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long-standing open question of Bogomolnaia, Moulin, and Stong (2005) by showing that no strategyproof and

efficient rule can guarantee that at least one approved project of each agent receives a positive amount of the

resource. The proof reasons about 386 preference profiles and was obtained using a computer-aided method
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1 INTRODUCTION
The question we study in this paper is how a common pool of some divisible resource ought to be

distributed among a set of public projects based on the preferences of multiple agents. Following

a model introduced by Bogomolnaia et al. [11], we will study distribution rules with preferences

specified as approvals: each agent reports an arbitrary subset of approved projects. We assume that

agents prefer distributions where a greater fraction is allocated to approved projects. Approval

voting is one of the most common ways of eliciting preferences in polls and online tools, due to

its ease of use while still being reasonably expressive. It also naturally comes with an assumption

of dichotomous preference that makes the mechanism design problem analytically tractable and

thereby more theoretically productive.

Approval-based distribution rules are useful for many applications, and one can interpret the

outcome distribution in at least three distinct ways.

Randomization. The obvious interpretation of probability distributions are lotteries. Rather than

using a deterministic rule to pick a single project, one may use randomization to achieve

fairness guarantees and strong participation incentives ex ante.
Repeated decisions. When the same decision situation occurs repeatedly, we may want to alternate

between different projects to ensure fairness. For example, the organizers of a seminar

may poll participants about their preferences for the day of the week when the seminar

is scheduled. The best decision may be a mixture, where 10% of the seminars are held on

Wednesdays, 50% on Thursdays, and 40% on Fridays.

Budget division. An organization has to decide over the use of its budget, and how to divide it

among different projects. It can then let its members vote over which projects are worthy

of receiving funding. The result is a distribution of the budget to projects. The budget need

not be monetary, and we could divide a time budget using the same methods. For example,

imagine an instructor who asks the students in the class which topics they are interested in,

and who divides the class time among topics using a distribution rule.

As argued by Brandl et al. [16], a real-world application of distribution rules for dividing a

budget is donor coordination. Imagine a set of donors who intend to give money to charitable

causes. Each donor has a collection of favored charities that they are willing to donate to. Instead

of directing their donations individually, the donors can pool their contributions and use a voting

rule to divide the pool among charities. With a suitably chosen distribution rule, the result may be

preferable to uncoordinated donations, in the eyes of every participant. The simplest example is

if one donor favors charities 𝑎 and 𝑏, while another favors 𝑏 and 𝑐 . An efficient voting rule will

decide to direct both donors’ contributions to 𝑏, which means that in the eyes of either donor,

more money has been directed to a favored charity than if each had decided to split their money

evenly between their own favored charities. Two concrete situations where such a coordination

mechanism could be implemented are Amazon’s Smile program (where Amazon donates 0.5% of the

price of a customer’s purchases to a charitable organization of their choice) or the Italian Revenue

Agency’s Cinque per Mille program, which allows citizens to divert 0.5% from their income tax

to non-profit organizations of their choice. The rules that we discuss could be plugged directly

into these systems and produce efficiency gains when allowing users to approve more than one

organization. Other examples include annual employee charity matching programs such as those

run by Microsoft or Apple.

With these applications in mind, we will study distribution rules via an axiomatic analysis. We

will look at Pareto efficiency, robustness to strategic misrepresentation, monotonicity, participation,

and fairness properties. We build on previous work in this model [2, 11, 23], and begin our discussion

in Sections 3 and 4 by presenting the axioms and rules that have been studied in the literature.



We also introduce a new rule and some additional axioms inspired by the applications mentioned

above.

Compared to the usual situation in social choice, our approval-based model allows for voting

rules with strong axiomatic guarantees. For example, the utilitarian rule (UTIL) which maximizes

utilitarian social welfare is both efficient and strategyproof. However, it is not fair: the rule will

spend the entire resource on projects that are approved by the highest number of people. There

may be a large fraction of the agents who do not approve of these popular projects, and which

are left unrepresented in the distribution. To fix this flaw, the conditional utilitarian rule (CUT )
maximizes utilitarian welfare subject to a fairness constraint. The resulting rule is fair by definition,

and it remains strategyproof. However, it fails to be efficient. A third rule, the Nash rule (NASH )

which maximizes the product of agent utilities, combines fairness with efficiency, but violates

strategyproofness.

UTIL CUT NASH

efficiency ✓ – ✓
fairness – ✓ ✓
strategyproofness ✓ ✓ –

Table 1. Standard Axioms

Our main contribution is an impossibility theorem

that answers a long-standing open question raised

by Bogomolnaia et al. [10, 11] in the paper introduc-

ing the model of approval-based distribution rules.

They ask whether the three properties in Table 1—

efficiency, strategyproofness, fairness—can be satis-

fied together. To formalize fairness, they introduced

an extremely weak property called positive share, which merely requires that at least one approved

project of each agent receives a positive amount of the resource. Bogomolnaia et al. [11] wrote that

they “submit as a challenging conjecture the following statement: there is no strategyproof and ex
ante efficient mechanism guaranteeing positive shares.” While they were not able to establish this

impossibility, Bogomolnaia et al. showed weaker results, featuring either a much stronger version

of strategyproofness or a stronger version of positive share, and additionally requiring symmetry

axioms (anonymity and neutrality). Even with the stronger assumptions, their proofs were rather

involved, and one of them needed to reason about cases with at least 17 projects. As to whether a

distribution rule satisfying the original conditions exists, they left it as “a challenging open question

to which we suspect the answer is negative when [the numbers of agents and projects] are large

enough.” We show that Bogomolnaia et al.’s [2005] conjecture is correct, and the combination of

the three axioms leads to an impossibility theorem:

No distribution rule satisfies efficiency, strategyproofness, and positive share when𝑚 ≥ 4 and 𝑛 ≥ 6.

This theorem has immediate consequences for real-world applications such as the extension of

Amazon Smile discussed above. Arguably the weakest incentive Amazon has to provide in order to

lure customers to participate in the Smile program is to donate a positive amount of money to at

least one approved charitable organization of each customer. Surprisingly, no such distribution

rule can simultaneously satisfy efficiency and strategyproofness (despite the simple setting of

approval preferences). While implementing a distribution rule for coordinating donations would

still improve over the status quo in terms of efficiency, it is not obvious with which distribution

rule it should be replaced. There is an inevitable tradeoff between efficiency and strategyproofness.

We prove the theorem using a computer-aided technique based on SAT solvers that has recently

gathered a lot of attention in computational social choice [e.g., 14, 30]. We are able to use SAT

solvers in our setting because the continuous problem of whether there exists a distribution

rule satisfying the three axioms can be encoded as a combinatorial statement. As a welcome

byproduct, our proof goes through with a significantly weaker form of strategyproofness than the

one considered by Bogomolnaia et al. [11]. Using minimal unsatisfiable sets (MUSes), we were then

able to automatically construct a proof of the impossibility theorem. This proof is human-readable,



though it is very long, and requires to reason about 386 preference profiles. This is certainly the

most complicated computer-aided proof in social choice theory (the previous “record holder” uses

47 preference profiles [14]) and perhaps the longest proof of an impossibility theorem in social

choice thus far. We have reason to believe that shorter proofs do not exist, and so it is unlikely that

the conjecture could have been settled by hand.

The computer surprised us several times during our work on this impossibility. While Bogo-

molnaia et al. [11] suspected that the impossibility would only hold for large numbers of agents

and projects, we only need 𝑛 ≥ 6 agents and𝑚 ≥ 4 projects (and both of these bounds are tight).

Moreover, when we add the symmetry axioms used by Bogomolnaia et al. [11], the SAT solver finds

an extremely simple 2-step impossibility proof for 𝑛 = 5 and𝑚 = 4, which is much more instructive

than the existing proof of a weaker result requiring𝑚 ≥ 17. Finally, the SAT approach allowed

us to easily check whether the impossibility still holds when slightly weakening the definition of

strategyproofness. Using this process, we discovered that any symmetric, efficient, and fair voting

rule can be manipulated using the simple strategy of dropping popular projects from one’s approval

set.

When confronted with an impossibility theorem, the social choice theorist’s instinct is to look

for “ways out”. Table 1 shows that if we drop any of the three axioms (efficiency, strategyproofness,

fairness), then the remaining axioms are satisfied by an otherwise very attractive voting rule.

Another approach is to try to weaken the axioms. For example, we can weaken efficiency to only

require that the outcome distribution is not Pareto dominated by another fair distribution. This is a
natural definition in settings where fairness is essentially a feasibility requirement. The conditional

utilitarian rule satisfies this weakened form of efficiency, making it a strong contender for practical

applications. We can also try to weaken strategyproofness. While our computer analysis shows that

even very weak forms of the combinatorial variant of strategyproofness give rise to impossibilities,

one attractive condition ismonotonicity, which we show is also a weakening of strategyproofness. It

requires that if an agent adds project 𝑥 to their approval set, then the probability assigned to 𝑥 must

not decrease. Surprisingly, none of the previously known distribution rules is efficient, monotonic,

and fair: the utilitarian rule is monotonic but fails positive share, the conditional utilitarian rule is

monotonic but fails efficiency, and the Nash rule is efficient and fair but fails monotonicity. The

egalitarian rule that maximizes leximin welfare also fails monotonicity. However, we introduce a

new rule which we call the sequential utilitarian rule which satisfies all three of these properties:

There exists a distribution rule that satisfies efficiency, monotonicity, and positive share.

The sequential utilitarian rule is reasonably natural, though it was specifically designed to satisfy

these three axioms, and thus it fails some other desirable properties such as participation (even

though the smallest uniform-contribution counterexample we know uses 𝑛 ≥ 45 agents, so this

deficiency may not be significant in practice). Still, the general approach we took while designing

the rule may yield other rules with otherwise unattained axiomatic properties.

2 RELATEDWORK
Our paper follows the model introduced and studied by Bogomolnaia et al. [11], Duddy [23], and

Aziz et al. [2]. In some parts, we follow Brandl et al. [16], who noted that distribution rules with

variable contributions can also be used for donor coordination, where the budget to be divided

is obtained by pooling agents’ contributions. These papers can be viewed as studying a type of

participatory budgeting, which is surveyed by Aziz and Shah [6]. Other relevant work in this

research stream was done by Fain et al. [25] who allow for linear utilities. They introduce the

fairness notion of the core, draw a connection between the Nash rule and Lindahl equilibria [27],
and construct a distribution rule based on differential privacy, which satisfies approximate versions



of efficiency, strategyproofness, and the fairness notion of the core. Their rule can be seen as

an attempt to avoid the impossibility we present here, but at the cost of severely relaxing each

axiom. Airiau et al. [1] consider fair distribution rules for rankings over projects instead of utility

functions. Michorzewski et al. [36] consider dichotomous preferences and study the price of fairness
by quantifying what fraction of optimum utilitarian welfare can be achieved by fair distribution

rules; Tang et al. [42] do the same for egalitarian welfare. Freeman et al. [28] study a related setting

where agents report their favorite distribution instead of preferences over projects, and present

strategyproof rules that are either efficient or fair.

Participatory budgeting is more commonly studied in a model where projects are indivisible and

come with a fixed cost [6]. Such projects can either be fully funded or not at all. This model captures

elections now run by many city governments [21]. The design of voting rules for this model has

received much recent attention [e.g., 8, 26, 32] including the case of dichotomous preferences [e.g.,

5, 40]. Aziz and Ganguly [4] have studied a version of the donor coordination setting for indivisible

projects.

Our model can also be interpreted as probabilistic social choice for the special case of dichotomous

preferences [e.g., 18, 31, 34]. Probabilistic social choice studies functions that map preference

profiles to lotteries over alternatives. While this is mathematically equivalent to distributing a

fixed budget over public projects, the literature has focused on slightly different axioms due to the

different interpretations of the output. For example, depending on the application, probabilistic

social choice functions may only be acceptable if they resort to randomization in exceptional cases

[see 17]. This is in conflict with the idea of fairness, which typically sets lower bounds on the

probabilities of alternatives. Our results can be viewed as results in probabilistic social choice by

letting all contributions be identical, i.e., each agent brings the same amount of probability mass to

the table. The restriction to dichotomous preferences allows for much more positive results than the

more general setting, where efficiency is already incompatible with either one of strategyproofness

and strict participation (see Remark 1) under mild additional assumptions.

3 MODEL AND AXIOMS
Let𝐴 be a finite set of𝑚 projects and 𝑁 a finite set of 𝑛 agents. For each 𝑖 ∈ 𝑁 , agent 𝑖’s contribution
is 𝐶𝑖 ∈ R>0, which we assume to be fixed throughout. The sum of all individual contributions is

called the endowment 𝐶 =
∑𝑛

𝑖=1𝐶𝑖 . Contributions may be monetary contributions to a common

pool, or may just be exogenously given voter weights. We often study the case when all individ-

ual contributions are equal, and we refer to these as uniform contributions. When interpreting

distributions as lotteries, for example, the contribution of each agent is 1/𝑛 of probability mass.

A distribution 𝛿 : 𝐴→ R≥0 with
∑

𝑥 ∈𝐴 𝛿 (𝑥) = 𝑉 is a function that describes how some amount

𝑉 is distributed among projects. We write Δ(𝑉 ) for the set of all distributions of value 𝑉 . For

convenience, we write distributions as linear combinations of projects, so that 𝑎 + 2𝑏 stands for the

distribution 𝛿 with 𝛿 (𝑎) = 1 and 𝛿 (𝑏) = 2 and 𝛿 (𝑥) = 0 for all other 𝑥 . The support of a distribution
𝛿 is the set of all projects 𝑥 for which 𝛿 (𝑥) > 0.

Agents have preferences over distributions. Following Bogomolnaia et al.’s [2005] seminal work,

we study dichotomous preferences, where agent 𝑖 ∈ 𝑁 assigns a utility 𝑢𝑖 (𝑥) ∈ {0, 1} to each project

𝑥 ∈ 𝐴, and thus assigns utility 𝑢𝑖 (𝛿) =
∑

𝑥 ∈𝐴 𝑢𝑖 (𝑥) · 𝛿 (𝑥) to a distribution 𝛿 . We say that agent 𝑖

approves project 𝑥 if 𝑢𝑖 (𝑥) = 1 and write 𝐴𝑖 = {𝑥 ∈ 𝐴 : 𝑢𝑖 (𝑥) = 1} for 𝑖’s approval set. A profile
A = (𝐴1, . . . , 𝐴𝑛) is a tuple of non-empty approval sets, one for each agent.

A distribution rule is a function 𝑓 that maps each profile A to a distribution 𝑓 (A) = 𝛿 ∈ Δ(𝐶).
We say that 𝑓 is neutral if for every permutation 𝜎 : 𝐴→ 𝐴 of the alternatives and every profile

A, we have 𝑓 (𝜎 (A)) = 𝜎 (𝑓 (A)), where 𝜎 (A) = (𝜎 (𝐴1), . . . , 𝜎 (𝐴𝑛)) is the profile obtained from

A by relabeling alternatives according to 𝜎 . We say that 𝑓 is anonymous if its output is invariant



under permuting the agents’ approval sets and contributions according to the same permutation.

All distribution rules that we study in Section 4 are both anonymous and neutral.

There are two distinct interpretations of the model we have now set up. The more common

interpretation that motivated the work of Bogomolnaia et al. [11] and Aziz et al. [2] views the

endowment 𝐶 as a fixed budget that is provided exogenously. On the other hand, Brandl et al. [16]

were motivated by the problem of donor coordination, where each agent owns the resources 𝐶𝑖

which are then pooled into 𝐶 and then divided (e.g. among charities) via voting. In the latter case,

because agents own their contribution, they have a strong claim that their contribution is used in

accordance with their wishes, which will be guaranteed by some fairness axioms that we discuss

in Section 3.2. Also, in principle, an agent could decide to withdraw from the process and keep

𝐶𝑖 for their private use, so we will need rules that provide incentives to contribute resources to

the common pool as discussed in Section 3.5. In contrast, with an exogenous budget, the available

amount 𝐶 does not change whether a given agent participates or not, and thus a good distribution

rule then merely needs to incentivize submitting a ballot.

3.1 Efficiency
Pareto efficiency is one of the most central properties in microeconomic theory. In our setting, a

distribution is efficient if no other distribution yields at least as much utility for every agent and a

strictly higher utility for at least one agent. A distribution rule is efficient if it returns an efficient

distribution for every profile.

Definition 1 (Efficiency). Let A be a profile. A distribution 𝛿 ′ ∈ Δ(𝐶) dominates another distribu-
tion 𝛿 ∈ Δ(𝐶) if 𝑢𝑖 (𝛿 ′) ≥ 𝑢𝑖 (𝛿) for all 𝑖 ∈ 𝑁 and 𝑢𝑖 (𝛿 ′) > 𝑢𝑖 (𝛿) for some 𝑖 ∈ 𝑁 . 𝛿 is efficient if no
distribution dominates it. A distribution rule 𝑓 is efficient if 𝑓 (A) is efficient for all profiles A.

