
An Analytical and Experimental Comparison
of Maximal Lottery Schemes

Florian Brandl
Princeton University

brandl.ffx@gmail.com

Felix Brandt
TU München
brandtf@in.tum.de

Christian Stricker
TU München

stricker@in.tum.de

Maximal lottery (ML) schemes constitute an interesting class of random-
ized voting rules that were proposed by Peter Fishburn in 1984 and have been
repeatedly recommended for practical use. However, the subtle differences
between different ML schemes are often overlooked. Two canonical subsets of
ML schemes are C1 -ML schemes (which only depend on unweighted majority
comparisons) and C2 -ML schemes (which only depend on weighted majority
comparisons). We prove that C2 -ML schemes are the only homogeneous ML
schemes that satisfy SD-efficiency and SD-participation, but are also among
the most manipulable ML schemes. While all ML schemes are manipulable
and even violate monotonicity, they are never manipulable when a Condorcet
winner exists and satisfy a relative notion of monotonicity. We also evaluate
the frequency of manipulable preference profiles and the degree of random-
ization of ML schemes via extensive computer simulations. In summary, ML
schemes are rarely manipulable and often do not randomize at all, especially
for few alternatives. The average degree of randomization of C2 -ML schemes
is consistently lower than that of C1 -ML schemes.

1 Introduction

When aggregating the preferences of multiple agents into one collective choice, it is
easily seen that completely symmetric situations call for randomization. Moreover, it
has been shown that—apart from guaranteeing impartiality—randomization allows the
circumvention of well-known impossibility results that have plagued social choice theory
for long (see, e.g., Gibbard, 1977; Brandl et al., 2016, 2019b; Hoang, 2017; Brandl and
Brandt, 2020). Two types of randomized voting rules that have been shown to be
attractive from an axiomatic point of view are random (serial) dictatorships and maximal
lottery (ML) schemes. While random dictatorships are renowned for being immune to
strategic manipulation, ML schemes satisfy desirable consistency conditions (such as
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Condorcet-consistency, population-consistency, and composition-consistency) as well as
a very strong version of Pareto efficiency.

Maximal lotteries were first conceived by Kreweras (1965) and independently proposed
and studied in more detail by Fishburn (1984a). The basic idea is to circumvent the
Condorcet paradox—which lies at the heart of many impossibility theorems—by intro-
ducing the concept of a randomized Condorcet winner whose existence is guaranteed by
the minimax theorem. Interestingly, maximal lotteries have been rediscovered several
times by economists (Laffond et al., 1993), mathematicians (Fisher and Ryan, 1995),
political scientists (Felsenthal and Machover, 1992), and computer scientists (Rivest and
Shen, 2010). In particular, Laffond et al. (1993, 1996), Dutta and Laslier (1999), Laslier
(2000), and Brandt et al. (2018) have extensively studied the support of maximal lot-
teries, called the bipartisan set or the essential set.1 Felsenthal and Machover (1992)
and Rivest and Shen (2010) also discuss whether ML schemes are suitable for real-world
political elections. Rivest and Shen conclude that

[the maximal lotteries system] is not only theoretically interesting and
optimal, but simple to use in practice; it is probably easier to implement
than, say, [instant-runoff voting]. We feel that it can be recommended for
practical use. (Rivest and Shen, 2010, p. 1)

More recently, Peyre (2013) and Hoang (2017) have popularized maximal lotteries in
France under the name scrutin de Condorcet randomisé (randomized Condorcet voting
system).2 An easy-to-use web interface for computing various ML schemes (including
C1 -ML and C2 -ML schemes) is available on the website voting.ml. Other online voting
services that use C1 -ML and C2 -ML can be accessed through votation.ovh (in French)
and pnyx.dss.in.tum.de, respectively.

The literature on maximal lotteries often ignores the fact that there are different
variants of maximal lottery schemes, which under certain circumstances may lead to
entirely different outcomes (e.g., two lotteries with disjoint support). All these (infinitely
many) variants are captured by Fishburn’s original classification of maximal lotteries
(Fishburn, 1984a). The two main candidates are C1 -ML schemes (which only depend on
unweighted majority comparisons) and C2 -ML schemes (which only depend on weighted
majority comparisons). C1 -ML schemes have, for example, been considered by Kreweras
(1965), Felsenthal and Machover (1992), Laffond et al. (1993), Fisher and Ryan (1995),
Peyre (2013), and Hoang (2017) while C2 -ML schemes have been considered by Dutta
and Laslier (1999), Laslier (2000), Rivest and Shen (2010), Aziz et al. (2018), Brandl
et al. (2016), and Brandl and Brandt (2020).

In this paper, we provide a detailed analytical and experimental comparison of all
ML schemes in terms of economic efficiency, strategic manipulability, and the degree of
randomization. Apart from clarifying the differences between ML schemes, we also aim

1The term bipartisan set was proposed by Nobel Prize Laureate Roger Myerson (Laffond et al., 1993,
Footnote 1).

2Two French YouTube videos about maximal lotteries by Lê Nguyên Hoang have gathered more than
100 000 views (youtu.be/wKimU8jy2a8 and youtu.be/vAdGZkXhlNM).
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at improving our understanding of two potential drawbacks of maximal lotteries. First,
as already observed by Fishburn (1984a), maximal lotteries may violate monotonicity in
the sense that improving an alternative in an individual preference ranking may reduce
the probability that this alternative will be chosen. For the special case of three alter-
natives, Fishburn formally explains this behavior and essentially attributes the paradox
to our lack of intuition when arguing about cyclic pairwise majorities. In this paper,
we prove that all ML schemes satisfy a relative version of monotonicity, which further
illuminates and alleviates this phenomenon. Secondly, like with any randomized voting
procedure, there are persistent reservations whether randomization would be acceptable
to the general public. For example, Felsenthal and Machover write that

“an inherent special feature of [maximal lotteries] is its extensive and es-
sential reliance on probability in selecting the winner [. . . ] Without sufficient
empirical evidence it is impossible to say whether this feature of [maximal lot-
teries] makes it socially less acceptable than other majoritarian procedures.
It is not at all a question of fairness, for nothing could be fairer than the use of
lottery as prescribed by [maximal lotteries]. The problem is whether society
will accept such an extensive reliance on chance in public decision-making.
Different societies may have differing views about this. For example, it is well
known that the free men of ancient Athens regarded it as quite acceptable
to select holders of public office by lot. Clearly, before [the maximal lotteries
system] can be applied in practice, public opinion must first be consulted,
and perhaps educated, on this issue.” (Felsenthal and Machover, 1992,
pp. 268–269)

While we cannot give a definitive answer to this question, we ran extensive computer
simulations which show that the average degree of randomization of maximal lotteries
is surprisingly low. Even under very conservative assumptions about the distribution of
preferences and up to 21 alternatives, the average support size of maximal lotteries lies
below 4. When there are only 5 alternatives, maximal lotteries do not randomize at all
in more than 75% of all considered cases.

2 Preliminaries

Let A be a finite set of m alternatives and N = {1, . . . , n} be a set of n voters. A
(weak) preference relation on A is a complete and transitive binary relation on A. The
preference relation reported by voter i is denoted by ≿i, and the set of all preference
relations on A is denoted by R. We write ≻i for the strict part of ≿i, i.e., x ≻i y
if x ≿i y but not y ≿i x, and ∼i for the indifference part of ≿i, i.e., x ∼i y if x ≿i y
and y ≿i x. A preference relation ≿i is called strict if it is anti-symmetric, i.e., either
x ≻i y or y ≻i x for all distinct alternatives x, y ∈ A. We will compactly represent a
preference relation as a comma-separated list with all alternatives among which a voter
is indifferent placed in a set. For example, x ≻i y ∼i z is represented by ≿i : x, {y, z}.
A preference profile R = (≿1, . . . ,≿n) is an n-tuple containing a preference relation for
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Figure 1: Illustration of the definitions given in Section 2. The table on the left repre-
sents a preference profile R for three alternatives a, b, c and 100 voters. The
number on top of each column denotes the number of voters with the cor-
responding preference relation, e.g., there are 49 voters with the preference
relation ≿i : c, a, b. The corresponding matrix of majority margins and the
weighted digraph are displayed on the right. The majority relation of R is
cyclic, i.e., a ≻R b ≻R c ≻R a. Hence, R does not admit a (weak) Condorcet
winner.

each voter. The set of all preference profiles is thus given by RN . For a preference profile
R ∈ RN , we denote by nxy = |{i ∈ N : x ≻i y}| the number of voters who strictly prefer
x to y. The majority margin of x over y is given by mxy = nxy − nyx. The majority
margins between all pairs of alternatives can be represented by a skew-symmetric matrix
(i.e., a matrix that equals the negative of its transpose), whose rows and columns are
indexed by alternatives; the majority margin of x over y is given in the cell indexed by
(x, y). Alternatively, majority margins can be illustrated by a weighted digraph with an
edge from x to y with weight mxy if mxy > 0. The majority relation ≿R on alternatives
for a given preference profile R can be derived from the majority margins: x ≿R y if
and only if mxy ≥ 0. An alternative x ∈ A is a Condorcet winner in R if x ≻R y for
all y ∈ A \ {x} and a weak Condorcet winner in R if x ≿R y for all y ∈ A \ {x}. The
preceding definitions are illustrated in Figure 1.

For our proofs, we will need that every skew-symmetric matrix with integer entries is
the matrix of majority margins of some preference profile. This fact was observed by
Debord (1987). We state it here for later use.

Lemma 1 (Debord, 1987). For every skew-symmetric matrix M ∈ ZA×A, there are
N = {1, . . . , n} and R ∈ RN such that M is the matrix of majority margins for R.

We consider voting rules that randomize over alternatives. The set of all lotteries
over A is denoted by ∆(A), i.e., ∆(A) = {p ∈ RA

≥0 :
∑

x∈A p(x) = 1}, where p(x) is the
probability that p assigns to x. By supp(p) we denote the support of a lottery p ∈ ∆(A),
i.e., the set of all alternatives to which p assigns positive probability. A lottery p is
degenerate if |supp(p)| = 1. We write lotteries as convex combinations of alternatives,
e.g., the uniform lottery on {a, b} is denoted by 1/2 a + 1/2 b. By uni(X) we denote the
uniform lottery over a set X ⊂ A, i.e., uni(X) = 1/|X|

∑
x∈X x.

