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Abstract A common thread in the social sciences is to identify setdtefraatives that sat-
isfy certain notions of stability according to some binapminance relation. Examples can
be found in areas as diverse as voting theory, game theahg@umentation theory. Brandt
and Fischer [7] proved that it is NP-hard to decide whetherlégrnative is contained in
some inclusion-minimal unidirectional (i.e., either updi@r downward) covering set. For
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minimal or minimum-size unidirectional covering sets aaechor complete for either of NP,
CcoNP, and@g. An important consequence of our results is that neitheim@hupward nor
minimal downward covering sets (even when guaranteed sh)edan be computed in polyno-
mial time unless = NP. This sharply contrasts with Brandt and Fischer’s rabalt minimal
bidirectional covering sets are polynomial-time compigab
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1 Introduction

A common thread in the social sciences is to identify setdtefraatives that satisfy certain
notions of stability according to some binary dominancatieh. Applications range from
cooperative to non-cooperative game theory, from sociailcehtheory to argumentation the-
ory, and from multi-criteria decision analysis to sportsrttaments (see, e.g., [33,7] and the
references therein). To give an example from cooperativeegdneory, von Neumann and
Morgenstern [40] introduced the notion stfable setas the set of (“ficient” and “individu-
ally rational™) paydf vectors in a cooperative game that satisfies latéernal stability (no
vector in this set is dominated by another vector in the sed)external stability(every vec-
tor outside this set is dominated by some vector inside the Bee underlying dominance
relation is defined as follows: A pafforectorx = (xg, Xo, . . ., Xn) dominatesa paydf vector

Yy = (Y1, Y2, ..., Yn) if there is a nonempty coalitioB of players such that; > y; foralli € C
and Y i.c X is bounded above by the profit the playergdrcan make on their own. Stable
sets exist for some, but not for all cooperative games [34],ifithey exist, they need not be
unigue [35]. Brandt and Fischer [7] proved that every stabtés a “minimal upward covering
set” and thus contained in the “upward uncovered set” (thesiens, which are central to the
present paper, will be defined formally in Section 2).

In settings of social choice, the most common dominancéoelés the pairwisenajority
relation, where an alternative is said todominateanother alternativg (written x > vy) if
the number of individuals preferring to y exceeds the number of individuals preferring
to x. McGarvey [36] proved thatveryasymmetric dominance relation can be realized via a
particular preference profile, even if the individual prefeces are linear.

Fig. 1 Dominance graph4; >).

For the setA = {a, b, ¢, d} of alternatives, the dominance graph ¢) shown in Figure 1
may for example result from the individual preferences af\gters given in the following
table, where each column represents a number of voters véafenences given in decreasing
order. For example, the first column represents two voters nahk the alternatives in alpha-
betical order. Observe that alternataés preferred to alternativie by four out of six voters,
which is why there is an edge froato b (i.e.,a > b) in the corresponding dominance graph.

2 1 1 1 1
a d c b d
b a d ¢ a
c b b d ¢
d ¢c a a b

1 Such payé vectors are calle@imputations see, e.g., [12,40] for the game-theoretic notions not ddfirere.
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A well-known paradox due to the Marquis de Condorcet [13ksaat the majority rela-
tion may contain cycles and thus does not always admit md>dtaments, even if all of the
underlying individual preferences do. Consider, for exlanghe three individual preference
relationsa >; b >; ¢, b >, ¢ >, a, andc >3 a >3 b. Here, a majority preferato b andb
to c, but alsoc to a. This means that although the individual preferengeare each transitive,
the resulting dominance relatioa ¢- b > ¢ > a) is not, so the concept of maximality is
rendered useless in such cases. For this reason, varieusadiftesolution conceptthat can
be used in place of maximality for nontransitive relatiosesg, e.g., [33]) have been proposed.
In particular, concepts based oavering relations—transitive subrelations of the dominance
relation at hand—have turned out to be very attractive [2(18].

In this paper, we study the computational complexity of peois related to the notions of
upward and downward covering sets in dominance graphs.tamativex is said toupward
cover another alternativeg if x dominatesy and every alternative dominatingalso domi-
natesy. The intuition is thatx “strongly” dominateg in the sense that there is no alternative
that dominatex but noty. Looking for example at the dominance grapt ) in Figure 1,
although alternativa dominates alternativie, a does not upward covdr, since alternativel
dominatesa but notb. On the other hand, alternatibedoes upward cover alternatiegsince
b dominates, and the only alternative dominatitgnamelya, also dominates.

Similarly, an alternativex is said todownward coveanother alternativg if x dominates
y and every alternative dominated lgyis also dominated by. The intuition here is thax
“strongly” dominatesy in the sense that there is no alternative dominatey byt not byx.
Again looking at the dominance graph,{) from Figure 1,a downward cover®, sincea
dominates both andc, the only alternative dominated byHowever, although dominate<,

b does not downward cover sinceb does not dominatd, which is dominated by.

A minimal upwardor minimal downward covering sét defined as an inclusion-minimal
set of alternatives that satisfies certain notions of irsteamd external stability with respect
to the upward or downward covering relation [16, 7] (cf. tloe\WNeumann and Morgenstern
stable sets in cooperative game theory mentioned in thefirsigraph of the introduction), as
will be formally stated in Definition 3 in Section 2.

Recent work in computational social choice has addresseddimputational complexity
of most solution concepts proposed in the context of binamidance (see, e.g., [53,2,14,8,
7,9)). In particular, Brandt and Fischer [7] have shown thatminimal bidirectional cover-
ing set can be computed in polynomial time, where an altemmatis said tobidirectionally
cover another alternativeif x coversy upward and downward. Due to its properties this set
is particularly attractive from a social-choice-theorgtoint of view (see the references cited
in [7]). On the other hand, Brandt and Fischer [7] show NRdhass of both the problem of
deciding whether an alternative is contained in some mihirpavard covering set and the
problem of deciding whether an alternative is containedoime minimal downward cover-
ing set. For both problems, we improve on these results tyn@githeir NP-hardness lower
bounds to th@zp level of the polynomial hierarchy, and we provide an uppanr‘mbofzg.
Moreover, we will analyze the complexity of a variety of atlpgoblems related to minimal
and minimum-size upward and downward covering sets that hat been studied before.
In particular, we provide hardness and completeness sefulthe complexity classes NP,
CONP, and@S. A complete overview of our complexity results is preseritedables 1 and 2
in Section 3. Remarkably, these new results imply that eeithinimal upward covering sets
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nor minimal downward covering sets (even when guaranteexlish) can be found in polyno-
mial time unless = NP. This sharply contrasts with Brandt and Fischer’s abhoestioned
result that minimabidirectionalcovering sets are polynomial-time computable [7]. Note,tha
notwithstanding the hardness of computing minimal upwarekdng sets, the decision ver-
sion of this search problemiis trivially in P: Every dominamgaph always contains a minimal
upward covering set.

Put into a wider perspective, this work adds to a growing bafdyomplexity and hardness
results for the lower levels of the polynomial hierarchy, fooblems arising in various areas,
such as optimization problems iagic (see, e.g., [49,29] and also the surveys by Schaefer
and Umans [46,47])pgic programmingandreasoningsee, e.g., [17,18] and also the survey
by Eiter and Gottlob [19])graph theory(see, e.g., [51,26,29,27]), voting problemsaortial
choice theorysee, e.g., [23,45,28] and also the survey by Hemaspaanald24]), and fair
division problems imultiagent resource allocatiofsee, e.g., [6]).

This paper is organized as follows. Section 2 provides tieeleé definitions and notation,
and Section 3 states all results and a discussion of thetsesdier presenting the construc-
tions for minimal and minimum-size upward covering sets @ct®n 4.1, the proofs of the
results on minimal and minimum-size upward covering se¢sgiven in Section 4.2. Sec-
tion 5.1 presents the constructions for minimal and minirrsire downward covering sets
and Section 5.2 gives the proofs of the results on minimalmimimum-size downward cov-
ering sets. Finally Section 6 concludes this paper.

2 Definitions and Notation

In this section, we define the necessary concepts from sdeiate theory and complexity
theory.

Definition 1 (Covering Relations)Let A be a finite set of alternatives, |1& C A, and let
> C AxA be a dominance relation ok i.e.,> is asymmetric and irreflexiveA dominance
relation> on a setA of alternatives can be conveniently represented dsmainance graph
denoted by A, >), whose vertices are the alternatives frégrand for eactx,y € Athere is a
directed edge fromtoyif and only if x > .

For any two alternativeg andy in B, define the following covering relations (see, e.g.,
[20,39,5]):

— x upward covers y in Bdenoted by CBy, if x > y and for allze B, z > ximpliesz > y,
and

— x downward covers y in Blenoted byx Cg‘ y, if x > y and for allz € B,y > zimplies
X>Z

When clear from the context, we omit mentioning ‘i explicitly and simply writexC,y
rather thark CJy, andx Cq y rather tharx Cg .

2 |n general,> need not be transitive or complete. For alternatixeandy, x > y (equivalently, k. y) € >) is
interpreted a being strictly preferred ty (and we say % dominatesy”), e.g., due to a strict majority of voters
preferringx toy (recall Figure 1 for an example).
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Definition 2 (Uncovered Set)Let A be a set of alternatives, IBtC A be any subset, let be
a dominance relation oA, and letC be a covering relation oA based on-. Theuncovered
set of B with respect to & defined as

UCc(B) ={ye B | xCyfornoxe B}.

For notational convenience, let Y®) = UCc,(B) for z € {u,d}, and we call UG(B) the
upward uncovered set of &d UG (B) thedownward uncovered set of B

Example 1 (Upward and Downward Uncovered S@it)ce in the dominance grapi,¢)
from Figure 1 in the introduction,

— bupward covers in A (i.e.,b C/) c), but no element ik exceptc is upward covered, and
— adownward coverbin A (i.e.,acﬁ b), but no element i\ exceptb is downward covered,

UCy(A) = {a, b, d} is the upward uncovered set and YE) = {a,c,d} is the downward un-
covered set oA.

