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Abstract. A minimal requirement on allocative efficiency in the social sciences
is Pareto optimality. In this paper, we identify a far-reaching structural connection
between Pareto optimal and perfect partitions that has various algorithmic conse-
quences for coalition formation. In particular, we show that computing and veri-
fying Pareto optimal partitions in general hedonic games and B-hedonic games is
intractable while both problems are tractable for roommate games and W-hedonic
games. The latter two positive results are obtained by reductions to maximum
weight matching and clique packing, respectively.

1 Introduction

Topics concerning coalitions and coalition formation have come under increasing
scrutiny of computer scientists. The reason for this may be obvious. For the proper
operation of distributed and multiagent systems, cooperation may be required. At the
same time, collaboration in very large groups may also lead to unnecessary overhead,
which may even exceed the positive effects of cooperation. To model such situations
formally, concepts from the social and economic sciences have proved to be very help-
ful and thus provide the mathematical basis for a better understanding of the issues
involved.

Coalition formation games, which were first formalized by Dreze and Greenberg
[9], model coalition formation in settings in which utility is non-transferable. In many
such situations it is natural to assume that a player’s appreciation of a coalition structure
only depends on the coalition he is a member of and not on how the remaining players
are grouped. Initiated by Banerjee et al. [3] and Bogomolnaia and Jackson [4], much of
the work on coalition formation now concentrates on these so-called hedonic games. In
this paper, we focus on Pareto optimality and individual rationality in this rich class of
coalition formation games.

The main question in coalition formation games is which coalitions one may rea-
sonably expect to form. To get a proper formal grasp of this issue, a number of stability
concepts have been proposed for hedonic games—such as the core or Nash stability—
and much research concentrates on conditions for existence, the structure, and compu-
tation of stable and efficient partitions. Pareto optimality—which holds if no coalition
structure is strictly better for some player without being strictly worse for another—
and individual rationality—which holds if every player is satisfied in the sense that no
player would rather be on his own—are commonly considered minimal requirements
for any reasonable partition.



Another reason to investigate Pareto optimal partitions algorithmically is that, in
contrast to other stability concepts like the core, they are guaranteed to exist. This
even holds if we additionally require individual rationality. Moreover, even though the
Gale-Shapley algorithm returns a core stable matching for marriage games, it is already
NP-hard to check whether the core is empty in various classes and representations of
hedonic games, such as roommate games [12], general hedonic games [2], and games
with #- and #-preferences [7, 6]. Interestingly, when the status-quo partition cannot
be changed without the mutual consent of all players, Pareto optimality can be seen as
a stability notion [11].

We investigate both the problem of finding a Pareto optimal and individually rational
partition and the problem of deciding whether a partition is Pareto optimal. In particu-
lar, our results concern general hedonic games, B-hedonic and W-hedonic games (two
classes of games in which each player’s preferences over coalitions are based on his
most preferred and least preferred player in his coalition, respectively), and roommate
games.

Many of our results, both positive and negative, rely on the concept of perfection
and how it relates to Pareto optimality. A perfect partition is one that is most desir-
able for every player. We find (a) that under extremely mild conditions, NP-hardness
of finding a perfect partition implies NP-hardness of finding a Pareto optimal parti-
tion (Lemma 1), and (b) that under stronger but equally well-specified circumstances,
feasibility of finding a perfect partition implies feasibility of finding a Pareto optimal
partition (Lemma 2). The latter we show via a Turing reduction to the problem of com-
puting a perfect partition. At the heart of this algorithm, which we refer to as the Pref-
erence Refinement Algorithm (PRA), lies a fundamental insight of how perfection and
Pareto optimality are related. It turns out that a partition is Pareto optimal for a particu-
lar preference profile if and only if the partition is perfect for another but related profile
(Theorem 1). In this way PRA is also applicable to any other discrete allocation setting.

For general allocation problems, serial dictatorship—which chooses subsequently
the most preferred allocation for a player given a fixed ranking of all players—is well-
established as a procedure for finding Pareto optimal solutions (see, e.g., [1]). However,
it is only guaranteed to do so, if the players’ preferences over outcomes are strict, which
is not feasible in many compact representations. Moreover, when applied to coalition
formation games, there may be Pareto optimal partitions that serial dictatorship is un-
able to find, which may have serious repercussions if also other considerations, like
fairness, are taken into account. By contrast, PRA handles weak preferences well and
and is complete in the sense that it may return any Pareto optimal partition, provided
that the subroutine that calculates perfect partitions can compute any perfect partition
(Theorem 2).