In particular, efficiency implies ex post efficiency, which requires that 𝛿 (𝑥) = 0 if 𝑥 is Pareto

dominated (that is, there is a project 𝑦 such that every agent who approves 𝑥 also approves 𝑦 and at

least one agent approves𝑦 but not 𝑥 ). To see this, note that the distribution 𝛿 ′ = 𝛿 −𝛿 (𝑥) ·𝑥 +𝛿 (𝑥) ·𝑦
obtained from 𝛿 by shifting the probability on 𝑥 to 𝑦 dominates 𝛿 . The example in Figure 2 shows

that efficiency requires more than just ex post efficiency: in the profile discussed there, all allocations

that give a positive amount of resources to both 𝑐 and 𝑑 are dominated because these resources can

be efficiently redistributed to 𝑎 and 𝑏. Efficiency is a non-trivial axiom and checking whether a

distribution is efficient is typically done via linear programming [e.g., 3].

3.2 Fairness
In many contexts, we want the output of a distribution rule to be fair to the agents, which at the

minimum should mean that no agent is ignored by the rule. For example, when we vote over the

day of the week on which a recurring seminar is to be scheduled, fairness would require that every

participant should be able to attend at least some of the seminars. If the schedule alternates between

days according to a distribution rule, this fairness requirement can easily be accommodated. We

formalize this idea in three axioms taken from the existing literature [2, 10, 11, 23] and adapted to

our setting which does not require uniform contributions.

Definition 2 (Fair share). Given a profile A, a distribution 𝛿 ∈ Δ(𝐶) satisfies
• positive share if for all 𝑖 ∈ 𝑁 , 𝑢𝑖 (𝛿) > 0,

• individual fair share if for all 𝑖 ∈ 𝑁 , 𝑢𝑖 (𝛿) ≥ 𝐶𝑖 ,

• group fair share if for all sets 𝑆 ⊆ 𝑁 ,

∑
𝑥 ∈⋃𝑖∈𝑆 𝐴𝑖

𝛿 (𝑥) ≥ ∑
𝑖∈𝑆 𝐶𝑖 .

A distribution rule 𝑓 satisfies positive share (resp. individual fair share or group fair share) if 𝑓 (A)
satisfies the respective property for all profiles A.



Positive share is extremely weak and only rules out situations where an agent is not served at

all. Individual fair share requires that not only a positive amount but at least an amount equal to

an agent’s contribution 𝐶𝑖 should be spent on projects approved by that agent. Group fair share

(which is sometimes also called proportional sharing) additionally gives guarantees to all groups of

agents. It demands that at least an amount equal to the total contributions of the group should be

spent on projects approved by some group member.

In the donor coordination interpretation of our model, the endowment 𝐶 is obtained by pooling

resources 𝐶𝑖 that agents own. Thus, each agent 𝑖 has a justified claim that their contribution 𝐶𝑖

is only spent on projects in 𝐴𝑖 approved by 𝑖 . On first sight, individual fair share provides such

a guarantee, but it is actually too weak. Consider three agents with uniform contributions and

the profile A = ({𝑎}, {𝑎}, {𝑏}). Then the distribution 𝛿 = 1𝑎 + 2𝑏 satisfies individual fair share,

yet we cannot tell both agents 1 and 2 that their contribution (𝐶1 + 𝐶2 = 2) was spent on their

approved project 𝑎. This motivates a different fairness notion, introduced by Brandl et al. [16],

called decomposability. It requires that the distribution 𝛿 can be expressed as a sum of individual

distributions 𝛿𝑖 ∈ Δ(𝐶𝑖 ) that only spend on projects approved by 𝑖 , so 𝛿𝑖 (𝑥) = 0 for all 𝑥 ∈ 𝐴 \𝐴𝑖 .

Definition 3 (Decomposability). Let A be a profile. A distribution 𝛿 ∈ Δ(𝐶) is decomposable if
we can write 𝛿 =

∑
𝑖∈𝑁 𝛿𝑖 where for each 𝑖 ∈ 𝑁 , 𝛿𝑖 ∈ Δ(𝐶𝑖 ) is an individual distribution satisfying

𝑢𝑖 (𝛿𝑖 ) = 𝐶𝑖 . A distribution rule 𝑓 is decomposable if 𝑓 (A) is decomposable for all profiles A.

An advantage of such a decomposition is that it can be used to explain to the agents what their

contributions have been used for. In some cases, decomposability is almost indispensable, such

as in applications where the individual contributions are not collected from the agents, but the

rule merely advises each agent how to spend their resources. This is, for example, the case in a

decentralized version of the donor coordination setting discussed by Brandl et al. [16].

Interestingly, it turns out that decomposability and group fair share are equivalent. One can

interpret this result as generalizing Hall’s theorem for bipartite matching.
1

Proposition 1. A distribution 𝛿 ∈ Δ(𝐶) is decomposable if and only if it satisfies group fair share.

Proof. Suppose 𝛿 is decomposable, with 𝛿 =
∑

𝑖∈𝑁 𝛿𝑖 . Then for any 𝑆 ⊆ 𝑁 , we have∑
𝑥 ∈⋃𝑖∈𝑆 𝐴𝑖

𝛿 (𝑥) ≥ ∑
𝑖∈𝑆

∑
𝑥 ∈𝐴𝑖

𝛿𝑖 (𝑥) ≥
∑

𝑖∈𝑆 𝐶𝑖 . Thus, 𝛿 satisfies group fair share.

We prove the converse direction by an application of the max-flow min-cut theorem. We start by

setting up a flow network, i.e., a weighted digraph (𝑉 , 𝐸, 𝑐), where 𝑉 is a set of vertices, 𝐸 is a set

of (directed) edges, and 𝑐 is a function that assigns to each edge a capacity. Set 𝑉 = 𝑁 ∪𝐴 ∪ {𝑠, 𝑡},
where 𝑠 and 𝑡 are the source and the sink, respectively. For each 𝑖 ∈ 𝑁 , add an edge with capacity

𝐶𝑖 from 𝑠 to 𝑖 and, for each 𝑥 ∈ 𝐴𝑖 , an edge with capacity 𝐶𝑖 from 𝑖 to 𝑥 . For each 𝑥 ∈ 𝐴, add an

edge with capacity 𝛿 (𝑥) from 𝑥 to 𝑡 .

A flow in this network with value 𝐶 =
∑

𝑖∈𝑁 𝐶𝑖 provides a decomposition of 𝛿 =
∑

𝑖∈𝑁 𝛿𝑖 , where

𝛿𝑖 (𝑥) is the flow along the edge from 𝑖 to 𝑥 . We prove that there exists such a flow by showing that

every cut has value at least 𝐶 . The proof is illustrated in Figure 1.

A cut is a partition (𝑉1,𝑉2) of𝑉 such that 𝑠 ∈ 𝑉1 and 𝑡 ∈ 𝑉2. The value 𝑣 (𝑉1,𝑉2) of a cut is the sum
of the capacities of edges from 𝑉1 to 𝑉2, i.e., 𝑣 (𝑉1,𝑉2) =

∑
𝑒∈(𝑉1×𝑉2)∩𝐸 𝑐 (𝑒). Given a cut (𝑉1,𝑉2), let

𝑁 𝑗 = 𝑁 ∩𝑉𝑗 and 𝐵 𝑗 = 𝐴∩𝑉𝑗 for 𝑗 = 1, 2. We decompose 𝑁1 further into 𝑁
′
1
= {𝑖 ∈ 𝑁1 : 𝐴𝑖 ∩𝐵2 = ∅}

1
For simplicity assume 𝑛 =𝑚. We can identify a profile with a bipartite graph with agents on one side and projects on the

other. Then group fair share for the distribution 𝛿 with 𝛿 (𝑥) = 1 for all 𝑥 ∈ 𝐴 is exactly Hall’s condition. Proposition 1

decomposes 𝛿 into individual distribution 𝛿𝑖 . Applying the Birkhoff–von Neumann Theorem to the matrix with rows 𝛿𝑖

yields a perfect matching. A result similar to Proposition 1 for the case when distributions and contributions are integral

has been shown in a different context by Bokal et al. [12, Theorem 20].



𝑠 𝑡

1

2

3

4

𝑎

𝑏

𝑐

𝑑

𝐶1

𝐶2

𝐶3

𝐶4

𝛿 (𝑎)

𝛿 (𝑏)

𝛿 (𝑐)

𝛿 (𝑑)

𝐶1

𝐶2

𝐶2

𝐶3

𝐶4

𝐶4

𝑉1

𝑉2

Fig. 1. Illustration of the proof of Proposition 1. In this example, 𝐴1 = {𝑎}, 𝐴2 = {𝑏, 𝑐}, 𝐴3 = {𝑎}, and
𝐴4 = {𝑐, 𝑑}. The dashed line indicates a cut (𝑉1,𝑉2). Hence, 𝑁 ′

1
= {1}, 𝑁 ′′

1
= {2}, 𝑁2 = {3, 4}, 𝐵1 = {𝑎, 𝑏}, and

𝐵2 = {𝑐, 𝑑}. Edges that start in 𝑉1 and end in 𝑉2 count toward the value of the cut and are drawn thicker.

and 𝑁 ′′
1
= 𝑁1 \ 𝑁 ′1 . Notice that, by group fair share,

∑
𝑥 ∈𝐵1

𝛿 (𝑥) ≥ ∑
𝑖∈𝑁 ′

1

𝐶𝑖 since no agent in 𝑁 ′
1

approves a project in 𝐵2. We can see that

𝑣 (𝑉1,𝑉2) =
∑︁
𝑥 ∈𝐵1

𝛿 (𝑥) +
∑︁
𝑖∈𝑁 ′′

1

∑︁
𝑥 ∈𝐴𝑖∩𝐵2

𝐶𝑖 +
∑︁
𝑖∈𝑁2

𝐶𝑖 ≥
∑︁
𝑖∈𝑁 ′

1

𝐶𝑖 +
∑︁
𝑖∈𝑁 ′′

1

𝐶𝑖 +
∑︁
𝑖∈𝑁2

𝐶𝑖 = 𝐶

The first sum counts edges from 𝐵1 to 𝑡 , the double sum counts edges from 𝑁1 to 𝐵2 (all of

which start in 𝑁 ′′
1
), and the third sum counts edges from 𝑠 to 𝑁2. For the inequality we use that∑

𝑥 ∈𝐵1

𝛿 (𝑥) ≥ ∑
𝑖∈𝑁 ′

1

𝐶𝑖 as noted above and the fact that |𝐴𝑖 ∩ 𝐵2 | ≥ 1 for 𝑖 ∈ 𝑁 ′′
1
. Thus, every cut

has value at least 𝐶 , which implies that there is a flow of value 𝐶 . □

Decomposability is a natural condition, and in some contexts only decomposable distributions

may be acceptable. In such cases, our definition of efficiency is needlessly strong, because it would

not be relevant if a distribution is only dominated by non-decomposable distributions. Thus, we

can consider the following weakening of efficiency.

Definition 4 (Decomposable efficiency). A distribution rule 𝑓 satisfies decomposable efficiency if

for all profiles A, the distribution 𝑓 (A) is not dominated by a decomposable distribution.

3.3 Strategyproofness
In the remainder of this section, we investigate the agents’ incentives and a monotonicity property.

In our model, an agent submits a set of approved projects to the distribution rule. Strategyproofness

requires that an agent’s utility when reporting their approval set truthfully is at least as large as

for any other report. Equivalently, whenever an agent deviates from truthful reporting, the amount

of the endowment assigned to their (truthfully) approved projects weakly decreases.

Definition 5 (Strategyproofness). A distribution rule 𝑓 is strategyproof if for all 𝑖 ∈ 𝑁 and all

profiles A and A ′ with 𝐴 𝑗 = 𝐴′𝑗 for all 𝑗 ≠ 𝑖 , we have 𝑢𝑖 (𝑓 (A)) ≥ 𝑢𝑖 (𝑓 (A ′)).

In many mechanism design settings without transferable utility, only degenerate mechanisms

that ignore most of the preference information, such as dictatorships and combinations thereof, are

strategyproof [31, 34]. But dichotomous preferences allow for more positive results. For example,

in social choice, Brams and Fishburn [13] showed that approval voting is strategyproof under

dichotomous preferences. In our setting, there also exist attractive strategyproof distribution rules.



In particular, the utilitarian and the conditional utilitarian rules (see Section 4) are strategyproof

[2, 11].

3.4 Monotonicity
Monotonicity requires that if a project becomes more popular among the agents, the amount of the

endowment allocated to it must not decrease. This property also appears as non-perverseness in

the work of Gibbard [31] on probabilistic social choice.

Definition 6 (Monotonicity). A distribution rule 𝑓 is monotonic if for any profiles A and A ′,
any agent 𝑖 ∈ 𝑁 , and any project 𝑥 ∉ 𝐴𝑖 , if 𝐴

′
𝑖 = 𝐴𝑖 ∪ {𝑥} and 𝐴′𝑗 = 𝐴 𝑗 for all 𝑗 ≠ 𝑖 , we have

𝑓 (A ′) (𝑥) ≥ 𝑓 (A)(𝑥).

Monotonicity can be interpreted as an incentive property from the point of view of those in

charge of a particular project: without monotonicity, a project manager may want to dissuade

agents from voting for their project. In addition, as we show next, monotonicity is implied by

strategyproofness in our model.
2
Thus monotonicity is also an incentive property for agents.

Proposition 2. Every strategyproof distribution rule is monotonic.

Proof. Let A and A ′ be two profiles so that for some agent 𝑖 ∈ 𝑁 and some project 𝑥 ∉ 𝐴𝑖 , we

have 𝐴′𝑖 = 𝐴𝑖 ∪ {𝑥} and 𝐴′𝑗 = 𝐴 𝑗 for all 𝑗 ≠ 𝑖 . Let 𝛿 = 𝑓 (A) and 𝛿 ′ = 𝑓 (A ′). Strategyproofness
implies that in profile A, agent 𝑖 does not want to change her report from 𝐴𝑖 to 𝐴

′
𝑖 , so we must

have ∑︁
𝑎∈𝐴𝑖

𝛿 ′(𝑎) ≤
∑︁
𝑎∈𝐴𝑖

𝛿 (𝑎).

Similarly, in profile A ′, agent 𝑖 does not want to change her report from 𝐴′𝑖 to 𝐴𝑖 , so we have∑︁
𝑎∈𝐴𝑖

𝛿 (𝑎) + 𝛿 (𝑥) ≤
∑︁
𝑎∈𝐴𝑖

𝛿 ′(𝑎) + 𝛿 ′(𝑥).

Adding the two inequalities and cancelling identical terms gives 𝛿 (𝑥) ≤ 𝛿 ′(𝑥), as required. □

3.5 Contribution Incentives
As we mentioned above, in the donor coordination interpretation of our model, agents need to

be incentivized to contribute their resources to the mechanism. Under this interpretation, agents

own their resources and could presumably use them productively outside the mechanism (e.g.,

they could send their money directly to a charity rather than go through the pooling procedure).

Because pooling can lead to efficiency gains, we want to encourage agents to contribute to the pool.

Brandl et al. [16] proposed a formal property that captures this idea, which they call contribution
incentive-compatibility. Their main result is that the Nash rule satisfies it (even without assuming

dichotomous preferences), and they argue that this makes the Nash rule well-suited for donor

coordination since no other efficient rule is known to incentivize contributions.

To formally state Brandl et al.’s [2021] axiom (restricted to dichotomous preferences), we need

to augment our model by allowing for varying sets of agents. Use the natural numbers N to index a

universe of agents and denote by F (N) the collection of finite and non-empty subsets of N. The
endowment of the agents in 𝑁 ∈ F (N) is 𝐶𝑁 =

∑
𝑖∈𝑁 𝐶𝑖 . A profile for the set of agents 𝑁 ∈ F (N)

is a tuple of approval sets A = (𝐴𝑖 )𝑖∈𝑁 . If |𝑁 | ≥ 2 and 𝑗 ∈ 𝑁 , we write 𝐴−𝑗 = (𝐴𝑖 )𝑖∈𝑁 \{ 𝑗 } for the
2
Similarly, Gibbard [31] shows that his notion of strategyproofness implies non-perverseness. This result is not formally

related to ours because of differences in the model.



profile obtained by removing agent 𝑗 . A distribution rule is now a function 𝑓 that maps any profile

A defined on any set of agents 𝑁 ∈ F (N) to a distribution 𝑓 (A) = 𝛿 ∈ Δ(𝐶𝑁 ).
We assume that even if an agent does not participate in the distribution rule, the agent nev-

ertheless receives utility from the other agents’ contributions to the projects. This assumption

holds because projects are public goods. Thus an agent 𝑖 can choose between two options: either

contribute 𝐶𝑖 to the endowment 𝐶𝑁 and benefit from the money that 𝑓 (A) assigns to projects ap-

proved by 𝑖 , or else keep𝐶𝑖 and benefit from it and additionally benefit from the money that 𝑓 (A−𝑖 )
happens to assign to approved projects. Strong contribution incentive-compatibility requires that

the former choice is at least as good as the latter for 𝑖 .

Definition 7 (Contribution incentive-compatibility). A distribution rule 𝑓 satisfies contribution
incentive-compatibility if for every profile A for agents 𝑁 ∈ F (N) with |𝑁 | ≥ 2 and every agent

𝑖 ∈ 𝑁 , 𝑢𝑖 (𝑓 (A)) ≥ 𝑢𝑖 (𝑓 (A−𝑖 )) +𝐶𝑖 .