For both the upward and the downward covering relation (efemth both will be called
unidirectional covering relationstransitivity of the relation implies nonemptiness of tioe-
responding uncovered set for each nonempty set of alteesafl he intuition underlying cov-
ering sets is that there should be no reason to restrict theta by excluding some alter-
native from it (internal stability) and there should be aguanent against each proposal to
include an outside alternative into the selection (extestadbility).

Definition 3 (Minimal Covering Set) Let A be a set of alternatives, let be a dominance
relation onA, and letC be a covering relation based snA subsetB C Ais acovering set for
A under Cif the following two properties hold:

— Internal stability: UCc(B) = B.
— External stability:For ally e A— B,y ¢ UCc(BU {y}).

A covering setM for A underC is said to be(inclusion-)minimalif no M” c M is a
covering set foA underC.

Example 2 (Minimal Upward and Downward Covering S&gjain looking at the dominance
graph @, >) from Figure 1 in the introduction, note thais neither an upward nor a downward
covering set for itself, since internal stability is viadtin both cases:

UCu(A) = {a,b,d} # A # {a,c,d} = UC4(A).

The seta, b, d} is not an upward covering set féreither, again because it does not satisfy
internal stability: UG({a, b,d}) = {b,d} # {a, b, d}, sinced (being undominated ifa, b, d})
upward covers. However,{b, d} is an upward covering set f@, because it satisfies both

— internal stability, i.e., Ug({b, d}) = {b,d}, and
— external stability, i.e., neithere UCy({a, b, d}) = {b,d} norc € UCy({b, c,d}) = {b,d}, the
latter equality holding due tb (which is undominated ifb, c, d}) upward covering.
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Note that{b, d} is even aminimalupward covering set fol, since every strict subset @, d}
violates external stability and thus is not an upward cavgesiet forA. Moreover,{b, d} is the
unigueminimal upward covering set fak.

If the dominance relatioa > c were missing in4, >), then the resulting dominance graph
would have two minimal upward covering sets fgt{a, c} and{b, d}. That is, minimal upward
covering sets are not guaranteed to be unique.

The unique minimal downward covering set #is {a, ¢, d}, since it satisfies both

— internal stability, i.e., Ug({a, ¢, d}) = {a, c,d}, and
— external stability, i.e.b ¢ UC4(A) = {a, ¢, d}, as we have seen above,

and any strict subset ¢4, c, d} is not a downward covering set f8 as can be easily verified.

Every upward uncovered set contains one or more minimal tgpe@vering sets, whereas
minimal downward covering sets may not always eXianhd if they exist, they need not be
unique [7]. Dutta [16] proposed minimal covering sets in doatext of tournaments, i.e.,
complete dominance relations. In tournaments, both nstidicovering coincide because the
set of alternatives dominating a given alternativeonsists precisely of those alternatives not
dominated byx. Minimal unidirectional covering sets are one of severagilale generaliza-
tions to incomplete dominance relations (for more deta#g [7]). Occasionally, it might be
helpful to specify the dominance relation explicitly to &ambiguity. In such cases we refer
to the dominance graph used and write, e.§l1,i$ an upward covering set foA(>).”

In addition to the (inclusion-)minimal unidirectional cenng sets considered by Brandt
and Fischer [7], we also considainimum-sizeovering sets, i.e., unidirectional covering sets
of smallest cardinality. Note that every minimum-size aavg set is a minimal covering set;
the converse, however, is not always tfulgor some of the computational problems we study,
different complexities can be shown for the minimal and miningire-versions of the prob-
lem (see Theorem 1 and Tables 1 and 2). Specifically, we censixltypes of computational
problems, for both upward and downward covering sets, anédoh both their “minimal”
(prefixed by MG or MCy) and “minimume-size” (prefixed by MSCor MSCy) versions. We
first define the six problem types for the case of minimal upheavering sets:

1. MCy-Size: Given a setA of alternatives, a dominance relatiecnon A, and a positive
integerk, does there exist some minimal upward covering seffopntaining at mosk
alternatives?

2. MC,-MemsBer: Given a setA of alternatives, a dominance relatisnon A, and a distin-
guished elemert € A, isd contained in some minimal upward covering setAGr

3 Consider the seh = {a, b, ¢} of three alternatives with the dominance relation definea byb > c. Note that
A'is not a downward covering set for itself, since it violateteinal stability (UG(A) = {a, b} # A, due toc being
downward covered bl in A); both{a, b} and{b, c} violate internal stability as well (e.g., YQa,b}) = {a} # {a,b});
and external stability is violated bjg, ¢} (due tob € UCqy({a, c} U {b}) = UC4(A) = {a b}), each singletond
UCq(fa} U {c}) = {a, ¢} shows this forta}, a € UCy({b} U {a}) = {a} works for{b}, andb € UCqy({c} U {b}) = {b} works
for {c}), and the empty set (due to, e.g.€ UCqy(0 U {a}) = {a}). ThusA has no downward covering set at all.

4 Consider, for example, the sét = {a,b,c,d, e} of five alternatives with the dominance relation defined by
a>b>c>d>aandb > e Itis easy to see that botla, c, e} and{b, d} are minimal upward covering sets fér
but only {b, d} is an upward covering set of minimum size farThat is,{a, c, €} is a minimal, but not minimum-size
upward covering set foh.
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3. MC,-MemBer-ALL: Given a setA of alternatives, a dominance relationon A, and a
distinguished elememnt € A, is d contained in all minimal upward covering sets &2

4. MC,-Unigue: Given a setA of alternatives and a dominance relatieron A, does there
exist a unique minimal upward covering set Ag?

5. MC,-Test: Given a sef of alternatives, a dominance relatisron A, and a subsé#l C A,
is M a minimal upward covering set f@?

6. MC,-Finp: Given a sefA of alternatives and a dominance relatiomn A, find a minimal
upward covering set foA.

If we replace “upward” by “downward” above, we obtain the siwrresponding
“downward covering” versions, denoted by MGize, MCy4-MemBer, MCy-MEMBER-ALL,
MCgy-Unique, MCgy-Test, and MG-Fino. And if we replace “minimal” by “minimum-
size” in the twelve problems just defined, we obtain the &poading “minimum-
size” versions: MSG-Size, MSC,-MeMmBER, MSC,-MEeMBER-ALL, MSC,-UN1QuE, MSC,-TEsT,
MSC,-Finp, MSCy-Size, MSCy-MeMBER, MSCy-MemBER-ALL, MSCy-UniQue, MSCy-TEsT,
and MSG-Finp.

Note that the four problems MEFino, MCy-Fino, MSC,-Finp, and MSG-Finp are search
problems, whereas the other twenty problems are decisarigms.

We assume that the reader is familiar with the basic notidrcomplexity theory, such
as polynomial-time many-one reducibility and the relatetlans of hardness and complete-
ness, and also with standard complexity classes such as ,R;dNIP, and the polynomial
hierarchy [38,48] (see also, e.g., the textbooks [41,4d4]particular, cONP is the class of
sets whose complements are in NE.= NP'P, the second level of the polynomial hierarchy,
consists of all sets that can be solved by an NP oracle mattiahéas access (in the sense of
a Turing reduction) to an NP oracle set such as SAT. SAT derbesatisfiability problem of
propositional logic, which is one of the standard NP-cortgpeoblems (see, e.g., Garey and
Johnson [21]) and is defined as follows: Given a boolean ftatimuconjunctive normal form,
does there exist a truth assignment to its variables thiafisatthe formula?

Papadimitriou and Zachos [43] introduced the class of gmoisisolvable in polynomial
time via askingD(logn) sequential Turing queries to NP. This class is also knowth@®?
level of the polynomial hierarchy (see Wagner [52]), and lbesn shown to coincide with the
class of problems that can be decided by a P machine thatsascés NP oracle in a parallel
manner (see [22,31]). Equivalentﬁ]’z? is the closure of NP under polynomial-time truth-table
reductions. It follows immediately from the definitions tiac NP N coNPC NP U coNP ¢
ZgPrs

@g captures the complexity of various optimization problefs.example, the problem of
testing whether the size of a maximum clique in a given gra@niodd number, the problem
of deciding whether two given graphs have minimum verte>ecoof the same size, and the
problem of recognizing those graphs for which certain hetigs yield good approximations
for the size of a maximum independent set or for the size ofrarmim vertex cover each
are known to be complete fairzp (see [51,26,27]). Hemaspaandra and Wechsung [29] proved
that the minimization problem for boolean formulaﬂ%—hard. In the field of computational
social choice, the winner problems for Dodgson [15], Yout4j[ and Kemeny [30] elections
have been shown to @S—complete in the nonunique-winner model [23,45, 28], arso @h
the unique-winner model [25].
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Table 1 Overview of complexity results for the various types of updveovering set problems. As indicated, previ-
ously known results are due to Brandt and Fischer [7]; akiothsults are new to this paper.

Problem Type MG MSC,

Size NP-complete, see Thm. 11 NP-complete, see Thm. 11
MEMBER 65-hard and iz}, see Thm. 12 @5-complete, see Thm. 13
Memeer-ALL  coNP-complete, see [7] 65-complete, see Thm. 13
UNIQUE coNP-hard and ilifg, see Thm. 14 coNP-hard and@i, see Thm. 16
Test coNP-complete, see Thm. 14 coNP-complete, see Thm. 15
Finp not in polynomial not in polynomial

time unless P NP, see Thm. 17 time unless=PNP, see Thm. 17

Table 2 Overview of complexity results for the various types of dewand covering set problems. As indicated,
previously known results are due to Brandt and Fischer [F§itaer results are new to this paper.

