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Abstract

This paper is a comparative study of game-theoretic
solution concepts in strictly competitive multiagent
scenarios, as commonly encountered in the con-
text of parlor games, competitive economic situa-
tions, and some social choice settings. We model
these scenarios as ranking games in which every
outcome is a ranking of the players, with higher
ranks being preferred over lower ones. Rather than
confining our attention to one particular solution
concept, we give matching upper and lower bounds
for various comparative ratios of solution concepts
within ranking games. The solution concepts we
consider in this context are security level strate-
gies (maximin), Nash equilibrium, and correlated
equilibrium. Additionally, we also examine quasi-
strict equilibrium, an equilibrium refinement pro-
posed by Harsanyi, which remedies some appar-
ent shortcomings of Nash equilibrium when ap-
plied to ranking games. In particular, we compute
the price of cautiousness, i.e., the worst-possible
loss an agent may incur by playing maximin in-
stead of the worst (quasi-strict) Nash equilibrium,
the mediation value, i.e., the ratio between the so-
cial welfare obtained in the best correlated equi-
librium and the best Nash equilibrium, and the en-
forcement value, i.e., the ratio between the highest
obtainable social welfare and that of the best corre-
lated equilibrium.

1 Introduction

Consider the following three-player game. Alice, Bob,
and Charlie independently and simultaneously are to decide
whether to raise their hand or not. Alice wins if the number
of players raising their hand is odd, whereas Bob wins if it
is even and positive. Should nobody raise his hand, Charlie
wins. What would you recommend Alice to do?

Clearly, this question lies at the heart of game theory, and
game-theoretic solution concepts should be called upon when
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trying to give a sound answer (see Section 3 for formal defi-
nitions of the concepts used in the following paragraphs). In
the game described above there can be just one winner; all
the other players lose. As such it is an instance of a subclass
of ranking games, which were recently introduced as models
of strictly competitive multi-player scenarios [Brandt ef al.,
2006]. Outcomes of a ranking game are related to rankings
of the players, i.e., orderings of the players according to how
well they have done in the game relative to one another. Play-
ers are assumed to generally prefer higher ranks over lower
ones and to be indifferent to the ranks of other players. For-
mally, ranking games are defined as normal-form games in
which the payoff functions represent the preferences of the
players regarding lotteries over rankings. In this paper, we
conduct a comparative study of game-theoretic solution con-
cepts in ranking games.

It is well-known that two-player strictly competitive games
admit a unique rational solution (the maximin solution), i.e., a
set of (possibly randomized) strategies for each player so that
each player is best off playing one of the recommended strate-
gies. Unfortunately, solution concepts for ranking games with
more than two players are less appealing due to a lack of nor-
mative power. Nash equilibria, for example, which are de-
fined as profiles of strategies that are mutual best responses
to each other, may not be unique. Indeed, the game described
above possesses numerous Nash equilibria: Raising her hand,
not raising her hand, and mixing uniformly between both
actions are all optimal strategies for Alice in some equilib-
rium. The only pure, i.e., non-randomized, equilibrium of
the game tells Alice not to raise her hand based on the belief
that Bob will raise his hand and Charlie will not (see Fig-
ure 1 for an illustration). This assumption, however, is un-
reasonably strong. Both Bob and Charlie may deviate from
their respective strategies to any other strategy without de-
creasing their chances of winning. After all, they cannot do
any worse than losing. This weakness is due to the indiffer-
ence of losers, which is inherent to ranking games. In fact,
we argue that pure Nash equilibria are particularly weak so-
lutions of such games and conjecture (and prove for certain
sub-cases) that every single-winner game possesses at least
one non-pure equilibrium, i.e., an equilibrium where at least
one player randomizes.

Returning to the example given at the beginning of this
section, it is still unclear which strategy Alice should adopt



in order to maximize her chances of winning. We consider
three solution concepts in addition to Nash equilibria: maxi-
min strategies, quasi-strict equilibria, and correlated equilib-
ria. By playing her maximin strategy, Alice can guarantee
a certain chance of winning, her so-called security level, no
matter which actions her opponents choose. Alice’s security
level in this particular game is 0.5 and can be obtained by
randomizing uniformly between both actions. The same ex-
pected payoft is achieved in the worst quasi-strict equilibrium
of the game where Alice and Charlie randomize uniformly
and Bob invariably raises his hand (see Figure 1). We will
see that this equivalence is no mere coincidence, since in any
single-winner game where a player has just two actions, the
payoff in his worst quasi-strict equilibrium equals his (pos-
itive) security level. However, none of the aforementioned
solution concepts offers a solution for multi-player ranking
games that is as obviously right as maximin is for strictly
competitive two-player games. We nevertheless facilitate the
analysis of ranking games by evaluating the following com-
parative ratios:

o the price of cautiousness, i.e., the worst-possible loss an
agent may face when playing maximin instead of the
worst Nash equilibrium,

o the price of cautiousness for quasi-strict equilibria, i.e.,
the worst-possible loss an agent may face when playing
maximin instead of the worst quasi-strict equilibrium,

e the mediation value, i.e., the ratio between the social
welfare obtainable in the best correlated equilibrium and
the best Nash equilibrium, and

o the enforcement value, i.e., the ratio between the highest
obtainable social welfare and that of the best correlated
equilibrium.

Each of these values obviously equals 1 in the case of two-
player ranking games, as these form a subclass of constant-
sum games. The interesting question is how these values un-
fold for games with more than two players.

The remainder of this paper is organized as follows. After
reviewing related work in Section 2, we formally introduce
ranking games and game-theoretic solution concepts in Sec-
tion 3. Section 4 discusses a weakness of the Nash equilib-
rium concept that is characteristic for ranking games. Sec-
tions 5 and 6 introduce and evaluate the price of cautiousness
and the value of correlation, respectively. The paper con-
cludes with Section 7.

