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ABSTRACT

Results from voting theory are increasingly used when dealing with
collective decision making in computational multiagent systems.
An important and surprising phenomenon in voting theory is the
No-Show Paradox (NSP), which occurs if a voter is better off by
abstaining from an election. While it is known that certain voting
rules suffer from this paradox in principle, the extent to which it is
of practical concern is not well understood.We aim at filling this gap
by analyzing the likelihood of the NSP for six Condorcet extensions
(Black’s rule, Baldwin’s rule, Nanson’s rule, MaxiMin, Tideman’s
rule, and Copeland’s rule) under various preference models using
Ehrhart theory as well as extensive computer simulations. We find
that, for few alternatives, the probability of the NSP is rather small
(less than 4% for four alternatives and all considered preference
models, except for Copeland’s rule). As the number of alternatives
increases, the NSP becomes much more likely and which rule is
most susceptible to abstention strongly depends on the underlying
distribution of preferences.
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1 INTRODUCTION

Results from voting theory are increasingly used when dealing with
collective decision making in computational multiagent systems
[see, e.g. 12, 25, 54]. A large part of the voting literature studies para-
doxes in which seemingly mild properties are violated by common
voting rules. Moreover, there are a number of sweeping impossibili-
ties, which entail that there exists no optimal voting rule that avoids
all paradoxes. It is therefore important to evaluate and compare
how severe these paradoxes are in real-world settings. In this paper,
we employ sophisticated analytical and experimental methods to
assess the frequency of the No-Show Paradox (NSP), which occurs
if a voter is better off by abstaining from an election [28]. The ques-
tion we address goes back to Fishburn and Brams [28], who write
that “although probabilities of paradoxes have been estimated in
other settings, we know of no attempts to assess the likelihoods of
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the paradoxes of preferential voting discussed above, and would
propose this as an interesting possibility for investigation. Is it
indeed true that serious flaws in preferential voting such as the
No-Show Paradox [. . . ] are sufficiently rare as to cause no prac-
tical concern?” It is well-known that all Condorcet extensions, a
large class of attractive voting rules, suffer from the NSP and this
is often used as an argument against Condorcet extensions. Our
analysis covers six Condorcet extensions: Black’s rule, Baldwin’s
rule, Nanson’s rule, MaxiMin, Tideman’s rule, and Copeland’s rule.

In principle, quantitative results on voting paradoxes can be ob-
tained via three different approaches. The analytical approach uses
theoretical models to quantify paradoxes based on certain assump-
tions about the voters’ preferences such as the impartial anonymous
culture (IAC)model, in which every anonymous preference profile is
equally likely. Analytical results usually tend to be quite hard to ob-
tain and are limited to simple—and often unrealistic—assumptions.
The experimental approach uses computer simulations based on
underlying stochastic models of how the preference profiles are
distributed. Experimental results have less general validity than
analytical results, but can be obtained for arbitrary distributions of
preferences. Finally, the empirical approach is based on evaluating
real-world data to analyze how frequently paradoxes actually occur
or how frequently they would have occurred if certain voting rules
had been used for the given preferences. Unfortunately, only very
limited real-world data for elections is available.

We analytically study the NSP under the assumption of IAC
via Ehrhart theory, which goes back to the French mathematician
Eugène Ehrhart [24]. The idea of Ehrhart theory is to model the
space of all preference profiles as a discrete simplex and then count
the number of integer points inside of the polytope defined by the
paradox in question. The number of these integer points can be
described by so-called quasi- or Ehrhart-polynomials, which can
be computed with the help of computers. The computation of the
quasi-polynomials that arise in our context is computationally very
demanding, because the dimension of the polytopes grows super-
exponentially in the number of alternatives and was only made
possible by recent advances of the computer algebra system Nor-
maliz [16]. We complement these results by extremely elaborate
simulations using four common preference models in addition to
IAC (IC, urn, spatial, and Mallows). In contrast to existing results,
our analysis goes well beyond three alternatives.

2 RELATEDWORK

The NSP was first observed by Fishburn and Brams [28] for a voting
rule called single-transferrable vote (STV). Moulin [44] later proved
that all Condorcet extensions are prone to the NSP; the correspond-
ing bound on the number of voters was recently tightened by Brandt



et al. [13]. Similar results were obtained for weak preferences and
stronger versions of the paradox [23, 48]. The NSP was also trans-
ferred to other settings including set-valued voting rules [see, e.g.,
8, 33, 49, 50], probabilistic voting rules [see, e.g., 1, 4, 9, 11, 32] and
random assignment rules [2, 10].1