A social decision scheme (SDS) takes as input a preference profile R ∈ RN and
returns a lottery over A. Two common symmetry conditions for SDSs are anonymity,
i.e., invariance under renaming voters, and neutrality, i.e., equivariance under renaming
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Figure 2: Different examples for τ (extended to R): sign function, identity function, and
cubic function.

alternatives. Furthermore, an SDS is majoritarian if it only depends on the majority
relation, i.e., f(R) = f(R̂) whenever ≿R = ≿R̂, and pairwise if it only depends on the
majority margins, i.e., f(R) = f(R̂) whenever mxy = m̂xy for all x, y ∈ A.

3 Maximal Lottery Schemes

In this paper, we focus on maximal lottery schemes, a class of SDSs introduced by
Fishburn (1984a). Every maximal lottery scheme is based on an odd and monotone
function τ : Z → R with τ(1) = 1 and returns an optimal mixed strategy of the symmetric
zero-sum game induced by (τ(mxy))x,y∈A.3 For every such function τ , we define the
maximal lottery correspondence with respect to τ , denoted by MLτ , such that, for every
R ∈ RN ,

MLτ (R) = {p ∈ ∆(A) :
∑
x,y∈A

p(x)q(y)τ(mxy) ≥ 0 for all q ∈ ∆(A)}.

When τ is the identity function, the set of maximal lotteries MLτ (R) thus corresponds
to randomized weak Condorcet winners in the following sense: for p ∈ MLτ (R) and any
lottery q ∈ ∆(A), the expected number of voters who prefer the outcome of p to that of
q is larger than the expected number of voters who prefer the outcome of q to that of p.
Maximal lotteries can be computed via linear programming and thus in polynomial time.
An SDS f is a maximal lottery scheme based on τ if, for all R, R̂ ∈ RN , f(R) ∈ MLτ (R)
and f(R) = f(R̂) whenever MLτ (R) = MLτ (R̂). The second condition ensures that ML
schemes only depend on the underlying ML correspondence. Since ML correspondences
only depend on the majority margins, all ML schemes are pairwise.

The function τ describes how different sizes of majorities are traded off against each
other. Roughly speaking, the steeper the function τ , the more emphasis is given to
larger majorities. Two notable classes of ML schemes are obtained for particularly
natural choices of τ . In accordance with Fishburn’s 1977 classification of deterministic

3τ is odd if τ(−k) = −τ(k) for all k ∈ Z. Thus, τ(0) = 0 and τ is completely defined by its values on
positive integers.
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voting rules, we call ML schemes based on the sign function C1 -ML schemes and also
use C1 -ML to refer to the corresponding ML correspondence. C1 -ML schemes are in
fact the only ML schemes that are C1 functions, i.e., that only depend on the majority
relation and thus treat all sizes of majorities equally. The ML correspondence based on
the identity function will be referred to as C2 -ML and the corresponding ML schemes
are called C2 -ML schemes. For an odd number of voters with strict preferences, both
C1 -ML and C2 -ML return a unique lottery, which follows from the fact that optimal
mixed strategies are unique in symmetric zero-sum games with odd off-diagonal payoffs;
moreover, the support of either lottery contains an odd number of alternatives (Laffond
et al., 1997, Thm. 1). In these cases, we will simply refer to C1 -ML and C2 -ML as
SDSs, respectively. For the preference profile R from Figure 1, we have that MLτ (R) =
{1/(τ(2) + τ(4) + τ(94))(τ(2) a+ τ(4) b+ τ(94) c)}. In particular,

C1 -ML(R) = {1/3 a+ 1/3 b+ 1/3 c} and C2 -ML(R) = {2/100 a+ 4/100 b+ 94/100 c}.

It may be instructive to compare these probabilities with the outcomes of classic voting
rules. In the example, Borda’s rule would select alternative a while most other rules
(plurality, Kemeny’s rule, maximin, Schulze’s rule, ranked pairs, and all runoff rules)
would select alternative c. Perhaps the best studied SDS (for strict preferences) is
random dictatorship, where one of the voters is chosen uniformly at random and this
voter’s top choice is selected. The lottery returned by random dictatorship is 48/100 a+
3/100 b+ 49/100 c.4

Dutta and Laslier (1999, Prop. 4.2) illustrated that, perhaps surprisingly, the unique
lottery returned by C1 -ML can have disjoint support from the unique lottery returned
by C2 -ML. We generalize this statement to any pair of ML schemes.

Theorem 1. For any pair of ML schemes MLτ and MLσ, there is a preference profile
R ∈ RN such that MLτ (R) = {p} and MLτ (R) = {q} and supp(p) ∩ supp(q) = ∅.

Proof. Consider two different ML schemes, MLτ and MLσ, based on the odd and mono-
tone functions τ and σ. Since τ and σ are not equal, we can find some number k such
that τ(k) ̸= σ(k). Assuming that τ(k) < σ(k), choose l,m ∈ N such that m is odd and
τ(k) < m−l

l < σ(k). We construct a weighted majority graph, depicted in Figure 3, for
which MLτ and MLσ both return a unique lottery and the supports of these lotteries are
disjoint.

Let A = {a1, . . . , am, b1, . . . , bm} consist of 2m alternatives. (Indices will be treated as
elements of Z/mZ.) We add an edge with weight 1 from ai to ai+1 and from bi to bi+1 for
every i ∈ {1, . . . ,m}. Moreover, for every bi, add edges with weight k to ai, . . . , ai+l−1,
and edges with weight 1 from the remaining aj to bi. It follows from Lemma 1 that we
can find a preference profile R which induces these majority margins.

4One can find other examples where an alternative with C2 -ML probability almost 1 is not selected
by the mentioned classic rules except Baldwin’s rule. It can be shown that, when m = 3, a unique
Baldwin winner always receives a C2 -ML probability of at least 1/3.
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Figure 3: Weighted majority graph for which the support of the unique lotteries returned
by MLτ and MLσ have disjoint supports. All unlabeled edges have weight 1.
Missing edges point downwards with weight 1.

Then the unique lotteries chosen by MLτ and MLσ for the profile R are p =
uni({a1, . . . , am}) and q = uni({b1, . . . , bm}). To see that p ∈ MLτ (R), observe that∑

x∈A
p(x)τ(mxai) = 1/m τ(1)− 1/m τ(1) = 0, and∑

x∈A
p(x)τ(mxbi) = (m−l)/m τ(1)− l/m τ(k) = ϵ > 0

by the choice of l and m. To prove uniqueness, let r ∈ MLτ (R) be any maximal lottery.
By the definition of a maximal lottery and the two equations above, we have

0 ≤
∑
x,y∈A

p(x)r(y)τ(mxy) =

m∑
i=1

ϵr(bi).

If follows that
∑m

i=1 r(bi) = 0, that is, supp(r) ⊆ {a1, . . . , am}. In particular, r is a
maximal lottery on the set {a1, . . . , am}. Since m is odd, the unique maximal lottery on
this set is p, and so r = p follows.

A similar argument shows that MLσ(R) = {q}.

A potential advantage of C1 -ML schemes is that they require less information than
other ML schemes. It suffices to only elicit the majority relation in order to compute
the election outcome.

A basic desideratum for SDSs is homogeneity, which prescribes that replacing every
voter with a fixed number of clones, i.e., voters with the same preferences, does not
change the outcome. It can be shown that an ML scheme is homogeneous if and only if
it is based on τ with τ(k) = kt for some t ≥ 0.
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Theorem 2. MLτ is homogeneous if and only if there is t ≥ 0 such that τ(k) = kt for
all k ∈ N.

Proof. First we observe that τ = kt gives rise to a homogeneous ML scheme. Indeed,
replacing every voter by a fixed number of say l clones results in multiplication of the
matrix of majority margins by l. Thus, since τ is homogeneous of degree t, this results
in multiplication of the transformed matrix (τ(mxy))x,y∈A by lt. From the definition of
maximal lotteries it is clear that two matrices that are equal up to multiplication by a
positive constant admit the same maximal lotteries.

Now we prove that all homogeneous ML schemes are induced by τ(k) = kt for some
t ≥ 0. Let f be a homogeneous ML-scheme based on τ ; let A = {a, b, c}. For all
k, l ∈ N, let Rkl ∈ RN be such that mkl

ab = mkl
ca = k and mkl

bc = kl. We have that
f(Rkl) = (2τ(k)+τ(kl))−1(τ(kl)a+τ(k)b+τ(k)c) for all k, l ∈ N. Since f is homogeneous,
f(Rkl) = f(R1l) for all k, l ∈ N. Hence, τ(kl)τ(1) = τ(k)τ(l) for all k, l ∈ N. Recall
that τ(1) = 1 by definition. Thus, τ(kl) = τ(k)τ(l) for all k, l ∈ N. In particular,
τ(2l) = τ(2)l for all l ∈ N. Let t = log2 τ(2), i.e., τ(2) = 2t.

Now assume for contradiction that there is k̄ ∈ N such that τ(k̄) ̸= k̄t. We first
consider the case that τ(k̄) > k̄t. Then, there is l ∈ N such that (τ(k̄)/k̄t)l > 2t. Let
o ∈ N such that 2o−1 < k̄l ≤ 2o. From before, we know that

τ(k̄l) = τ(k̄)l =

(
τ(k̄)

k̄t

)l

k̄tl > 2t2(o−1)t

= 2ot = τ(2)o = τ(2o),

which contradicts monotonicity of τ .
The case that τ(k̄) < k̄t is analogous to the first case.