2 Related Work

Game playing research in Al has largely focused on two-
player games [see, e.g., Marsland and Schaeffer, 1990]. As
a matter of fact, “in Al, ‘games’ are usually of a rather
specialized kind—what game theorists call deterministic,
turn-taking, two-player, zero-sum games of perfect informa-
tion” [Russell and Norvig, 2003, p. 161]. Notable exceptions
include cooperative games in the context of coalition forma-
tion [see, e.g., Sandholm et al., 1999] and complete informa-
tion extensive-form games, a class of multi-player games for
which efficient Nash equilibrium search algorithms have been
investigated by the AI community [e.g., Luckhardt and Irani,

1986; Sturtevant, 2004]. In extensive-form games, players
move consecutively and a pure (so-called subgame perfect)
Nash equilibrium is guaranteed to exist [see, e.g., Myerson,
1991]. Normal-form games are more general than (perfect-
information) extensive-form games because every extensive-
form game can be mapped to a corresponding normal-form
game, while the opposite is not the case.

Ranking games were introduced by Brandt et al. [2006],
who also showed that finding Nash equilibria of ranking
games with more than two players is just as hard as for gen-
eral games and thus unlikely to be feasible in polynomial
time. This further underlines the importance of alternative
solution concepts such as maximin strategies and correlated
equilibria which can both be computed efficiently via linear
programming.

Most work on comparative ratios in computational game
theory has been inspired by the literature on the price of an-
archy [Koutsoupias and Papadimitriou, 1999], i.e., the ratio
between the highest obtainable social welfare and that of the
best Nash equilibrium. Similar ratios for correlated equilibria
(the value of mediation and the enforcement value) were in-
troduced by Ashlagi et al. [2005]. To our knowledge, Tennen-
holtz [2002] was the first to conduct a numerical comparison
of Nash equilibrium payoff and the security level. This work
is inspired by an intriguing example game due to Aumann
[1985] where the only Nash equilibrium yields each player
no more than his security level, but the equilibrium strategies
are actually different from the maximin strategies. In other
words, the equilibrium merely yields security level payoffs
but fails to guarantee them.

3 Preliminaries
3.1 Ranking Games

An accepted way to model situations of conflict and social in-
teraction is by means of a normal-form game [see, e.g., My-
erson, 1991].

Definition 1 (Normal-form game) A game in normal-form
is a tuple I = (N, (A)ien, (Pi)ien) Where N is a set of players
and for each player i € N, A; is a nonempty set of actions
available to player i, and p; : (X;en Ai) = R is a function
mapping each action profile of the game (i.e., combination of
actions) to a real-valued payoft for player i.
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Figure 1: Three-player single-winner game. Alice (1)
chooses row a; or a,, Bob (2) chooses column by or b,, and
Charlie (3) chooses matrix ¢y or ¢;. Outcomes are denoted by
the winner’s index. The dashed square marks the only pure
Nash equilibrium. Dotted rectangles mark a quasi-strict equi-
librium in which Alice and Charlie randomize uniformly over
their respective actions.



Unless stated otherwise, we will henceforth assume that ev-
ery player has at least two different actions. A combination
of actions s € A = X,y A; 18 also called a profile of pure
strategies. This concept can be generalized to mixed strategy
profiles s € S = X,y Si, by letting players randomize over
their actions. Here, S; = A(A;) denotes the set of probability
distributions over player i’s actions, or mixed strategies avail-
able to player i. Payoff functions naturally extend to mixed
strategy profiles, and we will frequently write p;(s) for the ex-
pected payoff of player i, and p(s) = Y ;cn pi(s) for the social
welfare, under profile s. In the following, we further write
n = |N| for the number of players in a game, A_; and S _; for
the set of action or strategy profiles for all players but i, s; for
the ith strategy in profile s, s_; for the vector of all strategies
in s but s;, and s;(a) for the probability assigned to action a
by player i in strategy profile s.

The situations of social interaction this paper is concerned
with are such that outcomes are related to a ranking of the
players, i.e., an ordering of the players according to how well
they have done in the game relative to one another. We as-
sume that players generally prefer higher ranks over lower
ones and that they are indifferent to the ranks of other players.
Moreover, we hypothesize that the players entertain qualita-
tive preferences over lotteries, i.e., probability distributions
over ranks [¢f. von Neumann and Morgenstern, 1947]. For
example, one player may prefer to be ranked second to having
a fifty-fifty chance of being ranked first or being ranked third,
whereas another player may judge quite differently. We arrive
at the following definition of the rank payoff to a player.

Definition 2 (Rank payoff) The rank payoft of a player i is
defined as vector r; = (ril, "52’ ..., ") € R" such that

> forallke (1,2,...,n—1),

; andr! > r7.

For convenience, we assume rank payoffs to be normalized so
that rl.l =landr! =0.

In other words, higher ranks are weakly preferred, and for at
least one rank the preference is strict. Intuitively, rf repre-
sents player i’s payoff for being ranked in kth. Building on
Definition 2, defining ranking games is straightforward.

Definition 3 (Ranking game) A ranking game is a game
where for any strategy profile s € S there is a permutation
(1,7, ..., 7,) of the players so that pi(s) = r}" forall i € N.

A binary ranking game is one where each rank payoff vec-
tor only consists of zeros and ones. An important subclass
of binary ranking games are single-winner games, i.e., games
where r; = (1,0,...,0) for all i € N. When considering
mixed strategies, the expected payoff in a single-winner game
equals the probability of winning. An example single-winner
game with three players—the game introduced at the begin-
ning of this paper—is given in Figure 1. A convenient way
of representing these games is to just denote the index of the
winning player for each outcome. For general ranking games,
we will sometimes write [i{, i2, ..., I,] to denote the outcome
where player i is ranked first, i, is ranked second, and so
forth.

3.2 Solution Concepts

Over the years, game theory has produced a number of so-
lution concepts that identify reasonable or desirable strategy
profiles in a given game. Perhaps the most cautious way for
a player to play a game is to try to maximize his own payoff
regardless of which strategies the other player choose, i.e.,
even when the other players (collaboratively) try to minimize
his payoff. Such a strategy is called a maximin strategy, and
the corresponding (guaranteed minimum) payoff is called the
maximin payoff or security level of that player.

Definition 4 (Maximin strategy) A strategy s; € S, is called
a maximin strategy for playeri € N if
s; € arg max min p;(r;, t—;).
ri€S; teS
Vi = MaX,.s, Mies pi(ri, t-;) is called the security level for
player i.