The frequency of the NSP was first studied by Ray [52], who, in
line with Fishburn and Brams’s classic paper, analyzed situations
where STV can be manipulated in elections with three alternatives.
A similar goal was pursued by Lepelley and Merlin [39] who quan-
tified occurrences of the NSP assuming preferences are distributed
according to IC or IAC. However, in contrast to the present paper,
Lepelley and Merlin employed different statistical techniques to
estimate the likelihood of multiple variants of the paradox and
focused on score-based runoff rules in elections with three alterna-
tives. In a recent paper, this setting was revisited by Kamwa et al.
[34] who focused on single-peaked preferences, where alternatives
can be ordered on a one-dimensional axis and voters’ preferences
are determined by proximity to their optimal point on this axis.
Under this assumption, they found that multiple scoring runoff
rules do not suffer from any variant of the NSP while for others,
e.g., plurality runoff, the probabilities of a paradox to occur are
significantly lower compared to the unrestricted domain.

The general idea to quantify voting paradoxes via IAC has been
around since the formal introduction of this preference model by
Gehrlein and Fishburn [29] [see, e.g., 36, 37, 40]. Still, it took a good
30 years until the connection to Ehrhart theory [24] was established
by Lepelley et al. [38]. We refer to Gehrlein and Lepelley [30] for a
more profound explanation of all details and an overview of results
subsequently achieved [see also, e.g., 36, 55, 59]. The step from three
to four alternatives, i.e., from six to 24 dimensions, was only made
possible through recent advances in computer algebra systems by
De Loera et al. [21] and Bruns and Söger [18]. Brandt et al. [14] used
a framework similar to ours to study the frequency of two single-
profile paradoxes (the Condorcet Loser Paradox and the Agenda
Contraction Paradox). In a recent paper, Bruns et al. [17] also made
use of the possibility to analyze situations with four alternatives
and looked at the Condorcet efficiency of plurality and plurality
with runoff as well as the structure of majority graphs and varying
Borda paradoxes.

Plassmann and Tideman [51] conducted computer simulations
for various voting rules and paradoxes under a modified spatial
model in the three-alternative case. To the best of our knowledge,
this is—apart from Brandt et al. [14] and Bruns et al. [17]—the only
study of Condorcet extensions from a quantitative angle.

3 PRELIMINARIES

Let A be a set ofm alternatives and N = {1, . . . ,n} a set of voters.
We assume that every agent i ∈ N is endowed with a preference
relation ≻i over the alternatives A. More formally, ≻i is a complete,
asymmetric and transitive binary relation, ≻i ∈ A ×A, which gives
a strict ranking over the alternatives. If x ≻i y, we say that i prefers
x to y.

A preference profile ≻ is a tuple consisting of one preference
relation per voter, i.e., ≻ = (≻1, . . . , ≻n ). By ≻−i we denote the

1Interestingly, when considering set-valued or probabilistic voting rules, there are
Condorcet extensions immune to the NSP under suitable assumptions [8, 11].

preference profile resulting of voter i abstaining the election,
≻−i = (≻1, . . . , ≻i−1, ≻i+1, . . . , ≻n ). Preference profiles are defined
as vectors of preference relations. For most purposes, however, the
ordering within this vector is irrelevant and one can alternatively
consider multisets of preference relations, so-called anonymous
preference profiles.

For two alternatives x,y ∈ A and a preference profile ≻we define
the majority margin дxy (≻) as

дxy (≻) = |{i ∈ N : x ≻i y}| − |{i ∈ N : y ≻i x}|.

Whenever ≻ is clear from the context we only write дxy . A voting
rule is a function f mapping a preference profile ≻ to a single
alternative, f (≻) ∈ A.

Condorcet Extensions. Alternative x ∈ A is a Condorcet winner
if it beats all other alternatives in pairwise majority comparisons,
i.e., дxy > 0 for all y ∈ A \ {x}. Similarly, x is a weak Condorcet
winner if it beats or ties all other alternatives, i.e., дxy ≥ 0 for all
y ∈ A \ {x}. If a voting rule always selects the Condorcet winner
whenever one exists, it is called a Condorcet extension. A weak
Condorcet extension returns a weak Condorcet winner whenever
(at least) one exists. Clearly, every weak Condorcet extension is
a Condorcet extension. A wide variety of Condorcet extensions
has been studied in the literature [see, e.g., 12, 27]. In this paper,
we consider six Condorcet extensions: Black’s rule, Baldwin’s rule,
Nanson’s rule, MaxiMin, Tideman’s rule, and Copeland’s rule. The
main criteria for selecting these rules were discriminability (in order
to minimize the influence of lexicographic tie-breaking), simplicity
(to allow for Ehrhart analysis and because voters generally prefer
‘simpler’ rules), and efficient computability (to enable rigorous and
comprehensive simulations).2 In the following, we briefly define
the rules.