Problem Type MG MSCqy
Size NP-complete, see Thm. 27 NP-complete, see Thm. 27
MEMBER 68-hard and inz}, see Thm. 30 coNP-hard andéi, see Thm. 28
Memeer-ALL  coNP-complete, see [7] coNP-hard andd), see Thm. 28
UNIQUE coNP-hard and i}, see Thm. 31 coNP-hard and@g, see Thm. 28
Test coNP-complete, see Thm. 31 coNP-complete, see Thm. 29
Finp not in polynomial not in polynomial

time unless = NP time unless 2 NP, see Thm. 32

(follows from [7], see Thm. 32)

3 Results and Discussion

ResultsBrandt and Fischer [7] proved that it is NP-hard to decidetiviiea given alternative
is contained in some minimal unidirectional covering sedinld the notation of this paper, their
results state that the problems M®emeer and MGy-Memser are NP-hard. The questions of
whether these two problems are NP-complete or of higher txitp and whether minimal
unidirectional covering sets can fmundefficiently (when guaranteed to exist) were left open
in [7]. Our contribution is

1. to raise Brandt and Fischer's NP-hardness lower boundsM@,-MemBer and
MCg4-MEMBER tO @g-hardness and to provide (simplﬁjJ upper bounds for these prob-
lems, and

2. to extend the techniques we developed to apply also tolwtir covering set problems
defined in Section 2, in particular to the search problems.

Our results are stated in the following theorem.
Theorem 1 The complexity of the covering set problems defined in Se2tie as shown in

Table 1 for upward covering set problems and as shown in Talde downward covering set
problems.

The detailed proofs of the single results collected in Theof will be presented in Sec-
tions 4.2 for minimal and minimume-size upward covering setd in Section 5.2 for minimal
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and minimum-size downward covering sets, and the techo@adtructions establishing the
properties that are needed for these proofs are given iio@set. 1 for minimal and minimum-
size upward covering sets and in Section 5.1 for minimal aimdmum-size downward cov-
ering sets

DiscussionWe consider the problems dinding minimal and minimum-size upward and
downward covering sets (M@ no, MCqy-Fino, MSCj-Fino, and MSG-Finp) to be partic-
ularly important and natural.

Regarding upward covering sets, we stress that our resdfl(seorem 17) that, assuming
P # NP, MC,-Fino and MSG-Finp are hard to compute does not seem to follow directly from
the NP-hardness of M@V emaer in any obvious way. The decision version of MED is:
Given a dominance graph, does it contain a minimal upwardriog set? However, this ques-
tion has always anfiirmative answer, so the decision version of M&nb is trivially in P.
Note also that MG-Finp can be reduced in a “disjunctive truth-table” fashion togearch ver-
sion of MG,-Memeer (“Given a dominance graptA(>) and an alternativd € A, find some
minimal upward covering set fagk that containgl”) by asking this oracle set about all alterna-
tives in paralleP So MC,-Finp is no harder (with respect to disjunctive truth-table reiaturs)
than that problem. The converse, however, is not at all alsviBrandt and Fischer’s results
only imply the hardness of finding an alternative that is aored inall minimal upward cov-
ering sets [7]. Our reduction that raises the lower bound €f M emeer from NP-hardness
to @S—hardness, however, also allows us to prove that,M@p and MSG-Fino cannot be
solved in polynomial time unlessPNP.

Regarding downward covering sets, the result thatN@p cannot be computed in poly-
nomial time unless P NP is an immediate consequence of Brandt and Fischer’s thatiit
is NP-complete to decide whether there exists a minimal deawd covering set [7, Thm. 9].
We provide an alternative proof based on our reduction shgtriat MG-MEMBER iS @g-hard
(see the proof of Theorem 32). In contrast to Brandt and Eissproof, our proof shows that
MCq4-Finp is hard to compute even when the existence of a (minimal) d@#th covering set
is guaranteed. As indicated in Tables 1 and 2, coNP-compsteof MG-MemBer-ALL and
MCq4-MemBER-ALL Was also shown previously by Brandt and Fischer [7].

As mentioned above, the two problems MMEemeer and MG-MemBer were already
known to be NP-hard [7] and are here shown to be é@Bihard. One may naturally won-
der whether raising their (or any problem’s) lower boundfrdiP-hardness t@5-hardness
gives us any more insight into the problem’s inherent comfpanal complexity. After all,
P = NP if and only if P= @'2). However, this question is a bit more subtle than that and has
been discussed carefully by Hemaspaandra et al. [24]. Tiadeitine case that the answer to
this question crucially depends on what one considers ttvdentost natural computational
model. In particular, they argue that raising NP—hardne@thardness potentially (i.e., un-
less longstanding open problems regarding the separatitreaorresponding complexity
classes could be solved) is an improvement in terms of raimwhpolynomial time (i.e., for

5 This type of reduction was introduced by Ladner et al. [32fotmally stated, aisjunctive truth-table reduction
between two decision probleméandY computes, given an instaneein polynomial timek queriesys, yo, . . ., Yk
such thatx € X if and only ify; € Y for at least one, 1 < i < k. This reduction can be adapted straightforwardly to
function problemd= andG: F disjunctively truth-table reduces to i§ given an instance, in polynomial time we
can computd queriesys, yo, .. ., yk such that=(x) can be computed froi@(y;) for at least oné, 1 <i < k.
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the class RP introduced by Adleman [1]) and in terms of ungondis polynomial time (i.e.,
for the class UP introduced by Valiant [50]): Since it is heitknown whether NB RP im-
plies®) = RP nor whether NR: UP implies®) = UP, proving®}-hardness for the problems
considered in this paper potentially gives a higher leveMidence (than merely NP-hardness)
that these problems are neither in RP nor in UP [24].

4 Minimal and Minimum-Size Upward Covering Sets

In this section, we consider minimal and minimum-size ugh@vering sets.

4.1 Constructions

We start by giving the constructions that will be used foabishing results on the minimal
and minimum-size upward covering set problems. Brandt &ahEr [7] proved the following
result. Since we need their reduction in Construction 7 seai@n 4.2, we give a proof sketch
for Theorem 2.

Theorem 2 (Brandt and Fischer [7]) Deciding whether a designated alternative is con-
tained in some minimal upward covering set for a given doméeagraph isNP-hard. That is,
MC,-MEemsEer is NP-hard.

Proof Sketch. NP-hardness is shown by a reduction from SAT. Given a bodt@amula in
conjunctive normal formp(vy, Vo, ..., V) = CL AC2 A+ -+ A G, over the seV = {vi, Vo, ..., Vn}

of variables, construct an instandg &, d) of MC,-Memger as follows. The set of alternatives
is

A={x,%,%.,X | vie V}U{yj | cjisaclause irp} U {d},

whered is the distinguished alternative whose membership in somamal upward covering
set forAis to be decided, and the dominance relatios defined by:

Foreach, 1 <i < n, there is a cycles > X > X > X > X

if variablev; occurs in clause; as a positive literal, ther > y;;

if variablev; occurs in clause; as a negative literal, thex > y;; and
foreachj, 1< j <r, we havey; > d.

As an example of this reduction, Figure 2 shows the domingrageh resulting from the
formula

(V]_ V =Vo V V3) A (—|V1 \Y —|V3),
which is satisfiable, for example via the truth assignmeat #gets each of;, v,, andvs; to

set forA corresponding to the satisfying assignment, so there thdeists a minimal upward
covering set foA that contains the designated alternativén general, Brandt and Fischer [7]

proved that there exists a satisfying assignmentsfdrand only if d is contained in some
minimal upward covering set fok. O
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Fig. 2 Dominance graph for Theorem 2, example for the formua/ (-, v v3) A (=v1 V —v3).

As we will use this reduction to prove results for both MMemeer and some of the
other problems stated in Section 2, we now analyze the miramé minimum-size upward
covering sets of the dominance graph constructed in thef gi@mtch of Theorem 2. Brandt
and Fischer [7] showed that each minimal upward coverindgaef contains exactly two
of the four alternatives corresponding to any of the vagapi.e., eithex;, andx/, or X and
X', 1 < i < n. We now assume that if is not satisfiable then for each truth assignment to
the variables ofp, at least two clauses are unsatisfied (which can be enstireekded, by
adding two dummy variables). It is easy to see that everymmahupward covering set fok
not containing alternativd must consist of at leasn2+ 2 alternatives, whererRalternatives
are from the variables and at least two are from the unsatisfaises. Also, every minimal
upward covering set fok containingd consists of exactly2+ 1 alternatives, where agaim?2
alternatives are from the variables, none from the clausdsafiernatived. Thus,¢ is satis-
fiable if and only if every minimum-size upward covering sensists of 2 + 1 alternatives.
These minimume-size upward covering sets always includeratived. We summarize these
observations in the following proposition for later use.

Proposition 1 For the reduction fronSAT to MC,-Memger presented in the proof sketch of
Theorem 2, it holds that:

1. Every minimal upward covering set for A containing altime d consists of exactBn+1
alternatives.

2. Every minimal upward covering set for A not containingataitive d must consist of at
least2n + 2 alternatives.

3. p is satisfiable if and only if every minimum-size upward cimgeset consists dn + 1
alternatives (including d).

We now provide another construction that transforms a dgbgaiean formula into a dom-
inance graph with quite dierent properties.

Construction 3 (for coNP-hardness of upward covering set pgblems) Given a boolean
formula in conjunctive normal formg(wi, Wy, ..., W) = f1 A fo A -+ A f,, Over the set W=
{wi, W, ..., W} of variables, we construct a set of alternatives A and a damie relation-
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on A. Without loss of generality, we may assume thaisfsatisfiable then it has at least two
satisfying assignments. This can be ensured, if neededidiggadummy variables.

The set of alternatives is A {u;, T, u,T | wi € W}U {ej,e/j | f;isaclauseinp} U
{as1, ap, az}, and the dominance relation is defined by:

— Foreach i1 <i <k, thereisacycleju- T > u/ > T > u;

— if variable w occurs in clause jfas a positive literal, then;u> e;, u; > e/l g > U, and
efj > Ui;

— if variable w occurs in clause jfas a negative literal, theD; > e;j, T > e’] g > uj, and
e’i > U,

— if variable w does not occur in clausg,fthen g > u/ and € > T;

— foreach j,1<j < ¢ wehave a> e and g > e/J and

— thereis a cycle a> a; > az > a;.

Figure 3 shows some parts of the dominance graph that rdentfissthe given boolean
formula¢. In particular, Figure 3(a) shows that part of this graph ttaresponds to some
variablew; occurring in clausd; as a positive literal; Figure 3(b) shows that part of thisphra
that corresponds to some variabkeoccurring in clausd; as a negative literal; and Figure 3(c)
shows that part of this graph that corresponds to some Vamaimot occurring in clausé;.