Given a particular game I', we will write v;(I') for the security
level of player i in I'. In the game of Figure 1, Alice can
achieve her security level of 0.5 by uniform randomization
over her actions, i.e., by raising her hand with probability 0.5.
The security level for players 2 and 3 is zero.

One of the best-known solution concepts is Nash equilib-
rium [Nash, 1951]. In a Nash equilibrium, no player is able
to increase his payoft by unilaterally changing his strategy.

Definition 5 (Nash equilibrium) A strategy profile s € S is
called a Nash equilibrium if for each player i € N and each
strategy s; € S,

pi() 2 pi((s-i, s7)).
A Nash equilibrium is called pure if it is a pure strategy pro-

file.

Nash [1951] has shown that every normal-form game pos-
sesses at least one equilibrium. There are infinitely many
Nash equilibria in the single-winner game of Figure 1, the
only pure equilibrium is denoted by a dashed square.

A weakness of Nash equilibrium as a normative solution
concept (besides the multiplicity of equilibria) is that players
may be indifferent between actions they play with non-zero
probability and actions they do not play at all. For example, in
the pure Nash equilibrium of the game in Figure 1, players 2
and 3 might as well deviate without decreasing their chances
of winning the game. Quasi-strict equilibrium as introduced
by Harsanyi [1973]' tries to alleviate this phenomenon by
demanding that every best response be played with positive
probability. (It follows from the definition of Nash equilib-
rium that every action played with positive probability yields
the same expected payoff.)

Definition 6 (Quasi-strict Nash equilibrium) A Nash equi-
librium s € S is called quasi-strict if for all i € N and all
a,b € A; with s;(a) > 0 and s;(b) = 0, pi(s—;,a) > pi(s_;, b).

"Harsanyi originally referred to quasi-strict equilibrium as
“quasi-strong”. However, this term has been dropped to distinguish
the concept from Aumann’s strong equilibrium.



Figure 1 shows a quasi-strict equilibrium of the game be-
tween Alice, Bob, and Charlie.2 While quasi-strict equilib-
ria have recently been shown to always exist in two-player
games [Norde, 1999], this is not the case for games with more
than two players (see Footnote 3).

Nash equilibrium assumes that players randomize between
their actions independently from each other. Aumann [1974]
introduced the notion of a correlated strategy, where players
are allowed to coordinate their actions by means of a device
or agent that randomly selects one of several action profiles
and recommends the actions of this profile to the respective
players. The corresponding equilibrium concept is defined as
follows.

Definition 7 (Correlated equilibrium) A correlated strat-
egy i € A(A) is called a correlated equilibrium if for all i € N,
si,a; € A;,

D H(Pis) = pls_inap) = 0.

S_i€A_;

In other words, a correlated equilibrium of a game is a prob-
ability distribution y over the set of action profiles, such that,
if a particular action profile s is chosen according to this dis-
tribution, and every player i € N is only informed about his
own action s§; € A;, it is optimal for i to play s;, given that the
other players play s_;. Correlated equilibrium is based upon
the assumption that there exists a trustworthy party who can
recommend behavior but cannot enforce it.

It can easily be seen from the definition that the Nash equi-
libria of any game form a subset of the correlated equilib-
ria, with the additional property of being a product of strate-
gies for the individual players. The existence result by Nash
[1951] thus carries over to correlated equilibria. Again con-
sider the game of Figure 1. It is easily verified that the cor-
related strategy that assigns probability 0.25 each to action
proﬁles (611, b], Cl), (Cll, bz, Cl), (az, bl, Cl), and (612, bl, 6‘2) is
a correlated equilibrium in which the expected payoff is 0.5
for player 1 and 0.25 for players 2 and 3. In this particular
case, the correlated equilibrium is a convex combination of
Nash equilibria, and correlation can be achieved by means of
a publicly observable random variable. Perhaps surprisingly,
Aumann [1974] has shown that in general the (expected) so-
cial welfare of a correlated equilibrium may exceed that of ev-
ery Nash equilibrium, and that correlated equilibrium payoffs
may in fact be outside the convex hull of the Nash equilib-
rium payoffs. This is of course not possible if social welfare
is identical in all outcomes, as it is the case for the game in
Figure 1.

4 Equilibrium Points in Ranking Games

As we have already seen in Section 1, the stability of some
Nash equilibria in ranking games is questionable because los-
ing players are assumed to play certain strategies even though
they could as well play any other strategy without decreasing
their payoff. By definition, there is at least one player—the

2Observe that Charlie plays a weakly dominated action with pos-
itive probability in this equilibrium.
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Figure 2: Three-player single-winner game. Dashed boxes
denote all Nash equilibria (one player may mix arbitrarily in
boxes that span two outcomes).

one ranked lowest—in any outcome, who receives his min-
imum payoft of zero and therefore has no incentive to actu-
ally play that particular action. As a consequence, all pure
equilibria are weak in this sense, especially in single-winner
games where n— 1 players are indifferent over which action to
play. Quasi-strict equilibrium mitigates this phenomenon by
additionally requiring that actions played with positive proba-
bility yield strictly more payoff than non-equilibrium actions.
Thus, quasi-strict equilibrium can be used to formally illus-
trate the weakness of pure Nash equilibrium.

Fact 1 Quasi-strict equilibria in ranking games are never
pure, i.e., in any quasi-strict equilibrium there is at least one
player who randomizes over some of his actions.

There is at least one quasi-strict equilibrium in every two-
player game (and thus also in every two-player ranking
game) [Norde, 1999]. In games with more than two play-
ers, there may be no quasi-strict equilibrium. Figure 2 shows
that this even holds for single-winner games.?

It appears as if most ranking games possess non-pure equi-
libria, i.e., mixed strategy equilibria where at least one player
randomizes. We prove this claim for three subclasses of rank-
ing games.

Theorem 1 The following classes of ranking games always
possess at least one non-pure equilibrium:

(i) two-player ranking games,

(ii) three-player single-winner games where each player has
two actions, and

(iii) n-player single-winner games where the security level of
at least two players is positive.