2 Preliminaries
In this section, we review the terminology and notation used in this paper.

Hedonic games Let N be a set of n players. A coalition is any non-empty subset of N.
By .4/ we denote the set of coalitions player i belongs to, i.e., 4 ={S CN:i€e S} A



coalition structure, or simply a partition, is a partition r of the players N into coalitions,
where 7(7) is the coalition player i belongs to.

A hedonic game is a pair (N,R), where R = (Ry,...,R,) is a preference profile
specifying the preferences of each player i as a binary, complete, reflexive, and transitive
preference relation R; over ;. If R; is also anti-symmetric we say that i’s preferences
are strict. We adopt the conventions of social choice theory by writing S P; T if S R; T
but not T R; S—i.e., if i strictly prefers S to T—and S I; T if both S R; T and T R; S—
i.e., if i is indifferent between S and T.

For a player i, a coalition S in .4/ is acceptable if for i being in S is at least preferable
as being alone—i.e., if S R; {i}—and unacceptable otherwise.

In a similar fashion, for X a subset of .4;, a coalition S in X is said to be most
preferred in X by i if S R; T for all T € X and least preferred in X by i if T R; S for all
T € X.In case X = .4} we generally omit the reference to X. The sets of most and least
preferred coalitions in X by i, we denote by maxg, (X) and ming, (X), respectively.

In hedonic games, players are only interested in the coalition they are in. Accord-
ingly, preferences over coalitions naturally extend to preferences over partitions and we
write 7 R; i’ if (i) R; 7' (i). We also say that partition 7 is acceptable or unacceptable
to a player i according to whether (i) is acceptable or unacceptable to i, respectively.
Moreover, 7 is individually rational if 7 is acceptable to all players. A partition 7 is
Pareto optimal for R if there is no partition n” with 7’ R;  for all players j and n’ P;
for at least one player i. Partition  is, moreover, said to be weakly Pareto optimal for R;
if there is no " with 7’ P; r for all players i.

Classes of hedonic games The number of potential coalitions grows exponentially in
the number of players. In this sense, hedonic games are relatively large objects and for
algorithmic purposes it is often useful to look at classes of games that allow for concise
representations.

For general hedonic games, we will assume that each player expresses his prefer-
ences only over his acceptable coalitions. This representation is also known as Repre-
sentation by Individually Rational Lists of Coalitions [2].

We now describe classes of hedonic games in which the players’ preferences over
coalitions are induced by their preferences over the other players. For R; such prefer-
ences of player i over players, we say that a player j is acceptable to i if jR;i and
unacceptable otherwise. Any coalition containing an unacceptable player is unaccept-
able to player i.

Roommate games. The class of roommate games, which are well-known from the
literature on matching theory, can be defined as those hedonic games in which only
coalitions of size one or two are acceptable and preferences R; over other players are
extended naturally over preferences over coalitions in the following way: {i, j} R;{i, k} if
and only if jR; k for all j,k € N.

B-hedonic and W-hedonic games. For a subset J of players, we denote by maxg,(J)
and ming,(J) the sets of the most and least preferred players in J by i, respectively. We
will assume that maxg,(0) = ming,(0) = {i}. In a B-hedonic game the preferences R; of
a player i over players extend to preferences over coalitions in such a way that, for all
coalitions S and T in .4, we have S R; T if and only if jR; k for all j € maxg, (S \({i}) and
k € maxg,(T'\{i}) or some jin T is unacceptable to i. Analogously, in a W-hedonic game



(N,R), we have S R; T if and only if jR; k for all j € ming, (S \ {i}) and k € ming,(T \ {i})
or some j in T is unacceptable to i.!

3 Perfection and Pareto Optimality

Pareto optimality constitutes rather a minimal efficiency requirement on partitions. A
much stronger condition is that of perfection. We say that a partition r is perfect if n(i)
is a most preferred coalition for all players i. Thus, every perfect partition is Pareto
optimal but not necessarily the other way round. Perfect partitions are obviously very
desirable, but, in contrast to Pareto optimal ones, they are unfortunately not guaran-
teed to exist. Nevertheless, there exists a strong structural connection between the two
concepts, which we exploit in our algorithm for finding Pareto optimal partitions in
Section 4.