As a more complete example, Figure 4 shows the entire doroégiaph that corresponds
to the concrete formula{v, vVw,) A (W V =ws3), which can be satisfied by setting, for example,
each ofw;, w,, andws to true. A minimal upward covering set fé corresponding to this
assignmentisd = {uy, U}, U, Uj, U, U3, a1, 8y, a3}. Note that neitheg; nore; occurs inM, and
none of them occurs in any other minimal upward covering@effeither. For alternative;
in the example shown in Figure 4, this can be seen as folldwseile were a minimal upward
covering setM’ for A containinge; (and thus als@), since they both are dominated by the
same alternatives) then neithgrnor u, (which dominates;) must upward coveg; in M’, so
all alternatives corresponding to the variablesandw, (i.e., {u;, G, U, T | i € {1, 2}}) would
also have to be contained M’. Due toe; > u; ande] > Ts, all alternatives corresponding to
ws (i.e., {us, Us, u’s,U’g}) are inM’ as well. Note thatg, ande, are no longer upward covered
and must also be iW’. The alternativea, a;, andag are contained in every minimal upward
covering set forA. But thenM’ is not minimal because the upward covering Betwhich
corresponds to the satisfying assignment stated abovstristsubset oM’. Henceg; cannot
be contained in any minimal upward covering setAor

We now show some properties of the dominance graph creat€bhbstruction 3 in gen-
eral. We will need these properties for the proofs in Secdfiéh The first property, stated in
Claim 4, has already been seen in the example above.

Claim 4 Consider the dominance gragh, >) created by Construction 3, and fix anylj<
j < ¢. For each minimal upward covering set M for A, if M containe tilternative ¢ then
all other alternatives are contained in M as well (i.e.=AM).

Proof. To simplify notation, we prove the claim only for the casejof 1. However, since
there is nothing special aboat in our argument, the same property can be shown by an
analogous argument for eaghl < j < ¢.

Let M be any minimal upward covering set f&¢ and suppose tha € M. First note
that the alternatives dominatirg ande are always the same (albeitande; may dominate
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(a) w; occurs infj as a positive literal (b) w; occurs infj as a negative literal

(c) w; does not occur irf;

Fig. 3 Parts of the dominance graph defined in Construction 3.

different alternatives). Thus, for each minimal upward cowesiet, either botle; ande] are
contained in it, or they both are not. Thus, siegee M, we haveg] € M as well.
Since the alternatives, a,, andaz form an undominated three-cycle, they each are con-
tained in every minimal upward covering set farln particular{a;, ap, ag} € M. Furthermore,
no alternatives; oref, 1< j < ¢, can upward cover any other alternativeMn becausey € M
anda; dominates; ande] but none of the alternatives that are dominated by either €.
In particular, no alternative in any of thefour-cyclesu; > T; > u/ > T > u; can be upward
covered by any alternative or €, and so they each must be upward covered within their
cycle. For each of these cycles, every minimal upward cogeséet forA must contain at least
one of the setéu;, U’} and(Ti, T}, since at least one is needed to upward cover the othefone.
Sincee; € M and by internal stability, we have that no alternative frvrupward cov-
erse;. In addition toay, the alternatives dominatiregy areu; (for eachi such thatv; occurs as
a positive literal inf;) andy; (for eachi such thatv; occurs as a negative literal ).
First assume that, for somen; occurs as a positive literal if. Suppose thgu;, u’} € M.
If Ui ¢ M thene; would be upward covered hy, which is impossible. Thug € M. But then
U € M as well, sincay;, the only alternative that could upward cowgyis itself dominated

6 The argument is analogous to that used in the constructiBnasfdt and Fischer [7] in their proof of Theorem 2.
However, in contrast with their construction, which impligateither{x;, x'} or {X, X}, L <i < n, but not bothmust
be contained in any minimal upward covering set4ofsee Figure 2), our construction also allows for bathu;}
and{U;, Uj} being contained in some minimal upward covering setfoinformally stated, the reason is that, unlike
the four-cycles in Figure 2, our four-cycles> T > u/ > T > u; also have incoming edges.
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Fig. 4 Dominance graph from Construction 3, example for the foeulvy vV wo) A (w1 vV —ws3).

by U. For the latter argument, recall thatcannot be upward covered by aeyor €. Thus,
we have shown thgu;, u/} € M implies{ti, Gj} ¢ M. Conversely, suppose th@k, T/} C M.
Thenu! is no longer upward covered liy and hence must be il as well. The same holds
for the alternativeu;, so {U;, G} € M implies {u;, u’} € M. Summing up, ife; € M then
{ui, U, i, 4} € M for eachi such that; occurs as a positive literal ify.

By symmetry of the construction, an analogous argument shbat ife; € M then
{ui, ', T, U} € M for eachi such thatv; occurs as a negative literal fa.

Now, consider anysuch thatv; does not occur irf;. We havee; > u’ ande] > T;. Again,
none of the setgy;, u'} and{T;, T} alone can be contained M, since otherwise either or i
would remain upward uncovered. Thies,c M again implies thatu;, ui’,Ui,Ui’} Cc M.

Now it is easy to see that, sin¢g;{u, U, T, T} € M and sincea; cannot upward
cover any of thee; ande’j, 1< j < ¢, external stability oM enforces thaJUkjg{ej,e’j} c M.
Summing up, we have shown thatef is contained in any minimal upward covering $ét
for A, thenM = A. O

Claim 5 Consider Construction 3. The boolean formuylés satisfiable if and only if there is
no minimal upward covering set for A that contains any of thd & j < ¢.

Proof. Itis enough to prove the claim for the case 1, since the other cases can be proven
analogously.
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From left to right, suppose there is a satisfying assignmenW — {0, 1} for ¢. Define
the set

B, ={as, @z ast U {u, U | (W) =1 U{U,T | a(w) =0}

Since every upward covering set fAmust contair{as, ap, as} and at least one of the sets
{u;, u} and({U;, U} for eachi, 1 < i < k, B, is a (minimal) upward covering set fét Let M
be an arbitrary minimal upward covering set #arBy Claim 4, if e, were contained i,
we would haveM = A. But sinceB, c A = M, this contradicts the minimality df1. Thus
e ¢ M.

From right to left, letM be an arbitrary minimal upward covering set faand suppose
e, ¢ M. By Claim 4, if any of thegj, 1 < j < ¢, were contained iM, it would follow that
e, € M, a contradiction. Thude; | 1 < j < ¢} n M = 0. It follows that eacte; must be
upward covered by some alternativehh It is easy to see that for ea¢ghl < j < ¢, and for
eachi, 1 <i <k g; is upward covered iM U {g;} 2 {u;, u} if w; occurs inf; as a positive
literal, ande; is upward covered iVl U {e;} 2 {T;, T} if w; occurs inf; as a negative literal. It
can never be the case that all four alternati‘{/esui’,Ui,Ui’}, are contained iM, because then
eithere; would no longer be upward covered v or the resulting seM was not minimal.
Now, M induces a satisfying assignment foby setting, for each, 1 <i < k, a(w;) = 1 if
u € M, anda(w;) = 0if G € M. O

Note that in Construction 3 every minimal upward coveringfee A obtained from any
satisfying assignment fgr contains exactly 2+ 3 alternatives, and there is no minimal upward
covering set of smaller size férwheny is unsatisfiable.

Claim 6 Consider Construction 3. The boolean formules not satisfiable if and only if there
is a unique minimal upward covering set for A.

Proof. Recall that we assumed in Construction 3 that i§ satisfiable then it has at least
two satisfying assignments.

From left to right, suppose there is no satisfying assignrfaarp. By Claim 5, there must
be a minimal upward covering set fArcontaining one of thej, 1 < j < ¢, and by Claim 4
this minimal upward covering set férmust contain all alternatives. By reason of minimality,
there cannot be another minimal upward covering seffor

From right to left, suppose there is a unique minimal upwaneedng set forA. Due to
our assumption that ip is satisfiable then there are at least two satisfying assgisyny
cannot be satisfiable, since if it were, there would be twtirdisminimal upward covering
sets corresponding to these assignments (as argued inotbfeopClaim 5). O

Wagner provided a sficient condition for provingd5-hardness that was useful in various
other contexts (see, e.g., [51,23,26,29,27]) and is steteglas Lemma 1.

Lemma 1l (Wagner [51])Let S be somBIP-complete problem and let T be any set. If there
exists a polynomial-time computable function f such that,all m > 1 and all strings
X1, X2, . .., Xom Satisfying that if xe S then x.1 € S,1 < j < 2m, we have

IIfi | % € SHlisodd < f(xg, X2,...,%om) €T, (4.2)
then T is@5-hard.
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We will apply Lemma 1 as well. In contrast with those previoasults, however, one
subtlety in our construction is due to the fact that we cagrsitbt only minimum-size but
also (inclusion-)minimal covering sets. To the best of ounwledge, our Construction 7 and
Construction 24, which will be presented later, for the tirse apply Wagner’s technique [51]
to problems defined in terms of minimalitgaximality rather than minimufmmaximum size
of a solution? In Construction 7 below, we define a dominance graph basedastfiction 3
and the construction presented in the proof sketch of Tiedeuch that Lemma 1 can
be applied to prove MEMEMBER @S-hard (see Theorem 12), making use of the properties
established in Claims 4, 5, and 6.

Construction 7 (for applying Lemma 1 to upward covering set poblems) We apply
Wagner's lemma with thP-complete problem S SAT and construct a dominance graph.
Fix an arbitrary m> 1 and letys, @2, . . ., oom be 2m boolean formulas in conjunctive normal
form such that ify; is satisfiable then so igj-1, for each j,1 < j < 2m. Without loss of
generality, we assume that for eactlj< j < 2m, the first variable op; does not occur in all
clauses ofp;. Furthermore, we require; to have at least two unsatisfied clausegjiis not
satisfiable, and to have at least two satisfying assignmniégisis satisfiable. It is easy to see
that if ¢; does not have this property, it can be transformed into a tdanthat does have it,
without gfecting the satisfiability of the formula.