Proof: Statement (i) follows from Fact 1 and the existence re-
sult by Norde [1999]. For reasons of completeness, we give a
simple alternative proof. Assume for contradiction that there
is a two-player ranking game that only possesses pure equi-
libria and consider, without loss of generality, a pure equilib-
rium e in which player 1 wins. Since player 2 must be inca-
pable of increasing his payoff by deviating from e, player 1
has to win no matter which action the second player chooses.

3There are few examples in the literature for games without
quasi-strict equilibria (essentially there is one example by van
Damme [1983] and another one by Cubitt and Sugden [1994]). For
this reason, the game depicted in Figure 2 might be of independent
interest.



As a consequence, the strategies in e remain in equilibrium
even if player 2’s strategy is replaced with an arbitrary ran-
domization among his actions.

As for (ii), consider a three-player single winner game with
actions A] = {611,(12}, A2 = {b],bz}, and A3 = {C],Cz}. As-
sume for contradiction that there are only pure equilibria in
the game and consider, without loss of generality, a pure
equilibrium e = (ay, b1, c;) in which player 1 wins. In the
following, we say that a pure equilibrium is semi-strict if at
least one player strictly prefers his equilibrium action over
all his other actions given that the other players play their
equilibrium actions. In single-winner games, this player has
to be the winner in the pure equilibrium. We first show that
if e is semi-strict, i.e., player 1 does not win in action profile
(az, by, c1), then there must exist a non-pure equilibrium. For
this, consider the strategy profiles e; where player 2 mixes
uniformly between e and (aj, by, c) and e, where player 3
mixes uniformly between e and (a;, by, c;). Since player 1
does not win in (a, by, 1), he will not deviate from either ¢;
or e¢; even when he wins in (a», by, ¢1) and (a», by, ¢3). Conse-
quently, player 3 must win in (ay, b,, ¢;) in order for e; not to
be an equilibrium. Analogously, for e, not to be an equilib-
rium, player 2 has to win in the same action profile (a;, b, ¢»),
contradicting the assumption that the game is a single-winner
game. Thus, the existence of a semi-strict pure equilibrium
implies that of a non-pure equilibrium. Conversely assume
that e is not semi-strict. When any of the action profiles in
E ={(a, by, 1), (a1, b2, 1), (a1, by, c2)} is a pure equilibrium,
this also yields a non-pure equilibrium because two pure equi-
libria that only differ by the action of a single player can
be combined into infinitely many mixed equilibria. For E
not to contain any pure equilibria, there must be (exactly)
one player for every profile in £ who deviates to a profile
in D = {(ay, b, c1), (a2, b1, ¢2), (a1, b2, c2)} because the game
is a single-winner game and because e is not semi-strict. This
implies two facts: First, action profile ¢’ = (az, b, ) is a
pure equilibrium because no player will deviate from e’ to
any profile in D. Second, the player who wins in ¢’ strictly
prefers the equilibrium outcome over the corresponding ac-
tion profile in D, implying that ¢’ is semi-strict. The above
observation that every semi-strict equilibrium also yields a
non-pure equilibrium completes the proof.

As for (iii), recall that the payoff a player obtains in equilib-
rium must be at least his security level. Thus, a positive secu-
rity level for player i rules out all equilibria in which player i
receives zero payoff, in particular all pure equilibria in which
he does not win. If there are two players with positive secu-
rity levels, both of them have to win with positive probability
in any equilibrium of the game. In single-winner games, this
can only be the case in a non-pure equilibrium. O

We were unable to find a single-winner game that only con-
tains pure equilibria, even when employing a computer pro-
gram that checked tens of thousands of games. However, a
general existence result has so far tenaciously resisted proof.

5 The Price of Cautiousness

Despite its conceptual elegance and simplicity, Nash equilib-
rium has been criticized on various grounds. In the common
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Figure 3: Three-player ranking game I'; used in the proof of
Theorem 2

case of multiple equilibria, it is unclear which one to play;
coalitions might benefit from jointly deviating; and recent
complexity-theoretic results indicate that there might exist no
polynomial-time algorithm for finding Nash equilibria [Chen
and Deng, 2006]. Adding the indifference of players, which
is particularly problematic in ranking games, a compelling
question is how much worse a player can be off when revert-
ing to the most defensive choice—his maximin strategy—
instead of hoping for an equilibrium outcome. We refer to
this value by the price of cautiousness. In the following, let
G denote the set of all normal-form games and for I' € G let
N(I') denote the set of Nash equilibria of I'.

Definition 8 Let I be a normal-form game with non-negative
payoffs, i € N a player such that vi(I') > 0. The price of
cautiousness for player i in T is defined as

min { pi(s) | s € N(I) }

PCAT) = 0

For any class C € G of games involving player i, we further
write PC;{(C) = suppe; PCi(I'). In other words, the price of
cautiousness of a player is the ratio between his minimum
payoff in a Nash equilibrium and his security level, thus cap-
turing the worst-case loss the player may experience by play-
ing his maximin strategy instead of a Nash equilibrium. For
a player whose security level is zero, every strategy is a max-
imin strategy. Since we are mainly interested in a comparison
of normative solution concepts, we will only consider games
where the security level of at least one player is positive.

As already mentioned in Section 1, the price of cautious-
ness in two-player ranking games is 1 due to the Minimax
Theorem [von Neumann and Morgenstern, 1947]. In general
ranking games, the price of cautiousness is unbounded.

Theorem 2 Let R be the class of ranking games with more
than two players that involve player i. Then, PC;(R) = oo,
even if R only contains games without weakly dominated ac-
tions.