Black’s rule [7] selects the Condorcet winner whenever one exists
and otherwise returns a winner according to Borda’s rule (Borda’s
rule itself is no Condorcet extension).

fBlack(≻) ∈

{
x if x is a Condorcet winner in ≻

argmaxx ∈A
∑
y∈A\{x } дxy otherwise.

Baldwin’s rule [5] proceeds in multiple rounds. In each round, we
drop all alternatives with the lowest Borda score and then continue
with the reduced preference profile, which is used to calculate
updated scores. If multiple—but not all—alternatives are tied last,
we delete all of them. Baldwin’s rule chooses one of the alternatives
remaining when no more alternative can be removed.

Nanson’s rule [45, 46] is similar to Baldwin’s rule in so far as it
also focuses on the Borda scores and gradually eliminates alterna-
tives. However, in contrast to before, we now remove all alternatives
with average or below-average Borda score in every round. Nan-
son’s rule returns an alternative out of those remaining when all
alternatives have identical score.

The MaxiMin rule [7], which is also known as the Simpson-
Kramer method [35, 56], looks at the worst pairwise majority com-
parison for each alternative. It then returns an alternative with
maximal such score, formally

fMaxiMin(≻) ∈ argmaxx ∈Aminy∈A\{x } дxy .
2Note that other discriminating Condorcet extensions such as Kemeny’s rule, Dodg-
son’s rule, and Young’s rule are NP-hard to compute [see, e.g., 12].



Tideman’s rule [57] focuses on the sum of all pairwise majority
defeats. It yields an alternative where this sum is closest to zero in
terms of absolute value, i.e.,

fTideman(≻) ∈ argmaxx ∈A
∑
y∈A\{x } min(0,дxy ).3

Copeland’s rule [19] only relies on the majority relation and not
the exact majority margins. It chooses an alternative where the
number of majority wins plus half the number of majority draws is
maximal:

fCopeland(≻) ∈ argmax
x ∈A

|{y ∈ A : дxy > 0}|+ 1/2 |{y ∈ A : дxy = 0}|

In order to obtain well-defined voting rules we employ alphabetic
tie-breaking for all rules defined above. Note that the alphabetic
ordering does not influence our results as long as we assume that
there is some underlying ordering. This changes if we allow for tie-
breaking based on the preference profile or choice set, somethingwe
however want our tie-breaking to be independent of. All presented
voting rules can be computed in polynomial time and do not rely
on the exact preference profile ≻ but only on the majority margins
that can conveniently be represented by a skew-symmetric matrix
or a weighted directed graph.

Strategic Abstention. A voting rule f is manipulable by strate-
gic abstention if there exist some N , A, and ≻ such that for some
i ∈ N , f (≻−i ) ≻i f (≻). Given an occurrence of manipulability by
strategic abstention, f is said to suffer from the No-Show Paradox
(NSP) (for N , A, ≻). Slightly abusing notation, we also say that ≻
is prone to the NSP whenever f , N , and A are clear from the con-
text. All rules defined here are Condorcet extensions and therefore
manipulable by strategic abstention. Occurrences of the NSP for
Black’s, Baldwin’s, and Copeland’s rule require three alternatives
while four alternatives are needed for MaxiMin as well as Nanson’s
and Tideman’s rule.

It is interesting to note that whenever a Condorcet winner exists,
no weak Condorcet extension allows for manipulation by strategic
abstention by a single voter. To see this, assume alternative x is the
Condorcet winner, i.e., x wins in a pairwise majority comparison
against all other alternatives. While some of these strict majority
preferences might turn to indifferences if voter i abstains from
the election procedure, this can only happen for comparisons to
alternatives less preferred than x according to ≻i . Hence, every
alternative strictly more preferred than x still loses at least the
pairwise majority comparison against x , which remains a weak
Condorcet winner. We deduce that irrespective of other possible
weak Condorcet winners and the underlying tie-breaking, no al-
ternative preferred to x can be chosen. Of the rules defined above,
MaxiMin and Tideman’s rule are weak Condorcet extensions.4

3Tideman’s rule is arguably the least well-known voting rule presented here. It was
proposed to efficiently approximate Dodgson’s rule and is not to be confused with
ranked pairs which is sometimes also called Tideman’s rule. Also note that the ‘dual’
rule returning alternatives for which the sum of weighted pairwise majority wins is
maximal is not a Condorcet extension.
4For both MaxiMin and Tideman’s rule this holds by the observation that a weak
Condorcet winner does not lose any pairwise majority comparison. Black’s rule fails
to be a weak Condorcet extension by definition; a counterexample for Baldwin’s,
Nanson’s, and Copeland’s rule is given by Fishburn [27].

