisfy a. Thus, the example proves that & is not a weakening of o (and not even of the
congunction of a and 7).

The first example shows that set-rationalizing relations need not be acyclic or com-
plete. However, complete set-rationalizing relations can easily be obtained by adding
indifferences between all pairs of incomparable alternatives. By definition, Rg of any
choice function S is anti-symmetric, i.e., X RgY and Y Rg X imply X = Y. In the
presence of }ARS and Rg coincide and are thus both anti-symmetric.

Set-rationalizable choice functions are characterized by &.°

®Moulin shows a similar statement for single-valued choice functions [28].



Theorem 2. A choice function is set-rationalizable if and only if it satisfies Q.

Proof. For the direction from left to right, assume S is set-rationalizable and let R be
the witnessing binary relation on sets. Now consider arbitrary feasible sets A, B and X
with X € AN B and assume that X = S(AU B). As R set-rationalizes S, we have
Y PX fornoY C AUB. Accordingly, there is no Y C A such that Y P S(AU B) either.
By definition of set-rationalizability it follows that S(A) = S(A U B). By an analogous
argument, we also obtain S(B) = S(A U B), as desired.

For the opposite direction, assume S to satisfy @ and consider an arbitrary feasible
set A and an arbitrary Y € F(A) \ S(A). Then, S(A) C S(A)UY C A. In virtue of
Lemma 1 it follows that S(A) = S(S(A) UY). By definition of Rg, then S(A)RgY.
Moreover, due to the anti-symmetry of Rg, we have S(A) PsY. We may conclude that
Rg set-rationalizes S. A similar argument holds for }AES, which coincides with Rg in the
presence of a. O

In the proof of Theorem 2, it is the base and revealed preference relations on sets
that are witness to the fact that choice functions satisfying @ are set-rationalizable.
In contrast to Sen’s Theorem 1, however, the base and revealed preference relations
on sets are not the unique relations that can achieve this. It is also worth observing
that the proof shows that for each feasible set X and choice function S satisfying a,
the selected set S(X) is not merely a maximal set but also the unique mazimum set
within X given Es, ie., S(X) RgY for all non-empty subsets Y of X.

4 Self-Stability

The importance of maximal—i.e., undominated—alternatives stems from the fact that
dominated alternatives can be upset by other alternatives; they are unstable. The ra-
tionale behind stable sets, as introduced by von Neumann and Morgenstern [45], is that
this instability is only meaningful if an alternative is upset by something which itself is
stable. Hence, a set of alternatives X is said to be stable if it consists precisely of those
alternatives not upset by X. In von Neumann and Morgenstern’s original definition, a is
upset by X if there exists some b € X such that a € S({a, b}) for some choice function S.
It turns out that the set consistency conditions introduced in the previous section bear
a strong relationship to a notion of stability, where a is upset by X if a ¢ S(X U {a})
[see also 15]. The stability of choice sets can then be formally defined as follows.

Definition 4. Let A, X be feasible sets and S a choice function. X is S-stable in A if
X={acA:aecSXU{a}}
Equivalently, X is S-stable in A if it satisfies both internal and external S-stability:
S(X) =X, (internal S-stability)
a g S(XU{a}) forallaec A\ X. (external S-stability)

The intuition underlying this formulation is that there should be no reason to restrict
the selection by excluding some alternative from it and, secondly, there should be an
argument against each proposal to include an outside alternative into the selection.



For some choice functions .S, a unique inclusion-minimal S-stable set generally exists.
If that is the case, we use S to denote the choice function that returns the unique minimal
S-stable set in each feasible set and say that S is well-defined. Within the setting of
social choice, a prominent example is Dutta’s minimal covering set MC [18, 19], which
is defined as MC = UC, where UC is the uncovered set [20, 27]. Proving that a choice
function S is well-defined frequently turns out to be highly non-trivial [15].

We find that there is a close connection between 7 and minimal S-stable sets.

Lemma 2. Let S be a choice function such that S is well-defined. Then S satisfies 7.

Proof. Consider arbitrary feasible sets A, B, X and assume that S(4) = S(B) = X.
Trivially, as X is internally S-stable in A, so is X in AU B. To appreciate that X is also
externally S-stable in AU B, consider an arbitrary x € (AU B) \ X. Then, z € A\ X
or x € B\ X. In either case, x ¢ S(X U {zx}), by external S-stability of X in A if the
former, and by external S-stability of X in B if the latter. Also observe that any subset
of X that is S-stable in AU B would also have been S-stable in both A and B. Hence, X
is minimal S-stable in A U B. Having assumed that S is well-defined, we may conclude
that S(AU B) = X. O

We now introduce the notion of self-stability. A choice function S is said to be self-
stable if for each feasible set A, S(A) is the unique (minimal) S-stable set in A.

Definition 5. A choice function S is self-stable zf§ s well-defined and S = S.
The class of self-stable choice functions is characterized by the conjunction of & and 7.
Theorem 3. A choice function is self-stable if and only if it satisfies both & and 7.

Proof. For the direction from left to right, assume S to be self-stable. Then, S is well-
defined and S = S. Lemma 2 implies that S satisfies 4. For a, consider arbitrary
feasible sets A, B such that S(A) C B C A. By virtue of Lemma 1, it suffices to show
that S(B) = S(A). First, observe that S(A), which is S-stable in A, is also S-stable
in B since internal and external stability straightforwardly carry over from A to its
subset B. Next, we show that S(B) is not only the minimal S-stable set in B, but even
the only S-stable set in B. To appreciate this, consider an arbitrary feasible set X C B
with X # S(B) and assume for contradiction that X is S-stable. By definition of
S(B) as the unique inclusion-minimal S-stable set in B, it follows that S(B) C X. As
S(B) is S-stable in B, S(B) is obviously also S-stable in X. Self-stability of S then
requires that S(X), the minimal S-stable set in X, has to be contained in S(B). Hence,
S(X) C S(B) C X and, in particular, S(X) # X, which is at variance with the internal
stability of S. As a consequence, S(B) = S(A).