Proof: Consider the game I'; of Figure 3, which is a ranking
game for rank payoft vectors r; = (1,¢,0), r» = (1,0,0), and
r3 = (1, 1,0), and rankings [2, 3, 1], [1, 3, 2], [1, 2, 3], [2, 1, 3],
and [3, 1,2]. It is easily verified that none of the actions of T’
is weakly dominated and that v;(I';) = €. We will further ar-
gue that the strategy profile where action profiles (a;, b}, ¢1),
i, j € {1,2}, are played with probability 0.25 each, is the only
Nash equilibrium of T';. For this, consider the possible strate-
gies of player 3. If player 3 plays c;, the game reduces to
the well-known matching pennies game for players 1 and 2,



the only Nash equilibrium being the one described above. If
on the other hand player 3 plays c¢;, action b; strongly domi-
nates b,. If b; is played, however, player 3 will deviate to ¢,
to get a higher payoff. Finally, if player 3 randomizes be-
tween actions c¢; and c;, the payoff obtained from both of
these actions must be the same. This can only be the case if
either player 1 plays a; and player 2 randomizes between b,
and by, or if player 1 plays a, and player 2 plays b,. In the
former case, player 2 will deviate to b;. In the latter case,
player 1 will deviate to a;. Since the payoff of player 1 in the
above equilibrium is 0.5, we have PC(I'}) = 0.5/€ — oo for
e—0. O

We proceed to show that, due to the structural limitations
of binary ranking games, the price of cautiousness in these
games is bounded from above by the number of actions of the
respective player. We also derive a matching lower bound.

Theorem 3 Let R;, be the class of binary ranking games with
more than two players involving a player i with exactly k ac-
tions. Then, PC;(Rp) = k, even if R, only contains single-
winner games or games without weakly dominated actions.

Proof: By definition, the price of cautiousness takes its max-
imum for maximum payoff in a Nash equilibrium, which is
bounded by 1 in a ranking game, and minimum security level.
By the requirement that the security level must be strictly
positive, we have that for every opponent action profile s_;
there must be some action ¢; such that p;(a;, s_;) > 0, i.e.,
pi(a;, s—;) = 1. It is then easily verified that player i can en-
sure a security level of 1/k by uniform randomization over
his k actions, resulting in a price of cautiousness of at most k.

For a matching lower bound, again consider the single win-
ner game of Figure 2. We will argue that all Nash equilibria
of this game are mixtures of the action profiles (az, by, ¢2),
(az, by, ¢7), and (ay, by, ;) and yield payoff 1 for player 1,
twice as much as his security level of 0.5. For this, we look
at the possible strategies for player 3. If player 3 plays c,
the game reduces to the well-known matching pennies game
for players 1 and 2, in which they will randomize uniformly
over both of their actions. In this case, player 3 will deviate
to ¢;. If player 3 plays c¢,, we immediately obtain the equilib-
ria described above. Finally, if player 3 randomizes between
actions c; and c;, the payoff obtained from both of these ac-
tions must be the same. This can only be the case if either
player 1 plays a, and player 2 randomizes between b, and b»,
or if player 1 randomizes between a; and a, and player 2
plays b,. In the former case, player 2 will play b,, causing
player 1 to deviate to a;. In the latter case, player 1 will
play aj, causing player 2 to deviate to b;.

The above construction can be generalized to k > 2
by virtue of a single-winner game with actions A; =
{Cll, ey Clk},Az = {bl, ey bk}, and A3 = {Cl, C2}, and payoffs

0,1,0) ifé=1landi#k—j+1
p((ai,bj,ce)) =4(0,0,1) if{=2andi=j=1
(1,0,0) otherwise.

It is easily verified that the security level of player 1 in this
game is 1/k while, by the same arguments as above, his pay-

1 (&)

by by by by
a; | (0,1,1) (1,0,0) 0,1,0) (1,0,0)
a | (1,0,0) (0,1,0) (1,0,1) (1,0,1)

Figure 4: Three-player ranking game I'; used in the proof of
Theorem 3

off in every Nash equilibrium equals 1. This shows tight-
ness of the upper bound of k on the price of cautiousness for
single-winner games.

Now consider the game I'; of Figure 4, which is a rank-
ing game for rank payoff vectors r; = r, = (1,0,0) and
r3 = (1,1,0), and rankings [2,3,1], [1,2,3], [2,1,3], and
[1,3,2]. It is easily verified that none of the actions of I'; is
weakly dominated and that v;(I';) = 0.5. On the other hand,
we will argue that all Nash equilibria of I, are mixtures of
action profiles (ay, by, ¢2) and (ay, by, ¢3), corresponding to a
payoff of 1 for player 1. For this, we again look at the possible
strategies for player 3. If player 3 plays ¢, players 1 and 2
will again randomize uniformly over both of their actions,
causing player 3 to deviate to c,. If player 3 plays c;, we
immediately obtain the equilibria described above. Finally, if
player 3 randomizes between actions c¢; and c¢;, he must again
get the same payoff from both of these actions. This can only
be the case if either player 1 plays a; and player 2 plays b,,
or if player 1 randomizes between a; and a, and player 2
plays b;. In the former case, player 2 will deviate to b;. In
the latter case, player 1 will deviate to a,.

This construction can be generalized to k > 2 by virtue of

a game with actions A| = {ay,...,a;}, Ay = {b1,..., b}, and
Az = {cy, 2}, and payoffs

0,1,1) ifi=j=¢=1

(1,0,0) ifé=1landi=k—j+1

p(ai, bj,co)) = or{=2,i=1andj>1
if£=2and j>2

otherwise.

(1,0,1)
0,1,0)

Again, it is easily verified that the security level of player 1 in
this game is 1/k while, by the same arguments as above, his
payoff is 1 in every Nash equilibrium. Thus, the upper bound
of k for the price of cautiousness is tight as well for binary
ranking games without weakly dominated actions. O

Informally, the previous theorem states that the payoff a
player can obtain in Nash equilibrium can be at most k times
his security level. The proof relies on equilibria in which the
payoff of at least one player is 1. As we have already pointed
out in Section 4, such equilibria (like pure equilibria) are par-
ticularly weak. We therefore also study the price of cautious-
ness with respect to quasi-strict equilibria.

Definition 9 Let I be a normal-form game with non-negative
payoffs, i € N a player such that v{T') > 0. The price of
cautiousness with respect to quasi-strict equilibria for player
iinT is defined as
min { pi(s) | s € Nos(I') }

vi(I') '

PCE(T) =



where Ngs (') denotes the set of quasi-strict equilibria in T

As before, PC? (C) = suppec PCZ (D).