Stochastic Preference Models. When analyzing properties of vot-
ing rules, it is a common approach to sample preferences according
to some underlying model. Various concepts to model preferences
have been introduced over the years; we refer to, e.g., Critchlow et al.
[20] and Marden [42] for a detailed discussion. We focus on three
parameter-free models, impartial culture (IC) where each voter’s
preferences are drawn uniformly at random, impartial anonymous
culture (IAC) [29] where anonymous preference profiles are drawn
uniformly at random, and the two-dimensional spatial model where
we uniformly sample points in the unit square and their proximity
determines the voters’ preferences. Furthermore, we consider the
urn model [6] with parameter 10 and Mallows’ model [41] with
ϕ = 0.8.

The preference models we consider (such as IC, IAC, and the
Mallows model) have also found widespread acceptance for the
experimental analysis of voting rules within the multiagent systems
and AI community [see, e.g., 3, 14, 15, 31, 47].

4 QUANTIFYING THE NO-SHOW PARADOX

The goal in this paper is to quantify the frequency of the NSP, i.e., to
investigate for how many preference profiles a voter is incentivized
to abstain from an election. In order to achieve this goal, we employ
an exact analysis via Ehrhart Theory and experimental analysis via
sampled preference profiles.

4.1 Exact Analysis via Ehrhart Theory

The imminent strength of exact analysis is that it gives reliable
theoretical results. On the downside, precise computation is only
feasible for very simple preference models and for small values of
m. We focus on IAC and make use of Ehrhart theory.

First, note that an anonymous preference profile is completely
specified by the number of voters sharing each of them! possible
rankings onm alternatives. Hence, we can uniquely represent an
anonymous profile by an integer point x in a space ofm! dimen-
sions. We interpret xi as the number of voters who share ranking
i , where rankings are ordered lexicographically. For fixedm, our
goal is to describe all profiles that are prone to the NSP by using
linear (in)equalities that describe a polytope Pn .5 Given that this is
possible, the fraction of profiles prone to the NSP can be computed
by dividing the number of integer points contained in Pn by the
total number of profiles for n voters, i.e., the number of integer
points x satisfying xi ≥ 0 for all 1 ≤ i ≤ m! and

∑
1≤i≤m! xi = n.

While the latter number is known to be
(m!+n−1
m!−1

)
, the former

can be determined using Ehrhart theory. Ehrhart [24] shows that
it can be found by so-called Ehrhart- or quasi-polynomials f —a
collection of q polynomials fi of degree d such that f (n) = fi (n) if
n ≡ i mod q. Obtaining f is possible via computer programs like
LattE [22] or Normaliz [16]. Brandt et al. [14] give a more detailed
description of the general methodology.

In order to illustrate this method first consider Copeland’s rule
in elections with three alternatives under IAC. For the modeling
we need to give linear constraints in terms of voter types—or equiv-
alently majority margins—that describe polytopes containing all
profiles prone to the NSP.

5More precisely, Pn is a dilated polytope depending on n, Pn = nP = {n ®x : ®x ∈ P }.



We first distinguish between the six possible manipulations from
x toy, x , y ∈ A = {a,b, c}. A case-by-case analysis shows that out
of these, only manipulations from a to b or c and from either b or
c to a are possible. In particular, for each of these cases, there is
exactly one voting situation admitting an occurrence of the NSP.We
find that we can specify the respective profiles using one polytope
each:

дba ≥ 2, дac ≥ 1, дcb = 1, x6 ≥ 1 (P1)

дca ≥ 2, дab ≥ 1, дbc = 1, x4 ≥ 1 (P2)

дac ≥ 2, дba ≥ 1, дbc = 0, x1 ≥ 1 (P3)

дab ≥ 1, дca ≥ 1, дbc = 0, x2 ≥ 1 (P4)

For the sake of readability we here omit but implicitly assume that
the total number of voters present is n and there is a nonnegative
amount of voters per voter type. Note that P1 and P2 require n
to be odd while every profile contained in P3 or P4 contains an
even number of voters. The total number of anonymous preference
profiles admitting a manipulation by abstention is given by the
number of integer points contained in polytopes P1 to P4.

When considering different rules or a larger amount of alterna-
tives, we find that the number of polytopes as well as the number
of linear constraints defining them grows rapidly. Black’s rule, for
instance, can only be manipulated from a Condorcet winner to a
Borda winner or vice versa. This distinction is also one of voter
parity: a manipulation away from a Condorcet winner is possible
for odd n, while n is required to be even in the converse case. In
contrast to before, Black’s rule allows for a manipulation between
any pair of alternatives regardless of n. Hence, we obtain a total of
12 polytopes, one for every possible manipulation and parity of n.
We only depict the polytope describing manipulations from a to b
for even n in order to give an impression of the general form and
omit the rest due to space constraints:

дab + дac ≥ дba + дbc , дba ≥ 1, x6 ≥ 1,
дab + дac ≥ дca + дcb , дbc = 0

Here, the inequalities in the left columnmodel that a currently is the
Borda winner. The (in)equalities in the second column guarantee
that a manipulator can make b Condorcet winner by abstaining as
well as that with him being present, there is no Condorcet winner.
The last column only demands presence of a voter of type ≻6, the
only type able to manipulate.