The problem of finding a perfect partition (PerfectPartition) we formally spec-
ify as follows.

PerfectPartition
Instance: A preference profile R
Question: Find a perfect partition for R.
If no perfect partition exists, output 0.

We will later see that the complexity of PerfectPartition depends on the specific
class of hedonic games that is being considered. By contrast, the related problem of
checking whether a partition is perfect is an almost trivial problem for virtually all
reasonable classes of games. If perfect partitions exist, they clearly coincide with the
Pareto optimal ones. Hence, an oracle to compute a Pareto optimal partition can be used
to solve PerfectPartition. If this Pareto optimal partition is perfect we are done, if
it is not, no perfect partitions exist. Thus, we obtain the following simple lemma, which
we will invoke in our hardness proofs for computing Pareto optimal partitions.

Lemma 1. For every class of hedonic games for which it can be checked in polynomial
time whether a given partition is perfect, NP-hardness of PerfectPartition implies
NP-hardness of computing a Pareto optimal partition.

It might be less obvious that a procedure solving PerfectPartition can also
be deployed as an oracle for an algorithm to compute Pareto optimal partitions. To
do so, we first give a characterization of Pareto optimal partitions in terms of perfect
partitions, which forms the mathematical heart of the Preference Refinement Algorithm
to be presented in the next section.

The connection between perfection and Pareto optimality can intuitively be ex-
plained as follows. If all players are indifferent among all coalitions, all partitions are
perfect. It follows that the players can always relax their preferences up to a point where

! W-hedonic games are equivalent to hedonic games with #-preferences if individually ra-
tional outcomes are assumed. Unlike hedonic games with Z-preferences, B-hedonic games
are defined in analogy to W-hedonic games and the preferences are not based on coalition
sizes (cf. [7]).



perfect partitions become possible. We find that, if a partition is perfect for a minimally
relaxed preference profile—in the sense that, if any one player relaxes his preferences
only slightly less, no perfect partition is possible anymore—, this partition is Pareto
optimal for the original unrelaxed preference profile. To see this, assume 7 is perfect in
some minimally relaxed preference profile and that some player i reasserts some strict
preferences he had previously relaxed, thus rendering m no longer perfect. Now, & does
not rank among i’s most preferred partitions anymore. By assumption, none of i’s most
preferred partitions is also most preferred by all other players. Hence, it is impossi-
ble to find a partition 7’ that is better for i than 7, without some other player strictly
preferring « to ' It follows that 7 is Pareto optimal.

To make this argumentation precise, we introduce the concept of a coarsening of a

preference profile and the lattices these coarsenings define. Let R = (Ry,...,R,) and
R = (R},...,R)) be preference profiles over a set X and let i be a player. We write
R; <; R} if

Ril(xy) = R|(x,y) for all x € X and all y € X \ maxg, (X).

Accordingly, R; is exactly like R}, except that in R} player i may have strict preferences
among some of his most preferred coalitions in R;. Thus, R; is finer than R;. For in-
stance, let R;, R, RY, and R’ be such that | P; 7y P; 3, 7y I 7ty Pl 3, my P! mp I 73,
and 7y I mo I7” 73, then RY” <; R} <; R; and R’ <; RY, but not R’ <; R;. It can easily
be established that <; is a linear order for each player i.

We say that a preference profile R = (Ry,...,R,) over X is a coarsening of or
coarsens another preference profile R” = (R},...,R}) over X whenever R; <; R! for
every player i. In that case we also say that R’ refines R and write R < R’. Moreover, we
write R<R’ if R<R’ but not R’<R. Thus, if R’ refines R, i.e., if R < R’, then for each i
and all coalitions S and T we have that § R; T implies S R; T', but not necessarily the
other way round. It is worth observing that, if a partition is perfect for some preference
profile R, then it is also perfect for any coarsening of R. The same holds for Pareto
optimal partitions.

For preference profiles R and R’ with R < R’, let [R, R’] denote the set {R”" : R <
R” < R'}, i.e., the set of all coarsenings of R’ that also refine R. ([R, R'], <) is a complete
lattice with R and R’ as bottom and top element, respectively. We say that R covers R’
if R is a minimal refinement of R” with R” # R, i.e., if R* < R and there is no R” such
that R” < R” < R. Observe that, if R covers R’, R and R’ coincide for all but one player,
say i, for whom R; is the unique minimal refinement of R such that R # R;. We also
denote R; by Cover(R)). If no cover of R! exists, Cover(R!) returns the empty set.