Returning to the binary ranking game of Figure 4 and its
generalizations, it turns out that player 2 can do nothing about
the fact that he always loses in every Nash equilibrium. As
a consequence, all Nash equilibria where every action pro-
file with payoff (1,0, 1) is played with positive probability
are quasi-strict, and the price of cautiousness in binary rank-
ing games remains k when restricting attention to quasi-strict
equilibria. In single-winner games, on the other hand, a slight
decrease in the price of cautiousness can be witnessed. This
is due to the fact that there can be no quasi-strict equilibrium
in which only one player wins (see also Fact 1).

Theorem 4 Let R, be the class of single-winner games with
more than two players involving a player i with exactly k ac-
tions. Then, PC®* (R,) = k - 1.

Proof: Like in the proof of Theorem 3, an upper bound for
the price of cautiousness can be found by letting the numer-
ator and denominator take their maximum and minimum, re-
spectively. As before, the lowest positive security value is 1/k
for a player with k actions. The argument for a useful upper
bound on the payoff in a quasi-strict equilibrium is slightly
more delicate. We start by observing that the existence of
a quasi-strict equilibrium in which a player (say, player 1)
obtains payoff 1 implies that this player has a winning ac-
tion, i.e., an action which always yields payoff 1 regardless
of the other players’ actions. This is seen as follows. In a
single-winner game, a payoff of 1 for player 1 means that all
other players get payoff zero. In a quasi-strict equilibrium, all
players have to receive strictly more payoff for equilibrium
actions than for actions that are not contained in the equilib-
rium’s support. For this reason, all losing players have to ran-
domize over all their actions in a quasi-strict equilibrium in
which player 1 wins. This implies that player 1 must have an
action that guarantees him a win, and thus his security level
is 1.

Since a maximum security level is useless for finding a
reasonable upper bound, we restrict our attention to games
where no player has a security level of 1. According to our
previous argument, there can be no quasi-strict equilibrium
in such games where only one player wins. We claim that
the highest payoff less than 1 that player 1 may obtain in the
worst equilibrium is (k — 1)/k. First, we observe that we can
restrict our attention to equilibria e that do not contain ac-
tion profile b € XX, A; by all players except player 1, so
that player 1 wins no matter which action he chooses. When-
ever b is part of an equilibrium, there must be another equi-
librium where b is not played, but that is otherwise identical.
Obviously, player 1 cannot get more payoff in this new equi-
librium than in the original one. Now assume for contradic-
tion that the payoff to player 1 in e is greater than (k — 1)/k.
For any action g; that player 1 plays in equilibrium, the sum
of probabilities that the other players put on all actions pro-
file b € X, A; such that player 1 wins in action profile (a;, b)
must be greater than (k—1)/k. Let Z; € XX, A; denote the set

of all remaining action profiles, i.e., those combinations of ac-
tions by other players where player 1 loses. Clearly, the sum
of probabilities for all action profiles in Z; must be strictly
less than 1/k. On the other hand, since player 1 loses at least
once for every action profile of the other players, the union of
all sets Z; equals the set of all action profiles played in e, and
the probabilities of these actions must sum up to 1, yielding a
contradiction.

As for a matching lower bound, consider the single-winner
game involving Alice, Bob, and Charlie that is shown in Fig-
ure 1. Alice’s payoff in the quasi-strict equilibrium marked
by the dotted rectangles is 0.5, while her security level of 0.5
implies that there cannot be an equilibrium with lower pay-
off. For k > 2, we instead use a game with actions A} =
{ai,...,ar}, Ay ={b1,..., b}, and A3 = {cy, ¢2}, and payoffs

0,1,0) if¢=1andi#j
p((ai,bj,ce)) =4(0,0,1) if£{=2andi=j
(1,0,0) otherwise.

It is easily verified that the strategy profile where player 3
plays ¢ and players 1 and 2 randomize uniformly between
all of their actions is a quasi-strict Nash equilibrium and in
fact the only Nash equilibrium of this game. The payoft of
player 1 in this equilibrium is (k — 1)/k, (k — 1) times his
security level of 1/k. O
Applying this theorem to a single-winner game which con-
tains a quasi-strict equilibrium, a player with only two actions
at his disposal will not obtain more payoff than his (positive)
security level in some quasi-strict equilibrium.

6 The Value of Correlation

We will now turn to the question whether, and by which
amount, social welfare can be improved by allowing play-
ers in a ranking game to correlate their actions. Just as the
payoff of a player in any Nash equilibrium is at least his se-
curity level, social welfare in the best correlated equilibrium
is at least as high as social welfare in the best Nash equilib-
rium. In order to quantify the value of correlation in strategic
games with non-negative payoffs, Ashlagi et al. [2005] re-
cently introduced the mediation value of a game as the ratio
between the maximum social welfare in a correlated versus
that in a Nash equilibrium, and the enforcement value as the
ratio between the maximum social welfare in any outcome
versus that in a correlated equilibrium. Whenever social wel-
fare, i.e., the sum of all players’ payoffs, is used as a measure
of global satisfaction, one implicitly assumes the inter-agent
comparability of payoffs. While this assumption is contro-
versial, social welfare is nevertheless commonly used in the
definitions of comparative ratios such as the price of anar-
chy [Koutsoupias and Papadimitriou, 1999]. ForI' € G and
X C A(S), let C(T') denote the set of correlated equilibria of I"
and let vx(I') = max{ p(s) | s € X }.

Definition 10 Let T' be a normal-form game with non-
negative payoffs. The mediation value MV(I') and the en-
forcement value EV(I') of T are defined as

vea)T)
vy (D)

vs([)
Ve) ) ’

MVI) = and EV(D) =



C1

by by b
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by by by

ap | (1,1,0) (1,0,0)
a | (0,1,0) (0,1,1)

0,1,1) (0,1,0)
(1,0,0) (1,1,0)

(1,0,0) (0,0,1)
0,0,1) (1,0,0)

Figure 5: Three-player ranking game I'; used in the proof of Theorem 5

If both numerator and denominator are O for one of the val-
ues, the respective value is defined to be 1. If only the de-
nominator is 0, the value is defined to be co. For any class
C € G of games, we further write MV(C) = supp, MV ()
and EV(C) = suppec EV(D).