We now define a polynomial-time computable function f, whigps the giverm
boolean formulas to a dominance graph, >) with useful properties for upward covering
sets. Define A Ufi"l A; and the dominance relation on A by

2m m m
[U >j] U [U (U 5. A1), (U 51, d2i1)}] U [ {(d2i1.2) | Z€ Agia}|,
iz

j=1 i=1
where we use the following notation:

1. Foreachi,1 < i < m, let(Az-1,>2-1) be the dominance graph that results from the
formulayyi_1 according to Brandt and Fischer’s construction [7] givertire proof sketch
of Theorem 2. We use the same names for the alternatives ina& in that proof sketch,
except that we attach the subscrpt- 1. For example, alternative d from the proof sketch
of Theorem 2 now becomeg.d, x; becomes i_1, y1 becomesjpi_1, and so on.

2. Foreachil <i < m, let(Ay, >2) be the dominance graph that results from the formula
w2 according to Construction 3. We use the same names for tamalives in A as in
that construction, except that we attach the subsdiipor example, alternative gfrom
Construction 3 now becomeg# e, becomes g, u; becomes 1p;, and so on.

3. For each i,1 < i < m, connect the dominance grapb;_1,>2i_1) and (Az, >2) as

follows. Let y i, Uy i, U U’ly2i € Ay be the four alternatives in the cycle corresponding

7
1.2i°

7 For example, recall Wagner(ag-completeness result for testing whether the size of a maxirtlique in a given
graph is an odd number [51]. One key ingredient in his protd define an associative operation on graphssuch
that for any two graph& andH, the size of a maximum clique i@ » H equals the sum of the sizes of a maximum
clique inG and one inH. This operation is quite simple: Just connect every verfe® with every vertex ofH. In
contrast, since minimality for minimal upward coveringssistdefined in terms of set inclusion, it is not at all obvious
how to define a similarly simple operation on dominance gsagich that the minimal upward covering sets in the
given graphs are related to the minimal upward coveringisdt®e connected graph in a similarly useful way.
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Fig. 5 Dominance graph from Construction 7. Most alternatives} @hedges between pairs of alternativesAin
1 < j < 2m, have been omitted. All edges between alternatived; iand alternatives i\ for i # j are shown. An
edge incident to a set of alternatives represents an edgiemdoeachalternative in the set.

to the first variable of,;. Then both E‘,zi andU’l,2i dominate g_;. The resulting dominance
graph is denoted b{B;, >5).

4. Connect the m dominance grap(s, >iB), 1<i<m,asfollows: Foreach2 <i <m,
dyi_1 dominates all alternatives inzfA;.

The dominance graplA(>) is sketched in Figure 5. ClearlyA\(>) is computable in poly-
nomial time.

Before we use this construction to obtaﬁlﬁ—hardness results for some of our upward
covering set problems in Section 4.2, we again show somelyzeiperties of the dominance
graph constructed, and we first consider the dominance ¢Bap#?) (see Step 3 in Construc-
tion 7) separatel§,for any fixedi with 1 < i < m. Doing so will simplify our argument for the
whole dominance graptA(>). Recall that B;, >£) results from the formulagzi_1 andey;.

Claim 8 Consider Construction 7. Alternative;d; is contained in some minimal upward
covering set fofB;, >iB) if and only ifp,_; is satisfiable anay; is not satisfiable.

Proof. Distinguish the following three cases.

Case 1: ¢y-1 € SAT andyy € SAT. Sinceyy is satisfiable, it follows from the proof of
Claim 5 that for each minimal upward covering $éfor (B;, >iB), either{us 2, u’LZi} cM
or {U12i,U; 5} € M, but not both, and that none of tlegy ande/, is in M. If U, €M
butu’m ¢ M, thendy_; ¢ UCy(M), sinceU’L2i upward coversly_; within M. If u'l’2i eM
butliz ¢ M, thend,i_1 ¢ UCy(M), sinceu; ,, upward coversli_y within M. Hence, by
internal stability,d,_1 is not contained iM.

Case 2: -1 ¢ SAT andypy ¢ SAT. Sinceyp,i_1 ¢ SAT, it follows from the construction used
in the proof of Theorem 2 that each minimal upward coveririgéor (B;, >B) contains

8 Qur argument about, >iB) can be used to show, irffect, DP-hardness of upward covering set problems, where
DP is the class of dlierences of any two NP sets [42]. Note that DP is the secontldétiee boolean hierarchy over
NP (see Cai et al. [10,11]), and it holds that NRoNP C DP C @g. Wagner [51] proved appropriate analogs of
Lemma 1 for each level of the boolean hierarchy. In partictifee analogous criterion for DP-hardness is obtained by
using the wording of Lemma 1 except with the valuerof 1 being fixed.
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at least one alternativwg »i_1 (corresponding to some clause@f_;1) that upward covers
dzi-1. Thusdyi_; cannot be irM, again by internal stability.

Case 3: pyi1 € SAT andgy ¢ SAT. Sinceyyi_1 € SAT, it follows from the proof of The-
orem 2 (see also Proposition 1) that there exists a minimahtg covering seM’ for
(Azi-1, >2i-1) that corresponds to a satisfying truth assignmengfay . In particular, none
of theyj_1 is in M’. On the other hand, singgy; ¢ SAT, it follows from Claim 6 that
Ay is the only minimal upward covering set fok£, >2). DefineM = M’ U Ay. Itis easy
to see thaM is a minimal upward covering set foBj >2), since the only edges between
Aoi_1 and Ay are those fronﬂ’m andu’m to dyi_1, and bothU’m and Ui,zi are dominated
by elements irfM not dominatingdyi_1
We now show thathi-; € M. Note thatli; 5, uj ;, and they;,i-; are the only alternatives
in B; that dominatal,_;. Since none of thg; i1 is in M, they do not upward coveb;_,
Also, uj 5 doesn’t upward covedyi_1, sinceliiz € M andUy, dominates; ,; but not
dyi_1. On the other hand, by our assumption that the first variabjg;aloes not occur in
all clauses, there exist alternativgs; ande/L2I in M that domlnatejl,z, but notdyi_1, so

U’l’2i doesn’t upward covety;_; either. Thugdy_; € M.

Note that, by our assumption on how the formulas are ordénedourth case (i.egzi-1 ¢
SAT andg, € SAT) cannot occur. Thus, the proof is complete. O

Claim 9 Consider Construction 7. For eachli,< i < m, let M be a minimal upward covering
set for(Bj, >£) according to the cases in the proof of Claim 8. Then each oféte M must
be contained in every minimal upward covering set(far>-).

Proof. The minimal upward covering séd, for (B, >2) must be contained in every min-
imal upward covering set for, >), since no alternative iA — B, dominates any alternative
in By On the other hand, for eathl < i < m, no alternative irB; can be upward covered by
dzi+1 (which is the only element iA— B; that dominates any of the element$BpY, sincedy;,1

is dominated within every minimal upward covering set Byr; (and, in particular, within
Mi+1). Thus, each of the setd;, 1 < i < m, must be contained in every minimal upward
covering set forA, >). O

Claim 10 Consider Construction 7. It holds that

IIfi | ¢i € SAT}||is odd<= d; is contained in some minimal upward covering set M for A
(4.2)

Proof. To show (4.2) from left to right, suppodi§i | ¢ € SAT}| is odd. Recall that for
eachj, 1 < j < 2m, if ¢; is satisfiable then so ig;_1. Thus, there exists somgl <i < m,
such thatp, ..., @21 € SAT andeyi,...,p2m ¢ SAT. In Case 3 in the proof of Claim 8
we have seen that there is some minimal upward covering s¢Bfo-F)—call it Mi—that
corresponds to a satisfying assignmenpgf, and that contains all alternatives &f. Note
that, M; containsdyi_;. For eachj # i, 1 < j < m, let M; be some minimal upward covering
set for Bj, >?) according to Case 1 (if < i) and Case 2 (if > i) in the proof of Claim 8.
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In Case 1 in the proof of Claim 8 we have seen thag is upward covered either iy 5 5
or by u} ,;_5. This is no longer the case, sindg-, is in M; and it dominates all alternatives
in Az_p but notdy_3. By assumptiong,i_3 is satisfiable, so there exists a minimal upward
covering set that contairt;_3 as well. Let

M = {dq,ds,...,dy_1} U U Mj.

1<j<m

By Claim 9, and by observing that all elements noMnare upward covered, it follows that
M is a minimal upward covering set foA(>) that containgl;.

To show (4.2) from right to left, suppose thidit | ¢; € SAT}|| is even. For a contradiction,
suppose that there exists some minimal upward coverindylsidr (A, >) that containg;.
If o1 ¢ SAT then we immediately obtain a contradiction by the arguinie the proof of
Theorem 2. On the other handgf € SAT then our assumption thgfi | ¢; € SAT}|| is even
implies thaty, € SAT. It follows from the proof of Claim 4, and from Claim 9, thevery
minimal upward covering set fo/(>) (thus, in particularM) contains eithefuy 2, U; ;} or
{Ul,zi,Ui’Zi}, but not both, and that none of tiegy ande/j’2i is in M. By the argument presented
in Case 3 in the proof of Claim 8, the only way to preveptfrom being upward covered
by an element oM, eitheru , orUj ,, is to includeds in M as well? By applying the same
argumentm — 1 times, we will eventually reach a contradiction, sirtbg_; € M can no
longer be prevented from being upward covered by an elenfel, eeitheru , or U} o
Thus, no minimal upward covering skt for (A, >) containsd;, which completes the proof
of (4.2). O

Furthermore, it holds thdl{i | ¢; € SAT}|| is odd if and only ifd; is contained in all
minimume-size upward covering sets f&rThis is true since the minimal upward covering sets
for A that contaird; are those that correspond to some satisfying assignmeall &atisfiable
formulasy;, and as we have seen in the analysis of Construction 3 andrtloé gketch of
Theorem 2 (see also Proposition 1), these are the minimaewugiward covering sets féx.