We are now in a position to prove the following theorem, which characterizes Pareto
optimal partitions for a preference profile R as those that are perfect for particular coars-
enings R’ of R. These R’ are such that no perfect partitions exist for any preference
profile that covers R’.

Theorem 1. Ler (N,R") and (N,R*) be hedonic games such that R+ < R" and  a
perfect partition for R*. Then, r is Pareto optimal for R" if and only if there is some R €
[R*,R™] such that (i)  is a perfect partition for R and (ii) there is no perfect partition
for any R’ € [R*,R™] that covers R.



Proof. For the if-direction, assume there is some R € [R*,R"] such that 7 is perfect
for R and there is no perfect partition for any R’ € [R*, R"] that covers R. For contra-
diction, also assume 7 is not Pareto optimal for RT. Then, there is some 7’ such that
n’ R} n for all j and 2" P = for some i. By R < R" and x being perfect for R, it fol-
lows that ’ is a perfect partition for R as well. Hence, 7’ I; m. It follows that there is
some R = (Ry,...,Ri_1,R},Ri11,...,R,) in ([R.,R™], <) that covers R. Also observe
that, because R is the unique minimal refinement of R; such that R; <; R}, and ' P[
even if 7’ I; m, ' is still perfect for R’, a contradiction.

For the only-if direction assume that 7 is Pareto optimal for RT. Let R be the finest
coarsening of R" in [RT, R*] for which r is perfect. Observe that R = (Ry,...,R,) can
be defined such that R; = R U{(X,Y) : XR] mand Y R n} for all i. Since r is perfect
for R+, we have R* < R. If R = R", we are done immediately. Otherwise, consider an
arbitrary R’ € [R*,R™] that covers R and assume for contradiction that some perfect
partition 7’ exists for R’. Then, in particular, 7’ R,’( n for all k. Since R’ covers R, there is
exactly one i with R} # R;, whereas R; = R; for all j # i. As m is perfect for R, we also
have nR’]. n’ for all j # i. Since R’ is a finer coarsening of R" than R, & is not perfect
for R’ by assumption. It follows that 7" P n. Hence, 7 is not Pareto optimal for R’. As
R’ < RT, we may conclude that 7 is not Pareto optimal for R", a contradiction. O

4 The Preference Refinement Algorithm

In this section, we present the Preference Refinement Algorithm (PRA), a general algo-
rithm to compute Pareto optimal and individually rational partitions. The algorithm
invokes an oracle solving PerfectPartition and is based on the formal connec-
tion between Pareto optimality and perfection made explicit in Theorem 1. We define
PerfectPartition to return ( if R; = @ for some i.

The idea underlying the algorithm is as follows. To calculate a Pareto optimal and
individually rational partition for a hedonic game (N, R), first find that coarsening R’
of R in which each player is indifferent among all his acceptable coalitions and his pref-
erences among unacceptable coalitions are as in R. In this coarsening, a perfect and indi-
vidually rational partition is guaranteed to exist. Then, we search the lattice ([R’, R], <)
for a preference profile that allows for a perfect partition but none of the profiles cover-
ing it do. By virtue of Theorem 1, every perfect partition for such a preference profile
will be a Pareto optimal partition for R. By only refining the preferences of one player at
a time, we can use divide-and-conquer to conduct the search. A formal specification of
PRA is given in Algorithm 1. Refine(Q;, Q) returns a refinement Q' € (Q;, Q1. i.e.,
Q' is a refinement of Q" but not a refinement of Q.. Refine(Q:, Q) can be defined
in at least three fundamental ways:

(i) Refine(Qi, Q) = Q! such that the number of refinements from Q" to Q! is
half of the number of refinements from Q" to Q] (default divide-and-conquer
setting);

(if) Refine(Q;, Q) = Q] (random dictatorship setting); and

(iii) Refine(Q;, Q) = Cover(Q:).

The following theorem shows the correctness and completeness of PRA.