For the other direction, assume S satisfies both @ and 4 and consider an arbitrary
feasible set A. For each a € A, we have S(A) C S(A)U {a} C A. By @ and Lemma 1,
S(S(A)u{a}) = S(A), which yields both internal and external stability of S(A). Finally,
to see that S is well-defined, consider an arbitrary S-stable set X in A and let A\ X =
{ai1,...,a}. First, we show that S(X U {a;}) = X for all i € {1,...,k}. External
stability implies that a; € S(X U{a;}). Hence, by @ and Lemma 1, S(X U{a;}) = S(X),
which by internal stability is identical to X. Repeated application of 5 then yields
S(X uU{a,...,ar}) = S(X), which concludes the proof. O



As an immediate consequence of Theorem 3 and the observation that 7 implies the
generalized Condorcet condition, we have the following corollary.

Corollary 1. Fvery self-stable choice function is a generalized Condorcet extension.

Within the setting of social choice, only few SCFs turn out to be self-stable (or set-
rationalizable). For instance, all scoring rules, all scoring runoff rules, and all weak
Condorcet extensions fail to satisfy & (see Remark 6). Nevertheless, there is a small
number of SCFs that are self-stable. Among them are Pareto’s rule, the omninomination
rule,® weak closure maximality (also known as the top cycle, GETCHA, or the Smith
set, see, e.g., 12), the minimal covering set [18, 19], and the bipartisan set [24, 25].7
Well-known SCFs that satisfy only one of & and 4 appear to be less common. Still,
strong closure maximality [34] is an example of an SCF that satisfies ¥ but not a. By
contrast, the iterated elimination of Condorcet losers satisfies @ but not 7.

By weakening transitive rationalizability to set-rationalizability (see Remark 3), we
have thus shown that appealing SCFs that also satisfy the other Arrovian postulates do
exist.

5 Concluding Remarks

Remark 1 (Sen’s expansion and contraction). Condition @ can be split into two condi-
tions that fall into Sen’s categories: an expansion condition known as €™ [14] or Aizerman
[30], which requires that S(B) C S(A) for all S(4) C B C A, and a corresponding con-
traction condition. Similarly, 7 can be factorized into two conditions.

Remark 2 (Path independence). An influential and natural consistency condition that
also has the flavor of both contraction and expansion is path independence [31], which
is satisfied if S(AU B) = S(S(A)U S(B)) for all A and B. Aizerman and Malishevski
[2] have shown that path independence is equivalent to the conjunction of a and €.
Since « is the strongest contraction consistency property and implies the contraction
part of @, it turns out that an alternative characterization can be obtained: a choice
function is path independent if and only if it satisfies o and &. Furthermore, since path
independence implies 7, a choice function is path independent if and only if it satisfies
a, a, and 7.

Remark 3 (Quasi-transitive rationalizability). Schwartz [35] has shown that quasi-
transitive rationalizability is equivalent to the conjunction of «, «, and e*. It is thus
stronger than path independence and also implies both @ and 7. So does the even
stronger WARP condition.

Remark J (Rationalizability implies 7). Assume S satisfies both o and « and consider
feasible sets X, A, and B with X = S(A) and X = S(B). The inclusion of X in S(AUB)
follows immediately from . To appreciate that also S(AUB) C X, consider an arbitrary
x ¢ X and assume for contradiction that x € S(AU B). Then, either x € A or z € B.

5This SCF chooses all alternatives that are ranked first by at least one voter [see, e.g., 44]

"Brandt [15] defines an infinite hierarchy of self-stable SCFs. If we assume an odd number of agents
with linear preferences, the class of self-stable SCF's is also conjectured to contain the tournament
equilibrium set [37] and the minimal extending set. Whether this is indeed the case depends on a
certain graph-theoretic conjecture [23, 15].



Without loss of generality, we may assume the former. Clearly, x € (AU B) N A and «
now implies that = € S(A), a contradiction.

Remark 5 (Closure of set relations). The revealed preference relation on sets Rg of any
choice function S that satisfies @ is closed under intersection, i.e., for all feasible sets X,
Y, and Z such that Y N Z # 0, X RgY and X Rg Z imply X RgY N Z. Similarly, Rg
of a choice function S that satisfies 7 is closed under union,® i.e., for all feasible sets X,
Y,and Z, X RgY and X Rg Z imply X RgY U Z.

Remark 6 (Scoring rules and weak Condorcet extensions). The following preference
profile (figures indicate numbers of agents) shows that many common SCFs do not
satisfy a.

3 21
a b ¢
c a b
b ¢ a

For all scoring rules (e.g., plurality rule or Borda’s rule), all scoring runoff rules (e.g.,
Hare’s rule or Coombs’ rule), all weak Condorcet extensions—i.e., SCFs that exclusively
return the set of weak Condorcet winners whenever this set is non-empty—as well as a
number of other common SCFs (e.g., Kemeny’s rule, Dodgson’s rule, and Nanson’s rule),
the choice function for this profile is as in Example 2 and therefore does not satisfy a.
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