This definition assumes that the “outside option” of keeping one’s contribution has the same

utility as an approved project. An assumption at the opposite end of the spectrum would be that

one’s contribution has no value outside the mechanism. In that case, a much weaker property

suffices to incentivize contribution.

Definition 8 (Weak participation). A distribution rule 𝑓 satisfiesweak participation if for all profiles
A for agents 𝑁 ∈ F (N) with |𝑁 | ≥ 2 and every agent 𝑖 ∈ 𝑁 , we have 𝑢𝑖 (𝑓 (A)) ≥ 𝑢𝑖 (𝑓 (A−𝑖 )).

Obviously, contribution incentive-compatibility implies weak participation. It also implies indi-

vidual fair share, but is logically independent of decomposability [see 16].

Remark 1. Based on earlier work by Moulin [38] and Brandl et al. [15], Aziz et al. [2] consider

two axioms they call strict participation and participation and which are appropriate when the

size of the endowment is independent of the set of participating agents (e.g. because the budget is

given exogenously rather than being obtained from pooling agents’ contributions). In our language,

the participation axiom requires that the fraction of the endowment spent on projects approved

by agent 𝑖 decreases weakly if agent 𝑖 abstains (that is, 1

𝐶
𝑢𝑖 (𝑓 (A)) ≥ 1

𝐶−𝐶𝑖
𝑢𝑖 (𝑓 (A−𝑖 ))). Strict

participation requires a strict inequality except when 𝑢𝑖 (𝑓 (A−𝑖 )) = 𝐶 −𝐶𝑖 . One can check that

contribution incentive-compatibility implies strict participation, that strict participation implies

participation, and that participation implies weak participation. All of these implications are strict.

4 RULES
We now define the four distribution rules that we study in this paper. The outcomes of these rules

for an example profile are illustrated in Figure 2. All rules can be efficiently computed (computing

the NASH distribution exactly is not possible since it may be irrational, but it can be approximated

efficiently using convex programming ).

For a set𝐴′ ⊆ 𝐴, we write uni(𝐴′) ∈ Δ(1) for the distribution 𝛿 with 𝛿 (𝑥) = 1/|𝐴′ | for all 𝑥 ∈ 𝐴′,
and 𝛿 (𝑦) = 0 for all 𝑦 ∈ 𝐴 \𝐴′.

4.1 Utilitarian Rule
The standard way of attaining efficiency in mechanism design is by maximizing a notion of social

welfare. The literature has identified three central versions of this concept: utilitarian welfare,

egalitarian welfare, and the Nash product [37]. The four distribution rules that follow are all in

some way based on optimizing welfare.
3

3
Aziz et al. [2] study a rule called EGAL based on maximizing egalitarian/leximin welfare, but we will not discuss it here,

since each of the axioms from Section 3 that is satisfied by EGAL is also satisfied by NASH .



Utilitarian

𝑎 𝑏 𝑐 𝑑

𝛿1 1 · · ·
𝛿2 1 · · ·
𝛿3 1 · · ·
𝛿4 1 · · ·
𝛿5 1 · · ·
𝛿6 1 · · ·∑

6 · · ·

Conditional Utilitarian

𝑎 𝑏 𝑐 𝑑

𝛿1 1 · · ·
𝛿2 1 · · ·
𝛿3 · 0.5 0.5 ·
𝛿4 · 0.5 · 0.5

𝛿5 1 · · ·
𝛿6 1 · · ·∑

4 1 0.5 0.5

Nash Product

𝑎 𝑏 𝑐 𝑑

𝛿1 1 · · ·
𝛿2 1 · · ·
𝛿3 · 1 · ·
𝛿4 · 1 · ·
𝛿5 1 · · ·
𝛿6 0.6 0.4 · ·∑

3.6 2.4 · ·

Sequential Utilitarian

𝑎 𝑏 𝑐 𝑑

𝛿1 1 · · ·
𝛿2 1 · · ·
𝛿3 · 1 · ·
𝛿4 · 1 · ·
𝛿5 1 · · ·
𝛿6 1 · · ·∑

4 2 · ·

Fig. 2. Example outcomes of distribution rules on profileA = ({𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎}, {𝑎, 𝑏, 𝑐, 𝑑}) with
uniform contributions. The last row of each table shows the distribution returned by the distribution rule.
The other rows show a division of this distribution into individual distributions (zeros omitted). Approved
projects are highlighted in grey.

The simplest rule following this recipe is the utilitarian rule. It returns a distribution 𝛿 which

maximizes the contribution-weighted sum of agents’ utilities

∑
𝑖∈𝑁 𝐶𝑖 · 𝑢𝑖 (𝛿).4 These are exactly

those distributions in which the endowment is distributed only on the projects with the highest

score, where the score 𝑛𝑥 =
∑

𝑖∈𝑁 :𝑥 ∈𝐴𝑖
𝐶𝑖 of a project 𝑥 is the combined contribution of all agents who

approve it. To see this, note that if any part of the endowment is spent on other projects, utilitarian

welfare can be increased by redistributing it to a project with a higher score. Note that there might

be several projects that have the same score, and so there may be many distributions maximizing

utilitarian welfare. If so, for concreteness, we let the endowment be distributed uniformly among

them. Let𝐴max = {𝑥 ∈ 𝐴 : 𝑛𝑥 ≥ 𝑛𝑦 for all 𝑦 ∈ 𝐴} be the set of projects with the highest score. Then,

UTIL(A) = 𝐶 · uni(𝐴max). (Utilitarian Rule)

We now check which axioms UTIL satisfies.

✓efficiency is satisfied because any distribution dominating UTIL(A) would have strictly higher

utilitarian welfare.

positive share is failed. For example, see Figure 2, or consider the profile A = ({𝑎}, {𝑎}, {𝑏})
with uniform contributions where UTIL(A) = 3𝑎, violating positive share for agent 3. It

follows that UTIL also fails individual fair share and decomposability (group fair share).

✓strategyproofness is satisfied [11], for the same reason that approval voting is strategyproof

under dichotomous preferences.

✓monotonicity is satisfied because strategyproofness implies monotonicity (Proposition 2).

contribution incentive-compatibility is failed since it is stronger than positive share. However,

UTIL satisfies participation [2].

4.2 Conditional Utilitarian Rule
A natural way to obtain a fairer distribution rule while keeping the spirit of utilitarian welfare is to

select a distribution that maximizes welfare among decomposable distributions only. This is what

the conditional utilitarian rule does. It was first considered by Duddy [23] and further analyzed by

Aziz et al. [2]. Like for UTIL, it is possible to explicitly describe the solutions of this constrained

4
This is a variant of the traditional utilitarian rule because agents are weighted by the size of their contribution. This variant

is more robust, and is continuous in the contributions 𝐶𝑖 . Without weighting, agents with extremely small individual

contributionswould get the same influence as agents with large individual contributions and each agent would be incentivized

to “split up” into several agents with the same preferences.



optimization problem: each agent needs to distribute her contribution among those of her approved

projects which have highest score. Again, for concreteness, we let agents split uniformly in the

event of ties. Formally, we write 𝐴max

𝑖 = {𝑥 ∈ 𝐴𝑖 : 𝑛𝑥 ≥ 𝑛𝑦 for all 𝑦 ∈ 𝐴𝑖 } for the projects with the

highest score within the approval set of agent 𝑖 . Then,

CUT (A) =
∑︁
𝑖∈𝑁

𝐶𝑖 · uni(𝐴max

𝑖 ). (Conditional Utilitarian Rule)

By design, this rule is decomposable and maximizes utilitarian welfare among all decomposable

distributions. With Proposition 1, we can also describe CUT as the rule that maximizes utilitarian

welfare subject to satisfying group fair share.

efficiency is failed as shown in the example in Figure 2. All distributions that put a positive

amount of resources on 𝑐 and 𝑑 are dominated (see Section 3.1). However, it is clear from its

definition that CUT satisfies decomposable efficiency (Definition 4).

✓decomposability is satisfied by construction.

✓strategyproofness is satisfied [2].

✓monotonicity is satisfied because strategyproofness implies monotonicity (Proposition 2).

✓contribution incentive-compatibility is satisfied as we show next in Proposition 3.

Proposition 3. CUT is contribution incentive-compatible.

Proof. Let A be a profile and 𝑖 ∈ 𝑁 . Write 𝛿 = CUT (A) and ˜𝛿 = CUT (A−𝑖 ), and consider the

sets 𝐴max

𝑗 and 𝐴̃max

𝑗 associated with A and A−𝑖 respectively. We claim that for each 𝑗 ∈ 𝑁 \ {𝑖},

either 𝐴max

𝑗 ⊆ 𝐴𝑖 or 𝐴̃
max

𝑗 ∩𝐴𝑖 = ∅.

If not, then there exists 𝑥 ∈ 𝐴max

𝑗 \𝐴𝑖 and 𝑦 ∈ 𝐴̃max

𝑗 ∩𝐴𝑖 . Since 𝑥,𝑦 ∈ 𝐴 𝑗 , by the definition of 𝐴max

𝑗

and 𝐴̃max

𝑗 , we have 𝑛𝑥 ≥ 𝑛𝑦 and 𝑛̃𝑦 ≥ 𝑛̃𝑥 . Hence, we have

𝑛𝑦 = 𝑛̃𝑦 +𝐶𝑖 ≥ 𝑛̃𝑥 +𝐶𝑖 > 𝑛̃𝑥 = 𝑛𝑥 ≥ 𝑛𝑦 ,

which is a contradiction. It follows that

𝑢𝑖 (𝛿) = 𝐶𝑖 +
∑︁

𝑗 ∈𝑁 \{𝑖 }
𝐶 𝑗

|𝐴𝑖 ∩𝐴max

𝑗 |
|𝐴max

𝑗
| ≥ 𝐶𝑖 +

∑︁
𝑗 ∈𝑁 \{𝑖 }

𝐶 𝑗

|𝐴𝑖 ∩ 𝐴̃max

𝑗 |
|𝐴̃max

𝑗
|

= 𝐶𝑖 + 𝑢𝑖 ( ˜𝛿). □

4.3 Nash Rule
The Nash product, which refers to the product of agent utilities, is often seen as a compromise

between utilitarian and egalitarian welfare [37]. Maximizing the Nash product has been found to

yield “fair” or “proportional” outcomes in many preference aggregation settings, and it also turns

out to be attractive in our context. Formally, it is defined as follows.

NASH (A) = argmax

𝛿 ∈Δ(𝐶)

∏
𝑖∈𝑁

𝑢𝑖 (𝛿)𝐶𝑖 = argmax

𝛿 ∈Δ(𝐶)

∑︁
𝑖∈𝑁

𝐶𝑖 log𝑢𝑖 (𝛿). (Nash Product Rule)

Just like UTIL, this rule is efficient. But, remarkably, it is not necessary to define a “conditional

Nash rule”: it follows from the results of Guerdjikova and Nehring [33] that the optimum for the

Nash product is always decomposable.
5

✓efficiency is satisfied because a dominating distribution would have strictly higher Nash product.

5
In addition, Guerdjikova and Nehring [33] show thatNASH satisfies a remarkable fixed point property: let𝛿 be a distribution

returned by NASH . For each voter 𝑖 ∈ 𝑁 , define 𝛿𝑖 (𝑥) = 𝛿 (𝑥)/𝑢𝑖 (𝛿) for all 𝑥 ∈ 𝐴𝑖 . Then 𝛿 =
∑

𝑖∈𝑁 𝛿𝑖 . Thus, individual

distributions can be retrieved from the total distribution by restricting and rescaling to the corresponding approval set.



✓decomposability is satisfied, as can be shown by analyzing first-order conditions of optimality

[16, 33].

strategyproofness is failed as a consequence of our impossibility, Theorem 1.

monotonicity is failed as shown in Proposition 4 below.

✓contribution incentive-compatibility is satisfied [16].

Proposition 4. NASH fails monotonicity.

Proof. Consider the 6-agent profile A = ({𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐, 𝑑}, {𝑏, 𝑑}, {𝑐, 𝑑}) and contri-

butions 𝐶1 = 𝐶2 = 𝐶3 = 1 and 𝐶4 = 𝐶5 = 𝐶6 = 2 (the same example can be adapted to uniform

contributions by doubling the last three agents, resulting in a 9-agent profile). We have

NASH (A) = 3𝑎 + 6𝑑 .

If we consider the profileA ′ where agent 1 additionally approves project 𝑑 , i.e., 𝐴′
1
= {𝑎, 𝑑}, we get

NASH (A ′) ≈ 1.54𝑎 + 0.77𝑏 + 0.77𝑐 + 5.92𝑑 ,
with a decreased amount on 𝑑 . The exact distribution NASH (A ′) is 2𝜅𝑎 + 𝜅𝑏 + 𝜅𝑐 + (9 − 4𝜅)𝑑
where 𝜅 = (7 −

√
22)/3. We found this example by exhaustive search; no examples with uniform

contributions exist for𝑚 = 4 and 𝑛 < 9. □

4.4 Sequential Utilitarian Rule
Lastly, we will introduce a new distribution rule. To the best of our knowledge, this is the first

known distribution rule that satisfies efficiency, monotonicity, and positive share (it is even decom-

posable). This rule shows that in our main impossibility result (Theorem 2), we cannot weaken

strategyproofness to monotonicity.

This rule, which we call the sequential utilitarian rule (SUT ), will decide sequentially for each

agent 𝑖 ∈ 𝑁 where to direct 𝑖’s contribution 𝐶𝑖 . We ensure that the rule is efficient by constructing

positive weights𝑤 = (𝑤𝑖 )𝑖∈𝑁 for each agent such that we maintain the invariant that the overall

distribution 𝛿 under construction maximizes weighted utilitarian welfare

∑
𝑖∈𝑁 𝑤𝑖𝐶𝑖𝑢𝑖 (𝛿). Clearly,

a distribution maximizing this value is efficient, provided that𝑤𝑖 > 0 for all 𝑖 ∈ 𝑁 .
6

On a high level, SUT operates as follows. We start with unit weights, 𝑤 = (1, . . . , 1), and
identify those projects 𝑥 with maximum𝑤-score 𝑠𝑤 (𝑥) =

∑
𝑖∈𝑁 𝑤𝑖𝐶𝑖𝑢𝑖 (𝑥); we call these projects𝑤-

maximum. For every agent 𝑖 who approves a𝑤-maximum project, we split 𝑖’s individual distribution

𝛿𝑖 ∈ Δ(𝐶𝑖 ) uniformly among the𝑤-maximum projects that 𝑖 approves, and freeze 𝛿𝑖 and𝑤𝑖 . For all

other agents, we then raise their weights at a common rate until some additional projects become

𝑤-maximum, and set the individual distributions 𝛿𝑖 of not yet frozen agents who now approve a

𝑤-maximum project, and freeze 𝛿𝑖 and𝑤𝑖 . We then go back to raising weights, until all individual

distributions have been set and frozen. Then

SUT (A) =
𝑛∑︁
𝑖=1

𝛿𝑖 . (Sequential Utilitarian Rule)

This procedure is formalized in Algorithm 1. In the pseudocode, for each 𝑆 ⊂ 𝑁 , we denote by

𝑒𝑆 ∈ R𝑁 the vector with 1’s in the 𝑆 coordinates and 0’s in the remaining coordinates. At the end of

each round 𝑘 = 1, . . . , 𝑛,𝑤𝑘
denotes the positive weights assigned to agents at the end of the round,

which was obtained by increasing the weights of not yet frozen agents by 𝑡∗. The set 𝐴𝑘
is the set

of 𝑤𝑘
-maximum projects. The set 𝑁𝑘

contains the agents who are frozen at the end of round 𝑘 ,

6
In fact, using Farkas’ lemma, one can show that a distribution is efficient if and only if it maximizes 𝑤-weighted utilitarian

welfare for some 𝑤. This is also known as the efficiency welfare theorem [see, e.g., 22].



Algorithm 1 Sequential Utilitarian Rule

𝑤1← 𝑒𝑁
𝑠∗ ← max𝑥 ∈𝐴 𝑠𝑤1 (𝑥)
𝐴1 ← argmax𝑥 ∈𝐴 𝑠𝑤1 (𝑥)
𝑁 1← {𝑖 ∈ 𝑁 : 𝐴𝑖 ∩𝐴1 ≠ ∅}
𝛿1 ← ∑

𝑖∈𝑁 1 𝐶𝑖 · uni(𝐴𝑖 ∩𝐴1)
for round 𝑘 = 2, . . . , 𝑛 do

𝑡∗ ← max{𝑡 ∈ R : max𝑥 ∈𝐴 𝑠𝑤𝑘−1+𝑡𝑒
𝑁 \𝑁𝑘−1 (𝑥) ≤ 𝑠∗}

𝑤𝑘← 𝑤𝑘−1 + 𝑡∗𝑒𝑁 \𝑁𝑘−1

𝐴𝑘 ← argmax𝑥 ∈𝐴 𝑠𝑤𝑘 (𝑥)
𝑁𝑘← {𝑖 ∈ 𝑁 : 𝐴𝑖 ∩𝐴𝑘 ≠ ∅}
for 𝑖 ∈ 𝑁𝑘 \ 𝑁𝑘−1 do

𝛿𝑖 ← 𝐶𝑖 · uni(𝐴𝑖 ∩𝐴𝑘 )
𝛿𝑘 ← ∑

𝑖∈𝑁𝑘\𝑁𝑘−1 𝛿𝑖

return
∑𝑛

𝑘=1
𝛿𝑘

and 𝛿𝑘 are the combined individual distributions of the agents frozen in round 𝑘 . Note that in case

an agent 𝑖 approves multiple𝑤𝑘
-maximum projects, we split 𝐶𝑖 uniformly among them.