When moving to MaxiMin and four alternatives, determining the
necessary polytopes becomes tedious. Since alphabetic tie-breaking
rules out most symmetries, we need 168 disjoint polytopes of vary-
ing sizes to encompass all profiles prone to the NSP. Each of these
is defined by 8 to 10 constraints, not counting the total number of
voters and nonnegative amount per type.

This approach of modeling profiles prone to the NSP is substan-
tially more involved than using Ehrhart theory for other paradoxes,
e.g., the Condorcet Loser Paradox [14], because of three reasons.

(i) An occurrence of the NSP requires the presence of a certain
type of voter.

(ii) Preference profiles for which different types of voters are
able to manipulate must be counted only once.6

6This effect is only relevant when there are at least four alternatives.

(iii) Possible manipulations not only rely on the winning alter-
native itself but on all majority margins that have to adhere
to different constraints.

4.2 Experimental Analysis

In contrast to exact analysis, the experimental approach relies on
simulations to grasp the development of different phenomena under
varying conditions. On the upside, this usually allows for results
for more complex problems or a larger scale of parameters, both
of which might be prohibitive for exact calculations. At the same
time, however, we find that we need a huge number of simulations
per setting to get sound estimates which in turn often requires a
high-performance computer and a lot of time. Also, there remains
the risk that even a vast amount of simulations fails to capture one
specific, possibly crucial, effect.

Regarding the pivotal question of our paper, the frequency of
the NSP for various voting rules, we sample preference profiles
for different combinations of n andm using the modeling assump-
tions explained in Section 3. Our simulations were conducted on
a XeonE5-2697 v3 with 2 GB memory per job. The total runtime
easily accumulates to thirty years on a single-processor machine.

5 RESULTS AND DISCUSSION

In this sectionwe present our results obtained by both exact analysis
and computer simulations.

5.1 Analytical Results under IAC

We first focus on Copeland’s rule with three alternatives, as our
modeling in Section 4.1 allows for an exact analysis of the NSP.
In particular, we compute the following Ehrhart-polynomial f (n)
with period q = 2:

f0(n) = 1/192n4 − 1/48n3 − 1/48n2 + 1/12n

f1(n) = 1/192n4 − 5/96n2 + 3/64

Recall that f (n) = fi (n) if n ≡ i mod q. Consequently, the fraction
of profiles that admit a manipulation by strategic abstention is given
by

f0(n)
(n+55 )

if n is even and f1(n)
(n+55 )

if n is odd.

This frequency of the NSP for Copeland’s rule andm = 3 is plotted
in Figure 1, together with results obtained by computer simulations.

With respect to Black’s rule andm = 3, we obtain an Ehrhart-
polynomial with slightly larger period q = 6. Once more, we can
explicitly give f (n) which looks as follows:

f0(n) = 1/192n4 − 5/48n2

f1(n) = 1/192n4 − 1/48n3 − 7/96n2 + 3/16n − 19/192

f2(n) = 1/192n4 − 5/48n2 + 1/3

f3(n) = 1/192n4 − 1/48n3 − 7/96n2 + 3/16n + 15/64

f4(n) = 1/192n4 − 5/48n2 + 1/3

f5(n) = 1/192n4 − 1/48n3 − 7/96n2 + 3/16n + 15/64

The fraction of profiles prone to the NSP for Black’s rule and
m = 3 is visualized in the middle part of Figure 1.
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Figure 1: Profiles prone to the NSP for Copeland’s rule,

Black’s rule, and MaxiMin; fixedm, increasing n

Similar connections between analytical and experimental results
for MaxiMin can be observed in the bottom part of Figure 1. Note
that while we are able to explicitly give the Ehrhart-polynomials for
Copeland’s and Black’s rule andm = 3 here, this is not possible for
MaxiMin andm = 4 due to space constraints. The corresponding
polynomial f (n) has a period of q = 55 440, i.e., it consists of 55 440
different polynomials.We deduce that no two points in theMaxiMin
chart of Figure 1 are computed via the same polynomial, which
makes the regularity of the curve even more remarkable.

A couple of points come to mind when closely studying these
graphs. First, we note that the results obtained by simulation almost
perfectly match the exact calculations, which can be seen as strong
evidence for the correctness of both. On the one hand, it confirms
our modeling via polytopes, and at the same time highlights that
we are running a sufficiently large amount of simulations. While
this does not bear definite testimony to the correctness for largerm,
we highlight that our implementation is both generic (with respect
to m and n) and not particularly complex, which minimizes the
risk of errors. We additionally believe that the perfect smoothness
of Figure 2 together with the fact that the NSP is independent of
n, m, and the underlying voting rule strongly suggests that our
experimental results are sound and reliable.