Theorem 2 implies that homogeneous ML schemes are completely defined by the value
of τ(2). Moreover, homogeneous ML schemes have a well-defined extension to fractional
preference profiles, which for every preference relation, specify the fraction of voters with
these preferences. The set of fractional preference profiles admits a canonical embedding
into the unit simplex in Qd, where d is the number of possible preference relations.
This embedding prompts a notion of continuity for correspondences mapping fractional
preference profiles to sets of lotteries which requires that small changes to the preference
profile can only lead to small changes in the set of returned lotteries (see Brandl et al.,
2016). As a function on rational numbers, τ(k) = kt is continuous unless t = 0, i.e.,
unless τ is the sign function. As a result, the correspondence MLτ is continuous whenever
t > 0. C1 -ML is not continuous since arbitrarily small deviations from majority ties can
lead to large changes in the set of maximal lotteries.5

4 Analytical Results

In this section, we collect various analytical results about Pareto efficiency, strategyproof-
ness, participation, and monotonicity of ML schemes. Figure 4 provides an overview of

5The other extreme would be “ML∞”, i.e., lim supt→∞ MLτ with τ(k) = kt.
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Figure 4: Logical relationships between varying degrees of efficiency, strategyproofness,
participation, and monotonicity. Relative monotonicity together with IUA,
for example, implies set-monotonicity. The green labels indicate which ML
schemes satisfy the corresponding property. (Cond) refers to strategyproofness
on the domain of profiles with a Condorcet winner. The red label represents
Theorem 4, while the two red connections refer to the impossibility theorems
by Brandl et al. (2018, Thm. 3.1) and Brandt et al. (2022, Thm. 2). IUA and
IIV are defined in Section 4.4.

these results and shows the relationships between the considered properties.

4.1 Lottery Extensions

Defining properties such as efficiency and strategyproofness for SDSs requires to make
assumptions about the voters’ preferences over lotteries. To this end, we consider lottery
extensions, which map a preference relation on the set of alternatives A to a preference
relation on the set of lotteries ∆(A). For all examples we assume that the underlying
preference relation of voter i is a ≻i b ≻i c.

A very simple and crude lottery extension called deterministic dominance prescribes
that p is preferred to q iff every alternative in the support of p is strictly preferred to
every alternative in the support of q. Formally,

p ≿DD ′
i q ⇔ x ≻i y for all x ∈ supp(p) and y ∈ supp(q). (DD ′)

A variant of this extension can be defined using the weak preference relation rather
than the strict one.

p ≿DD
i q ⇔ x ≿i y for all x ∈ supp(p) and y ∈ supp(q). (DD)
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Hence, p ≻DD
i q if and only if every alternative returned by p is at least as good as every

alternative returned by q with at least one strict preference. A voter may thus strictly
prefer one lottery to another even though he is eventually indifferent between particular
instantiations of the lotteries. DD ′ only allows the comparison of lotteries with disjoint
supports whereas the supports may overlap for DD as long as the voter is indifferent
between all alternatives contained in the intersection of both supports. For example,
2/3 a+ 1/3 b ≻DD ′

c and 2/3 a+ 1/3 b ≻DD 1/2 b+ 1/2 c.
We slightly generalize the definition of DD ′ to lotteries p and q that assign the

same probability to all alternatives that are contained in both supports and (supp(p) \
supp(q)) ≻i (supp(p) ∩ supp(q)) ≻i (supp(q) \ supp(p)). Following Savage’s sure-thing
principle, the resulting lottery extension is referred to as the sure-thing (ST ) extension.
Formally,

p ≿ST
i q ⇔ (supp(p) \ supp(q)) ≻i (supp(p) ∩ supp(q)) ≻i (supp(q) \ supp(p))

and p(x) = q(x) for all x ∈ supp(p) ∩ supp(q). (ST )

For example, 1/2 a+ 1/2 b ≻ST
i

1/2 b+ 1/2 c.
The third extension we consider, called bilinear dominance (BD), requires that for

every pair of alternatives the probability that p yields the more preferred alternative
and q the less preferred alternative is at least as large as the other way round. Formally,

p ≿BD
i q ⇔ p(x)q(y) ≥ p(y)q(x) for all x, y ∈ A with x ≻i y. (BD)

Apart from its intuitive appeal, the main motivation for BD is that p bilinearly
dominates q iff p is preferable to q for every skew-symmetric bilinear (SSB) utility
function consistent with Ri (cf. Fishburn, 1984c; Aziz et al., 2015). For example,
1/2 a+ 1/2 b ≻BD

i
1/3 a+ 1/3 b+ 1/3 c.

The most common lottery extension is stochastic dominance (SD), according to which
a lottery p is preferred to another lottery q if for every alternative x ∈ A, p is at least as
likely to return an alternative that is at least as good as x as q. Formally,

p ≿SD
i q ⇔

∑
y≿ix

p(y) ≥
∑
y≿ix

q(y) for all x ∈ A. (SD)

For example, 1/2 a + 1/2 c ≻SD 1/2 b + 1/2 c. It is a well-known fact that p ≿SD
i q if and

only if the expected utility of p is at least as large as that of q for every von Neumann
Morgenstern utility function consistent with ≿i.

An interesting strengthening of stochastic dominance is based on the pairwise com-
parisons of alternatives (see, e.g., Aziz et al., 2015; Brandl and Brandt, 2020). A lottery
p is preferred to another lottery q according to pairwise comparisons (PC ) if p is more
likely to return a more preferred alternative than q. Formally,

p ≿PC
i q ⇔

∑
x≿iy

p(x)q(y) ≥
∑
x≿iy

p(y)q(x). (PC )

For example, 2/3 a + 1/3 c ≻PC b. While the PC extension results in preferences over
lotteries that cannot be represented by any von Neumann-Morgenstern utility function,
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it represents a refinement of the SD extension, i.e., ≿SD
i ⊆ ≿PC

i (Fishburn, 1984c,
Thm. 8). In contrast to all previous extensions, the PC extension yields a complete
preference relation over lotteries.

The inclusion relationships between these lottery extensions are as follows (cf. Aziz
et al., 2018; Brandt, 2017). For any preference relation ≿,

≿DD ′
⊆ ≿DD ⊆ ≿BD , ≿DD ′

⊆ ≿ST ⊆ ≿BD , and ≿BD ⊆ ≿SD ⊆ ≿PC .

The examples mentioned also show that these inclusions are strict if m ≥ 3.

4.2 Efficiency

A fundamental economic property is Pareto efficiency, which prescribes that no voter
can be made better off without making another voter worse off. A weak interpretation
of this principle for SDSs, known as ex post efficiency, is that, whenever there are two
alternatives x, y ∈ A such that x ≿i y for all i ∈ N and x ≻i y for at least one i ∈ N ,
then y should receive probability 0. Fishburn (1984a, Prop. 3) has shown that all ML
schemes satisfy ex post efficiency.

A stronger notion of efficiency can be obtained by comparing lotteries via stochastic
dominance. Formally, a lottery p ∈ ∆(A) is SD-efficient for a preference profile R ∈ RN

if there is no lottery q ∈ ∆(A) such that q ≿SD
i p for all i ∈ N and q ≻SD

j p for some
j ∈ N . An SDS f is SD-efficient if f(R) is SD-efficient for all R ∈ RN . In a similar
vein, one can define PC -efficiency, which results in an efficiency notion that is stronger
than SD-efficiency. Aziz et al. (2018) have shown that every C2 -ML scheme is PC -
efficient. Here, we prove that every other ML scheme violates even the weaker notion of
SD-efficiency.

Theorem 3. Every C2 -ML scheme is PC -efficient. No other ML scheme is SD-efficient
for all values of m and n.

Proof. The proof that every C2 -ML scheme is PC -efficient is due to Aziz et al. (2018,
Thm. 3).

It is left to show that no other ML scheme is SD-efficient for all values of m and n.
To this end, let f be an ML scheme based on τ with τ ̸= id . First consider the case
that τ(k∗) > k∗ for some k∗ ∈ N. Then, there are s, t ∈ N such that k∗ + 1

t < τ(k∗),
s = tk∗ + 1, and s + t is odd. We now construct a preference profile R such that
every lottery in MLτ (R) is SD-inefficient, which implies that f is SD-inefficient. Let
A = {a1, . . . as+t, b1, . . . , bs+t} and |N | = 2(s+ t)s. In the following, all indices that are
equal modulo (s + t) are treated as equivalent. For k, k′, l ∈ {1, . . . , s + t}, let Rkk′l be
the following preference profile.

1 1

{ak, bl} A \ {ak, ak′ , bl, bl+1}
{ak′ , bl+1} {ak, ak′ , bl, bl+1}

A \ {ak, ak′ , bl, bl+1}
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bl

bl+1

bl−1

al

al+1

al−s+1

al+t

...

...

...

...

k∗t

k∗t

k∗

k∗

k∗

k∗

k∗

k∗

Figure 5: Weighted majority graph of the preference profile R constructed in the proof
of Theorem 3. The label of an edge gives the corresponding majority margin,
e.g., mblal+1

= k∗. Unlabeled edges have weight 1.

Observe that mkk′l
akak′

= mkk′l
akbl+1

= mkk′l
blak′

= mkk′l
blbl+1

= 1, mkk′l
akbl

= mkk′l
ak′bl+1

= 0, and
mkk′l

xy = 0 for all {x, y} ̸⊆ {ak, ak′ , bl, bl+1}. Now, for every l ∈ {1, . . . , s + t}, k′ ∈
{l+1, . . . , l+ t}, and k ∈ {l−k∗(k′− l), . . . , l−k∗(k′− l)+k∗−1}, we add the preference
profile Rkk′l to R. This requires 2(s+ t)(s− 1) voters. Now for every l ∈ {1, . . . , s+ t},
the following hold: first, we have added k∗ profiles Rkk′l, where k′ is one of the t indices
proceeding l; second, we have added one profile Rkk′l, where k is one of the k∗t = s− 1
indices preceding l. We have obtained the weighted majority graph in Figure 5, except
for the edges from al to bl of weight 1. We get those by adding one additional preference
profile for every l.

For l ∈ {1, . . . , s+ t}, let Rl be the following preference profile.