Ashlagi et al. [2005] have shown that both the mediation
value and the enforcement value cannot be bounded for any
class of games with an arbitrary payoff structure, as soon as
there are more than two players or some player has more than
two actions. This holds even if payoffs are normalized to the
interval [0, 1]. Ranking games also satisfy this normalization
criterion, but here social welfare is also strictly positive for
every outcome of the game. Ranking games with identical
rank payoff vectors for all players, i.e., ones where rf.‘ = r’J‘. for
alli,j € Nand 1 < k < n, are constant-sum games. Hence,
the social welfare is the same in every outcome so that both
the mediation value and the enforcement value are 1. This
particularly concerns all ranking games with two players. In
general, social welfare in an arbitrary outcome of a ranking
game is bounded by n—1 from above and 1 from below. Since
the Nash and correlated equilibrium payofts must lie in the
convex hull of the feasible payoffs of the game, we obtain
trivial lower and upper bounds of 1 and n — 1, respectively,
on both the mediation and the enforcement value. It turns
out that the upper bound of n — 1 is tight for both the medi-
ation value and the enforcement value. For the former, we
show that for any n > 3 there is a ranking game where all
Nash equilibria have social welfare 1 while there is a corre-
lated equilibrium with social welfare n — 1. In particular, we
exploit the fact that a Nash equilibrium has to be a product of
strategies for the individual players and design a game where
one of the players strictly prefers a designated action given
that the other players play a strategy profile involving an out-
come with high social welfare, while the same is not the case
for a certain correlated strategy.

Theorem 5 Let R’ be the class of ranking games with more
than two players such that at least one player has more
than two actions when there are only three players. Then,
MV(R)=n-1.

Proof: 1t suffices to show that for any of the above cases there
is a ranking game with mediation value n — 1. For n = 3,
consider the game I'; of Figure 5, which is a ranking game for
rank payoff vectors r; = r3 = (1,0,0) and r, = (1, 1, 0). First
of all, we will show that there are no Nash equilibria where
¢ or ¢y are played with positive probability, so that any Nash
equilibrium has social welfare 1. Assume for contradiction
that s is such an equilibrium. The strategy played by player 3
in s must either be (i) ¢; or ¢, as a pure strategy, (ii) a mixture

of ¢; and c3 or between ¢, and c3, or (iii) a mixture where
both ¢; and ¢, are played with positive probability. In the
following, we will use two well-known properties of Nash
equilibria [see, e.g., Myerson, 1991]: only actions surviving
the iterated elimination of strongly dominated actions can be
played with positive probability in any Nash equilibrium, and
in a Nash equilibrium the payoff is the same for all actions
played with positive probability.

Assume that player 3 plays ¢; in s. Then, a, is strongly
dominated by a; and can be eliminated, after which b, is
strongly dominated by b;. Hence, players 1 and 2 will play
(a1, b1), causing player 3 to deviate to ¢;. A similar condition
holds for ¢, the remaining action profile being (a;, b,). Now
assume that player 3 mixes between c; and c3, and let @ and
[ denote the probabilities with which players 1 and 2 play a;
and b; respectively. It is easily verified that, for player 3’s
payoff from ¢; and c3 to be the same, we must have a = 1/2
and 8 =0, or @ = 0 and 8 = 1/2. In the former case player
2 would deviate to by, while in the latter player 1 would devi-
ate to a;. If player 3 mixes between ¢, and c¢3, we must have
a=1/2andB =1,ora =1 and 8 = 1/2. In the former case
player 2 would deviate to by, in the latter player 1 would de-
viate to a;. Finally, if both ¢; and ¢, are played with positive
probability, we must have @ = 8 = 1/2 for player 3’s payoft
from c; and ¢, to be the same. In this case, however, player
3 would deviate to c3. Thus, a strategy profile s as described
above cannot exist.

Now consider the correlated strategy s where action pro-
files (a1, b1,c1), (az,ba,cy), (ai,by,cy), and (ap, by, cy) are
played with probability 0.25 each. This correlation can for
example be achieved by tossing two coins independently.
Players 1 and 2 observe the first coin toss and play a; and
by, respectively, if the coin falls on heads, and a, and b, oth-
erwise. Player 3 observes the second coin toss and plays c; if
the coin falls on heads and ¢, otherwise. The expected payoft
for player 2 under s is 1, so he cannot gain by changing his
action. If player 1 observes heads, he knows that player 2 will
play b1, and that player 3 will play c; and ¢, with probability
0.5 each. He is thus indifferent between a; and a,. Player 3
knows that players 1 and 2 will play (ay, by) or (az, by) with
probability 0.5 each, so he is indifferent between c¢; and c;
and strictly prefers both of them to ¢3. Hence, none of the
players has an incentive to deviate, s is a correlated equilib-
rium. Furthermore, the social welfare under s is 2, and thus
MV(I3) =2.

Now consider the four-player game I'y of Figure 6, which
is a ranking game for rank payoffs r; = r; = (1,0,0,0), r, =
(1,1,0,0), and r4 = (1,1, 1,0). It is easily verified that none
of the action profiles with social welfare 2 is a Nash equilib-
rium. Furthermore, player 4 strictly prefers action d, over d,
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b1 b2 bl b2

ap | (1,1,0,1) (1,0,0,0) 0,1,1,1) (0,1,0,0) J
1

ay | (0,1,0,0) (0,1,1,1) (1,0,0,0) (1,1,0, 1)

a; | (0,0,0,1) (0,0,0,1) 0,0,0,1) (0,0,0,1) J
2

ay | (0,0,0,1) (0,0,0,1) 0,0,0,1) (0,0,0,1)

Figure 6: Four-player ranking game I’y used in the proof of
Theorem 5

as soon as one of the remaining action profiles for players 1
to 3 (i.e., those in the upper half of the game where the social
welfare is 1) is played with positive probability. Hence, d;
is not played with positive probability in any Nash equilib-
rium of [y, and thus any Nash equilibrium of I'y has social
welfare 1. In turn, consider the correlated strategy s where
actions proﬁles (a1,b1,c1,dy), (a2, by, c1,dv), (ay,b1,ca,dy),
and (ay, by, ¢z, d;) played with probability 0.25. It is easily
verified that none of the players can increase his payoft by
unilaterally deviating from s. Hence, s is a correlated equi-
librium with social welfare 3, and MV(I'4) = 3.