4.2 Proofs

In this section, we prove the parts of Theorem 1 that consideimal and minimum-size up-
ward covering sets by applying the constructions and thegsties of the resulting dominance
graphs presented in Section 4.1.

Theorem 11 It is NP-complete to decide, given a dominance grgph>) and a positive
integer k, whether there exists a minigh@himum-size upward covering set for A of size at
most k. That is, botMC,-Size andMSGC,-Size are NP-complete.

Proof. This result can be proven by using the construction of ThedelLety be a given
boolean formula in conjunctive normal form, and tebbe the number of variables occurring
in ¢. Setting the bounl for the size of a minimaminimum-size upward covering set ta21

9 This implies that; is not upward covered by eithef , or Uy , sinced; dominates them both but nd.
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proves that both problems are hard for NP. Indeed, as we leaveis the paragraph after the
proof sketch of Theorem 2 (see also Proposition 1), theresigeaz + 1 minimal upward
covering set (and hence a minimum-size upward coveringaef if and only if ¢ is satisfi-
able. Both problems are NP-complete, since they can oblyibesiecided in nondeterministic
polynomial time. O

Theorem 12 Deciding whether a designated alternative is containeeime minimal upward
covering set for a given dominance graph is hard @fand in2?. That is,MCy-MemsEr is
hard for 65 and in=}.

Proof. @’Z’-hardness follows directly from Claim 10, which applies \Wags lemma to up-
ward covering set problems. Specifically, this claim showat in Construction 7 the alter-
natived; is contained in some minimal upward covering setAaf and only if the number
of underlying boolean formulas that are satisfiable is odd.the upper bound, le#( >) be

a dominance graph artla designated alternative i First, observe that we can verify in
polynomial time whether a subset Afis an upward covering set f@, simply by checking
whether it satisfies internal and external stability. Now, ean guess an upward covering set
B ¢ Awith d € B in nondeterministic polynomial time and verify its minintgalby checking
that none of its subsets is an upward covering setfdrhis places the problem in N®*® and
consequently it?. O

Theorem 13 1. Itis @g-complete to decide whether a designated alternative isadoed
in some minimum-size upward covering set for a given doncmagraph. That is,
MSC,-MEMBER iS @S—complete.

2. Itis ©5-complete to decide whether a designated alternative itatoed in all minimum-
size upward covering sets for a given dominance graph. Tha$C,-MemBer-ALL iS
65-complete.

Proof. Wagner’s lemma can be used to sh@§+hardness for both problems. The remark
made after Claim 10 says that in Construction 7 the alteradtiis contained in all minimum-
size upward covering sets férif and only if the number of underlying boolean formulas that
are satisfiable is odd. Hence M$®IemBer and MSG-MEMBER-ALL are both@g-hard.

To see that MSEMewmeer is contained ind?, let (A, >) be a dominance graph anida
designated alternative iA. Obviously, in nondeterministic polynomial time we can ide¢
given (A,>), x € A, and some positive integér< ||Al|, whether there exists some upward
covering seB for A such thai|B|| < £ andx € B. Using this problem as an NP oracle,@h§
we can decide, giverA{ >) andd € A, whether there exists a minimum-size upward covering
set forA containingd as follows. The oracle is asked whether for each paif)( wherex € A
and 1< ¢ < ||Al|, there exists an upward covering set foof size bounded by that contains
the alternativex. The number of queries is polynomial (more specificall@iif{Al%)), and all
queries can be asked in parallel. Having all the answersymi@te the sizd of a minimum-
size upward covering set f@, and accept if the oracle answer th K) was yes, otherwise
reject.

To show that MSG-MemBER-ALL iS in @g, let (A, >) be a dominance graph anlda des-
ignated alternative iA. We now use as our oracle the set of all4), wherex € A is an
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alternative, and’ < ||Al| a positive integer, such that there exists some upward itmyeet
B for A with ||B|| < ¢ andx ¢ B. Clearly, this problem is also in NP, and the skef a
minimum-size upward covering set fArcan again be determined by aski@()|Al[?) queries
in parallel (if all oracle answers are no, it holds tkat ||Al[). Now, the@g machine accepts
its input ((A, >), d) if the oracle answer for the paid,(k) is no, and otherwise it rejects]

Theorem 14 1. (Brandtand Fischer [7]) It icoNRcomplete to decide whether a designated
alternative is contained in all minimal upward coverings&ir a given dominance graph.
That is,MC,-Memser-ALL is cONRcomplete.

2. It is coNRcomplete to decide whether a given subset of the altemsfiv a minimal
upward covering set for a given dominance graph. Thati€,-Test is coONRcomplete.

3. ItiscoNRhard and inzgJ to decide whether there is a unique minimal upward covering
set for a given dominance graph. ThatiéC,-Unique is coNRhard and inZE.

Proof. It follows from Claim 6 that in Construction 3 the booleanrfarlay is not satisfi-
able if and only if the entire set of alternativAss a (unique) minimal upward covering set
for A. Furthermore, ifp is satisfiable, there exists more than one minimal upwareroyg set

for A and none of them contairs (provided thatp has more than one satisfying assignment,
which can be ensured, if needed, by adding a dummy variabletiat the satisfiability of the
formula is not &ected). This proves coNP-hardness for all three problen®-MemBer-ALL

and MG,-Tesr are alsacontainedn coNP, as they can be decided in the positive by checking
whether there doesot exist an upward covering set that satisfies certain pragserélated

to the problem at hand, so they both are coNP-complete,-Mi@que can be decided in the
positive by checking whether there exists an upward cogesgtM such that all sets that
are not strict supersets df arenotupward covering sets for the set of all alternatives. Thus,
MC,-UniQue is in Zg. O

The first statement of Theorem 14 was already shown by Branttfescher [7]. However,
their proof—which uses essentially the reduction from theop of Theorem 2, except that
they start from the coNP-complete problem.Miry (which asks whether a given formula is
valid, i.e., true under every assignment [41])—does ndtyéay of the other coNP-hardness
results in Theorem 14.

Theorem 15 It is coNRcomplete to decide whether a given subset of the alteremiv a
minimume-size upward covering set for a given dominancetgrapat is MSC,-Test is CONR
complete.

Proof. This problem is in coNP, since it can be decided in the pastiy checking whether
the given subse of alternatives is an upward covering set for the Aeatf all alternatives
(which is easy) and all sets of smaller size ti\Mrare not upward covering sets fAr(which

is a coNP predicate). Now, coNP-hardness follows directiynf Claim 6, which shows that

in Construction 3 the boolean formudais not satisfiable if and only if there is a unique
minimal upward covering set fok and hence also a unique minimum-size upward covering
set forA. O



22 Dorothea Baumeister et al.

Theorem 16 Deciding whether there exists a unique minimum-size ups@rdring set for a
given dominance graph is hard fooNPand in@}. That is,MSC,-Unique is coNPhard and
in ©5.

Proof. It is easy to see that coNP-hardness follows directly from¢bNP-hardness of
MC,-Unique (see Theorem 14). Membership(Bg can be proven by using the same oracle
as in the proof of the first part of Theorem 13. We ask for altpéi, £), wherex € A and

1 < ¢ < ||All, whether there is an upward covering Befior A such that|B|| < £ andx € B.
Having all the answers, determine the minimum diz&f a minimum-size upward covering
set forA. Accept if there are exactlydistinct alternativesy, .. ., X« for which the answer for
(x,K), 1 <i <k, was yes, otherwise reject. O

An important consequence of the proofs of Theorems 14 ané® ¢f Construction 3
that underpins these proofs) regards the hardness of tmehspeoblems MG-Fino and
MSC,-Finp.

Theorem 17 Assumind® # NP, neither minimal upward covering sets nor minimum-size up-
ward covering sets can be found in polynomial time. ThatdgherMC,-Fino nor MSC,-Finp
are polynomial-time computable unld3s- NP.

Proof. Consider the problem of deciding whether there exists nantrivial
minimalminimum-size upward covering set, i.e., one that does contain all alterna-
tives. By Construction 3 that is applied in proving Theoretdsand 16, there exists a
trivial minimal/minimum-size upward covering set fak (i.e., one containing all alter-
natives inA) if and only if this set is the only minimahinimum-size upward covering
set for A. Thus, the coNP-hardness proof for the problem of decidihgther there is a
unigue minimaminimum-size upward covering set féx (see the proofs of Theorems 14
and 16) immediately implies that the problem of deciding thike there is a nontrivial
minimayminimum-size upward covering set féx is NP-hard. However, since the latter
problem can easily be reduced to the search problem (bethessearch problem, when
used as a function oracle, yields the set of all alternatifvaad only if this set is the only
minima)minimum-size upward covering set f8), it follows that the search problem cannot
be solved in polynomial time unless=PNP. O

5 Minimal and Minimum-Size Downward Covering Sets

Now we consider minimal and minimum-size downward covesets.

5.1 Constructions

Again we first give the constructions that will be used in #et5.2 to show complexity results
about minimalminimum-size downward covering sets. we again start byngiai proof sketch
of aresultdue to Brandt and Fischer [7], since the followdagstructions and proofs are based
on their construction and proof.
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Fig. 6 Dominance graph for Theorem 18, example for the formula/(=v2 V v3) A (=1 V =V3).

Theorem 18 (Brandt and Fischer [7]) Deciding whether a designated alternative is con-
tained in some minimal downward covering set for a given damie graph isNP-hard (i.e.,
MCg4-Memser is NP-hard), even if a downward covering set is guaranteed ta.exis

Proof Sketch. NP-hardness of M@EMemser is again shown by a reduction from SAT.
Given a boolean formula in conjunctive normal forplyy, Vo, . .., V) = CLAC2 A -+ - ACr, OVEr
the selV = {v1, Vs, ..., V,} of variables, construct a dominance graphx) as follows. The set
of alternatives is

A=1{x,%, X, %, X" %" | vie VIUly;,z | cjisaclause i} U {d},

where the membership of alternatidén a minimal downward covering set is to be decided.
The dominance relation is defined as follows:

— Foreach, 1<i < n, thereisacycleG > X > X > X > X’ > X' > x with two nested
three-cyclesy > X > x’ > x andX > X > X > X;;

— if variablev; occurs in clause; as a positive literal, they; > x;;

— if variablev; occurs in clause; as a negative literal, thenp > X;;

— foreachj, 1< j <r, we haved > y; andz; > d; and

— foreachi andj with 1 <i, j <r andi # j, we haveg > y;.