We see that for Black’s rule the maximum is attained at 14 and
16 voters with 1.55% of all profiles suffering from the NSP. For
Copeland’s rule themaximum is at 13 voters and 1.63% of all profiles,
while forMaxiMin andm = 4 it is at 14 voters and a fraction of 0.55%
of profiles. Hence, we can argue that for elections with very few
alternatives, the NSP seems to hardly cause a problem, independent
of the number of voters or the voting rule considered. Strikingly,
the maxima occur at roughly the same number of voters, with this
number varying between being even or odd. Also observe that
Black’s and Copeland’s rule are more sensitive to the parity of n
than MaxiMin.

Furthermore, we note that the probability for the NSP to occur
converges to zero as n goes to∞; this holds true for all voting rules
considered and all fixedm. Intuitively, this is to be expected as for
larger electorates, a single voter’s power to sway the result dimin-
ishes. This first idea can be confirmed by considering the respective
modeling via polytopes. Each modeling will contain at least one
equality constraint, e.g., in the third column of our modeling of
Copeland’s rule in Section 4.1. Consequently, the polytopes describ-
ing profiles for which a manipulation is possible are of dimension
at most m! − 1. By Ehrhart [24], this means that the number of
those profiles can be described by a polynomial of n of degree at
mostm! − 1. The total number of profiles, on the other hand, can
equivalently be determined via a polynomial of degreem!. Hence,
the fraction of profiles prone to the NSP is upper-bounded byO(1/n).
Following the intuitive argument, similar behavior is to be expected
for all reasonable preference models and voting rules.

Form = 4, determining the Ehrhart polynomials for both Black’s
as well as Tideman’s rule proved to be infeasible, even when us-
ing a custom-tailored version of Normaliz and employing a high-
performance cluster.7 Copeland’s rule unfortunately causes prob-
lems even earlier: for four alternatives the modeling via linear

7For Black’s rule, we find that the polynomial would be of period q ≈ 2.7 · 107
corresponding to a mid two-digit GB file size.



(in)equalities quickly becomes very challenging due to the rule
only caring about unweighted majority comparisons. For all rules,
m ≥ 5 appears to be out of scope for years to come.

5.2 Experimental Results under IAC

In this section, we rely on simulations to grasp how often the
NSP can occur for different combinations of n andm up to 50 voters
and 30 alternatives. Our results can be found in Figure 2 and allow
for the following observations to be made.

To begin with, the relatively low fraction of profiles prone to
the NSP for Copeland’s rule, Black’s rule, and MaxiMin with a
small number of alternatives increases asm grows. This increase is
quite dramatic for Copeland’s rule and MaxiMin. In particular, for
only 20 alternatives and both rules, a rough quarter of all profiles
admit manipulation by abstention for a medium count of voters.
This number is too large to discard the NSP as merely a theoreti-
cal problem. Black’s rule, on the other hand, remains stable on a
comparatively moderate level. Felsenthal and Nurmi [26] argue in
favor of Nanson’s rule as it is—in contrast to the related Baldwin’s
rule—not prone to the NSP for three alternatives. We show that this
difference between the two rules becomes moot for larger numbers
of alternatives: the fractions of profiles allowing for a manipulation
are on a roughly identical, severely high level.8 This shows that
voting rules based on Borda scores do not necessarily fare better
with respect to the NSP.

When examining Baldwin’s rule in Figure 2, the ridge at n = 3
immediately catches the observer’s eye.
We conjecture this unique behavior of Baldwin’s
rule is due to preference profiles similar in struc-
ture to the one depicted on the right. In case voter
3 places sufficiently many alternatives over x , x is
going to be eliminated on the way causing y to even-
tually be chosen. Then again, if voter 3 abstains, x
is always going to be selected as long as it beats y
in the tie-breaking order. Note that x and y can be
chosen almost freely, all other alternatives placed
virtually arbitrarily, and many profiles only similar
in structure also work.

1 2 3

x y
...

y x
...
...
...

y

x
...

Especially when considering Black’s, Tideman’s, and Copeland’s
rule, we see that the parity of n crucially influences the results.
However, the parity of n does not affect the fractions in a consistent
way: higher fractions occur for Black’s and Copeland’s rule when n
is even, in contrast to Tideman’s rule where this happens when n is
odd. For Black’s rule, this is most probably due to the fact that there
aremore suitable profiles close to having a Condorcet winner (дxy =
0) than profiles close to not having one (дxy = 1).9 Copeland score’s
are integers when the number of voters is odd and half-integers
when the number of voters is even. Hence, differences between
alternatives are potentially more distinct for an odd number of
voters which we assume makes manipulations harder to achieve.
For Tideman’s rule, we currently lack a convincing explanation for

8Felsenthal and Nurmi [26] also show that none of the two rules fares strictly better
than the other. Indeed, there are profiles where a manipulation is possible according
to Baldwin’s rule but not using Nanson’s rule and vice versa.
9For Black’s rule, manipulation is only possible either towards or away from a Con-
dorcet winner since Borda’s rule is immune to strategic abstention and manipulation
is impossible from Condorcet winner to Condorcet winner.

the observed behavior, mostly because it is hard to intuitively grasp
when exactly a preference profile is manipulable.