✓efficiency is satisfied because a dominating distribution would have strictly higher𝑤-weighted

utilitarian welfare.

✓decomposability is satisfied by construction.

strategyproofness is failed as a consequence of our impossibility, Theorem 1.

✓monotonicity is satisfied as we prove in Proposition 5 below.

contribution incentive-compatibility is failed by the example in Proposition 6. The same exam-

ple shows that even weak participation is failed.

Proposition 5. SUT satisfies monotonicity.

Proof. LetA and Â be identical profiles except that𝐴𝑖 = 𝐴𝑖 ∪ {𝑥} for some 𝑥 ∉ 𝐴𝑖 . We consider

how SUT (i.e., Algorithm 1) proceeds for both profiles. First, suppose 𝑠𝑒𝑁 (𝑥) > argmax𝑎∈𝐴 𝑠𝑒𝑁 (𝑎) =
𝑠∗. Since A and Â only differ in that 𝑢𝑖 (𝑥) = 0 and 𝑢𝑖 (𝑥) = 1, it follows that

𝑠∗ = 𝑠𝑒𝑁 (𝑥) > 𝑠∗ ≥ 𝑠𝑒𝑁 (𝑎) = 𝑠𝑒𝑁 (𝑎)
for all 𝑎 ≠ 𝑥 . Thus, 𝑥 is the unique project that maximizes the approval score for the profile Â, so

SUT (Â)(𝑥) =
∑︁

𝑗 ∈𝑁 : 𝑥 ∈𝐴̂ 𝑗

𝐶 𝑗 =
∑︁

𝑗 ∈𝑁 : 𝑥 ∈𝐴 𝑗

𝐶 𝑗 +𝐶𝑖 >
∑︁

𝑗 ∈𝑁 : 𝑥 ∈𝐴 𝑗

𝐶 𝑗 ≥ SUT (A)(𝑥).

Thus, monotonicity is satisfied.

Now suppose 𝑠𝑒𝑁 (𝑥) ≤ 𝑠∗ = 𝑠∗. If 𝑤𝑘 = 𝑤̂𝑘
for all rounds 𝑘 , then 𝑠𝑤𝑘 (𝑥) ≤ 𝑠𝑤̂𝑘 (𝑥) and

𝑠𝑤𝑘 (𝑎) = 𝑠𝑤̂𝑘 (𝑎) for all 𝑎 ∈ 𝐴 and all 𝑘 . Consider any agent 𝑗 ≠ 𝑖 . If for the profile A agent 𝑗

distributes their contribution uniformly over the set of projects 𝐴′, then for the profile Â, agent

𝑗 distributes their contribution uniformly over either 𝐴′ or 𝐴′ ∪ {𝑥}. In either case, agent 𝑗 ’s

contribution to 𝑥 does not decrease from A to Â. Moreover, since 𝑥 ∉ 𝐴𝑖 , agent 𝑖 does not

distribute anything over 𝑥 for A. Hence, SUT (Â)(𝑥) ≥ SUT (A)(𝑥) and monotonicity holds.

Otherwise, let 𝑘 ≥ 2 be the index of the first round for which𝑤𝑘 ≠ 𝑤̂𝑘
. (Note that𝑤1 = 𝑤̂1

since

we assumed 𝑠∗ = 𝑠∗.) Then 𝑥 ∉ 𝐴𝑘−1
. For if 𝑥 ∈ 𝐴𝑘−1

, we have 𝑠𝑤𝑘−1 (𝑥) = 𝑠∗ and hence

𝑠𝑤̂𝑘−1 (𝑥) = 𝑠𝑤𝑘−1 (𝑥) +𝑤𝑘−1
𝑖 ·𝐶𝑖 = 𝑠∗ +𝑤𝑘−1

𝑖 ·𝐶𝑖 > 𝑠∗ = 𝑠∗,



which is a contradiction. On the other hand, since𝑤𝑘 ≠ 𝑤̂𝑘
, we have 𝑥 ∈ 𝐴𝑘

. Moreover, for 𝑎 ≠ 𝑥

and 𝑙 < 𝑘 , 𝑎 ∈ 𝐴𝑙
if and only if 𝑎 ∈ 𝐴𝑙

since𝑤𝑙 = 𝑤̂𝑙
and all agents have the same utilities for 𝑎 in

A and Â. Say that 𝑙 ≤ 𝑘 is such that 𝑥 ∈ 𝐴𝑙 \𝐴𝑙−1
.

If 𝑙 < 𝑘 , then 𝑁̂ 𝑙 = 𝑁 𝑙 ∪ { 𝑗 ∈ 𝑁 \ 𝑁 𝑙
: 𝑥 ∈ 𝐴 𝑗 } ∪ {𝑖}, so that

SUT (Â)(𝑥) =
∑︁

𝑗 ∈𝑁̂ 𝑙 \𝑁̂ 𝑙−1
: 𝑥 ∈𝐴̂ 𝑗

𝐶 𝑗

|𝐴 𝑗 ∩𝐴𝑙 |
≥

∑︁
𝑗 ∈𝑁 \𝑁 𝑙

: 𝑥 ∈𝐴 𝑗

𝐶 𝑗 ≥ SUT (A)(𝑥),

where we used 𝐴 𝑗 ∩𝐴𝑙 = ∅ if 𝑗 ∉ 𝑁 𝑙
for the first inequality.

If 𝑙 = 𝑘 , i.e., 𝑥 ∈ 𝐴𝑘 \𝐴𝑘−1
, then 𝑁̂𝑘 = 𝑁𝑘 ∪ { 𝑗 ∈ 𝑁 \ 𝑁𝑘

: 𝑥 ∈ 𝐴 𝑗 } ∪ {𝑖}, so that

SUT (Â)(𝑥) =
∑︁

𝑗 ∈𝑁̂𝑘
: 𝑥 ∈𝐴̂ 𝑗

𝐶 𝑗

|𝐴 𝑗 ∩𝐴𝑘 |

≥
∑︁

𝑗 ∈𝑁 \𝑁𝑘
: 𝑥 ∈𝐴 𝑗

𝐶 𝑗 +
∑︁

𝑗 ∈𝑁𝑘\𝑁𝑘−1
: 𝑥 ∈𝐴 𝑗

𝐶 𝑗

|𝐴 𝑗 ∩𝐴𝑘 |
+ 𝐶𝑖

|𝐴𝑖 ∩𝐴𝑘 |
≥ SUT (A)(𝑥).

Hence, monotonicity is satisfied. □

Initially, we hoped that SUT also satisfies contribution incentive-compatibility because an exhaus-

tive search among profiles with uniform contributions did not yield a counter-example for𝑚 = 4

and 𝑛 ≤ 14 nor for𝑚 = 5 and 𝑛 ≤ 10. However, we then manually constructed the counter-example

below. It can be transformed into a uniform contribution counter-example with 45 agents.

Proposition 6. SUT fails weak participation.

Proof. Consider 8 agents with 𝐶1 = 6, 𝐶2 = 9, 𝐶3 = 𝐶4 = 6, 𝐶5 = 12, 𝐶6 = 3, 𝐶7 = 2, and 𝐶8 = 1,

for a total endowment of 𝐶 = 45. Let A = ({𝑎, 𝑏, 𝑐}, {𝑎}, {𝑏, 𝑑}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐, 𝑒}, {𝑑, 𝑒}, {𝑒}, {𝑎, 𝑒}).
One can calculate that SUT (A) = 28𝑎 + 6𝑏 + 6𝑐 + 3𝑑 + 2𝑒 and SUT (A−8) = 27𝑎 + 6𝑏 + 6𝑐 + 1.5𝑑 + 3.5𝑒 .
But then 𝑢8 (SUT (A)) = 28 + 2 = 30 < 30.5 = 27 + 3.5 = 𝑢8 (SUT (A−8)), and weak participation is

violated. □

5 IMPOSSIBILITY
In this section, we present our main result showing that no distribution rule satisfies efficiency,

strategyproofness, and positive share, as well as the method we used to obtain this result.

5.1 An Easy Impossibility Theorem
To warm up, we first prove a weaker impossibility theorem which additionally uses the anonymity

and neutrality axioms. The proof is remarkably simple, and only reasons about the behavior of the

rule on two preference profiles. Indeed, one can view it as a universal counterexample: it identifies
two specific profiles which admit a manipulation for all efficient rules satisfying positive share.

Theorem 1. No anonymous and neutral distribution rule satisfies efficiency, strategyproofness,

and positive share when𝑚 ≥ 4 and 𝑛 ≥ 5.

Proof. We prove the incompatibility for𝑚 = 4 and 𝑛 = 5. The proof can be adapted to larger

values by adding agents approving all projects or by adding projects which no-one approves.

Assume there is a strategyproof distribution rule 𝑓 satisfying efficiency and positive share. Now

consider a profile A with uniform contributions 𝐶𝑖 = 1 for all agents 𝑖 ∈ 𝑁 and the profile

A = ({𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑎, 𝑏}, {𝑎}) .



Let 𝛿 = 𝑓 (A) be the distribution returned by the distribution rule. Note that A is symmetric in

the sense that exchanging 𝑏 and 𝑐 results in a profile that is identical to A up to the renaming of

agents and projects. Since 𝑓 is anonymous and neutral, we thus must have 𝛿 (𝑏) = 𝛿 (𝑐), and this
value must be positive by positive share for agent 3. It follows that 𝑢4 (𝛿) < 𝐶 because a positive

amount is spent on project 𝑐 , which agent 4 does not approve.

Suppose agent 4, who approves {𝑎, 𝑏}, instead reports {𝑏, 𝑑}. The resulting profile is

A ′ = ({𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎}) .
Let 𝛿 ′ = 𝑓 (A ′) be the distribution now returned by the distribution rule. Now 𝑐 and𝑑 are symmetric

projects in A ′, and thus we must have 𝛿 ′(𝑐) = 𝛿 ′(𝑑) by anonymity and neutrality of 𝑓 . If 𝛿 ′(𝑐) =
𝛿 ′(𝑑) is positive, say equal to 𝜖 > 0, then 𝛿 ′ is Pareto dominated by the distribution obtained from

𝛿 ′ by moving 𝜖 from 𝑐 to 𝑎 and 𝜖 from 𝑑 to 𝑏. This contradicts efficiency of 𝑓 . Thus 𝛿 ′(𝑐) = 𝛿 ′(𝑑) = 0

and the entire endowment is distributed between projects 𝑎 and 𝑏, and so 𝑢4 (𝛿 ′) = 𝐶 , where we

take agent 4’s utility as reported in profile A, and in particular 𝑢4 (𝛿 ′) > 𝑢4 (𝛿).
Hence, agent 4 has successfully manipulated, which contradicts strategyproofness. □

Remark 2. Theorem 1 strengthens a result of Bogomolnaia et al. [11, Prop. 6] who proved the

same statement with individual fair share (which requires that 𝑢𝑖 (𝑓 (A)) ≥ 𝐶𝑖 ) instead of positive

share (i.e., 𝑢𝑖 (𝑓 (A)) > 0), and assuming that𝑚 ≥ 17 and 𝑛 ≥ 5. Their proof was substantially more

complicated. It also strengthens the main result of Duddy [23] who showed that no anonymous

and neutral rule can be efficient, strategyproof, and decomposable when𝑚 ≥ 5 and 𝑛 ≥ 4.

Remark 3. The bounds on𝑚 and 𝑛 are tight for Theorem 1 to hold. Suppose that either𝑚 < 4 or

𝑛 < 5. Then every ex post efficient distribution is also ex ante efficient [23, Lemmas 1 and 2], which

implies that CUT satisfies all conditions of Theorem 1.

5.2 Impossibility Without Symmetry Axioms
Theorem 1 answers one part of the open question posed by Bogomolnaia et al. [11]: there is

an impossibility involving positive share. The second part of their question was whether the

impossibility holds even without requiring the symmetry axioms of anonymity and neutrality.

While symmetry seems both desirable and mild, these axioms are actually rather restrictive in

combination with the other axioms, as the reasoning in the proof of Theorem 1 makes clear. In

practice, a distribution rule that occasionally violates anonymity and neutrality “by some 𝜖” in

order to satisfy other axioms could well be acceptable. Also, in some applications, there may be

hierarchies or other asymmetries among agents or projects. It thus seems important to know

whether the impossibility hinges on the symmetry assumption. Yet, Bogomolnaia et al. [11] have

“not been able to determine if one of the anonymity or neutrality property (or both) can be dropped”,

and Duddy [23] noted that he “must concede that, like Bogomolnaia et al. [11], we have been unable

to demonstrate that all five properties are logically independent” in his related result (see Remark 2).

We are now able to confirm that the impossibility holds without the symmetry axioms.

Theorem 2. No distribution rule satisfies efficiency, strategyproofness, and positive share when

𝑚 ≥ 4 and 𝑛 ≥ 6.

Our approach for obtaining impossibility theorems such as Theorems 1 and 2 is to use automated

solvers to search for distribution rules that satisfy a list of axioms. In case the solver reports that

our problem is infeasible, we have an impossibility that we can further analyze using minimal

unsatisfiable set of constraints, which can often be translated to a human-readable proof of the

result. This approach has been employed successfully to prove a number of impossibility theorems

in social choice theory [see, e.g., 14, 29, 41].



For our specific problem, using linear programming seems promising on first sight. We introduce

a continuous variable 0 ≤ 𝑧A,𝑥 ≤ 1 for each profile A and each project 𝑥 ∈ 𝐴 with the constraint∑
𝑥 ∈𝐴 𝑧A,𝑥 = 1 for each A, so that these variables encode the output of a distribution rule. We can

then easily add constraints to enforce strategyproofness and positive share (as well as anonymity

and neutrality). However, it is not possible to enforce efficiency using linear programming, for

example because the set of efficient distributions may not be convex [3]. However, using a technique

of Brandl et al. [14, Sec. 4.2.2] that we describe in more detail below, efficiency can be enforced

by introducing binary variables into the program, turning it into a mixed integer linear program.

(Alternatively, using the same ideas we can encode the problem as an SMT formulation in the

theory of linear arithmetic [see 14].) Unfortunately, the size of these formulations quickly becomes

too large to be solved by current ILP and SMT solvers in reasonable time. For𝑚 = 4 and 𝑛 = 6, the

parameters used in Theorem 2, there are 15
6 ≈ 11 million different profiles (with unit contributions),

and even if we only consider profiles up to reordering of agents (i.e., enforcing anonymity), there

are more than 27 000 such profiles, still too many in practice.

Most work using this computer-aided approach has focussed on deterministic voting rules and

has used SAT solvers [e.g., 19, 20, 35]. The survey by Geist and Peters [30] gives a tutorial of this

method and explains the kind of encoding into conjunctive normal form that we use. SAT solvers

can handle much larger problem instances. For example, Brandt et al. [20, p. 23] report that they

solved an instance based on 1.2 million profiles. Can we somehow discretize our problem so that

we can use SAT solvers?

It turns out that we can, by only considering the support of the distribution returned by our

distribution rule. Thus, our decision variables only need to keep track which projects are allocated

a positive amount and which are allocated nothing. For 4 projects, there are only 2
4 − 1 = 15

possible outcomes per profile (rather than the infinitely many distributions). Clearly, the positive

share axiom only refers to the support, so it can easily be encoded in terms of these variables. Less

obviously, Aziz et al. [3] and Duddy [23] have proved that whether a distribution is efficient or

not depends only on its support, and one can compute the supports corresponding to efficient

distributions via linear programming in polynomial time [3, Thm. 4]. The only remaining axiom is

strategyproofness, which does depend on the precise distributions returned by the distribution rule.

However, there are weakened versions of the strategyproofness axiom that can be phrased only in

terms of supports. In particular, this is possible when we only consider clear-cut manipulations in

which the manipulator enforces a distribution in which the entire endowment is distributed across

her approved projects, so that by manipulating she obtains the maximum utility of 𝐶 .

Definition 9 (Pessimistic strategyproofness). A distribution rule is pessimistically strategyproof 7 if
for all 𝑖 ∈ 𝑁 and profilesA andA ′ with 𝐴 𝑗 = 𝐴′𝑗 for 𝑗 ≠ 𝑖 , either 𝑢𝑖 (𝑓 (A)) = 𝐶 or 𝑢𝑖 (𝑓 (A ′)) < 𝐶 .

Clearly, strategyproofness implies pessimistic strategyproofness. It turns out that the impossibility

still holds with the substantially weakened axiom that only forbids these clear-cut manipulations.