Brandt and Fischer [7] showed that there is a minimal dowdwavwering set containing
if and only if ¢ is satisfiable. An example of this reduction is shown in Feg@ifor the boolean
formula (11 v =V V v3) A (=v1 V =v3). The set{xy, X[, X[, X2, X, X5, X3, X3, X3, Y1, Y2, Z1, Z2, d}
is a minimal downward covering set for the dominance gragiwshin Figure 6. This set
corresponds to the truth assignment that sendv, to true andvs; to false, and it contains
the designated alternatide O

Regarding their construction sketched above, Brandt ascher [7] showed that every
minimal downward covering set férmust contain exactly three alternatives for every variable
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v; (eitherx;, X/, andx’, or X, X, andX’), and the undominated alternativas. .., z. Thus,
each minimal downward covering set fArconsists of at leastr+ r alternatives and induces
a truth assignment for ¢. The number of alternatives contained in any minimal downawa
covering set forA corresponding to an assignments 3n + r + k, wherek is the number of
clauses that are satisfiedaifis an assignment not satisfyigg and wherek = r + 1 if e is a
satisfying assignment fas. As a consequence, minimum-size downward covering set& for
correspond to those assignmentsgdhat satisfy the least possible number of clauses f

Next, we provide a dferent construction to transform a given boolean formula et
dominance graph. This construction will later be mergedhwie construction from the proof
sketch of Theorem 18 so as to apply Lemma 1 to smghmardness for downward covering
set problems.

Construction 19 (for NP- and coNP-hardness of downward covéng set problems)
Given a boolean formula in conjunctive normal forgafwy, Wo, ..., W) = fr A fa A -2 A 1,
over the set W= {w;, W, ..., W} of variables, we construct a dominance gra@t)>). The
set of alternatives is

A=A UAU{@| ac AAUA}U({b cd}

with A; = {x, X, X", %, %,X",z,Z,Z" | wy e Wyand A = {y; | fjisaclauseinp}, and the
dominance relatiors is defined by:

— Foreachi,1 <i <Kk, there is, similarly to the construction in the proof of drem 18, a
cycle x> X > X > X > x’ > X > x with two nested three-cycleg,x x' > x’ > x and
X > X >X >, and additionally we havg z z > x,Z’ >z > X, Z > X, Z’ > X, and
d>z;

— if variable w occurs in clause jfas a positive literal, then;x y;;

— if variable w occurs in clause jfas a negative literal, the®; > y;;

— foreach ac A; U Ay, we have b-2a, a>2a, anda > d;

— foreach j,1< j < ¢, we have d- yj; and

—c>d.

An example of this construction is shown in Figure 7 for thelean formula tw; v w, v
w3) A (=W, V =wjs), which can be satisfied by setting for example eactvofw,, andws to
false. A minimal downward covering set corresponding te tgsignment i81 = {b,c} U
{Xi,X,%’,Z,Z" | 1<i < 3}. Obviously, the undominated alternative<, Z, andz’, 1 < i <
3, are contained in every minimal downward covering settferdominance graph constructed.
The alternativel, however, is not contained in any minimal downward covesietforA. This
can be seen as follows. #f were contained in some minimal downward coveringldétor
A then none of the alternativ&swith a € A; U A, would be downward covered. Hence,
all alternatives inA; U A, would necessarily be i, since they all dominate a ftierent
alternative inM’. But thenM’ is no minimal downward covering set fé; since the minimal
downward covering se¥l for A is a strict subset of1’.

We now show some properties of Construction 19 in general.

10 This is diferent from the case of minimum-sizgoward covering sets for the dominance graph constructed
in the proof sketch of Theorem 2. The construction in the ped@tch of Theorem 18 cannot be used to obtain
complexity results for minimum-size downward coveringsgatthe same way as the construction in the proof sketch
of Theorem 2 was used to obtain complexity results for mimwsize upward covering sets.
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{alaeAlUAy}

Fig. 7 Dominance graph resulting from the formulawi v wz v wg) A (=wy vV —ws) according to Construction 19.
An edge incident to a set of alternatives represents an edggent toeachalternative in the set. The dashed edge
indicates that > afor eachae A; U Ay.

Claim 20 Minimal downward covering sets are guaranteed to existlierdominance graph
defined in Construction 19.

Proof. The setA of all alternatives is a downward covering set for itself.nde, there
always exists a minimal downward covering set for the doméeagraph defined in Construc-
tion 19. 0

Claim 21 Consider the dominance grafh, >) created by Construction 19. For each mini-
mal downward covering set M for A, if M contains the altermatil then all other alternatives
are contained in M as well (i.e., A M).

Proof. If dis contained in some minimal downward covering Befor A, then{a,a} ¢ M
for everya € A U A,. To see this, observe that for an arbitrarye Ay U A, there is no
a € Awitha > aanda > dorwitha > aanda > a. Since the alternativesandb are
undominated, they are alsoM, soM = A. O

Claim 22 Consider Construction 19. The boolean formules satisfiable if and only if there
is no minimal downward covering set for A that contains d.
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Proof.  For the direction from left to right, consider a satisfyirgsmnmentr : W — {0, 1}
for ¢, and define the set

B, = {b,c} U{x.X.X' | a(W) =1} U{X.X.X' | a(W)=0U{Z,Z" | 1<i <k

It is not hard to verify thaB, is a minimal downward covering set fét Thus, there exists
a minimal downward covering set f&k that does not contaid. If there were a minimal
downward covering se¥l for A that containgl, Claim 21 would imply thaM = A. However,
sinceB, c A = M, this contradicts minimality, so no minimal downward caugrset forA
can contaird.

For the direction from right to left, assume that no minimadvthward covering set foh
containgd. Since by Claim 20 minimal downward covering sets are guasthto exist for the
dominance graph defined in Construction 19, there existsamal downward covering s&
for A that does not contaid, soB # A. It holds that{z | w; is a variable inp} " B =  and
{yj | fjisaclause ip}nB = 0, for otherwise a contradiction would follow by observingth
there isnoa € Awitha > danda > z,1<i <k orwitha>danda>y;,1<j<¢
Furthermore, we havg ¢ BorX; ¢ B, for each variablev, € W. By external stability, for
each clausd;j there must exist an alternatigec B with a > y;. By construction and since
d ¢ B, we must have eithex = x; for some variablev; that occurs infj as a positive literal, or
a = X; for some variablev; that occurs inf; as a negative literal. Now defire: W — {0, 1)
such thatw(w;)) = 1if X € B, anda(w;) = 0 otherwise. It is readily appreciated thais a
satisfying assignment fa. O

Claim 23 Consider Construction 19. The boolean formuylés not satisfiable if and only if
there is a unique minimal downward covering set for A.

Proof. We again assume thatgfis satisfiable, it has at least two satisfying assignmefits. |
¢ is not satisfiable, there must be a minimal downward covesetdgorA that containgl by
Claim 22, and by Claim 21 there must be a minimal downward gogeset forA containing

all alternatives. Hence, there is a unique minimal downveanegring set folA. Conversely, if
there is a unique minimal downward covering setpg cannot be satisfiable, since otherwise
there would be at least two distinct minimal downward cavgets forA, corresponding to
the distinct truth assignments fgr which would yield a contradiction. O

In the dominance graph created by Construction 19, the naindownward covering sets
for A coincide with the minimum-size downward covering setsAotf ¢ is not satisfiable,
there is only one minimal downward covering set£91so this is also the only minimum-size
downward covering set foh, and if¢ is satisfiable, the minimal downward covering sets for
A correspond to the satisfying assignmentgofs we have seen in the proof of Claim 22,
these minimal downward covering sets foalways consist of 6+ 2 alternatives. Thus, they
each are also minimum-size downward covering seté&for

Merging the construction from the proof sketch of Theorerwit® Construction 19, we
again provide a reduction applying Lemma 1, this time to deeut covering set problems.

Construction 24 (for applying Lemma 1 to downward covering £t problems) We again
apply Wagner's lemma with thieP-complete problem S SAT and construct a dominance
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graph. Fix an arbitrary m> 1 and letes, ¢2, . . ., p2m be2m boolean formulas in conjunctive
normal form such that the satisfiability gf implies the satisfiability op;_,, for each je
{2,...,2m}. Without loss of generality, we assume that for eadhq, j < 2m, ¢; has at least
two satisfying assignmentsif is satisfiable.

We now define a polynomial-time computable function f, wiiaps the giverem
boolean formulas to a dominance graph, >) that has useful properties for our downward
covering set problems. The set of alternatives is

2m m
A= [U A—] y (U fri. s,ti}] ule.d),
i=1 i=1

and the dominance relation on A is defined by

2m m k
[U >i]U[U {(ri, dai—a), (ri, dai), (i, 1), (S, daiza), (8, 1i), (8, dZi)}] U{ {(d", ri)}]U {(c",d")},
i -1

i=1 i=1
where we use the following notation:

1. Foreachi,1 < i < m, let(Az-1,>2-1) be the dominance graph that results from the
formulagai_1 according to Brandt and Fischer’s construction given in greof sketch of
Theorem 18. We again use the same names for the alternativies { as in that proof
sketch, except that we attach the subsipt 1.

2. Foreachil <i < m, let(Az, >2) be the dominance graph that results from the formula
w2 according to Construction 19. We again use the same naméisd@lternatives in A
as in that construction, except that we attach the subse@ript

3. Foreach il <i < m, the dominance graplffyi_1, >2i-1) and (A, >») are connected by
the alternatives;st;, and  (which play a similar role as the alternatives z, and ' for
each variable in Construction 19). The resulting dominag@h is denoted bB;, >E).

4. Connect the m dominance grap{B,>F), 1 < i < m (again similarly as in Con-
struction 19). The alternative*adominates 8, and d dominates the m alternatives r
1<i<m.