1 1

al A \ {al, bl}
bl {al, bl}

A \ {al, bl}

Observe that ml
albl

= 1 and ml
xy = 0 for all {x, y} ̸⊆ {al, bl}. For every l ∈ {1, . . . , s+ t},

we add the preference profile Rl to R. This requires an additional 2(s + t) voters and
completes the construction of R. In total, there are 2(s+ t)(s− 1)+ 2(s+ t) = 2(s+ t)s
voters in R. The corresponding weighted majority graph is displayed in Figure 5. Then,
we have that, for every l ∈ {1, . . . , s+ t}, k ∈ {l−s+1, . . . , l}, and k′ ∈ {l+1, . . . , l+ t},
mblbl+1

= k∗t = s− 1, mblak = −1, and mblak′ = k∗.
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1 1 1 1 1

a b d d f
e f h g h
i i c c a
b c e f e
d e g h i
g g b a b
c a f e d
f d i i g
h h a b c



a b c d e f g h i

a 0 1 −1 1 1 −3 −1 −1 1
b −1 0 1 1 −3 1 1 −1 −1
c 1 −1 0 −3 1 1 −1 1 −1
d −1 −1 3 0 −1 1 3 3 −1
e −1 3 −1 1 0 −1 3 −1 3
f 3 −1 −1 −1 1 0 −1 3 3

g 1 −1 1 −3 −3 1 0 1 −1
h 1 1 −1 −3 1 −3 −1 0 1
i −1 1 1 1 −3 −3 1 −1 0


Figure 6: The preference profile R used in the proof of Theorem 4 is depicted on the left.

The corresponding matrix of majority margins is illustrated on the right.

Let p = 1/(s+t) (b1 + · · ·+ bs+t). Since tτ(k∗) > s, we have that∑
x∈A

p(x)τ(mxy) =
1

s+ t
(tτ(k∗)− s) > 0,

for all y ∈ {a1, . . . , as+t}. Moreover, since mbl−1bl = −mbl+1bl = k∗t for all l ∈ {1, . . . , s+
t}, we have that ∑

x∈A
p(x)τ(mxy) = 0,

for all y ∈ {b1, . . . , bs+t}. Hence, p ∈ MLτ (R). Now let p′ ∈ MLτ (R). Since∑
x∈A p(x)τ(mxy) > 0 for all y ∈ {a1, . . . , as+t}, it follows that supp(p′) ⊆ {b1, . . . , bs+t}.

Since mbl−1bl = −mbl+1bl for all l ∈ {1, . . . , s+t}, it follows that p′(bl−1) = p′(bl+1) for all
l ∈ {1, . . . , s+ t}. Since s+ t is odd by assumption, the previous conclusion implies that
p′(bl−1) = p′(bl) for all l ∈ {1, . . . , s+t}. Hence, p′ = p, which shows that MLτ (R) = {p}.

Finally, let q = 1/(s+t) (a1+· · ·+as+t) and observe that q ≿SD
i p for all voters i in R and

q ≻SD
j p for the voters j in R with a preference relation of the form ≿l : al, bl, A \ {al, bl}

for some l ∈ {1, . . . , s+ t}. This shows that p is not SD-efficient and completes the proof
for the case τ(k∗) > k∗.

The proof for the case that τ(k∗) < k∗ for some k∗ ∈ N is analogous to the proof for
the first case.

Theorem 3 implies that no C1 -ML scheme is SD-efficient.6 This raises the question
whether there is any SD-efficient majoritarian SDS. In Theorem 4 we show that the
answer to this question is negative when also assuming neutrality. The proof of this
statement was found with the help of a computer.

Theorem 4. Every majoritarian and neutral SDS violates SD-efficiency for m ≥ 9
(and n = 5, n = 7, or n ≥ 9), even when preferences are strict.7

6An example where C1 -ML violates PC -efficiency can be constructed for m = n = 5.
7The theorem also holds for m = 7 using a similar proof, which requires more voters.
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Proof. We first prove the statement for m = 9 and n = 5. Let A = {a, b, c, d, e, f, g, h, i}
and consider the preference profile R ∈ RN and the corresponding matrix of majority
margins depicted in Figure 6. Every majoritarian and neutral SDS f yields the uniform
lottery p = 1/9 (a+ b+ c+ d+ e+ f + g + h+ i) over all alternatives in A for R due to
the symmetrical structure of the majority relation of R, i.e., for any pair of alternatives
x, y ∈ A, there is an automorphism of ≿R that maps x to y. However, shifting all the
probabilities from the “red” alternatives g, h, and i to the “green” alternatives d, e, and
f yields another lottery q = 1/9 (a + b + c) + 2/9 (d + e + f), which is SD-preferred to p
by all voters, i.e., q ≻SD

i p for all i ∈ N . This can be checked by looking at R, because
there is always a “green” alternative directly above a “red” alternative for each voter.
Additional alternatives can be added at the bottom of each preference relation. These
alternatives will then be Pareto dominated and do not break the symmetry among the
first 9 alternatives. If f assigns positive probability to a Pareto dominated alternative,
it is SD-inefficient. Otherwise, f is SD-inefficient with the same argument as for the
case m = 9. For more than 5 voters, analogous proofs can be obtained by duplication
and combination of profiles that induce the same majority graph as R.

This impossibility is somewhat surprising since ex post efficient, majoritarian SDSs do
exist. In fact, there is an elegant characterization of such SDSs in terms of the McKelvey
uncovered set (see Brandt et al., 2016). This characterization can be used to show that
neutrality is required for Theorem 4 since every SDS that puts probability 1 on an ex
post efficient alternative satisfies SD-efficiency. Theorem 4 can be understood as an
argument against neutral majoritarian SDSs in general as the majority relation does not
contain enough information to guarantee SD-efficiency.

Theorem 4 implies Theorem 1 by Aziz et al. (2013) who showed that no neutral, ma-
joritarian, SD-efficient, and SD-strategyproof SDS exists (although their result already
holds when m = 4).

4.3 Strategyproofness

In this section, we derive analytic results about the vulnerability of ML schemes to strate-
gic manipulation. Just like in Section 4.2, we consider manipulability when preferences
over lotteries are derived using a lottery extension. For example, an SDS f is SD-ma-
nipulable for a preference profile R ∈ RN if there is a preference profile R̂ ∈ RN and
j ∈ N such that ≿i = ≿̂i for all i ̸= j and f(R̂) ≻SD

j f(R). An SDS f is SD-strategyproof
if it is not SD-manipulable for any preference profile R ∈ RN . Our definition of SD-
strategyproofness is often called weak SD-strategyproofness, because it is possible to
definer a stronger version which requires that f(R) ≿SD

j f(R̂) for all R, R̂ ∈ RN and
j ∈ N such that ≿i = ≿̂i for all i ̸= j. This stronger notion is largely prohibitive in
the context of voting and is, for example, leveraged in the random dictatorship theorem,
which shows that only random dictatorships satisfy strong SD-strategyproofness and ex
post efficiency (Gibbard, 1977). The weaker notion employed here was introduced by
Postlewaite and Schmeidler (1986) and popularized by Bogomolnaia and Moulin (2001).
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In analogy to SD-strategyproofness, one can define manipulability and strategyproof-
ness for all the other lottery extensions proposed in Section 4.1. The logical relationships
between these varying notions of strategyproofness (and some monotonicity properties
to be introduced in Section 4.4) are depicted in Figure 4.

For any τ and any lottery extension, an ML scheme may be manipulable simply
because ties between maximal lotteries are broken in an unfavorable way (see Aziz et al.,
2018, pp. 8–9). This problem can be avoided by restricting attention to the subclass
of ML schemes that return maximal lotteries with maximal support, so-called strict
maximal lotteries. Since MLτ (R) is convex for any τ and R, the relative interior of
MLτ (R) is non-empty and yields a well-defined correspondence SMLτ that refines MLτ .
An SDS f is a strict maximal lottery scheme based on τ if, for all R, R̂ ∈ RN , f(R) ∈
SMLτ (R) and f(R) = f(R̂) whenever SMLτ (R) = SMLτ (R̂).

Aziz et al. (2018) have shown that all strict C2 -ML schemes satisfy ST -
strategyproofness. Their proof can be straightforwardly extended to all strict ML
schemes by applying τ to all majority margins. Aziz et al. also gave an example showing
that all C2 -ML schemes violate BD-strategyproofness. Their example does not work for
all ML schemes and we generalize their statement in the following theorem.

Theorem 5. All strict ML schemes are ST -strategyproof. All ML schemes violate DD-
strategyproofness when m ≥ 3 and n ≥ 3. For strict preferences, all ML schemes violate
BD-strategyproofness when m ≥ 7 and n ≥ 5 is odd.

Proof. The proof that all strict ML schemes are ST -strategyproof can be obtained by
replacing every occurrence of mxy (g(x, y) in their notation) with τ(mxy) in the proof of
Theorem 4 by Aziz et al. (2018).

The second statement, which relies on weak preferences, directly follows from Theorem
2 by Brandt et al. (2022) who have shown that no neutral and pairwise SDS can be ex
post efficient and DD-strategyproof for m ≥ 3 and n ≥ 3. Nevertheless, we give a shorter
and self-contained proof for an arbitrary ML scheme MLτ for the case m = 3 and n = 3.
Let A = {a, b, c} and consider the following preference profile R ∈ RN , where voter i in
the last column is indifferent between a and c, and the corresponding matrix of majority
margins.

1 1 1

a c b
b a {a, c}
c b


a b c

a 0 1 0
b −1 0 1
c 0 −1 0


By the definition of ML schemes, we have that τ(1) = 1 independently of the choice
of τ . Then, MLτ (R) = {λ a + (1 − λ) c : 1/2 ≤ λ ≤ 1}. Now assume that the voter i

changes his preference relation to ≿̂i : b, c, a, i.e., he breaks the tie between a and c. For
the resulting preference profile R̂ we have MLτ (R̂) = {q}, where q = 1/3 a+ 1/3 b+ 1/3 c.
Note that q ≻DD

i p for all p ∈ MLτ (R). Thus, voter i can manipulate MLτ at R, which
shows that no ML scheme based on τ is DD-strategyproof.
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The third statement, which even holds for strict preferences, already holds when there
are only three alternatives for all ML schemes except those with τ(3) = 1 (which is the
case for C1 -ML). Thus, we first prove the case m = 3 and n = 5 and then show how
to adapt the construction to prove the statement for the remaining ML schemes. Let
A = {d, e, f} and MLτ be an arbitrary ML scheme with τ(3) > 1. Consider the following
preference profile R′ ∈ RN and the corresponding matrix of majority margins.