Algorithm 1 Preference Refinement Algorithm (PRA)
Input: Hedonic game (N, R)
Output: Pareto optimal and individually rational partition

1 QIT «— R;,foreachi e N

2 Qf <« R U{X,Y): XR;{i}and Y R; {i}}, foreachi e N

3 J«N

4 while J # 0 do

5 iel

6 if PerfectPartition(V, (Qy,..., Q) ,,Cover(QH), Q). ..., 0y)) =0 then
7 J — J\{i}

8 else

9 Q) < Refine(Q;, Q)

10 if PerfectPartition(VN, (Q7,..., 04,0, 0Fy, ..., Ox)) # 0 then
11 0 « Q)
12 else

13 Q] « Q! where Cover(Q}) = Q.
14 end if
15 end if

16 end while
17 return PerfectPartition(N, Q*)

Theorem 2. For any hedonic game (N, R),

(i) PRA returns an individually rational and Pareto optimal partition.
(if) For every individually rational and Pareto optimal partition 7', there is an execu-
tion of PRA that returns a partition ©t such that n I; o’ for all i in N.

Proof. For (i), we prove that during an execution of PRA, for each assignment of Q*,
there exists a perfect partition r for that assignment. This claim certainly holds for the
first assignment of Q*, the coarsest acceptable coarsening of R. Furthermore, O+ is
only refined (Step 9) if there exists a perfect partition for a refinement of Q+. Let O*
be the final assignment of Q+. Then, we argue that the partition 7 returned by PRA is
Pareto optimal and individually rational. By Theorem 1, if  were not Pareto optimal,
there would exist a covering of Q* for which a perfect partition still exists and Q* would
not be the final assignment of Q*. Since, each player at least gets one of his acceptable
coalitions, 7 is also individually rational.

For (i), first observe that, by Theorem 1, for each Pareto optimal and individually
rational partition 7 for a preference profile R there is some coarsening Q* of R where 7
is perfect and no perfect partitions exist for any covering of Q*. By individual rationality
of r, it follows that Q* is a refinement of the initial assignment of Q. An appropriate
number of coverings of the initial assignment of Q+ with respect to each player results
in a final assignment Q* of Q*. The perfect partition for Q* that is returned by PRA is
then such that 7 I; 7’ for all i in N. a

We now specify the conditions under which PRA runs in polynomial time.



Lemma 2. For any class of hedonic games for which any coarsening and
PerfectPartition can be computed in polynomial time, PRA runs in polynomial
time.

Furthermore, if for a given preference profile R and partition r, a coarsening of R
for which r is perfect can be computed in polynomial time, it can also be verified in
polynomial time whether r is Pareto optimal.

Proof (Sketch). Under the given conditions, we prove that PRA runs in polynomial
time. We first prove that the while-loop in PRA iterates a polynomial number of times.
In each iteration of the while-loop, either a player i which cannot be further improved
is removed from J (Step 7) or we enter the first else condition. In the first else, either
QO+ issetto Q! or Q/ is set to Q) where Cover(Q!) = Q.. In either case, we discard
from future consideration, half of the refinements of Q: due to the default divide-and-
conquer definition of Refine in order to find a suitable refinement of the current Q+
with respect to i. Therefore, even if the representation of (N, R) may be such that each
player differentiates between an exponential number of coalitions, divide-and-conquer
ensures that PRA iterates a polynomial number of times. As the crucial subroutine
PerfectPartition takes polynomial time, PRA runs in polynomial time.

For the second part of the lemma, we run PRA to find a Pareto optimal partition that
Pareto dominates 7. We therefore modify Step 2 by setting Q;- to a coarsening of R for
which 7 is a perfect partition. Since such a coarsening can be computed in polynomial
time as stated by the condition in the lemma, Step 2 takes polynomial time. Since an
initial perfect partition exists for Q;-, we run PRA as usual after Step 2. O

PRA applies not only to general hedonic games but to many natural classes of hedo-
nic games in which equivalence classes (of possibly exponentially many coalitions) for
each player are implicitly defined.” In fact PRA runs in polynomial time even if there
are an exponential number of equivalence classes. Note that the lattice [Q+, R] can be
of exponential height and doubly-exponential width. PRA traverses though this lattice
in an orderly way to compute a Pareto optimal partition.

Serial dictatorship is a well-studied mechanism in resource allocation, in which an
arbitrary player is chosen as the ‘dictator’ who is then given his most favored alloca-
tion and the process is repeated until all players or resources have been dealt with. In
the context of coalition formation, serial dictatorship is well-defined only if in every
iteration, the dictator has a unique most preferred coalition.

Proposition 1. For general hedonic games, W-hedonic games, and roommate games,
a Pareto optimal partition can be computed in polynomial time when preferences are
strict.