Even after discretizing, the formulas involved are very big, and further reduction techniques

are needed. There are 15
6 ≈ 11 million different profiles with 𝑛 = 6 and𝑚 = 4, and we need to

use up to 15 variables for each profile (one for each allowed support), giving 170 million variables

in total. It is much easier to obtain a result when we impose anonymity and neutrality. When we

consider anonymous and neutral distribution rules, we only need to consider essentially different

7
The term pessimistic is taken from the literature on manipulability of irresolute social choice functions [24, 43]. If we

view distributions as lotteries, then a pessimistic agent would evaluate a distribution by the utility of the worst possible

outcome. A pessimistically strategyproof rule cannot be manipulated by a pessimistic agent. The dual notion of optimistic
strategyproofness prevents agents from manipulating in profiles where their utility is 0. This kind of manipulation is

impossible when positive share holds. Hence, positive share implies optimistic strategyproofness.



profiles (that are not equivalent up to renaming alternatives and agents), of which there are only

2197. In fact, as we saw in Theorem 1, with these extra axioms, the impossibility holds even for

𝑛 = 5, for which there are only 736 essentially different profiles. Solving the resulting formula is

almost instantaneous with a modern SAT solver. After extracting a minimal unsatisfiable set, we

were astonished to find that it only referred to two different profiles, giving the short and elegant

proof of Theorem 1. Notice that the proof only uses pessimistic strategyproofness.

So how can we obtain Theorem 2 in its full strength? We decided to remove anonymity and

neutrality one at a time. First we dropped neutrality and verified that there exists no anonymous

rule that is efficient, strategyproof, and satisfies positive share. This was feasible since there are

38 760 profiles that are not equivalent up to reordering agents, many fewer than the complete set

of 11 million. The resulting formula with roughly 77 000 variables and 1 million clauses can be

encoded in about 3 minutes using a python script, and can be solved in less than 1 second using a

modern SAT solver such as lingeling [9]. A minimal unsatisfiable set (MUS) can be extracted using

MUSer2 [7] in less than 3 seconds. We obtained an MUS that contained clauses referring to only 81

different profiles. We next constructed a formula using neither anonymity nor neutrality but which

only referred to the 81 profiles we obtained in the last step plus all profiles obtained from them by

permuting the 𝑛 = 6 agents, for a total of 81 · 6! ≈ 58 000 profiles. We got lucky: the formula was

unsatisfiable, and we found an MUS with about 500 different profiles. At this stage, we knew that

Theorem 2 was true in its full strength.

Finding an MUS that is human interpretable was an additional challenge. The first MUSes

we found implicitly contained an intractable number of case analyses (while the final proof of

Theorem 2, discussed below, only needs to distinguish two cases). We proceeded by first deriving a

human-readable proof from the MUS for the case assuming anonymity, and then deriving a proof

without anonymity from this intermediate step.

Proof of Theorem 2. The proof is long, and so the details are deferred to Appendix A, which

consists of a description in Appendix A.1 of how to read the proof, and a listing of all proof steps

in Appendices A.2 and A.3. Here, we give the high-level approach. We assume𝑚 = 4 and 𝑛 = 6,

and the proof can be adapted to larger values as before. Let 𝑓 be an efficient and pessimistically

strategyproof distribution rule satisfying positive share. The proof starts with the profile

A = ({𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑑}, {𝑐, 𝑑}).
Supports that contain 𝑏 and 𝑐 are dominated by supports that contain 𝑎 and 𝑑 . Hence, the only

supports that are both efficient and satisfy positive share are {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}, and {𝑏, 𝑐, 𝑑}. We

proceed by case analysis on the support of the distribution 𝑓 (A). If the support is either {𝑏, 𝑐} or
{𝑎, 𝑏, 𝑐}, we follow the 192 steps displayed in Appendix A.2 to conclude that the support of 𝑓 (A)
is actually {𝑏, 𝑐, 𝑑}, a contradiction. The other case is that the support of 𝑓 (A) is {𝑏, 𝑐, 𝑑}, in which

case we follow the 196 steps in Appendix A.3 to conclude that the support of 𝑓 (A) is actually
{𝑎, 𝑏, 𝑐}, another contradiction. Hence such a rule 𝑓 cannot exist. □

Remark 4. The axioms in Theorem 2 are independent. UTIL is efficient and strategyproof, CUT is

strategyproof and satisfies positive share, and NASH is efficient and satisfies positive share.

Remark 5. The bounds on𝑚 and 𝑛 are tight for Theorem 2 to hold. As discussed in Remark 3 if

either𝑚 < 4 or 𝑛 < 5 then CUT satisfies all conditions. For𝑚 = 4 and 𝑛 = 5, one can modify the

output of CUT on 96 profiles to get an anonymous, efficient, strategyproof, and decomposable rule.

Remark 6. Theorem 2 remains intact when weakening positive share so that it only applies to

agents who approve a single project. This holds because an agent who receives utility 0 while

approving more than one project can manipulate by narrowing her approval set to a single project.



Remark 7. Theorem 2 implies there is no efficient and strategyproof distribution rule which

approximates egalitarian welfare (i.e., min𝑖∈𝑁 𝑢𝑖 (𝛿)), since the best attainable egalitarian welfare in

any profile is always at least min𝑖∈𝑁 𝐶𝑖 > 0, and we show that every efficient and strategyproof

distribution rule will sometimes return a distribution with egalitarian welfare 0.

5.3 Impossibility for Subset Manipulations
Distribution rules satisfying notions such as positive share or decomposability try to be “fair” to

each agent, and aim for an outcome that makes every agent reasonably happy. There is an obvious

strategy to try to exploit this tendency: agents may pretend to be less happy than they are. In our

setting, this would correspond to approving fewer projects.
8

Definition 10 (Subset strategyproofness). A distribution rule 𝑓 is subset strategyproof if for any

two profiles A and A ′ with 𝐴′𝑖 ⊂ 𝐴𝑖 and 𝐴 𝑗 = 𝐴′𝑗 for all 𝑗 ≠ 𝑖 , we have 𝑢𝑖 (𝑓 (A)) ≥ 𝑢𝑖 (𝑓 (A ′)).

We can show, by a proof similar to the proof of Theorem 1, that every efficient distribution rule

that satisfies positive share fails even subset strategyproofness. The statement uses anonymity and

neutrality and, in contrast to Theorem 2, we do not know whether these can be dropped. The SAT

solver indicates that neutrality cannot be dropped for 𝑛 ≤ 7 and𝑚 = 5 nor for 𝑛 ≤ 6 and𝑚 = 6. As

before, the proof only uses the pessimistic version of subset strategyproofness.

Theorem 3. No anonymous and neutral distribution rule satisfies efficiency, subset strategyproof-

ness, and positive share when𝑚 ≥ 5 and 𝑛 ≥ 5.

Proof. We prove the result for𝑚 = 5 and 𝑛 = 5, and it can be adapted to larger values as before.

Assume that 𝑓 is a distribution rule satisfying efficiency and positive share. Now consider the

following profile A (with uniform contributions):

A = ({𝑎}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑒}, {𝑑, 𝑒}).
Let 𝛿 = 𝑓 (A). Since 𝑓 is efficient, we must have 𝛿 (𝑏) = 𝛿 (𝑐) = 0, as both 𝑏 and 𝑐 are dominated

by 𝑎. Since the profile is symmetric under the permutation 𝜎 = (𝑏 𝑐) (𝑑 𝑒), we have 𝛿 (𝑏) = 𝛿 (𝑐)
and 𝛿 (𝑑) = 𝛿 (𝑒) since 𝑓 is anonymous and neutral. By positive share for agent 5, we have 𝛿 (𝑑) =
𝛿 (𝑒) > 0. Hence 𝑢4 (𝛿) < 𝐶 since a positive amount is spent on 𝑑 , which agent 4 does not approve.

Now, suppose that agent 4 pretends not to approve 𝑎, leading to the profile

A ′ = ({𝑎}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑐, 𝑒}, {𝑑, 𝑒}).
Let 𝛿 ′ = 𝑓 (A ′) be the distribution now returned by the rule. Again, by efficiency, we must have

𝛿 ′(𝑏) = 0 because 𝑏 is dominated by 𝑎. Now, 𝑐 and 𝑑 are symmetric projects in A ′, and thus we

have 𝛿 ′(𝑐) = 𝛿 ′(𝑑) by anonymity and neutrality of 𝑓 . If 𝛿 ′(𝑐) = 𝛿 ′(𝑑) is positive, say equal to 𝜖 > 0,

then 𝛿 ′ is dominated by the distribution obtained from 𝛿 ′ by moving 𝜖 from 𝑐 to 𝑎 and 𝜖 from 𝑑 to

𝑒 . This contradicts efficiency of 𝑓 . Thus 𝛿 ′(𝑐) = 𝛿 ′(𝑑) = 0 and the entire endowment is distributed

between projects 𝑎 and 𝑒 , and so 𝑢4 (𝛿 ′) = 𝐶 . Thus, agent 4 has successfully manipulated 𝑓 by

reporting a subset of her true approval set. □

6 CONCLUSION
We studied a model in which agents can vote on how to distribute an endowment over projects.

The endowment may be given exogenously or obtained from contributions made by the agents.

Which properties of distribution rules are desirable depends on the interpretation. For example, if

8
This notion of subset strategyproofness has also been studied in the context of proportional multiwinner elections [39].

The corresponding notion of superset strategyproofness has been studied by Aziz et al. [2], who found that the egalitarian

rule maximizing leximin welfare satisfies it, while NASH does not.



the members of a community vote on how to allocate a fixed budget to public projects, the chosen

distribution should fairly represent all agents. Whereas if philanthropically-minded donors team

up to allocate their donations to charities more efficiently, the distribution rule should incentivize

donors to contribute to the joint pool rather than to donate individually.

Bogomolnaia et al. [11] considered the fixed-endowment case (with uniform contributions) and

studied which distribution rules are efficient, strategyproof, and fair. Any two of these properties

can be satisfied simultaneously, as the rules UTIL, CUT , and NASH exemplify (see Table 2). But

our main result, Theorem 2, shows that it is impossible to satisfy all three properties (even for

the weak notions of positive share and pessimistic strategyproofness), confirming a conjecture by

Bogomolnaia et al. [11]. The proof of this result, which reasons over several hundred profiles, is

unlikely to have been found without the help of computers. When additionally assuming anonymity

and neutrality, we have provided a simple proof with just two profiles.

We have introduced the sequential utilitarian rule SUT , which to our knowledge is the first known
rule to satisfy efficiency, decomposability, and monotonicity. It does not satisfy weak participation,

however. On the other hand, CUT and NASH are contribution incentive-compatible and satisfy

monotonicity and efficiency, respectively. Interestingly, the deficiencies of each of these rules

seem to be limited in practice: SUT rarely violates contribution incentive-compatibility, NASH
monotonicity failures appear to be marginal, and simulations by Aziz et al. [2] suggest that CUT ’s
efficiency failures are insignificant.

9
We leave as an open problem whether any distribution rule

can satisfy all three of these axioms. This question is unlikely to be settled via computer, because

SUT satisfies all three even for rather large profiles.

UTIL CUT NASH SUT No Rule!

Efficiency ✓ – ✓ ✓  
Decomposable Efficiency ✓ ✓ ✓ ✓

Decomposability (Group Fair Share) – ✓ ✓ ✓
Positive Share – ✓ ✓ ✓  

Strategyproofness ✓ ✓ – –  
Monotonicity ✓ ✓ – ✓

Contribution Incentive-Compatibility – ✓ ✓ –

Weak Participation ✓ ✓ ✓ –

Table 2. Axiomatic properties of distribution rules.
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Also note that, even though the CUT distribution may be inefficient, it can never be dominated by the distributions returned

by NASH , SUT , or any other decomposable rule. This is due to CUT satisfying decomposable efficiency.
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A FULL PROOF OF THEOREM 2
Theorem. No distribution rule satisfies efficiency, (pessimistic) strategyproofness, and positive

share when𝑚 ≥ 4 and 𝑛 ≥ 6.

We assume𝑚 = 4 and 𝑛 = 6, and the proof can be adapted to larger values as in Theorem 1 by

adding agents approving all projects or by adding projects which no-one approves. Let 𝑓 be an

efficient and pessimistically strategyproof distribution rule satisfying positive share. We consider

the profile with uniform contributions

A1 = ({𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑑}, {𝑐, 𝑑}),

which we will also call “Profile 1”. For this profile, all supports that contain both 𝑎 and 𝑑 are

dominated by supports that contain 𝑏 and 𝑐 . Hence, the only supports that are both efficient and

satisfy positive share are {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}, and {𝑏, 𝑐, 𝑑}. We proceed by case analysis on the support of

the distribution 𝑓 (A1). If the support is either {𝑏, 𝑐} or {𝑎, 𝑏, 𝑐}, we follow the 192 steps displayed in

Appendix A.2 to conclude that the support of 𝑓 (A1) is actually {𝑏, 𝑐, 𝑑}, a contradiction. The other
case is that the support of 𝑓 (A1) is {𝑏, 𝑐, 𝑑}, in which case we follow the 196 steps in Appendix A.3

to conclude that the support of 𝑓 (A1) is actually {𝑎, 𝑏, 𝑐}, another contradiction. Hence such a rule

𝑓 cannot exist.

A.1 How to read the proof
To save space, for the rest of the proof, we will omit set braces and commas, so for example we

write 𝑎𝑏𝑐 for {𝑎, 𝑏, 𝑐}.
Appendices A.2 and A.3 each display a list of profiles, all with uniform contributions. The last

column lists all “possible supports” for that profile, i.e., all non-empty subsets 𝐴′ ⊆ 𝐴 such that (i)

every distribution with support 𝐴′ is efficient and (ii) each agent approves at least one project in

𝐴′. By assumption, 𝑓 must select a distribution whose support is among the possible supports.

We computed the list of possible supports by going through all supports 𝐴′ satisfying positive
share and then checking whether another support 𝐴′′ dominates it. We say that 𝐴′′ dominates

𝐴′ if the uniform distribution 𝛿 ′′ =
∑

𝑥 ∈𝐴′′ 1/|𝐴′′ | over 𝐴′′ dominates the uniform distribution

𝛿 ′ =
∑

𝑥 ∈𝐴′ 1/|𝐴′ | over 𝐴′. In this case, we write 𝐴′ ↢ 𝐴′′. For example, in profile A1, the

distribution
1

2
𝑏 + 1

2
𝑐 dominates

1

2
𝑎 + 1

2
𝑑 , and hence 𝑎𝑑 ↢ 𝑏𝑐 . For our problem, it was enough to

only consider pairs 𝐴′, 𝐴′′ of equal cardinality. If we eliminate support 𝐴′ because it is dominated,

we then also eliminate all supersets of 𝐴′ because those are also dominated. The following lists of

profiles mention dominated supports for ease of verification.

In the first row of the list, which refers to Profile 1, we have underlined the support(s) that we

have assumed are used by 𝑓 (A1). From here, we read the list from top to bottom: Profile 𝑘 + 1 is
obtained from Profile 𝑘 by replacing the approval set of exactly one voter. The proof now establishes

step by step that if 𝑓 selects one of the supports underlined for Profile 𝑘 , then it must select one of

the supports underlined for Profile 𝑘 + 1. This is done by invoking pessimistic strategyproofness

at each step. There are two ways to invoke strategyproofness: Suppose Profiles 𝑘 and 𝑘 + 1 differ
only in the report of agent 𝑖 ∈ 𝑁 . Then we can either use strategyproofness by considering a

manipulation by 𝑖 from Profile 𝑘 to 𝑘 + 1, or a manipulation by 𝑖 from Profile 𝑘 + 1 to 𝑘 . The

preferences of the voter who changed her preferences are highlighted in gray.

Let us work through an example. In Appendix A.2, write A𝑘 for Profile 𝑘 . We assume that the

support of 𝑓 (A1) is either 𝑏𝑐 or 𝑎𝑏𝑐 . Consider Profile 2. Possible supports in this profile are 𝑏𝑐 and

𝑏𝑐𝑑 . Suppose the support of 𝑓 (A2) is 𝑏𝑐𝑑 . Then agent 3 is not completely satisfied because agent 3

does not approve 𝑑 . Thus, agent 3 can manipulate to Profile 1, where the selected support (𝑏𝑐 or

𝑎𝑏𝑐) only contains projects approved by agent 3 in Profile 2. Hence 𝑏𝑐𝑑 cannot be the support of



𝑓 (A2). Thus the support is 𝑏𝑐 , which we can therefore underline. The argument why 𝑓 (A3) must

have support 𝑏𝑐 as well is identical.

For another example, consider Profile 10, for which we have deduced from prior steps that

𝑓 (A10) has support 𝑐𝑑 or 𝑎𝑐𝑑 . Thus voter 4 (with approval set 𝑎𝑏𝑐) is not entirely satisfied, since

voter 4 does not approve 𝑑 . In Profile 11, the possible supports are 𝑎𝑐 , 𝑎𝑐𝑑 , and 𝑎𝑏𝑐 . If 𝑓 (A11)
had support 𝑎𝑐 or 𝑎𝑏𝑐 , then voter 4 could manipulate from Profile 10 to Profile 11 and obtain a

distribution that only uses approved alternatives. Hence the support must be 𝑎𝑐𝑑 , which we can

therefore underline.

We repeat this type of argument 192 times to find that 𝑓 (A1) has support 𝑏𝑐𝑑 , a contradiction.

A.2 Assuming 𝑓 (A1) has support 𝑏𝑐 or 𝑎𝑏𝑐 leads to contradiction.