1 1 2 1

d f e d
e d f f
f e d e


d e f

d 0 1 −1
e −1 0 1
f 1 −1 0


By the definition of ML schemes, we have that τ(1) = 1 independently of the choice of
τ . Then, MLτ (R′) = {p}, where p = 1/3 d + 1/3 e + 1/3 f . Now assume that the voter i

in the last column changes his preference relation to ≿̂i : d, e, f , i.e., he strengthens the
majority of e over f . For the resulting preference profile R̂′ we have MLτ (R̂′) = {q},
where q = τ(3)/s d+ 1/s e+ 1/s f with s = τ(3) + 2. Note that q ≻BD

i p for all MLτ with
τ(3) > 1. Thus, voter i can manipulate MLτ at R′, which shows that no ML scheme
based on τ with τ(3) > 1 is BD-strategyproof.

Extending this result to ML schemes with τ(3) = 1 requires more alternatives, e.g., by
replacing the alternatives e and f in R′ with three new alternatives respectively which
copy the majority margins of R′ as their internal structure. Hence, we finally consider
the case m = 7 and n = 5 with an arbitrary ML scheme MLτ . Let A = {a, b, c, d, e, f, g}
and consider the following preference profile R′′ ∈ RN , mimicking an extension of R′,
and the corresponding matrix of majority margins with the internal structure of the
replaced alternatives marked in blue and red.

1 1 1 1 1

a g c a b
b e d g e
c f b d c
d a f f f
e d g c d
f b e e g
g c a b a



a b c d e f g

a 0 1 1 1 −1 −1 −1
b −1 0 1 −1 1 1 1
c −1 −1 0 1 1 1 1
d −1 1 −1 0 1 1 1

e 1 −1 −1 −1 0 1 −1
f 1 −1 −1 −1 −1 0 1
g 1 −1 −1 −1 1 −1 0


By the definition of ML schemes, we have that τ(1) = 1 independently of the choice of
τ . Then, MLτ (R′′) = {p}, where p = 1/3 a + 1/9 (b + c + d + e + f + g). Now assume
that the voter i in the last column changes his preference relation to ≿̂i : e, b, f, c, g, d, a,
i.e., he swaps e and b, c and f , and d and g, respectively. For the resulting preference
profile R̂′′ we have MLτ (R̂′′) = {q}, where q = 1/7 (a+ b+ c+ d+ e+ f + g). Note that
q ≻BD

i p. Thus, voter i can manipulate MLτ at R′′, which shows that no ML scheme
based on any τ is BD-strategyproof.8

8Notably, the proof for the statement about BD-manipulability does not only hold for ML schemes,
but for any pairwise SDS that satisfies composition-consistency and that returns the uniform lottery
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The proofs for the second and third statement can be generalized to larger profiles by
adding completely indifferent voters and letting all additional alternatives be last-ranked
by all voters. When preferences are assumed to be strict, pairs of voters with opposing
preferences instead of completely indifferent voters can be used.

When there are only few alternatives, C1 -ML fares comparatively well in terms of
strategyproofness because of the limited influence that voters have on the outcome.
For example, when m = 3 and there no majority ties, C1 -ML randomizes uniformly
whenever there is a majority cycle and returns a Condorcet winner otherwise. The
strategyproofness of this simple three-alternative SDS was already observed by Potthoff
(1970). However, once there are at least four alternatives, C1 -ML is SD-manipulable,
even when preferences are strict.

The proof of Theorem 5 crucially relies on the fact that Condorcet winners may fail
to exist. Empirical studies have however observed that the vast majority of preferences
profiles that appear in real-world elections admit a Condorcet winner (see Footnote 12),
in which case every ML scheme chooses the Condorcet winner with probability 1. As it
turns out, no ML scheme can be PC -manipulated whenever there is a Condorcet winner
(not even to a profile without a Condorcet winner), which mitigates the seemingly severe
implications of Theorem 5 for most real-world settings. Peyre (2013) and Hoang (2017)
have shown this statement for C1 -ML schemes. In particular, it implies that choosing
the Condorcet winner on the domain of preference profiles that admit a Condorcet
winner is a strategyproof voting rule (see, e.g., Campbell and Kelly, 2003; Moulin, 1988,
Lem. 10.3).

Theorem 6. Let R be a preference profile that admits a Condorcet winner. Then, no
ML scheme is PC -manipulable at R.

Proof. Let R ∈ RN be a preference profile with Condorcet winner c ∈ A and let f be
some ML scheme based on τ , where τ is arbitrary. Assume for contradiction that some
voter j ∈ N can manipulate f at R. Then, there is R̂ ∈ RN such that ≿̂i = ≿i for all
i ̸= j, f(R) = p, and f(R̂) = q with q ≻PC

j p. Without loss of generality, ≿j takes the
following form for some B,C,D ⊆ A \ {c}.

≿j : B,C ∪ {c}, D

Observe that m̂xc ≤ −1 for all x ∈ B, m̂xc ≤ 0 for all x ∈ C ∪ {c}, and m̂xc ≤ 1 for
all x ∈ D, since mxc ≤ −1 for all x ∈ A \ {c} by the assumption that c is a Condorcet
winner in R. Let X = {x ∈ A : m̂xc > 0} be the set of alternatives that have a positive
majority margin compared to c in R̂. By the previous observation, we have X ⊆ D.

in all regular profiles (see Brandl et al., 2016, for definitions).
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Since q ∈ MLτ (R̂) by definition of f , we have that

0 ≤
∑
x∈A

q(x)τ(m̂xc)

=
∑
x∈B

q(x) τ(m̂xc)︸ ︷︷ ︸
≤−1

+
∑

x∈C∪{c}

q(x) τ(m̂xc)︸ ︷︷ ︸
≤0

+
∑
x∈D

q(x) τ(m̂xc)︸ ︷︷ ︸
≤1

≤
∑
x∈D

q(x)−
∑
x∈B

q(x),

where the inequalities follow from the fact that τ(0) = 0 (implied by the assumption that
τ is an odd function), τ(1) = 1, and τ is odd and monotonic. Hence, the probability
that q = f(R̂) assigns to alternatives that ≿j prefers strictly more than c is at least
as large as the probability that it assigns to alternatives that ≿j prefers strictly less
than c. So we get p ≿PC

j q. This contradicts our assumption and shows that f is not
PC -manipulable at R.

Theorem 6 shows that voters cannot manipulate from a Condorcet profile to another
profile. Similarly, it can be shown that it is impossible to manipulate from an arbitrary
profile to a Condorcet profile. Since for all τ , SMLτ (R) only contains degenerate lotteries
if R admits a Condorcet winner, all SML schemes are strategyproof for an artificial
weakening of the PC extension in which one of the two lotteries to be compared has to
be degenerate.

Note that Theorem 6 does not contradict Theorem 3 by Hoang (2017), who showed
that every pairwise SDS that satisfies their Condorcet proofness condition agrees with
some C1 -ML scheme on all preference profiles that are close to a profile with a Condorcet
winner. Condorcet proofness prescribes that, for all profiles that admit a Condorcet
winner, no group of voters with identical preferences can PC -manipulate. Condorcet
proofness is thus stronger than the strategyproofness requirement of Theorem 6 and,
among ML schemes, is only satisfied by C1 -ML. When not insisting that manipulating
voters have to have the same preferences, all ML schemes can be BD-manipulated by
groups of voters. Formally, an SDS f is BD-group-manipulable for a preference profile
R ∈ RN if there is a preference profile R̂ ∈ RN and S ⊆ N such that ≿i = ≿̂i for all
i ∈ N \ S and f(R̂) ≻SD

j f(R) for all j ∈ S.

Theorem 7. All ML schemes are BD-group-manipulable even on a profile with a Con-
dorcet winner when m ≥ 4 and n ≥ 5.

Proof. Let A = {a, b, c, d} and f be an arbitrary ML scheme. Consider the following
preference profile R and the corresponding matrix of majority margins.

1 1 1 2

a b c d
{b, c, d} {a, c, d} {a, b, d} {a, b, c}


a b c d

a 0 0 0 −1
b 0 0 0 −1
c 0 0 0 −1
d 1 1 1 0


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Since d is a Condorcet winner in R, we have that f(R) = d. Now consider the preference
profile R′, that result from R if the first three voters change their preferences.

1 1 1 2

a b c d
b c a {a, b, c}
c a b
d d d


a b c d

a 0 1 −1 1
b −1 0 1 1
c 1 −1 0 1
d −1 −1 −1 0


We have that f(R′) = p, where p = 1/3 a+ 1/3 b+ 1/3 c. Since p ≻BD

i d for i ∈ {1, 2, 3}, f
is BD-group-manipulable at R.

We have seen that all ML schemes are strategyproof for single voters in profiles that
admit a Condorcet winner. For the remaining profiles, the situation is almost the exact
opposite: whenever a diverse profile, i.e., a profile in which every preference relation
is represented by at least one voter, does not admit a weak Condorcet winner, every
ML scheme based on a strictly monotonic function can be manipulated by some voter.
Theorems 6 and 8 leave open the cases of profiles with a weak rather than a strict
Condorcet winner and ML schemes based on non-strictly increasing functions τ . A
closer look reveals that some ML schemes are manipulable for some profiles with a
weak Condorcet winner but others are not. Similarly, ML schemes based on non-strictly
increasing functions τ are manipulable in some but not all diverse profiles without a
weak Condorcet winner. But neither case seems amenable to a unified treatment of all
combinations of profiles and ML schemes.

Theorem 8. Let R be a preference profile that does not admit a weak Condorcet winner
and in which every preference relation appears at least once. Then every ML scheme
based on a strictly monotone function τ can be SD-manipulated at R.