Proposition 1 follows from the application of serial dictatorship to hedonic games
with strict preferences over the coalitions. If the preferences over coalitions are not
strict, then the decision to assign one of the favorite coalitions to the dictator may be

2 For example, in W-hedonic games, maxg,(N) specifies the set of favorite players of player i
but can also implicitly represent all those coalitions S such that the least preferred player in S
is also a favorite player for i.



sub-optimal. Even if players expresses strict preferences over other players, serial dic-
tatorship may not work if the preferences induced over coalitions admit ties.

We see that if serial dictatorship works properly and efficiently in some setting,
then so can PRA by simulating serial dictatorship. If in each iteration in Algorithm 1,
the same player is chosen in Step 5 (until it is deleted from J) and Q] is chosen in
Step 9, then PRA can simulate serial dictatorship. Therefore PRA can also achieve the
positive results of Proposition 1.

PRA has another advantage over serial dictatorship. Abdulkadiroglu and S6nmez
[1] showed that in the case of strict preferences and house allocation settings, every
Pareto optimal allocation can be achieved by serial dictatorship. In the case of coali-
tion formation, however, it is easy to construct a four-player hedonic game with strict
preferences for which there is a Pareto optimal partition that serial dictatorship cannot
return.

5 Computational results

In this section, we consider the problem of VErIFicaTION (verifying whether a given
partition is Pareto optimal) and CompuTaTION (cOomputing a Pareto optimal partition) for
the classes and representations of hedonic games mentioned in the preliminaries.

5.1 General hedonic games

As shown in Proposition 1, Pareto optimal partitions can be found efficiently for general
hedonic games with strict preferences. If preferences are not strict, the problem turns
out to be NP-hard. We prove this statement by utilizing Lemma 1 and showing that
PerfectPartition is NP-hard by a reduction from ExactCoverBy3SEeTs (X3C).

Theorem 3. For a general hedonic game, computing a Pareto optimal partition is NP-
hard even when each player has a maximum of four acceptable coalitions and the max-
imum size of each coalition is three.

Interestingly, verifying Pareto optimality is coNP-complete even for strict prefer-

ences.

Theorem 4. For a general hedonic game, verifying whether a partition r is Pareto op-
timal and whether n is weakly Pareto optimal is coNP-complete even when preferences
are strict and ©t consists of the grand coalition of all players.

5.2 Roommate games
For the class of roommate games, we obtain more positive results.

Theorem 5. For roommate games, an individually rational and Pareto optimal coali-
tion can be computed in polynomial time.

3 Theorem 4 contrasts with the general observation that “in the area of matching theory usually
ties are ‘responsible’ for NP-completeness” [5].



Proof (Sketch). We utilize Lemma 1. It is sufficient to show that PerfectPartition
can be solved in time O(n?).

We say that j € F(i) if and only if j is a favorite player in i’s preference list.
Construct an undirected graph G = (V, E) where V. = N U (N x{0}), E = {{i, j} : i #
JNieF(DAje F(DYU L@ 0)}:ie FO).

Then the claim is that there exists a perfect partition for (&, R) if and only if there
exists a matching of size n in graph G. It is clear that in a matching of size n, each
v € N is matched. If there exists a perfect partition, then each player in N is matched to
a player j # i such that j € F(7) or i is unmatched but i € F(i). In either case there exists
a matching M in which i is matched. In the first case, i is matched to j in a matching M
in G. In the second case, i is matched to (i, 0).

Now assume that there exists a matching M of size n in G. Then, each i € N is
matched to j # i or (i,0). If i is matched to j, then we know {i, j} € E and therefore
j € F(). If i is matched to (i, 0), then we know {i, (i,0)} € E and therefore i € F(i).
Thus, there exists a perfect partition. O

By utilizing the second part of Lemma 1, it can be seen that there exists an algorithm
to compute a Pareto optimal improvement of a given roommate matching which takes
time O(n?) - O(nlog(n)) = O(n*log(n)). As a corollary we get the following.

Theorem 6. For roommate games, it can be checked in polynomial time whether a
partition is Pareto optimal.

We can devise a tailor-made algorithm for roommate games which finds a Pareto
optimal Pareto improvement of a given matching in O(n*)—the same asymptotic com-
plexity required by the algorithm of Morrill [11] for the restricted case of strict prefer-
ences.

5.3 W-hedonic games
We now turn to Pareto optimality in W-hedonic games.

Theorem 7. For W-hedonic games, a partition that is both individually rational and
Pareto optimal can be computed in polynomial time.