Regarding Baldwin’s and Nanson’s rule as well as MaxiMin,
the parity of n seems to have little effect on the numbers. More
detailed analysis shows that at least for MaxiMin this appearance is
deceptive: when manipulating towards an alphabetically preferred
alternative, fractions are higher for even n, while the contrary
holds for manipulations towards an alphabetically less preferred
alternative. In sum, these two effects approximately cancel each
other out.

The flawless smoothness and regularity of all plots in Figure 2
are due to 106 runs per data point. This large number allows for all
95% confidence intervals to be smaller than 0.2%. Our simulations
took 35 to 48 hours for each data point and there are 1 500 data
points per plot.

5.3 Comparing Different Preference Models

In order to get an impression of the frequency of the NSP under
different preference models we fix the number of alternatives to
bem = 4 orm = 30 and sample 106 profiles for increasing n up to
1 000 or 200, respectively.10 Figure 3 gives the fraction of profiles
prone to the NSP using either MaxiMin, Black’s, or Tideman’s rule.

A close inspection of these graphs allows for multiple conclu-
sions. First, we see that in particular Black’s rule shows a severe
dependency on the parity of n. For better illustration, we depict
two lines per preference model to highlight this effect; which line
stands for odd and which for even n is easiest checked using their
corresponding point of intersection with the x-axis, which is either
1, 2, or 3 throughout. Apart from explanations given earlier, it is
not completely clear why differences are more prominent for some
voting rules, why we sometimes see higher percentages for odd
n and other times for even n, or why for some instances there is
a large discrepancy for one preference model but hardly any for
another.

IC and IAC are often criticized for being unrealistic and only
giving worst-case estimates [see, e.g., 53, 58]. This criticism is gen-
erally confirmed by our experiments, which show that the highest
fractions of profiles is prone to the NSP when the sampling is done
according to IC or IAC. A notable exception is Black’s rule for 30
alternatives, where a different effect prevails: for many alternatives
and comparably few voters, situations in which a Condorcet win-
ner (almost) exists appear less frequently under IC or IAC than
under the other preference models. In absence thereof, Black’s rule
collapses to Borda’s rule, which is immune to the NSP. Note that
were we to conduct a dual experiment with fixed n and increasing
m, the fraction of profiles prone to the NSP using Black’s rule and
IC or IAC would converge to zero for similar reasons.

Wemoreover see that IC, IAC, and the urnmodel exhibit identical
behavior for m = 30. The second and fourth column of Figure
3 therefore seem to only feature three preference models, even
though all five are depicted. This may be surprising at first but is
to be expected since IC and IAC can equivalently be seen as urn
models with parameters 0 and 1, respectively. For 30! ≈ 2.7 · 1032

10For increasingm the computations quickly become very demanding. The values
form = 30 and n ≥ 99 are determined with 50 000 runs each only. The size of all 95%
confidence intervals is, however, still within 0.5%.
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Figure 2: Fraction of profiles prone to the NSP for different rules and increasing n andm

voter types and a comparatively small n the difference between
parameters 0, 1, and 10 is simply too small for a visible difference.

The large conceptual similarities between Baldwin’s and Nan-
son’s rule are also reflected in the corresponding charts. Apart from
the peak at n = 3 for Baldwin’s rule, both look almost identical
for all preference models with the small difference being that Nan-
son’s rule appears to feature a slightly lower manipulability. Fewer
rounds for winner determination thus do not seem to come at a
cost with respect to the NSP.

Finally, Copeland’s, Baldwin’s, and Nanson’s rule as well as Maxi-
Min to a lesser extent appear to fare exceptionally bad with respect
to the NSP and IC, IAC, and the urn model. At the same time, none
of these rules exhibits overly conspicuous behavior for the spatial
and Mallows’ model. This suggests that the risk of a possible ma-
nipulation is reduced by structural similarities in the individual
preferences compared to a greater likelihood for very diverse rank-
ings. Though generally in line with expectations, we currently do
not have a profound explanation for the magnitude of this effect.
For Copeland’s rule, it is plausible to assume that its particularly
bad performance results from the rule using less information, i.e.,
Copeland’s rule is the only majoritarian rule considered here.