Proof. Let R ∈ RN be a preference profile that does not admit a weak Condorcet winner
and in which every preference relation appears at least once. Let f be an ML scheme
based on a strictly monotonic function τ and let p = f(R). Since R does not admit
a weak Condorcet winner, for every x ∈ A, there is y ∈ A such that myx > 0. We
distinguish two cases: either all majority margins between alternatives in the support of
p are 0 or one of them is non-zero.

First consider the former case, i.e., mxy = 0 for all x, y ∈ supp(p). Let j ∈ N be
a voter who prefers all alternatives outside the support of p to all alternatives in the
support, i.e.,

≿j : A \ supp(p), supp(p).

Let a ∈ supp(p) and R̂ be a preference profile such that ≿i = ≿̂i for all i ̸= j and

≿̂j : A \ supp(p), a, supp(p) \ {a},

so voter j breaks the tie between alternatives in the support of p in favor of a. (The set
supp(p) \ {a} may be empty if p = a.) Let q = f(R̂). If q = a, then, since a is not a
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weak Condorcet winner, there is b ∈ A \ supp(p) such that m̂ba > 0, which contradicts
q = f(R̂) ∈ MLτ (R̂). If q ̸= a and supp(q) ⊆ supp(p), then∑

x∈A
q(x)τ(m̂ax) =

∑
x∈supp(p)\{a}

q(x)τ(1) > 0,

which again contradicts q = f(R̂) ∈ MLτ (R̂). Thus, supp(q) ̸⊆ supp(p), which implies
that q ≿SD

j p, i.e., voter j can successfully manipulate f at R by reporting ≿̂j .
Secondly, consider the complementary case that there are a, b ∈ supp(p) such that

mab > 0. We show that increasing the weight of the edge between a and b while not
changing any of the other weights must change the probability of at least one other
alternative. Knowing the lottery q resulting from this change allows us to construct a
preference relation for which q is SD-preferred to p along with a manipulation of this
relation which increases the weight of the edge between a and b. From the diversity
assumption about R we know that there is some voter with these preferences and thus
f is manipulable at R.

Let R̄ ∈ RN be a preference profile such that m̄ab = mab + 1 and m̄xy = mxy for all
{x, y} ≠ {a, b} and q = f(R̄). We show that q(x) ̸= p(x) for some x ∈ A \ {a, b}.

Assume for contradiction that q(x) = p(x) for all x ∈ A \ {a, b}. If q(b) > p(b), we
have

0 ≥
∑
x∈A

q(x)τ(m̄ax)

=
∑
x∈A

p(x)τ(m̄ax) + (q(b)− p(b))τ(m̄ab)

=
∑
x∈A

p(x)τ(max)︸ ︷︷ ︸
=0

+p(b) (τ(mab + 1)− τ(mab))︸ ︷︷ ︸
>0

+(q(b)− p(b))τ(m̄ab)︸ ︷︷ ︸
>0

> 0,

where the first inequality uses that q = f(R̄) ∈ ML(R̄), the first equality uses m̄aa = 0,
and the final inequality uses a ∈ supp(p) and p = f(R) ∈ ML(R). Since this gives a
contradiction, we conclude that q(b) ≤ p(b) and q(a) ≥ p(a) > 0.

We distinguish two cases. If q(b) = 0, then∑
x∈A

q(x)τ(m̄ax) = −p(b)τ(mab)︸ ︷︷ ︸
<0

+
∑
x∈A

p(x)τ(max)︸ ︷︷ ︸
=0

< 0.

The equality uses m̄aa = maa = 0 and the inequality under the first brace follows from
b ∈ supp(p). This contradicts a ∈ supp(q).
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If q(b) > 0, i.e., b ∈ supp(q), then

0 =
∑
x∈A

q(x)τ(m̄xb)

= q(a)︸︷︷︸
≥p(a)

τ(mab + 1)︸ ︷︷ ︸
>τ(mab)

+
∑

x∈A\{a}

q(x)︸︷︷︸
=p(x) for x ̸=b

τ(mxb)

> p(a)τ(mab) +
∑

x∈A\{a}

p(x)τ(mxb)

=
∑
x∈A

p(x)τ(mxb) = 0,

where the first and second (in)equality use m̄bb = mbb = 0. This contradicts b ∈ supp(q).
Since both cases yield a contradiction, we conclude that there is x ∈ A \ {a, b} such

that q(x) ̸= p(x).
Let A> = {x ∈ A \ {a, b} : q(x) > p(x)}, A= = {x ∈ A \ {a, b} : q(x) = p(x)}, and

A< = {x ∈ A \ {a, b} : q(x) < p(x)}. By the previous argument, either A> ̸= ∅ or
A< ̸= ∅. We use the sets A> and A< to construct a preference relation for which q is
SD-preferred to p and which is manipulable so that the majority margin between a and
b increases by 1. Consider a voter j ∈ N who has the following preference relation in R.

≿j : A
>, {a, b}, A=, A<

Such a voter exists, since every preference relation appears at least once in R by as-
sumption. Let R̂ ∈ RN be the preference profile that is identical to R except that voter
j breaks the tie between a and b in favor of a, i.,e.,

≿̂j : A
>, a, b, A=, A<.

Observe that m̂xy = m̄xy for all x, y ∈ A. Hence, since MLτ (R̂) = MLτ (R̄), it follows
that f(R̂) = f(R̄) = q. However, we have that q ≻SD

j p, i.e., voter j can manipulate f

at R by reporting ≿̂j .

A particularly simple variant of strategic manipulation occurs when a voter obtains a
more preferred outcome by abstaining from the election. In analogy to strategyproofness,
an SDS is said to satisfy participation if no voter is better off by abstaining from an
election. Each of the lottery extensions proposed in Section 4.1 yields a corresponding
notion of participation. Brandl et al. (2019b, Corollary 1) have shown that C2 -ML
satisfies PC -participation, the strongest notion of participation considered in this paper.

Theorem 9. Every C2 -ML-scheme satisfies PC -participation. No other homogeneous
ML scheme satisfies SD-participation when m ≥ 4 and n is sufficiently large.

Proof. See Brandl et al. (2019b, Corollary 1) for the proof that C2 -ML satisfies PC -
participation.

Any other homogeneous ML scheme is based on a function τ(k) = kt which is not the
identity function on N, hence t ̸= 1. We split the proof into three cases.
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Case 1 (t > 1). For the following preference profile R, we get MLτ (R) = {p} with
p(c) = 1/(3t + 2).

1 2 2

a c b
b a c
c b a


a b c

a 0 1 −3
b −1 0 1
c 3 −1 0


If a voter i with preference relation ≿i: {a, b}, c joins, the new preference profile R′ yields
MLτ (R′) = {p′} with p′(c) = 1/(2 · 2t + 1) > p(c) due to t > 1.

1 2 2 1

a c b a, b
b a c c
c b a


a b c

a 0 1 −2
b −1 0 2
c 2 −2 0


Thus, this new voter prefers to abstain because p ≻SD

i p′.
Case 2 (0 < t < 1). Again, for the preference profile R′, we get MLτ (R′) = {p′} with
p′(c) = 1/(2 · 2t + 1). If another voter j with preference relation ≿j : {a, b}, c joins, the
new preference profile R̃ yields MLτ (R̃) = {p̃} with p̃(c) = 1/(3t + 2) > p′(c) due to
0 < t < 1.
1 2 2 2

a c b a, b
b a c c
c b a


a b c

a 0 1 −1
b −1 0 3
c 1 −3 0


Thus, this new voter prefers to abstain because p′ ≻SD

j p′′.
Case 3 (t = 0). For t = 0 we have that every homogeneous ML scheme is a C1 -ML
scheme. Hence, for the following preference profile R̂, we get C1 -ML(R̂) = {λ p̂ + (1 −
λ) q̂ : 0 ≤ λ ≤ 1} with p̂ = 1/3 (a+ b+ d) and q̂ = 1/2 (b+ c).

1 1 1 2 1 2

a a a c c d
b c d b d b
c d b a b a
d b c d a c


a b c d

a 0 −2 2 2
b 2 0 0 −2
c −2 0 0 2
d −2 2 −2 0


If the first voter ı̂ with preference relation ≿ı̂: a, b, c, d abstains, the new preference profile
R̂′ yields C1 -ML(R̂′) = {p̂′} with p̂′ = 1/3 (a+ b+ c).

1 1 2 1 2

a a c c d
c d b d b
d b a b a
b c d a c


a b c d

a 0 −3 1 1
b 3 0 −1 −3
c −1 1 0 1
d −1 3 −1 0


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Thus, this new voter prefers to abstain because p̂′ ≻SD
ı̂ p̂ and p̂′ ≻SD

ı̂ q̂ and thus p̂′ ≻SD
ı̂

λ p̂+ (1− λ) q̂ for every 0 ≤ λ ≤ 1.

4.4 Monotonicity

Monotonicity describes the idea that an alternative should not be worse off if it rises in
the voters’ preferences. On the surface, monotonicity-type conditions seem to be related
to strategyproofness. While there is a connection between these two concepts (which we
make precise below), it is only a loose one. In order for strategyproofness to imply any
kind of monotonicity, one either has to assume a very strong notion of strategyproofness
or to restrict the class of SDSs. Contrary to strategyproofness, the normative appeal
of monotonicity is not clear from the voters’ point of view. If however, the alternatives
are viewed as candidates that seek to be represented in the outcome, it is natural to
demand that a rise of a candidate in the voters’ preferences should be rewarded in the
outcome. When the outcome is a single alternative (or a set of alternatives), it is fairly
unambiguous what it means to not be “worse off”: if an alternative is chosen, it should
still be chosen when it rises in the voters preferences (see, e.g., Sen, 1970; Fishburn, 1973).
But with lotteries as outcomes, there are various reasonable ways to define monotonicity;
we will consider four different notions here.