This construction is illustrated in Figure 8. Clearl, &) is computable in polynomial time.

Claim 25 Consider Construction 24. For eachd, < i < 2m, let M be a minimal down-
ward covering set fofA;, >;). Then each of the sets;vhust be contained in every minimal
downward covering set fd@A, >).

Proof. For each, 1 <i < 2m, the only alternative irA; dominated from outsidéy is d.
Sinced; is also dominated by the undominated alternaive e A for oddi, and by the
undominated alternative € A; for eveni, it is readily appreciated that internal and external
stability with respect to elements &f only depends on the restriction of the dominance graph
to A. O

Claim 26 Consider Construction 24. It holds that

IIfi | ¢i € SAT}||is odd
< d* is contained in some minimal downward covering set M for A (5.3)
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A A, As Ay Aom-1 Aom

Fig. 8 Dominance graph from Construction 24.

Proof.  For the direction from left to right in (5.3), assume thiéit | ¢ € SAT}| is
odd. Thus, there is somge {1,...,m} such thatp, ¢s, ..., ¢2j-1 are each satisfiable and
©2j, P2j+1, - - - , p2m @re each not. Define

U [U {s,ti}) U {r,—,c*,d*},

i=1

2m

()

i=1

M =

where for each, 1 <i < 2m, M; is some minimal downward covering set of the restriction of
the dominance graph t#, satisfying that;, € M; if and only if

1. i is odd andy; is satisfiable, or
2. i is even and; is not satisfiable.

Such setdV; exist by the proof sketch of Theorem 18 and by Claim 22. Inigaler, ;-1 is
satisfiable angy; is not, so{dyj_1, dz;} € M. There is no alternative that dominatks 1, dy;,
andr;. Thus,r; must be inM. The other alternativels, 1 < i < mandi # j, are downward
covered by eithes if dy_1 ¢ M, ort; if dy ¢ M. Finally,d* cannot be downward covered,
becauseal® > r; and no alternative dominates bath andr;. Internal and external stability
with respect to the elements bf;, as well as minimality oUizzk1 M;, follow from the proofs
of Theorem 18 and Claim 22. All other elementd\bfare undominated and thus contained in
every downward covering set. We conclude thbis a minimal downward covering set fér
that containgl*.

For the direction from right to left in (5.3), assume thatrthexists a minimal downward
covering setM for A with d* € M. By internal stability, there must exist sonjel < j < k,
such that; € M. Thus,dyj-1 anddy; must be inM, too. It then follows from the proof sketch
of Theorem 18 and Claim 22 thaj;_, is satisfiable ang,; is not. Hencell{i | ¢i € SAT}|| is
odd. 0
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By the remark made after Theorem 18, Construction 24 cammaskd straightforwardly
to obtain complexity results for minimum-size downward eorg sets.

5.2 Proofs

Now we prove the remaining parts of Theorem 1 concerning mahiand minimum-size
downward covering sets by applying the constructions aagtbperties of the resulting dom-
inance graphs presented in Section 5.1.

Theorem 27 It is NP-complete to decide, given a dominance grdph>) and a positive
integer k, whether there exists a minipnahimum-size downward covering set for A of size at
most k. That iSMCy-Size andMSCy-Size are bothNP-complete.

Proof. Membership in NP is obvious, since we can nondeterminibficaiess a subset
M C A of the alternatives withfiM|| < k and can then check in polynomial time whetiér
is a downward covering set fak. NP-hardness of MESize and MSG-Size follows from
Construction 19, the proof of Claim 22, and the comments naftée Claim 23: Ify is a given
formula with n variables, then there exists a minigminimum-size downward covering set
of size 1+ 2 if and only if p is satisfiable. O

Theorem 28 MSCy4-MemMBER, MSCy-MEMBER-ALL, and MSCy-Unigoue are coNPhard and

in @5.

Proof. It follows from Claim 23 that in Construction 19 the booleanrulay is not satis-
fiable if and only if the entire seA of all alternatives is the unique minimum-size downward
covering set for itself. Moreover, assuming thatas at least two satisfying assignments; if
is satisfiable, there are at least two distinct minimum-dia@nward covering sets fék. This
shows that each of M§EMEemBER, MSCy-MeMBER-ALL, and MSG-UNiquE is coNP-hard. For
all three problems, membership@ﬁ is shown similarly to the proofs of the corresponding
minimume-size upward covering set problems. However, sadmgnward covering sets may
fail to exist, the proofs must be slightly adapted. For M9@emBer and MSG-Unique, the
machine rejects the input if the sikeof a minimum-size downward covering set cannot be
computed (simply because there doesn't exist any suchFEat)MSG-Memeer-ALL, if all
oracle answers are no, it must be checked whether the sdtaifehatives is a downward
covering set for itself. If so, the machine accepts the inptlerwise it rejects. O

Theorem 29 It is coNRcomplete to decide whether a given subset is a minimundeiza-
ward covering set for a given dominance graph. ThamM§Cy-Test is cONRcomplete.

Proof. This problem s in coNP, since its complement (i.e., the moinf deciding whether
a given subset of the satof alternatives is not a minimum-size downward covering@es)
can be decided in nondeterministic polynomial time. Hasdrfer coNP follows directly from
Claim 23, which shows that in Construction 19 the booleamfda ¢ is not satisfiable if
and only if there is a unique minimal downward covering setf@nd hence also a unique
minimume-size downward covering set fAr O
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Theorem 30 Deciding whether a designated alternative is containedime minimal down-
ward covering set for a given dominance graph is hard#rand inZ}. That is MCq-MemBer
is hard for@5 and in=}.

Proof. Membership inz} can be shown analogously to the proof of Theorem 12,@hd
hardness follows directly from Claim 26, which applies Wagslemma to downward cover-
ing sets. Specifically, this claim shows that in Construcfid the alternativel* is contained
in some minimal downward covering set #&if and only if the number of underlying boolean
formulas is odd. O

Theorem 31 1. (Brandtand Fischer [7]) IticoNR-complete to decide whether a designated
alternative is contained in all minimal downward coveringts for a given dominance
graph. That isMCy-MemBer-ALL is CONRcomplete.

2. ItiscoNRcomplete to decide whether a given subset of the altersiba minimal down-
ward covering set for a given dominance graph. ThaM&g-Test is coNRcomplete.

3. ItiscoNPhard and inzgJ to decide whether there is a unique minimal downward cogerin
set for a given dominance graph. Thath$Cy-Unique is coNRhard and inzg.

Proof. It follows from Claim 23 that in Construction 19 the booleanrfiulay is not sat-
isfiable if and only if the entire set of alternativAds a unique minimal downward covering
set forA. Furthermore, ifp is satisfiable, there exists more than one minimal downwavd c
ering set forA and none of them contairds (provided thaty has more than one satisfying
assignment, which can be ensured, if needed, by adding a glwarnable such that the sat-
isfiability of the formula is not fiected). This proves coNP-hardness for all three problems.
MCgy4-Memeer-ALL and MGy-Test are also contained in coNP, because they can be decided
in the positive by checking whether there does not exist andeard covering set that sat-
isfies certain properties related to the problem at hands;Tiey are both coNP-complete.
MCq4-Unique can be decided in the positive by checking whether theréseaidownward cov-
ering setM such that all sets that are not strict supersetd @renot downward covering sets
for the set of all alternatives. This shows that MONiQuE is in Zg. ad

The first statement of Theorem 31 was already shown by Branttfeescher [7]. However,
their proof—which uses essentially the reduction from theopof Theorem 18, except that
they start from the coNP-complete problem.Miry—does not yield any of the other coNP-
hardness results in Theorem 31.

An important consequence of the proofs of Theorems 28 andd@lrds the hardness of the
search problems MgEFino and MSG-Finp. (Note that the hardness of M@& b also follows
from a result by Brandt and Fischer [7, Thm. 9], see the di&ousn Section 3.)

Theorem 32 AssumingP # NP, neither minimal downward covering sets nor minimum-
size downward covering sets can be found in polynomial tiree feitherMCy-Fino nor
MSCy-Finp are polynomial-time computable unleBs= NP), even when the existence of a
downward covering set is guaranteed.
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Proof. Consider the problem of deciding whether there exists nantrivial
minimal/minimum-size downward covering set, i.e., one that does contain all alter-
natives. By Construction 19 that is applied in proving Teeos 28 and 31, there exists
a trivial minimayminimum-size downward covering set fak (i.e., one containing all
alternatives imA) if and only if this set is the only minimahinimum-size downward covering
set for A. Thus, the coNP-hardness proof for the problem of decidihgther there is a
unigue minimaminimum-size downward covering set fér(see the proofs of Theorems 28
and 31) immediately implies that the problem of deciding thike there is a nontrivial
minima)minimum-size downward covering set féris NP-hard. However, since the latter
problem can easily be reduced to the search problem (bethessearch problem, when
used as a function oracle, yields the set of all alternaiivaad only if this set is the only
minimal/minimum-size downward covering set f@&), it follows that the search problem
cannot be solved in polynomial time unless-mMP. O

6 Conclusions and Open Questions

In this paper we have systematically studied the compledfityarious problems related to
inclusion-minimal and minimum-size unidirectional (j.either upward or downward) cover-
ing sets. We have established hardness or completenefts feseither of NP, coNP, ané)
(see Tables 1 and 2 in Section 3). An important consequentbatisf P = NP then neither
minimal upward nor minimal downward covering sets (evennvbaaranteed to exist) can
be computed in polynomial time. This sharply contrasts \Bitandt and Fischer’s result that
minimal bidirectional covering sets in fact are polynontiaie computable [7].

Tables 1 and 2 also list the best upper bounds we could esidbli these problems. In
some cases, these upper bounds do not coincide with the tovwerds established, for ex-
ample, Wher@';-hardness but only membershipxg could be proven. As an interesting task
for future research, we propose to close these complexjig.g&s suggested by an anony-
mous reviewer, a good candidate problem for finding a rednct provég-completeness for
problems related to minimal unidirectional covering setthe problem of deciding whether a
positive literal belongs to a minimal model of a propositabformula (see [18]).
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