The maximal fraction of total profiles prone to the NSP form = 4,
m = 30, different voting rules, preference models, and varying val-
ues of n is given in Table 1. Among other things, we for instance
note that the maxima constantly occur for a higher number of vot-
ers for IC (26 to 51 voters) than for Mallows’ model (3 to 17 voters),
a fact probably due to an increasing (expected) structure under
Mallows’ model and larger n.

m IC IAC Spatial Urn Mallows

Black 4 3.92(29) 3.73(18) 1.62(15) 2.30(10) 3.23(17)

30 5.12(22) 5.12(22) 7.70(17) 5.14(20) 9.90(13)

Baldwin 4 3.92(27) 3.07(23) 0.40(15) 0.84(12) 2.14(13)

30 35.4(49) 35.4(51) 2.54(21) 35.7(49) 5.73(3)

Nanson 4 3.64(27) 2.76(24) 0.44(13) 0.68(16) 2.20(14)

30 34.9(51) 34.8(51) 2.38(21) 34.7(99) 3.40(12)

MaxiMin 4 1.00(30) 0.56(14) 0.14(3) 0.13(3) 0.50(10)

30 28.0(30) 28.0(30) 2.31(3) 28.0(30) 3.01(6)

Tideman 4 0.80(26) 0.67(5) 0.19(5) 0.32(5) 0.62(3)

30 15.6(51) 15.6(49) 2.42(7) 15.6(49) 4.12(3)

Copeland 4 6.96(29) 5.54(20) 0.91(14) 2.07(13) 4.13(16)

30 31.2(50) 31.0(50) 4.28(21) 31.1(50) 6.33(16)

Table 1: Maximal percentage of total profiles prone to the

NSP for different combinations of voting rules and prefer-

ence models with m = 4 or m = 30; the number of voters n
for which the maximum occurs attached in parentheses

5.4 Empirical Analysis

We have also analyzed the NSP for empirical data obtained from
real-world elections. Unfortunately, such data is generally rela-
tively sparse and imprecise and often only fragmentarily available.
A check of all 315 strict profiles contained in the PrefLib library
[43] for occurrences of the NSP shows that two profiles admit a
manipulation by abstention when Black’s rule is used, one profile
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Figure 3: Profiles prone to the NSP for different rules, fixedm, and increasing n on the x-axis; two lines per preference model

depending on the parity of n; IC, IAC and the urn model collapse form = 30, resulting in a bluish grey line

for each Copeland’s, Baldwin’s, and Nanson’s rule, and that no
manipulation is possible for MaxiMin as well as Tideman’s rule.11
While this suggests a low susceptibility to the NSP in real-world
elections, much more data would be required to allow for meaning-
ful conclusions.

6 CONCLUSION

We analyzed the likelihood of the NSP for six Condorcet extensions
(Black’s, Baldwin’s, and Nanson’s rule, MaxiMin, and Tideman’s
as well as Copeland’s rule) under various preference models using
Ehrhart theory as well as extensive computer simulations and some
empirical data. Our main results are as follows.

• When there are few alternatives, the probability of the NSP
is almost negligible (whenm = 4, less than 1% for MaxiMin
and Tideman’s rule, less than 4% for Black’s, Baldwin’s, and
Nanson’s rule, and less than 7% for Copeland’s rule under
all considered preference models).

• When there are 30 alternatives and preferences are mod-
eled using IC, IAC, and the urn model, Black’s rule is least

11For instance the profile allowing for a manipulation under Copeland’s rule is immune
to the NSP for all other rules. It features 10 alternatives and 30 voters. Baldwin’s and
Nanson’s rule exhibit the NSP for the same profile.

susceptible to the NSP (< 6%), followed by Tideman’s rule
(< 16%), MaxiMin (< 29%), Copeland’s rule (< 32%) Nanson’s
rule (< 35%) , and Baldwin’s rule (< 36%).

• For 30 alternatives and the spatial and Mallows’ model, this
ordering is roughly reversed. MaxiMin and Nanson’s rule are
least susceptible (< 4%), followed by Tideman’s rule (< 5%),
Baldwin’s rule (< 6%), Copeland’s rule (< 7%), and Black’s
rule (< 10%).

• The parity of the number of voters significantly influences
the manipulability of Black’s, Tideman’s, and Copeland’s
rule. Black’s and Copeland’s rule are more manipulable for
an even number of voters whereas MaxiMin is more manip-
ulable for an odd number of voters (under the IAC assump-
tion).

• Whenever analysis via Ehrhart theory is feasible, the results
are perfectly aligned with our simulation results, highlight-
ing the accuracy of the experimental setup.

• Only four (out of 315) strict preference profiles in the Pref-
Lib database are manipulable by strategic abstention (ma-
nipulations only occur for Black’s, Baldwin’s, Nanson’s, and
Copeland’s rule, but not for MaxiMin and Tideman’s rule).
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