Perhaps the most straightforward definition for social decision schemes is that the
probability assigned to an alternative should not decrease if it rises in some voter’s
preferences. To make this formal, we say that for two profiles R, R̂ and two alternatives
x, y ∈ A, R̂ is an (x, y)-improvement over R if there is a voter i such that y ≿i x, x ≿̂i y,
and for all v, w ∈ A with {v, w} ≠ {x, y}, v ≿i w if and only if v ≿̂i w, and for all j ̸= i,
≿j = ≿̂j . Hence, R̂ is an (x, y)-improvement over R if voter i weakly prefers y to x in the
profile R, weakly prefers x to y in the profile R̂, and his preferences over the remaining
pairs of alternatives as well as the preferences of the remaining voters are unchanged.
We say that R̂ is an x-improvement over R if R̂ is an (x, y)-improvement over R for some
y ∈ A. Then, an SDS f satisfies absolute monotonicity if for p = f(R) and q = f(R̂), we
have q(x) ≥ p(x) whenever R̂ is an x-improvement over R. The specification “absolute”
refers to the fact that the absolute probability of x should not decrease.9

Our second notion of monotonicity, which we call relative monotonicity, prescribes
that the probability of x relative to that of y does not decrease when x is improved
over y. Formally, f satisfies relative monotonicity if for p = f(R) and q = f(R̂),
q(x)p(y) ≥ p(x)q(y) whenever R̂ is an (x, y)-improvement over R. The rationale under-
lying relative monotonicity is that a rise of x in some voter’s preferences compared to y
only allows us to draw conclusions about the probability of x relative to the probability

9For strict preferences, absolute monotonicity is equivalent to Gibbard’s (1977) “non-perverseness”,
which prescribes that the probability of x should not decrease if it is swapped with the alternative
immediately above it in the preference ranking of a single voter. A natural strengthening of absolute
monotonicity requires not only that q(x) ≥ p(x), but also that p(z) = q(z) for all z ∈ A \ {x, y}. For
strict preferences, the resulting condition is equivalent to strong SD-strategyproofness and the only
ex post efficient SDSs satisfying this property are random dictatorships (Gibbard, 1977).
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of y; while the probability of x might decrease, this can only be if the probability of y
decreases by at least the same fraction. Observe that absolute monotonicity implies rela-
tive monotonicity, since when x is improved over y and absolute monotonicity holds, the
probability of x can only increase and the probability of y can only decrease, where the
latter follows from an application of absolute monotonicity to the same pair of profiles
but in reverse order.

Third, we consider set-monotonicity, which was introduced by Brandt (2015) for set-
valued social choice functions and in that context prescribes that the set of chosen
alternatives should not change when an unchosen alternative is weakened. We adapt
set-monotonicity to SDSs by requiring that the support of the chosen lottery should
not change in such a situation. Formally, f satisfies set-monotonicity if supp(f(R)) =
supp(f(R̂)) whenever R̂ is an (x, y)-improvement over R and y ̸∈ supp(f(R)). Set-
monotonicity is not implied by absolute monotonicity (and thus relative monotonic-
ity), since absolute monotonicity has no relevant implications for the probability of
z ̸∈ {x, y} when improving x over y ̸∈ supp(f(R)). However, relative monotonicity im-
plies set-monotonicity when assuming independence of unchosen alternatives (Brandt,
2015, Def. 2). An SDS f satisfies independence of unchosen alternatives (IUA) if for
all R, R̂ ∈ RN such that Ri|{x,y} = R̂i|{x,y} for all x ∈ supp(f(R)), y ∈ A, and i ∈ N ,
it holds that f(R) = f(R′). IUA is implied by set-monotonicity and all strict ML
schemes satisfy set-monotonicity and thereby IUA. Set-monotonicity has some inter-
esting connections to strategyproofness and participation. Every set-monotonic SDS is
DD ′-strategyproof (Brandt, 2015, Rem. 6). Moreover, every set-monotonic SDS that
satisfies independence of indifferent voters also satisfies DD-participation (Brandl et al.,
2019a, Thm. 3). Independence of indifferent voters (IIV) is weaker than pairwiseness and
merely requires that the outcome of the SDS is unaffected by voters who are completely
indifferent between all alternatives.

Finally, the weakest monotonicity property we consider requires that an alterna-
tive should stay in the support if it rises in some voter’s preferences. We say that
f satisfies support-monotonicity if x ∈ supp(f(R̂)) whenever x ∈ supp(f(R)) and R̂
is an x-improvement over R. Support-monotonicity is weaker than set-monotonicity,
which we can see by considering an instance where a set-monotonic SDS violates
support-monotonicity, e.g., x ∈ supp(f(R)) and R̂ is an (x, y)-improvement over R
but x ̸∈ supp(f(R̂)). Since R is an (y, x)-improvement over R̂ and x ̸∈ supp(f(R̂)),
set-monotonicity yields supp(f(R̂)) = supp(f(R)), which contradicts x ∈ supp(f(R)).
It is easy to see that absolute monotonicity implies support monotonicity. To the con-
trary, relative monotonicity does not: improving x ∈ supp(f(R)) over y may lead to
probability 0 for both x and y, which is in accordance with relative monotonicity. The
logical relationships between the monotonicity properties are depicted in Figure 4.

For pairwise SDSs, absolute monotonicity is weaker than SD-strategyproofness.

Theorem 10. Every SD-strategyproof pairwise SDS satisfies absolute monotonicity.

Proof. We show the contrapositive. Let f be a pairwise SDS and x, y ∈ A. Assume
there are profiles R,R′ so that R′ is an (x, y)-improvement over R, p = f(R), and
q = f(R′) and q(x) < p(x). So we can find a voter i ∈ N as in the definition of an
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(x, y)-improvement with y ≿i x and x ≿′
i y where at least one of these two comparisons

is strict. There are three cases: either the first comparison is strict, or the second, or
both. We consider the case y ∼i x and x ≻′

i y; the other cases are similar.
We split up the set of alternatives other than x and y depending on whether their

probability increases or decreases from p to q. Let

A+ = {z ∈ A \ {x, y} : q(z) > p(z)} and
A− = {z ∈ A \ {x, y} : q(z) ≤ p(z)}.

We construct a new profile R̄ which consists of R and two additional voters i1, i2 with
the preferences

≿̄i1
: A+, y, x,A− and

≿̄i2
: A−, x, y, A+.

Notice that the preferences of i1 and i2 are completely opposed so that the majority
margins in R and R̄ are the same. Since f is pairwise, it follows that f(R̄) = f(R) = p.
Moreover, if i1 changes his preferences to ≿̄

′
i1
: A+, {x, y}, A−, then the resulting profile

R̄′ has the same majority margins as R′ and so f(R̄′) = f(R′) = q. From the definition
of A+ and A− and the assumption that q(x) < p(x), it follows that q ≻̄SD

i1 p. So we have
shown that f is not SD-strategyproof, which concludes the proof.

Laffond et al. (1993, Prop. 5) and Dutta and Laslier (1999, Thm. 4.3) have shown that
every C1 -ML scheme satisfies support-monotonicity. Laslier (2000, Prop. 4) has shown
the same statement for C2 -ML schemes.

Perhaps the least intuitive phenomenon of ML schemes is their failure of absolute
monotonicity. It was already observed by Fishburn (1984a) that C2 -ML violates abso-
lute monotonicity. It is easily seen that Fishburn’s example extends to all ML schemes
except C1 -ML. An example for C1 -ML and m = 7 was later given by Laslier (1997,
Ex. 6.2.9).10 For C2 -ML schemes, the conflict goes even deeper: we are not aware of
a diverse preference profile without a weak Condorcet at which some C2 -ML scheme
satisfies absolute monotonicity. If this turns out to be a general fact, it would general-
ize Theorem 8, since every violation of absolute monotonicity allows us to construct a
successful manipulation (possibly by a different voter). Clearly, all ML schemes satisfy
absolute monotonicity in profiles that admit a Condorcet winner.

While absolute monotonicity is irreconcilable with ML schemes, all of them satisfy
relative monotonicity as we show in Theorem 11. C2 -ML schemes meet an even stronger
form of relative monotonicity, which requires that the probability of a set of alternatives
X relative to that of alternatives in Y does not decrease when improving all alternatives
in X over all alternatives in Y (without changing the order within X or Y ).

Theorem 11. Every ML scheme satisfies relative monotonicity.

10The smallest example of this kind requires m = 6.
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Proof. For two profiles R, R̂ and two alternatives x∗, y∗, assume that R̂ is an (x∗, y∗)
improvement over R. Let M,M̂ ∈ RA×A be the matrices holding the majority margins
of R and R̂. Let f be some ML scheme based on τ , where τ is arbitrary, and f(R) = p
and f(R̂) = q. Then, we have that for all alternatives x, y with {x, y} ≠ {x∗, y∗},
τ(Mxy) = τ(M̂xy) and, τ(M̂x∗y∗) − τ(Mx∗y∗) = ϵ ≥ 0, since τ is monotonic. We have
that

0 ≤ qtτ(M̂)p = qtτ(M)p+ ϵ(q(x∗)p(y∗)− q(y∗)p(x∗)) ≤ ϵ(q(x∗)p(y∗)− q(y∗)p(x∗)),
(1)

where the first equality follows from the fact that q = f(R̂) ∈ MLτ (R̂) and the second
inequality follows from p = f(R) ∈ MLτ (R) and qtτ(M)p = −ptτ(M)q. If ϵ = 0, then
M̂ = M , which implies that MLτ (R̂) = MLτ (R) and thus, q = f(R̂) = f(R) = p. In
this case, relative monotonicity trivially holds. If ϵ > 0, (1) implies that q(x∗)p(y∗) −
q(y∗)p(x∗) ≥ 0, and relative monotonicity also holds.

Theorem 11 also follows from Theorem 1 of Brandl et al. (2019b), which shows that
welfare-maximizing mechanisms on so-called skew-symmetric bilinear (SSB) utility func-
tions (see, e.g., Fishburn, 1984b) entice voters to participate, i.e., voters weakly prefer
participating to abstaining. SSB utility functions allow a voter to express certain intran-
sitive preferences, such as being indifferent between all alternatives except for preferring
x to y. If such a voter joins the electorate, it leads to the same change of the majority
margins as if a voter improves x over y. Moreover, enticing this voter to participate is
equivalent to the inequality that defines relative monotonicity. Since we can view ML
schemes as welfare maximizing mechanisms, relative monotonicity follows.