Proof (sketch). The statement follows from Lemma 2 and the fact that
PerfectPartition can be solved in polynomial time for W-hedonic games.
The latter is proved by a polynomial-time reduction of PerfectPartition to a
polynomial-time solvable problem called clique packing.

We first introduce the more general notion of graph packing. Let .% be a set of
undirected graphs. An .%-packing of a graph G is a subgraph H such that each com-
ponent of H is (isomorphic to) a member of .%. The size of .%-packing H is |V(H)|.
We will informally say that vertex i is matched by #-packing H if i is in a connected
component in H. Then, a maximum .% -packing of a graph G is one that matches the
maximum number of vertices. It is easy to see that computing a maximum {K;}-packing
of a graph is equivalent to maximum cardinality matching. Hell and Kirkpatrick [10]
and Cornuéjols et al. [8] independently proved that there is a polynomial-time algorithm

10



to compute a maximum {Kj, ..., K, }-packing of a graph. Cornuéjols et al. [8] note that
finding a {Kj, . .., K, }-packing can be reduced to finding a {K>, K3}-packing.

We are now in a position to reduce PerfectPartition for W-hedonic games to
computing a maximum {K,, K3}-packing. For a W-hedonic game (N, R), construct a
graph G = (N U (N X {0, 1}), E) such that {(i,0),(i,1)} € E for all i € N; {i,j} €
E if and only if i € maxg,(N) and j € maxg(N) for i, j € N such that i # j; and
{i, (,0)},{i, (i, 1)} € E if and only if i € maxg,(N) for all i € N. Let H be a maximum
{K>, K3}-packing of G.

It can then be proved that there exists a perfect partition of N according to R if and
only if |V(H)| = 3|N|. We omit the technical details due to space restrictions.

Since PerfectPartition for W-hedonic games reduces to checking whether
graph G can be packed perfectly by elements in .# = {K;, K3}, we have a polynomial-
time algorithm to solve PerfectPartition for W-hedonic games. Denote by CC(H)
the set of connected components of graph H. If |V(H)| = 3|N| and a perfect partition
does exist, then {V(S)NN: S € CC(H)} \ {0} is a perfect partition. m]

Due to the second part of Lemma 2, the following is evident.

Theorem 8. For W-hedonic games, it can be checked in polynomial time whether a
given partition is Pareto optimal or weakly Pareto optimal.

Our positive results for W-hedonic games also apply to hedonic games with #-
preferences.

5.4 B-hedonic games

We saw that for W-hedonic games, a Pareto optimal partition can be computed effi-
ciently, even in the presence of unacceptable players. In the absence of unacceptable
players, computing a Pareto optimal and individually rational partition is trivial in B-
hedonic games, as the partition consisting of the grand coalition is a solution.

Interestingly, if preferences do allow for unacceptable players, the same problem
becomes NP-hard. The statement is shown by a reduction from Sar.

Theorem 9. For B-hedonic games, computing a Pareto optimal partition is NP-hard.
By using similar techniques, the following can be proved.

Theorem 10. For B-hedonic games, verifying whether a partition is weakly Pareto op-
timal is coNP-complete.

We expect the previous result to also hold for Pareto optimality rather than weak
Pareto optimality.

6 Conclusions

Pareto optimality and individual rationality are important requirements for desirable
partitions in coalition formation. In this paper, we examined computational and struc-
tural issues related to Pareto optimality in various classes of hedonic games (see Ta-
ble 1). We saw that unacceptability and ties are a major source of intractability when
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Game 'VERIFICATION COMPUTATION

General coNP-complete (Th. 4) NP-hard (Th. 3)
General (strict) coNP-complete (Th. 4) in P (Prop. 1)
Roommate in P (Th. 6) in P (Th. 5)
B-hedonic coNP-complete (Th. 10, weak PO) NP-hard (Th. 9)
W-hedonic in P (Th. 8) in P (Th. 7)

Table 1. Complexity of Pareto optimality in hedonic games: positive results hold for both Pareto
optimality and individual rationality.

computing Pareto optimal outcomes. In some cases, checking whether a given partition
is Pareto optimal can be significantly harder than finding one.

It should be noted that most of our insights gained into Pareto optimality and the re-

sulting algorithmic techniques—especially those presented in Section 3 and Section 4—
do not only apply to coalition formation but to any discrete allocation setting.
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