For n > 4, we only have to look at games where the
additional players only have a single action. We return
to the game I'y of Figure 6 and transform it into a game
[} with n > 4 players by assigning a payoff of 1 to
players 5,...,n in the four action profiles (ay, by, cy,d}),
(ar, by, c1,dy), (a1, b1, c2,dy), and (ay, by, cp,d;) that consti-
tute the correlated equilibrium with maximum social wel-
fare, and a payoff of zero in all other action profiles. Since
the additional players cannot influence the outcome of the
game, this procedure does not affect the equilibria of the
game. The resulting game is a ranking game by virtue of the
rankings [1,2,3,4,...,n],[3,2,1,4,...,n],[1,3,4,...,n,2],
[2,1,4,...,n,2] and the following rank payoff vectors: r; =
r3(1,1,0,...,0), » =(1,0,...,0), r,’; =1lifk<m-1andO
otherwise for all m > 4. Furthermore, MV(I")) = n - 1. O

In order to match the upper bound of the enforcement
value, we design a ranking game that has social welfare n — 1
for a single action profile and social welfare 1 + € for all oth-
ers. To show that there exists no correlated equilibrium with
social welfare larger than 1 + €, the problem of finding a so-
cial welfare maximizing correlated equilibrium is written as
a linear program and then transformed into its dual. Since the
dual constitutes a minimization problem, it suffices to find a
feasible solution with objective value 1 + €.

Theorem 6 Let R be the class of ranking games with more
than two players. Then, EV(R) = n—1, even if R only contains
games without weakly dominated actions.

Proof: 1t suffices to show that for any n > 3 there is a rank-
ing game with enforcement value n» — 1 in which no action
is weakly dominated. Consider the ranking game I's of Fig-
ure 7, which is a ranking game by virtue of rank payoff vec-
torsr; = (1,1,0), 7, = (1,0,0), and 3 = (1, €, 0) and rankings

C1 (&)

by by b by
a; | (1,0,0) (0,1,¢) 0,0,1) (1,0,¢)
a | (0,1,e) (1,0,1) (1,0,e) (1,0,¢)

Figure 7: Three-player ranking game I's used in the proof of
Theorem 6

[1,2,3], [2,3,1], [3,1,2], [3,2,1], and [1,3,2]. Obviously,
all of the actions of I's are undominated and vg(I's) = 2. It
remains to be shown that the social welfare in any correlated
equilibrium of I's is at most (1 + €), such that v, (I's) — 1
and EV(I's) — 2 for e — 0.

Finding a correlated equilibrium that maximizes social
welfare constitutes a linear programming problem [see, e.g.,
Schrijver, 1986] constrained by the inequalities of Defini-
tion 7 and the probability constraints > 4 u(a) = 1 and
u(a) > 0 for all a € A. Feasibility of this problem is a di-
rect consequence of Nash’s existence theorem. Boundedness
follows from boundedness of the quantity being maximized.
To derive an upper bound for social welfare in a correlated
equilibrium of I's, we will transform the above linear pro-
gram, the primal, into its dual. Since the primal is feasible
and bounded, the primal and the dual will have the same opti-
mal value, in our case the maximum social welfare in a corre-
lated equilibrium. Since the latter constitutes a minimization
problem, finding a feasible solution with objective value v
shows that the optimal value cannot be greater than v. Since
there are three players with two actions each, the primal has
six constraints of the form . .c4 . u(s)(pi(s) — p(s_;,a;)) > 0.
For j € {1,2}, let x}, y;, zj, denote the variable of the dual
associated with the constraint for the jth action of player 1,
2, and 3, respectively. Furthermore, let v denote the variable
of the dual associated with constraint )¢ u(s) = 1 of the
primal. Then the dual reads

minimize v

subject to

X1 +y1+z+v>l,

X —yi+v=>1+e,

xX1=y2+v=>1+e,

X +ym+(€Ee-Dz+v=2,

X1—22+v=>1,

—xr+v>1+e,

v>1+e,

(l—-e)z+v>1+e,

x120,x%>0,y1 >0,y 20,z 20, and z, > 0.
Nowletx, = y; =2, = 0, x1 = y2 = (e—-1)*/€, 21 = (1-2€)/€,
and v = | + ¢, and observe that for every € > 0, this is a
feasible solution with objective value 1 + €. However, the

objective value of any feasible solution to the dual is an upper
bound for that of the optimal solution, which in turn equals
vers)(Ts).

The above construction can easily be generalized to games
I'; with n > 4 by adding additional additional players that



receive payoff 1 in action profile s if s; = a3, 55 = b,, and
s3 = c1, and payoff 0 otherwise. This can for example be
achieved by means of rank payoff vectors r; = (1,0,...,0),
r = (1,1,0,...,0), r; = (1,60,...,0), and 7%, = 1if k <
m — 1 and O otherwise for m > 4. By the same arguments as
in the proof of Theorem 5, this does not affect the maximum
social welfare achievable in a correlated equilibrium. It is
thus easily verified that EV(FIS“X"'X"“) —sn—-1fore—>0. O

7 Conclusion

We have quantified and bounded comparative ratios between
various solution concepts in ranking games. It turned out that
playing one’s maximin strategy in binary ranking games with
only few actions available might be a prudent choice, not only
because this strategy guarantees a certain payoff even when
playing against irrational opponents, but also because of the
limited price of cautiousness and the inherent weakness of
Nash equilibria in ranking games. Moreover, maximin strate-
gies can be computed in polynomial time while all known
algorithms for computing Nash equilibria have exponential
worst-case complexity.

In the second part of the paper, we have investigated the
relationship between correlated and Nash equilibria. While
correlation can never decrease social welfare, it is an impor-
tant question which (especially competitive) scenarios permit
an increase. In scenarios with many players and asymmetric
preferences over ranks (i.e., non-identical rank payoff vec-
tors) overall satisfaction can be improved substantially by al-
lowing players to correlate their actions. Furthermore, corre-
lated equilibria have the advantage of being polynomial-time
computable and do not suffer from the equilibrium selection
problem since the equilibrium to be played is selected by a
mediator.
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