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 possible supports dominated supports

Profile 1 𝑏 𝑐 𝑎𝑏 𝑎𝑐 𝑏𝑑 𝑐𝑑 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 2 𝑏 𝑐 𝑎𝑏𝑐 𝑎𝑐 𝑏𝑑 𝑐𝑑 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 3 𝑏 𝑐 𝑏𝑐 𝑎𝑐 𝑏𝑑 𝑐𝑑 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 4 𝑏𝑐 𝑐 𝑏𝑐 𝑎𝑐 𝑏𝑑 𝑐𝑑 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 5 𝑏𝑐 𝑐 𝑏𝑐 𝑎𝑐 𝑏𝑑 𝑎𝑐𝑑 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 6 𝑏𝑐 𝑐 𝑏𝑐 𝑎𝑐 𝑏𝑑 𝑎𝑑 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 7 𝑏𝑐 𝑐 𝑏𝑐 𝑎𝑐 𝑏𝑐𝑑 𝑎𝑑 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑐𝑑

Profile 8 𝑏𝑐 𝑐 𝑏𝑐 𝑎𝑐 𝑐𝑑 𝑎𝑑 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 9 𝑏𝑐 𝑐 𝑐𝑑 𝑎𝑐 𝑐𝑑 𝑎𝑑 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 10 𝑏𝑐 𝑐 𝑐𝑑 𝑎𝑏𝑐 𝑐𝑑 𝑎𝑑 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 11 𝑏𝑐 𝑐 𝑐𝑑 𝑎𝑏 𝑐𝑑 𝑎𝑑 𝑎𝑐, 𝑎𝑐𝑑, 𝑎𝑏𝑐 𝑏𝑑 ↢ 𝑎𝑐

Profile 12 𝑏𝑐 𝑐 𝑐𝑑 𝑎𝑏 𝑐𝑑 𝑎𝑐𝑑 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 13 𝑏𝑐 𝑐 𝑐𝑑 𝑎𝑏 𝑐𝑑 𝑎𝑐 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 14 𝑏𝑐𝑑 𝑐 𝑐𝑑 𝑎𝑏 𝑐𝑑 𝑎𝑐 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑏𝑐

Profile 15 𝑏𝑑 𝑐 𝑐𝑑 𝑎𝑏 𝑐𝑑 𝑎𝑐 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 16 𝑏𝑑 𝑐 𝑐𝑑 𝑎𝑏𝑐 𝑐𝑑 𝑎𝑐 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 17 𝑏𝑑 𝑐 𝑐𝑑 𝑏𝑐 𝑐𝑑 𝑎𝑐 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 18 𝑏𝑑 𝑐 𝑎𝑐𝑑 𝑏𝑐 𝑐𝑑 𝑎𝑐 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 19 𝑏𝑑 𝑐 𝑎𝑐𝑑 𝑏𝑐 𝑑 𝑎𝑐 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 20 𝑏𝑑 𝑐 𝑎𝑑 𝑏𝑐 𝑑 𝑎𝑐 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 21 𝑏𝑑 𝑐 𝑎𝑑 𝑏𝑐𝑑 𝑑 𝑎𝑐 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑐𝑑

Profile 22 𝑏𝑑 𝑐𝑑 𝑎𝑑 𝑏𝑐𝑑 𝑑 𝑎𝑐 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑐𝑑

Profile 23 𝑏𝑑 𝑐𝑑 𝑎𝑑 𝑐𝑑 𝑑 𝑎𝑐 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 24 𝑏𝑑 𝑐𝑑 𝑎𝑏𝑑 𝑐𝑑 𝑑 𝑎𝑐 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 25 𝑏𝑑 𝑐𝑑 𝑎𝑏 𝑐𝑑 𝑑 𝑎𝑐 𝑎𝑑, 𝑎𝑏𝑑, 𝑎𝑐𝑑 𝑏𝑐 ↢ 𝑎𝑑

Profile 26 𝑏𝑑 𝑐𝑑 𝑎𝑏 𝑐𝑑 𝑑 𝑎𝑐𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 27 𝑏𝑑 𝑐𝑑 𝑎𝑏 𝑐𝑑 𝑑 𝑎𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 28 𝑏𝑐𝑑 𝑐𝑑 𝑎𝑏 𝑐𝑑 𝑑 𝑎𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑏𝑑

Profile 29 𝑏𝑐 𝑐𝑑 𝑎𝑏 𝑐𝑑 𝑑 𝑎𝑑 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑



Profile 30 𝑏𝑐 𝑐𝑑 𝑎𝑏 𝑐𝑑 𝑑 𝑎𝑏𝑑 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 31 𝑏𝑐 𝑐𝑑 𝑎𝑏 𝑐𝑑 𝑑 𝑏𝑑 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 32 𝑏𝑐 𝑐𝑑 𝑏𝑑 𝑐𝑑 𝑑 𝑏𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 33 𝑏𝑐 𝑐𝑑 𝑏𝑑 𝑎𝑐 𝑑 𝑏𝑑 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 34 𝑏𝑐 𝑎𝑐𝑑 𝑏𝑑 𝑎𝑐 𝑑 𝑏𝑑 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 35 𝑏𝑐 𝑎𝑑 𝑏𝑑 𝑎𝑐 𝑑 𝑏𝑑 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 36 𝑏𝑐𝑑 𝑎𝑑 𝑏𝑑 𝑎𝑐 𝑑 𝑏𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑐𝑑

Profile 37 𝑐𝑑 𝑎𝑑 𝑏𝑑 𝑎𝑐 𝑑 𝑏𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 38 𝑐𝑑 𝑎𝑏𝑑 𝑏𝑑 𝑎𝑐 𝑑 𝑏𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 39 𝑐𝑑 𝑎𝑏 𝑏𝑑 𝑎𝑐 𝑑 𝑏𝑑 𝑎𝑑, 𝑎𝑐𝑑, 𝑎𝑏𝑑 𝑏𝑐 ↢ 𝑎𝑑

Profile 40 𝑐𝑑 𝑎𝑏 𝑏𝑑 𝑎𝑐𝑑 𝑑 𝑏𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 41 𝑐𝑑 𝑎𝑏 𝑏𝑑 𝑎𝑑 𝑑 𝑏𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 42 𝑐𝑑 𝑎𝑏 𝑏𝑐𝑑 𝑎𝑑 𝑑 𝑏𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑏𝑑

Profile 43 𝑐𝑑 𝑎𝑏 𝑏𝑐𝑑 𝑎𝑑 𝑑 𝑏 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑏𝑑

Profile 44 𝑐𝑑 𝑎𝑏 𝑏𝑐 𝑎𝑑 𝑑 𝑏 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 45 𝑐𝑑 𝑎𝑏 𝑏𝑐 𝑎𝑏𝑑 𝑑 𝑏 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 46 𝑐𝑑 𝑎𝑏 𝑏𝑐 𝑏𝑑 𝑑 𝑏 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 47 𝑐𝑑 𝑎𝑏 𝑏𝑐 𝑏𝑑 𝑏𝑑 𝑏 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 48 𝑐𝑑 𝑎𝑏 𝑎𝑏𝑐 𝑏𝑑 𝑏𝑑 𝑏 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 49 𝑐𝑑 𝑎𝑏 𝑎𝑐 𝑏𝑑 𝑏𝑑 𝑏 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 50 𝑏𝑐𝑑 𝑎𝑏 𝑎𝑐 𝑏𝑑 𝑏𝑑 𝑏 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑐

Profile 51 𝑏𝑐 𝑎𝑏 𝑎𝑐 𝑏𝑑 𝑏𝑑 𝑏 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 52 𝑏𝑐 𝑎𝑏 𝑎𝑐 𝑏𝑐 𝑏𝑑 𝑏 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 53 𝑏𝑐 𝑎𝑏𝑑 𝑎𝑐 𝑏𝑐 𝑏𝑑 𝑏 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 54 𝑏𝑐 𝑎𝑑 𝑎𝑐 𝑏𝑐 𝑏𝑑 𝑏 𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑑 𝑐𝑑 ↢ 𝑎𝑏

Profile 55 𝑏𝑐 𝑎𝑑 𝑎𝑏𝑐 𝑏𝑐 𝑏𝑑 𝑏 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 56 𝑏𝑐 𝑎𝑑 𝑎𝑏 𝑏𝑐 𝑏𝑑 𝑏 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 57 𝑏𝑐 𝑎𝑑 𝑎𝑏 𝑏𝑐 𝑏𝑐𝑑 𝑏 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑑

Profile 58 𝑏𝑐 𝑎𝑑 𝑎𝑏 𝑏𝑐 𝑐𝑑 𝑏 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 59 𝑏𝑐 𝑎𝑏𝑑 𝑎𝑏 𝑏𝑐 𝑐𝑑 𝑏 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 60 𝑏𝑐 𝑏𝑑 𝑎𝑏 𝑏𝑐 𝑐𝑑 𝑏 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 61 𝑏𝑐 𝑏𝑑 𝑎𝑏 𝑎𝑏𝑐 𝑐𝑑 𝑏 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 62 𝑐 𝑏𝑑 𝑎𝑏 𝑎𝑏𝑐 𝑐𝑑 𝑏 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 63 𝑐 𝑏𝑑 𝑎𝑏 𝑎𝑐 𝑐𝑑 𝑏 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 64 𝑐 𝑏𝑐𝑑 𝑎𝑏 𝑎𝑐 𝑐𝑑 𝑏 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑏𝑐

Profile 65 𝑐 𝑏𝑐𝑑 𝑎𝑏 𝑎𝑐 𝑐𝑑 𝑏𝑐 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑏𝑐

Profile 66 𝑐 𝑏𝑐 𝑎𝑏 𝑎𝑐 𝑐𝑑 𝑏𝑐 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 67 𝑐 𝑏𝑐 𝑎𝑏 𝑎𝑐𝑑 𝑐𝑑 𝑏𝑐 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 68 𝑐 𝑏𝑐 𝑎𝑏 𝑎𝑑 𝑐𝑑 𝑏𝑐 𝑎𝑐, 𝑎𝑐𝑑, 𝑎𝑏𝑐 𝑏𝑑 ↢ 𝑎𝑐

Profile 69 𝑐 𝑏𝑐 𝑎𝑏𝑐 𝑎𝑑 𝑐𝑑 𝑏𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐



Profile 70 𝑐 𝑏𝑐 𝑎𝑐 𝑎𝑑 𝑐𝑑 𝑏𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 71 𝑐 𝑏𝑐 𝑎𝑐 𝑎𝑑 𝑏𝑐𝑑 𝑏𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑐𝑑

Profile 72 𝑐 𝑏𝑐 𝑎𝑐 𝑎𝑑 𝑏𝑑 𝑏𝑐 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 73 𝑐 𝑏𝑐 𝑎𝑐𝑑 𝑎𝑑 𝑏𝑑 𝑏𝑐 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 74 𝑐 𝑏𝑐 𝑐𝑑 𝑎𝑑 𝑏𝑑 𝑏𝑐 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 75 𝑐 𝑏𝑐 𝑐𝑑 𝑐𝑑 𝑏𝑑 𝑏𝑐 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 76 𝑐 𝑎𝑏 𝑐𝑑 𝑐𝑑 𝑏𝑑 𝑏𝑐 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 77 𝑐 𝑎𝑏 𝑐𝑑 𝑐𝑑 𝑏𝑑 𝑎𝑏𝑐 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 78 𝑐 𝑎𝑏 𝑐𝑑 𝑐𝑑 𝑏𝑑 𝑎𝑐 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 79 𝑐 𝑎𝑏 𝑐𝑑 𝑐𝑑 𝑏𝑐𝑑 𝑎𝑐 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑏𝑐

Profile 80 𝑐 𝑎𝑏 𝑐𝑑 𝑐𝑑 𝑏𝑐 𝑎𝑐 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 81 𝑐 𝑎𝑏 𝑐𝑑 𝑐𝑑 𝑏𝑐 𝑎𝑐𝑑 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 82 𝑐 𝑎𝑏 𝑐𝑑 𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑎𝑐, 𝑎𝑏𝑐, 𝑎𝑐𝑑 𝑏𝑑 ↢ 𝑎𝑐

Profile 83 𝑐 𝑎𝑏𝑐 𝑐𝑑 𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 84 𝑐 𝑎𝑐 𝑐𝑑 𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 85 𝑐 𝑎𝑐 𝑏𝑐𝑑 𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑐𝑑

Profile 86 𝑐 𝑎𝑐 𝑏𝑐𝑑 𝑑 𝑏𝑐 𝑎𝑑 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑐𝑑

Profile 87 𝑐 𝑎𝑐 𝑏𝑑 𝑑 𝑏𝑐 𝑎𝑑 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 88 𝑐 𝑎𝑐𝑑 𝑏𝑑 𝑑 𝑏𝑐 𝑎𝑑 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 89 𝑐 𝑐𝑑 𝑏𝑑 𝑑 𝑏𝑐 𝑎𝑑 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 90 𝑐𝑑 𝑐𝑑 𝑏𝑑 𝑑 𝑏𝑐 𝑎𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 91 𝑐𝑑 𝑐𝑑 𝑎𝑏𝑑 𝑑 𝑏𝑐 𝑎𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 92 𝑐𝑑 𝑐𝑑 𝑎𝑏 𝑑 𝑏𝑐 𝑎𝑑 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 93 𝑐𝑑 𝑐𝑑 𝑎𝑏 𝑑 𝑏𝑐𝑑 𝑎𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑏𝑑

Profile 94 𝑐𝑑 𝑐𝑑 𝑎𝑏 𝑑 𝑏𝑑 𝑎𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 95 𝑐𝑑 𝑏𝑑 𝑎𝑏 𝑑 𝑏𝑑 𝑎𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 96 𝑐𝑑 𝑏𝑑 𝑎𝑏 𝑑 𝑏𝑑 𝑎𝑐𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 97 𝑐𝑑 𝑏𝑑 𝑎𝑏 𝑑 𝑏𝑑 𝑎𝑐 𝑎𝑑, 𝑎𝑏𝑑, 𝑎𝑐𝑑 𝑏𝑐 ↢ 𝑎𝑑

Profile 98 𝑐𝑑 𝑏𝑑 𝑎𝑏𝑑 𝑑 𝑏𝑑 𝑎𝑐 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 99 𝑐𝑑 𝑏𝑑 𝑎𝑑 𝑑 𝑏𝑑 𝑎𝑐 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 100 𝑏𝑐𝑑 𝑏𝑑 𝑎𝑑 𝑑 𝑏𝑑 𝑎𝑐 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑐𝑑

Profile 101 𝑏𝑐 𝑏𝑑 𝑎𝑑 𝑑 𝑏𝑑 𝑎𝑐 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 102 𝑏𝑐 𝑏𝑑 𝑎𝑑 𝑑 𝑏𝑑 𝑎𝑐𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 103 𝑏𝑐 𝑏𝑑 𝑎𝑑 𝑑 𝑏𝑑 𝑐𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 104 𝑏𝑐 𝑏𝑑 𝑎𝑑 𝑑 𝑎𝑏𝑑 𝑐𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 105 𝑏𝑐 𝑏 𝑎𝑑 𝑑 𝑎𝑏𝑑 𝑐𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 106 𝑏𝑐 𝑏 𝑎𝑑 𝑑 𝑎𝑏 𝑐𝑑 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 107 𝑏𝑐 𝑏 𝑎𝑑 𝑑 𝑎𝑏 𝑏𝑐𝑑 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑑

Profile 108 𝑏𝑐 𝑏 𝑎𝑑 𝑏𝑑 𝑎𝑏 𝑏𝑐𝑑 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑑

Profile 109 𝑏𝑐 𝑏 𝑎𝑑 𝑏𝑑 𝑎𝑏 𝑏𝑑 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏



Profile 110 𝑏𝑐 𝑏 𝑎𝑑 𝑏𝑑 𝑎𝑏𝑐 𝑏𝑑 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 111 𝑏𝑐 𝑏 𝑎𝑑 𝑏𝑑 𝑎𝑐 𝑏𝑑 𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑑 𝑐𝑑 ↢ 𝑎𝑏

Profile 112 𝑏𝑐 𝑏 𝑎𝑏𝑑 𝑏𝑑 𝑎𝑐 𝑏𝑑 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 113 𝑏𝑐 𝑏 𝑎𝑏 𝑏𝑑 𝑎𝑐 𝑏𝑑 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 114 𝑏𝑐𝑑 𝑏 𝑎𝑏 𝑏𝑑 𝑎𝑐 𝑏𝑑 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑐

Profile 115 𝑐𝑑 𝑏 𝑎𝑏 𝑏𝑑 𝑎𝑐 𝑏𝑑 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 116 𝑐𝑑 𝑏 𝑎𝑏𝑐 𝑏𝑑 𝑎𝑐 𝑏𝑑 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 117 𝑐𝑑 𝑏 𝑏𝑐 𝑏𝑑 𝑎𝑐 𝑏𝑑 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 118 𝑐𝑑 𝑏 𝑏𝑐 𝑏𝑑 𝑏𝑐 𝑏𝑑 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 119 𝑐𝑑 𝑏 𝑏𝑐 𝑏𝑑 𝑏𝑐 𝑎𝑑 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 120 𝑐𝑑 𝑏 𝑏𝑐 𝑎𝑏𝑑 𝑏𝑐 𝑎𝑑 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 121 𝑐𝑑 𝑏 𝑏𝑐 𝑎𝑏 𝑏𝑐 𝑎𝑑 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 122 𝑏𝑐𝑑 𝑏 𝑏𝑐 𝑎𝑏 𝑏𝑐 𝑎𝑑 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑑

Profile 123 𝑏𝑑 𝑏 𝑏𝑐 𝑎𝑏 𝑏𝑐 𝑎𝑑 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 124 𝑏𝑑 𝑏 𝑏𝑐 𝑎𝑏𝑐 𝑏𝑐 𝑎𝑑 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 125 𝑏𝑑 𝑏 𝑏𝑐 𝑎𝑐 𝑏𝑐 𝑎𝑑 𝑎𝑏, 𝑎𝑏𝑑, 𝑎𝑏𝑐 𝑐𝑑 ↢ 𝑎𝑏

Profile 126 𝑏𝑑 𝑏 𝑏𝑐 𝑎𝑐 𝑏𝑐 𝑎𝑏𝑑 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 127 𝑏𝑑 𝑏 𝑏𝑐 𝑎𝑐 𝑏𝑐 𝑎𝑏 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 128 𝑏𝑑 𝑏 𝑏𝑐𝑑 𝑎𝑐 𝑏𝑐 𝑎𝑏 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑐

Profile 129 𝑏𝑑 𝑏 𝑏𝑐𝑑 𝑎𝑐 𝑐 𝑎𝑏 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑐

Profile 130 𝑏𝑑 𝑏 𝑐𝑑 𝑎𝑐 𝑐 𝑎𝑏 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 131 𝑏𝑑 𝑏 𝑐𝑑 𝑎𝑐 𝑐 𝑎𝑏𝑐 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 132 𝑏𝑑 𝑏 𝑐𝑑 𝑎𝑐 𝑐 𝑏𝑐 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 133 𝑏𝑑 𝑏𝑐 𝑐𝑑 𝑎𝑐 𝑐 𝑏𝑐 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 134 𝑏𝑑 𝑏𝑐 𝑎𝑐𝑑 𝑎𝑐 𝑐 𝑏𝑐 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 135 𝑏𝑑 𝑏𝑐 𝑎𝑑 𝑎𝑐 𝑐 𝑏𝑐 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 136 𝑏𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑎𝑐 𝑐 𝑏𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑐𝑑

Profile 137 𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑎𝑐 𝑐 𝑏𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 138 𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑎𝑐 𝑐 𝑐𝑑 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 139 𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑎𝑏𝑐 𝑐 𝑐𝑑 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 140 𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑎𝑏 𝑐 𝑐𝑑 𝑎𝑐, 𝑎𝑐𝑑, 𝑎𝑏𝑐 𝑏𝑑 ↢ 𝑎𝑐

Profile 141 𝑐𝑑 𝑏𝑐 𝑎𝑐𝑑 𝑎𝑏 𝑐 𝑐𝑑 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 142 𝑐𝑑 𝑏𝑐 𝑎𝑐 𝑎𝑏 𝑐 𝑐𝑑 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 143 𝑐𝑑 𝑏𝑐𝑑 𝑎𝑐 𝑎𝑏 𝑐 𝑐𝑑 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑏𝑐

Profile 144 𝑐𝑑 𝑏𝑑 𝑎𝑐 𝑎𝑏 𝑐 𝑐𝑑 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 145 𝑐𝑑 𝑏𝑑 𝑎𝑐 𝑎𝑏𝑐 𝑐 𝑐𝑑 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 146 𝑐𝑑 𝑏𝑑 𝑎𝑐 𝑏𝑐 𝑐 𝑐𝑑 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 147 𝑎𝑐𝑑 𝑏𝑑 𝑎𝑐 𝑏𝑐 𝑐 𝑐𝑑 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 148 𝑎𝑐𝑑 𝑏𝑑 𝑎𝑐 𝑏𝑐 𝑐 𝑑 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 149 𝑎𝑑 𝑏𝑑 𝑎𝑐 𝑏𝑐 𝑐 𝑑 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑



Profile 150 𝑎𝑑 𝑏𝑑 𝑎𝑐 𝑏𝑐𝑑 𝑐 𝑑 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑐𝑑

Profile 151 𝑎𝑑 𝑏𝑑 𝑎𝑐 𝑏𝑐𝑑 𝑐𝑑 𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑐𝑑

Profile 152 𝑎𝑑 𝑏𝑑 𝑎𝑐 𝑐𝑑 𝑐𝑑 𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 153 𝑎𝑏𝑑 𝑏𝑑 𝑎𝑐 𝑐𝑑 𝑐𝑑 𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 154 𝑎𝑏 𝑏𝑑 𝑎𝑐 𝑐𝑑 𝑐𝑑 𝑑 𝑎𝑑, 𝑎𝑏𝑑, 𝑎𝑐𝑑 𝑏𝑐 ↢ 𝑎𝑑

Profile 155 𝑎𝑏 𝑏𝑑 𝑎𝑐𝑑 𝑐𝑑 𝑐𝑑 𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 156 𝑎𝑏 𝑏𝑑 𝑎𝑑 𝑐𝑑 𝑐𝑑 𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 157 𝑎𝑏 𝑏𝑐𝑑 𝑎𝑑 𝑐𝑑 𝑐𝑑 𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑏𝑑

Profile 158 𝑎𝑏 𝑏𝑐 𝑎𝑑 𝑐𝑑 𝑐𝑑 𝑑 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 159 𝑎𝑏 𝑏𝑐 𝑎𝑏𝑑 𝑐𝑑 𝑐𝑑 𝑑 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 160 𝑎𝑏 𝑏𝑐 𝑏𝑑 𝑐𝑑 𝑐𝑑 𝑑 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 161 𝑏𝑑 𝑏𝑐 𝑏𝑑 𝑐𝑑 𝑐𝑑 𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 162 𝑏𝑑 𝑏𝑐 𝑏𝑑 𝑎𝑐 𝑐𝑑 𝑑 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 163 𝑏𝑑 𝑏𝑐 𝑏𝑑 𝑎𝑐 𝑎𝑐𝑑 𝑑 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 164 𝑏𝑑 𝑏𝑐 𝑏𝑑 𝑎𝑐 𝑎𝑑 𝑑 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 165 𝑏𝑑 𝑏𝑐𝑑 𝑏𝑑 𝑎𝑐 𝑎𝑑 𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑐𝑑

Profile 166 𝑏𝑑 𝑐𝑑 𝑏𝑑 𝑎𝑐 𝑎𝑑 𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 167 𝑏𝑑 𝑐𝑑 𝑏𝑑 𝑎𝑐 𝑎𝑏𝑑 𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 168 𝑏𝑑 𝑐𝑑 𝑏𝑑 𝑎𝑐 𝑎𝑏 𝑑 𝑎𝑑, 𝑎𝑐𝑑, 𝑎𝑏𝑑 𝑏𝑐 ↢ 𝑎𝑑

Profile 169 𝑏𝑑 𝑐𝑑 𝑏𝑑 𝑎𝑐𝑑 𝑎𝑏 𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 170 𝑏𝑑 𝑐𝑑 𝑏𝑑 𝑎𝑑 𝑎𝑏 𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 171 𝑏𝑑 𝑐𝑑 𝑏𝑐𝑑 𝑎𝑑 𝑎𝑏 𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑏𝑑

Profile 172 𝑏 𝑐𝑑 𝑏𝑐𝑑 𝑎𝑑 𝑎𝑏 𝑑 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑏𝑑

Profile 173 𝑏 𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑎𝑏 𝑑 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 174 𝑏 𝑐𝑑 𝑏𝑐 𝑎𝑏𝑑 𝑎𝑏 𝑑 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 175 𝑏 𝑐𝑑 𝑏𝑐 𝑏𝑑 𝑎𝑏 𝑑 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 176 𝑏 𝑐𝑑 𝑏𝑐 𝑏𝑑 𝑎𝑏 𝑏𝑑 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 177 𝑏 𝑐𝑑 𝑎𝑏𝑐 𝑏𝑑 𝑎𝑏 𝑏𝑑 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 178 𝑏 𝑐𝑑 𝑎𝑐 𝑏𝑑 𝑎𝑏 𝑏𝑑 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 179 𝑏 𝑏𝑐𝑑 𝑎𝑐 𝑏𝑑 𝑎𝑏 𝑏𝑑 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑐

Profile 180 𝑏 𝑏𝑐 𝑎𝑐 𝑏𝑑 𝑎𝑏 𝑏𝑑 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 181 𝑏 𝑏𝑐 𝑎𝑐 𝑏𝑐 𝑎𝑏 𝑏𝑑 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 182 𝑏 𝑏𝑐 𝑎𝑐 𝑏𝑐 𝑎𝑏𝑑 𝑏𝑑 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 183 𝑏 𝑏𝑐 𝑎𝑐 𝑏𝑐 𝑎𝑑 𝑏𝑑 𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑑 𝑐𝑑 ↢ 𝑎𝑏

Profile 184 𝑏 𝑏𝑐 𝑎𝑏𝑐 𝑏𝑐 𝑎𝑑 𝑏𝑑 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 185 𝑏 𝑏𝑐 𝑎𝑏 𝑏𝑐 𝑎𝑑 𝑏𝑑 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 186 𝑏 𝑏𝑐 𝑎𝑏 𝑏𝑐 𝑎𝑑 𝑏𝑐𝑑 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑑

Profile 187 𝑏 𝑏𝑐 𝑎𝑏 𝑏𝑐 𝑎𝑑 𝑐𝑑 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 188 𝑏 𝑏𝑐 𝑎𝑏 𝑏𝑐 𝑎𝑏𝑑 𝑐𝑑 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 189 𝑏 𝑏𝑐 𝑎𝑏 𝑏𝑐 𝑏𝑑 𝑐𝑑 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐



Profile 190 𝑏 𝑏𝑐 𝑎𝑏 𝑎𝑏𝑐 𝑏𝑑 𝑐𝑑 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 191 𝑏 𝑐 𝑎𝑏 𝑎𝑏𝑐 𝑏𝑑 𝑐𝑑 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 1 𝑏 𝑐 𝑎𝑏 𝑎𝑐 𝑏𝑑 𝑐𝑑 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

A.3 Assuming 𝑓 (A1) has support 𝑏𝑐𝑑 leads to contradiction.

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 possible supports dominated supports

Profile 1 𝑏 𝑐 𝑎𝑏 𝑎𝑐 𝑏𝑑 𝑐𝑑 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 192 𝑏 𝑐 𝑎𝑏 𝑎𝑐 𝑏𝑐𝑑 𝑐𝑑 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑏𝑐

Profile 193 𝑏𝑐 𝑐 𝑎𝑏 𝑎𝑐 𝑏𝑐𝑑 𝑐𝑑 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑏𝑐

Profile 194 𝑏𝑐 𝑐 𝑎𝑏 𝑎𝑐 𝑏𝑐 𝑐𝑑 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 195 𝑏𝑐 𝑐 𝑎𝑏 𝑎𝑐𝑑 𝑏𝑐 𝑐𝑑 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 196 𝑏𝑐 𝑐 𝑎𝑏 𝑎𝑑 𝑏𝑐 𝑐𝑑 𝑎𝑐, 𝑎𝑐𝑑, 𝑎𝑏𝑐 𝑏𝑑 ↢ 𝑎𝑐

Profile 197 𝑏𝑐 𝑐 𝑎𝑏𝑐 𝑎𝑑 𝑏𝑐 𝑐𝑑 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 198 𝑏𝑐 𝑐 𝑎𝑐 𝑎𝑑 𝑏𝑐 𝑐𝑑 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 199 𝑏𝑐 𝑐 𝑎𝑐 𝑎𝑑 𝑏𝑐 𝑏𝑐𝑑 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑐𝑑

Profile 200 𝑏𝑐 𝑐 𝑎𝑐 𝑎𝑑 𝑏𝑐 𝑏𝑑 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 201 𝑏𝑐 𝑐 𝑎𝑐𝑑 𝑎𝑑 𝑏𝑐 𝑏𝑑 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 202 𝑏𝑐 𝑐 𝑐𝑑 𝑎𝑑 𝑏𝑐 𝑏𝑑 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 203 𝑏𝑐 𝑐 𝑐𝑑 𝑐𝑑 𝑏𝑐 𝑏𝑑 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 204 𝑏𝑐 𝑐 𝑐𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑑 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 205 𝑎𝑏𝑐 𝑐 𝑐𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑑 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 206 𝑎𝑐 𝑐 𝑐𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑑 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 207 𝑎𝑐 𝑐 𝑐𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑐𝑑 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑏𝑐

Profile 208 𝑎𝑐 𝑐 𝑐𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑐 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 209 𝑎𝑐𝑑 𝑐 𝑐𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑐 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 210 𝑎𝑑 𝑐 𝑐𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑐 𝑎𝑐, 𝑎𝑏𝑐, 𝑎𝑐𝑑 𝑏𝑑 ↢ 𝑎𝑐

Profile 211 𝑎𝑑 𝑐 𝑐𝑑 𝑐𝑑 𝑎𝑏𝑐 𝑏𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 212 𝑎𝑑 𝑐 𝑐𝑑 𝑐𝑑 𝑎𝑐 𝑏𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 213 𝑎𝑑 𝑐 𝑏𝑐𝑑 𝑐𝑑 𝑎𝑐 𝑏𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑐𝑑

Profile 214 𝑎𝑑 𝑐 𝑏𝑐𝑑 𝑑 𝑎𝑐 𝑏𝑐 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑐𝑑

Profile 215 𝑎𝑑 𝑐 𝑏𝑑 𝑑 𝑎𝑐 𝑏𝑐 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 216 𝑎𝑑 𝑐 𝑏𝑑 𝑑 𝑎𝑐𝑑 𝑏𝑐 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 217 𝑎𝑑 𝑐 𝑏𝑑 𝑑 𝑐𝑑 𝑏𝑐 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 218 𝑎𝑑 𝑐𝑑 𝑏𝑑 𝑑 𝑐𝑑 𝑏𝑐 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 219 𝑎𝑑 𝑐𝑑 𝑎𝑏𝑑 𝑑 𝑐𝑑 𝑏𝑐 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 220 𝑎𝑑 𝑐𝑑 𝑎𝑏 𝑑 𝑐𝑑 𝑏𝑐 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 221 𝑎𝑑 𝑐𝑑 𝑎𝑏 𝑑 𝑐𝑑 𝑏𝑐𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑏𝑑

Profile 222 𝑎𝑑 𝑐𝑑 𝑎𝑏 𝑑 𝑐𝑑 𝑏𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 223 𝑎𝑑 𝑐𝑑 𝑎𝑏 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑



Profile 224 𝑎𝑐𝑑 𝑐𝑑 𝑎𝑏 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 225 𝑎𝑐 𝑐𝑑 𝑎𝑏 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑑, 𝑎𝑏𝑑, 𝑎𝑐𝑑 𝑏𝑐 ↢ 𝑎𝑑

Profile 226 𝑎𝑐 𝑐𝑑 𝑎𝑏𝑑 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 227 𝑎𝑐 𝑐𝑑 𝑎𝑑 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 228 𝑎𝑐 𝑏𝑐𝑑 𝑎𝑑 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑐𝑑

Profile 229 𝑎𝑐 𝑏𝑐 𝑎𝑑 𝑑 𝑏𝑑 𝑏𝑑 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 230 𝑎𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑑 𝑏𝑑 𝑏𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 231 𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑑 𝑏𝑑 𝑏𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 232 𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑑 𝑏𝑑 𝑎𝑏𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 233 𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑑 𝑏 𝑎𝑏𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 234 𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑑 𝑏 𝑎𝑏 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 235 𝑏𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑑 𝑏 𝑎𝑏 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑑

Profile 236 𝑏𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑏𝑑 𝑏 𝑎𝑏 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑑

Profile 237 𝑏𝑑 𝑏𝑐 𝑎𝑑 𝑏𝑑 𝑏 𝑎𝑏 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 238 𝑏𝑑 𝑏𝑐 𝑎𝑑 𝑏𝑑 𝑏 𝑎𝑏𝑐 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 239 𝑏𝑑 𝑏𝑐 𝑎𝑑 𝑏𝑑 𝑏 𝑎𝑐 𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑑 𝑐𝑑 ↢ 𝑎𝑏

Profile 240 𝑏𝑑 𝑏𝑐 𝑎𝑏𝑑 𝑏𝑑 𝑏 𝑎𝑐 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 241 𝑏𝑑 𝑏𝑐 𝑎𝑏 𝑏𝑑 𝑏 𝑎𝑐 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 242 𝑏𝑑 𝑏𝑐𝑑 𝑎𝑏 𝑏𝑑 𝑏 𝑎𝑐 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑐

Profile 243 𝑏𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑑 𝑏 𝑎𝑐 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 244 𝑏𝑑 𝑐𝑑 𝑎𝑏𝑐 𝑏𝑑 𝑏 𝑎𝑐 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 245 𝑏𝑑 𝑐𝑑 𝑏𝑐 𝑏𝑑 𝑏 𝑎𝑐 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 246 𝑏𝑑 𝑐𝑑 𝑏𝑐 𝑏𝑑 𝑏 𝑏𝑐 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 247 𝑎𝑑 𝑐𝑑 𝑏𝑐 𝑏𝑑 𝑏 𝑏𝑐 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 248 𝑎𝑑 𝑐𝑑 𝑏𝑐 𝑎𝑏𝑑 𝑏 𝑏𝑐 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 249 𝑎𝑑 𝑐𝑑 𝑏𝑐 𝑎𝑏 𝑏 𝑏𝑐 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 250 𝑎𝑑 𝑏𝑐𝑑 𝑏𝑐 𝑎𝑏 𝑏 𝑏𝑐 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑑

Profile 251 𝑎𝑑 𝑏𝑑 𝑏𝑐 𝑎𝑏 𝑏 𝑏𝑐 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 252 𝑎𝑑 𝑏𝑑 𝑏𝑐 𝑎𝑏𝑐 𝑏 𝑏𝑐 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 253 𝑎𝑑 𝑏𝑑 𝑏𝑐 𝑎𝑐 𝑏 𝑏𝑐 𝑎𝑏, 𝑎𝑏𝑑, 𝑎𝑏𝑐 𝑐𝑑 ↢ 𝑎𝑏

Profile 254 𝑎𝑏𝑑 𝑏𝑑 𝑏𝑐 𝑎𝑐 𝑏 𝑏𝑐 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 255 𝑎𝑏 𝑏𝑑 𝑏𝑐 𝑎𝑐 𝑏 𝑏𝑐 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 256 𝑎𝑏 𝑏𝑑 𝑏𝑐𝑑 𝑎𝑐 𝑏 𝑏𝑐 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑐

Profile 257 𝑎𝑏 𝑏𝑑 𝑏𝑐𝑑 𝑎𝑐 𝑏 𝑐 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑐

Profile 258 𝑎𝑏 𝑏𝑑 𝑐𝑑 𝑎𝑐 𝑏 𝑐 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 259 𝑎𝑏𝑐 𝑏𝑑 𝑐𝑑 𝑎𝑐 𝑏 𝑐 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 260 𝑏𝑐 𝑏𝑑 𝑐𝑑 𝑎𝑐 𝑏 𝑐 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 261 𝑏𝑐 𝑏𝑑 𝑐𝑑 𝑎𝑐 𝑏𝑐 𝑐 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 262 𝑏𝑐 𝑏𝑑 𝑎𝑐𝑑 𝑎𝑐 𝑏𝑐 𝑐 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 263 𝑏𝑐 𝑏𝑑 𝑎𝑑 𝑎𝑐 𝑏𝑐 𝑐 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑



Profile 264 𝑏𝑐 𝑏𝑐𝑑 𝑎𝑑 𝑎𝑐 𝑏𝑐 𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑐𝑑

Profile 265 𝑏𝑐 𝑐𝑑 𝑎𝑑 𝑎𝑐 𝑏𝑐 𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 266 𝑐𝑑 𝑐𝑑 𝑎𝑑 𝑎𝑐 𝑏𝑐 𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 267 𝑐𝑑 𝑐𝑑 𝑎𝑑 𝑎𝑏𝑐 𝑏𝑐 𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 268 𝑐𝑑 𝑐𝑑 𝑎𝑑 𝑎𝑏 𝑏𝑐 𝑐 𝑎𝑐, 𝑎𝑐𝑑, 𝑎𝑏𝑐 𝑏𝑑 ↢ 𝑎𝑐

Profile 269 𝑐𝑑 𝑐𝑑 𝑎𝑐𝑑 𝑎𝑏 𝑏𝑐 𝑐 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 270 𝑐𝑑 𝑐𝑑 𝑎𝑐 𝑎𝑏 𝑏𝑐 𝑐 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 271 𝑐𝑑 𝑐𝑑 𝑎𝑐 𝑎𝑏 𝑏𝑐𝑑 𝑐 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑏𝑐

Profile 272 𝑐𝑑 𝑐𝑑 𝑎𝑐 𝑎𝑏 𝑏𝑑 𝑐 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 273 𝑐𝑑 𝑐𝑑 𝑎𝑐 𝑎𝑏𝑐 𝑏𝑑 𝑐 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 274 𝑐𝑑 𝑐𝑑 𝑎𝑐 𝑏𝑐 𝑏𝑑 𝑐 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 275 𝑐𝑑 𝑎𝑐𝑑 𝑎𝑐 𝑏𝑐 𝑏𝑑 𝑐 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 276 𝑑 𝑎𝑐𝑑 𝑎𝑐 𝑏𝑐 𝑏𝑑 𝑐 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 277 𝑑 𝑎𝑑 𝑎𝑐 𝑏𝑐 𝑏𝑑 𝑐 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 278 𝑑 𝑎𝑑 𝑎𝑐 𝑏𝑐𝑑 𝑏𝑑 𝑐 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑐𝑑

Profile 279 𝑑 𝑎𝑑 𝑎𝑐 𝑏𝑐𝑑 𝑏𝑑 𝑐𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑐𝑑

Profile 280 𝑑 𝑎𝑑 𝑎𝑐 𝑐𝑑 𝑏𝑑 𝑐𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 281 𝑑 𝑎𝑏𝑑 𝑎𝑐 𝑐𝑑 𝑏𝑑 𝑐𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 282 𝑑 𝑎𝑏 𝑎𝑐 𝑐𝑑 𝑏𝑑 𝑐𝑑 𝑎𝑑, 𝑎𝑏𝑑, 𝑎𝑐𝑑 𝑏𝑐 ↢ 𝑎𝑑

Profile 283 𝑑 𝑎𝑏 𝑎𝑐𝑑 𝑐𝑑 𝑏𝑑 𝑐𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 284 𝑑 𝑎𝑏 𝑎𝑑 𝑐𝑑 𝑏𝑑 𝑐𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 285 𝑑 𝑎𝑏 𝑎𝑑 𝑐𝑑 𝑏𝑐𝑑 𝑐𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑏𝑑

Profile 286 𝑑 𝑎𝑏 𝑎𝑑 𝑐𝑑 𝑏𝑐 𝑐𝑑 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 287 𝑑 𝑎𝑏 𝑎𝑏𝑑 𝑐𝑑 𝑏𝑐 𝑐𝑑 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 288 𝑑 𝑎𝑏 𝑏𝑑 𝑐𝑑 𝑏𝑐 𝑐𝑑 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 289 𝑑 𝑏𝑑 𝑏𝑑 𝑐𝑑 𝑏𝑐 𝑐𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 290 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑐 𝑏𝑐 𝑐𝑑 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 291 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑐 𝑏𝑐 𝑎𝑐𝑑 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑐, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑐𝑑

Profile 292 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑐 𝑏𝑐 𝑎𝑑 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 293 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑐 𝑏𝑐𝑑 𝑎𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑐𝑑

Profile 294 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑐 𝑐𝑑 𝑎𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 295 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑐 𝑐𝑑 𝑎𝑏𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 296 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑐 𝑐𝑑 𝑎𝑏 𝑎𝑑, 𝑎𝑐𝑑, 𝑎𝑏𝑑 𝑏𝑐 ↢ 𝑎𝑑

Profile 297 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑐𝑑 𝑐𝑑 𝑎𝑏 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 298 𝑑 𝑏𝑑 𝑏𝑑 𝑎𝑑 𝑐𝑑 𝑎𝑏 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 299 𝑑 𝑏𝑐𝑑 𝑏𝑑 𝑎𝑑 𝑐𝑑 𝑎𝑏 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑏𝑑

Profile 300 𝑑 𝑏𝑐𝑑 𝑏 𝑎𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑏𝑑

Profile 301 𝑑 𝑏𝑐 𝑏 𝑎𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 302 𝑑 𝑏𝑐 𝑏 𝑎𝑏𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 303 𝑑 𝑏𝑐 𝑏 𝑏𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑



Profile 304 𝑏𝑑 𝑏𝑐 𝑏 𝑏𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 305 𝑏𝑑 𝑎𝑏𝑐 𝑏 𝑏𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 306 𝑏𝑑 𝑎𝑐 𝑏 𝑏𝑑 𝑐𝑑 𝑎𝑏 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 307 𝑏𝑑 𝑎𝑐 𝑏 𝑏𝑑 𝑏𝑐𝑑 𝑎𝑏 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑐

Profile 308 𝑏𝑑 𝑎𝑐 𝑏 𝑏𝑑 𝑏𝑐 𝑎𝑏 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 309 𝑏𝑑 𝑎𝑐 𝑏 𝑏𝑐 𝑏𝑐 𝑎𝑏 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 310 𝑏𝑑 𝑎𝑐 𝑏 𝑏𝑐 𝑏𝑐 𝑎𝑏𝑑 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑏, 𝑎𝑑 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 311 𝑏𝑑 𝑎𝑐 𝑏 𝑏𝑐 𝑏𝑐 𝑎𝑑 𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑑 𝑐𝑑 ↢ 𝑎𝑏

Profile 312 𝑏𝑑 𝑎𝑏𝑐 𝑏 𝑏𝑐 𝑏𝑐 𝑎𝑑 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 313 𝑏𝑑 𝑎𝑏 𝑏 𝑏𝑐 𝑏𝑐 𝑎𝑑 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑎𝑏

Profile 314 𝑏𝑐𝑑 𝑎𝑏 𝑏 𝑏𝑐 𝑏𝑐 𝑎𝑑 𝑎𝑏, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑏, 𝑎𝑐 ↢ 𝑎𝑏, 𝑐𝑑 ↢ 𝑏𝑑

Profile 315 𝑐𝑑 𝑎𝑏 𝑏 𝑏𝑐 𝑏𝑐 𝑎𝑑 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 316 𝑐𝑑 𝑎𝑏 𝑏 𝑏𝑐 𝑏𝑐 𝑎𝑏𝑑 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑑

Profile 317 𝑐𝑑 𝑎𝑏 𝑏 𝑏𝑐 𝑏𝑐 𝑏𝑑 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 318 𝑐𝑑 𝑎𝑏 𝑏 𝑎𝑏𝑐 𝑏𝑐 𝑏𝑑 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 319 𝑐𝑑 𝑎𝑏 𝑏 𝑎𝑏𝑐 𝑐 𝑏𝑑 𝑏𝑐, 𝑏𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 320 𝑐𝑑 𝑎𝑏 𝑏 𝑎𝑐 𝑐 𝑏𝑑 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 321 𝑐𝑑 𝑎𝑏 𝑏 𝑎𝑐 𝑐 𝑏𝑐𝑑 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑏𝑐

Profile 322 𝑐𝑑 𝑎𝑏 𝑏𝑐 𝑎𝑐 𝑐 𝑏𝑐𝑑 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑏𝑐

Profile 323 𝑐𝑑 𝑎𝑏 𝑏𝑐 𝑎𝑐 𝑐 𝑏𝑐 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 324 𝑐𝑑 𝑎𝑏 𝑏𝑐 𝑎𝑐𝑑 𝑐 𝑏𝑐 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 325 𝑐𝑑 𝑎𝑏 𝑏𝑐 𝑎𝑑 𝑐 𝑏𝑐 𝑎𝑐, 𝑎𝑐𝑑, 𝑎𝑏𝑐 𝑏𝑑 ↢ 𝑎𝑐

Profile 326 𝑐𝑑 𝑎𝑏𝑐 𝑏𝑐 𝑎𝑑 𝑐 𝑏𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 327 𝑐𝑑 𝑎𝑐 𝑏𝑐 𝑎𝑑 𝑐 𝑏𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 328 𝑏𝑐𝑑 𝑎𝑐 𝑏𝑐 𝑎𝑑 𝑐 𝑏𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑐𝑑

Profile 329 𝑏𝑑 𝑎𝑐 𝑏𝑐 𝑎𝑑 𝑐 𝑏𝑐 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 330 𝑏𝑑 𝑎𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑐 𝑏𝑐 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 331 𝑏𝑑 𝑐𝑑 𝑏𝑐 𝑎𝑑 𝑐 𝑏𝑐 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 332 𝑏𝑑 𝑐𝑑 𝑏𝑐 𝑐𝑑 𝑐 𝑏𝑐 𝑐𝑑, 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑏 ↢ 𝑏𝑐, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 333 𝑏𝑑 𝑐𝑑 𝑏𝑐 𝑐𝑑 𝑐 𝑎𝑏 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 334 𝑏𝑑 𝑐𝑑 𝑎𝑏𝑐 𝑐𝑑 𝑐 𝑎𝑏 𝑏𝑐, 𝑏𝑐𝑑 𝑎↢ 𝑏, 𝑎𝑐 ↢ 𝑏𝑐, 𝑎𝑑 ↢ 𝑏𝑐

Profile 335 𝑏𝑑 𝑐𝑑 𝑎𝑐 𝑐𝑑 𝑐 𝑎𝑏 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑑 𝑎𝑑 ↢ 𝑏𝑐

Profile 336 𝑏𝑐𝑑 𝑐𝑑 𝑎𝑐 𝑐𝑑 𝑐 𝑎𝑏 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑏𝑐

Profile 337 𝑏𝑐 𝑐𝑑 𝑎𝑐 𝑐𝑑 𝑐 𝑎𝑏 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 338 𝑏𝑐 𝑐𝑑 𝑎𝑐𝑑 𝑐𝑑 𝑐 𝑎𝑏 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐 𝑑 ↢ 𝑐, 𝑎𝑑 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 339 𝑏𝑐 𝑐𝑑 𝑎𝑑 𝑐𝑑 𝑐 𝑎𝑏 𝑎𝑐, 𝑎𝑏𝑐, 𝑎𝑐𝑑 𝑏𝑑 ↢ 𝑎𝑐

Profile 340 𝑏𝑐 𝑐𝑑 𝑎𝑑 𝑐𝑑 𝑐 𝑎𝑏𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 341 𝑏𝑐 𝑐𝑑 𝑎𝑑 𝑐𝑑 𝑐 𝑎𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑎𝑐

Profile 342 𝑏𝑐 𝑏𝑐𝑑 𝑎𝑑 𝑐𝑑 𝑐 𝑎𝑐 𝑎𝑐, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑐𝑑

Profile 343 𝑏𝑐 𝑏𝑐𝑑 𝑎𝑑 𝑑 𝑐 𝑎𝑐 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑐, 𝑎𝑏 ↢ 𝑎𝑐, 𝑏𝑑 ↢ 𝑐𝑑



Profile 344 𝑏𝑐 𝑏𝑑 𝑎𝑑 𝑑 𝑐 𝑎𝑐 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 345 𝑏𝑐 𝑏𝑑 𝑎𝑑 𝑑 𝑐 𝑎𝑐𝑑 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 346 𝑏𝑐 𝑏𝑑 𝑎𝑑 𝑑 𝑐 𝑐𝑑 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 347 𝑏𝑐 𝑏𝑑 𝑎𝑑 𝑑 𝑐𝑑 𝑐𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 348 𝑏𝑐 𝑎𝑏𝑑 𝑎𝑑 𝑑 𝑐𝑑 𝑐𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 349 𝑏𝑐 𝑎𝑏 𝑎𝑑 𝑑 𝑐𝑑 𝑐𝑑 𝑏𝑑, 𝑎𝑏𝑑, 𝑏𝑐𝑑 𝑎𝑐 ↢ 𝑏𝑑

Profile 350 𝑏𝑐𝑑 𝑎𝑏 𝑎𝑑 𝑑 𝑐𝑑 𝑐𝑑 𝑎𝑑,𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑏𝑑

Profile 351 𝑏𝑑 𝑎𝑏 𝑎𝑑 𝑑 𝑐𝑑 𝑐𝑑 𝑎𝑑,𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 352 𝑏𝑑 𝑎𝑏 𝑎𝑑 𝑑 𝑐𝑑 𝑏𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 353 𝑏𝑑 𝑎𝑏 𝑎𝑐𝑑 𝑑 𝑐𝑑 𝑏𝑑 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑 𝑐 ↢ 𝑑, 𝑎𝑐 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 354 𝑏𝑑 𝑎𝑏 𝑎𝑐 𝑑 𝑐𝑑 𝑏𝑑 𝑎𝑑, 𝑎𝑏𝑑, 𝑎𝑐𝑑 𝑏𝑐 ↢ 𝑎𝑑

Profile 355 𝑏𝑑 𝑎𝑏𝑑 𝑎𝑐 𝑑 𝑐𝑑 𝑏𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 356 𝑏𝑑 𝑎𝑑 𝑎𝑐 𝑑 𝑐𝑑 𝑏𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑎𝑑

Profile 357 𝑏𝑑 𝑎𝑑 𝑎𝑐 𝑑 𝑏𝑐𝑑 𝑏𝑑 𝑎𝑑, 𝑐𝑑, 𝑎𝑐𝑑 𝑏 ↢ 𝑑, 𝑎𝑏 ↢ 𝑎𝑑, 𝑏𝑐 ↢ 𝑐𝑑

Profile 358 𝑏𝑑 𝑎𝑑 𝑎𝑐 𝑑 𝑏𝑐 𝑏𝑑 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 𝑎𝑏 ↢ 𝑐𝑑

Profile 359 𝑏𝑑 𝑎𝑑 𝑎𝑐𝑑 𝑑 𝑏𝑐 𝑏𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑐𝑑

Profile 360 𝑏𝑑 𝑎𝑑 𝑐𝑑 𝑑 𝑏𝑐 𝑏𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑

Profile 361 𝑏𝑑 𝑎𝑑 𝑐𝑑 𝑑 𝑏𝑐 𝑎𝑏𝑑 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑 𝑎↢ 𝑑, 𝑎𝑏 ↢ 𝑏𝑑, 𝑎𝑐 ↢ 𝑏𝑑
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