Our study of maximal lottery schemes can be viewed more generally in the context of
zero-sum games. Consider a zero-sum game given by a matrix M with matrix entries
representing monetary payoffs. Say we have a monotone function τ which expresses how
much utility the players derive from a given monetary payoff. Then the strategy that
maximizes the minimal expected utility of a player is his maximin strategy in the game
τ(M), where τ is applied to each matrix entry. One can then ask how the maximin
strategy changes for different functions τ .

For example, Theorem 1 shows that different choices of τ can result in maximin strate-
gies with disjoint supports, even if M is skew-symmetric. Theorem 11 has a similarly
natural interpretation for zero-sum games. Consider two zero-sum games M and M̂
which only differ in that the row player’s payoff is higher in M̂ than in M when the
players choose the actions x and y, respectively. If (p, q) and (p̂, q̂) are pairs of maximin
strategies for M and M̂ , then relative monotonicity requires that p̂(x)q(y) ≥ p(x)q̂(y), so
the row player’s relative increase in playing x is at least as large as the column player’s
relative increase in playing y. This is indeed true for arbitrary zero-sum games, with or
without applying τ .11

11To see that this statement holds, consider two zero-sum games M and M̂ that only differ in that
M̂xy > Mxy. Then 0 ≤ p̂tM̂q − ptM̂q̂ = p̂tMq − ptMq̂ + (M̂xy − Mxy)(p̂(x)q(y) − p(x)q̂(y)). The
first equality holds since the row player’s expected payoff is at least the value of M̂ when playing the
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5 Experimental Results

We have conducted various computer simulations concerning the multiplicity, the sup-
port size, the degree of randomization, and the manipulability of ML schemes. The
stochastic preference model used for our experiments is called impartial anonymous cul-
ture (IAC). Under IAC, preference profiles are partitioned into equivalence classes with
two profiles belonging to the same class if they are identical up to permuting the vot-
ers. Every equivalence class is assumed to be equally likely. Impartial culture models
are known to significantly underestimate the likelihood of Condorcet winners (see, e.g.,
Regenwetter et al., 2006).12 Our results on all four of the above-mentioned quantities
under IAC can thus be interpreted as upper bounds. In real-world settings, one would
expect lower numbers.

5.1 Multiplicity

First, we checked the frequencies of profiles with an even number of voters for which the
C1 -ML and the C2 -ML correspondence are single-valued. Figure 7 shows the results
of these simulations. They confirm the intuition that these frequencies quickly tend to
1 when the size of the electorate increases. There are profiles for which the C2 -ML
correspondence is single-valued and the C1 -ML correspondence is not and vice versa.
Interestingly, profiles of the first type are more common (under the IAC model). This
effect is more pronounced for larger numbers of alternatives.

For all further experiments, we confined ourselves to profiles with an odd number
of voters with strict preferences. Recall that for every such profile, both the C1 -ML
and the C2 -ML correspondence are single-valued and the unique maximal lottery has
odd support size. Hence, on this domain, all C1 -ML schemes coincide and all C2 -ML
schemes coincide. For the remainder of this section, we thus simply refer to C1 -ML and
C2 -ML as the unique C1 -ML and C2 -ML scheme, respectively.

5.2 Support Size

For an odd number of voters with strict preferences, an ML scheme returns a degenerate
lottery if and only if there is a Condorcet winner. Hence, the frequency of cases where
maximal lotteries do not randomize can be directly obtained by looking at the number
of profiles that admit a Condorcet winner (see, e.g., Gehrlein, 2002; Regenwetter et al.,
2006; Laslier, 2010; Gehrlein and Lepelley, 2011; Brandt and Seedig, 2016).

maximin strategy p̂ and at most the value of M̂ when the column player plays q̂. Similarly, we get
p̂tMq − ptMq̂ ≤ 0. So we conclude that p̂(x)q(y)− p(x)q̂(y) ≥ 0 as desired.

12Feld and Grofman (1992) analyze election data from 36 real-world elections, all of which admitted
a Condorcet winner. Gehrlein and Lepelley (2011) summarize 37 empirical studies from 1955 to
2009 and concluded that “there is a possibility that Condorcet’s Paradox might be observed, but
that it probably is not a widespread phenomenon.” Similar conclusions were drawn by Regenwetter
et al. (2007), Mattei et al. (2012), and Tideman and Plassmann (2012). Laslier (2010) and Brandt
and Seedig (2016) report concrete probabilities for the existence of Condorcet winners under various
distributional assumptions using computer simulations.
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Figure 7: Frequencies of profiles R for which |C2 -ML(R)| = 1 (solid lines) and
|C1 -ML(R)| = 1 (dotted lines), respectively. Each point is based on 100 000
samples according to the IAC model.

Figure 8 shows the distribution of small supports of the two canonical ML schemes
under IAC for different numbers of alternatives and voters, e.g., for m = 21 and n = 501,
C1 -ML and C2 -ML randomize over 5 or more alternatives in 31.4% and 21.3% of the
cases, respectively. The average support sizes for these parameters are still relatively
low (3.18 and 2.87, respectively). As an alternative to IAC, we have also conducted sim-
ulations for a spatial model where alternatives and voters are represented as uniformly
distributed points in the 10-dimensional unit cube. A voter then ranks alternatives
according to the Euclidian distance between him and the alternatives, with closer alter-
natives being more preferred. In this more realistic model, the average support size was
less than 1.8 for m ≤ 21 and any number of voters. In general, C2 -ML results in slightly
lower average support sizes than C1 -ML.

The extreme case of disjoint C1 -ML and C2 -ML supports (see Theorem 1) turns out to
be extremely rare. We have found only a handful of these examples in millions of tested
profiles. Moreover, the supports of C1 -ML and C2 -ML almost always coincide (largely
due to the fact that Condorcet winners are likely to exist). We have not encountered a
single C1 -ML SD-efficiency violation (see Theorem 3) during our simulations.
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Figure 8: Distributions of the support sizes of C1 -ML (left) and C2 -ML (right) based on
100 000 samples according to the IAC model for every combination of param-
eters. The bars represent the frequency of a support with size 1, 3, 5, and 7 or
more stacked from bottom to top. Frequencies lower than 4% are not labeled.

5.3 Degree of Randomization

The support size is a rather crude value to measure the degree of randomization be-
cause it ignores the values of non-zero probabilities. We therefore evaluate the de-
gree of randomization of a lottery p ∈ ∆(A) in terms of Shannon entropy H(p) =
−
∑

x∈supp(p) p(x) logb p(x). We set the basis of the logarithm b = m to normalize the
maximal entropy to 1, which is attained for the uniform lottery.

Figure 9 shows a considerable disparity between the average degree of randomization
for C1 -ML and C2 -ML, which widens as the number of voters or the number alternatives
increases.13 This behavior is also reflected when plotting the average distance between
C1 -ML and C2 -ML according to the L1-norm or Manhattan distance, which is defined
as the sum of differences of probabilities. Somewhat surprisingly, the average degree of
randomization of C2 -ML tends to slightly decrease for large n. For C1 -ML, no consistent
trend for all plotted numbers of alternatives can be identified.

13The high degree of randomization exhibited by C1 -ML can also be backed by formal arguments. For
example, we showed that—when preferences are strict, n is odd, and there is no Condorcet winner—
the highest probability that C1 -ML assigns to any alternative is 1/3.
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Figure 9: Average normalized Shannon entropies of ML schemes with the lower bound-
ary of each colored area corresponding to C2 -ML and the upper boundary
corresponding to C1 -ML. Additionally, the average distances between the
outcomes of both ML schemes according to the L1-norm are displayed as solid
lines. Each point is based on 100 000 samples according to the IAC model.

In order to get a better intuition for how to interpret these numbers, Figure 10 com-
pares the average degree of randomization of C2 -ML with those of random dictatorship
and an interpretation of plurality that returns a uniform lottery over all alternatives that
are top-ranked by the largest number of voters. As expected, the degree of randomiza-
tion of C2 -ML is lower than that of random dictatorship and, for reasonable numbers
of voters, higher than that of the plurality rule. This comparison underlines how little
randomization is required by C2 -ML.

5.4 Strategyproofness

The analytic results we obtained in Section 4.3 suggest a strong connection between the
existence of Condorcet winners and manipulability of C2 -ML schemes. When the num-
ber of voters is large compared to the number of alternatives, there is a high probability
that every preference relation appears at least once in a randomly chosen profile under
the IAC model. Moreover, when there is an odd number of voters with strict prefer-
ences, which implies that the majority relation is strict, the notions of weak and strict
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Figure 10: Average normalized Shannon entropies of C2 -ML (solid line) compared to
random dictatorship (dashed line) and the plurality rule (dotted line). Each
point is based on 100 000 samples according to the IAC model.

Condorcet winners coincide. Hence, one would expect the probability that C2 -ML is
SD-manipulable for a random profile to converge to the probability that no Condorcet
winner exists as the number of voters grows. Figure 11 shows the empirical frequency
that C2 -ML is SD-manipulable in a randomly chosen profile under the IAC model for
various numbers of alternatives and voters (solid lines). For a fixed number of alterna-
tives, this frequency converges relatively quickly to the probability that no Condorcet
winner exists (dashed lines), which confirms the above intuition. In addition, Figure 11
displays the frequency of profiles at which C1 -ML is SD-manipulable for 5 alternatives
(dashed line). It is significantly lower than for C2 -ML for the same number of alterna-
tives and decreases as the number of voters increases. This can be explained by observing
that the absolute values of majority margins are unlikely to be 1 for large numbers of
voters, which renders it improbable that a single voter can affect the majority relation,
and thus the returned lottery, at all.
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Figure 11: SD-manipulability of C2 -ML (solid lines) with confidence intervals for a con-
fidence level of 95% (in color) and manipulability of C1 -ML for m = 5 (dotted
line). Each point is based on 2 000 preference profiles sampled according to
the IAC model and on testing all possible deviations for each type of voter.
The dashed lines show the limit probabilities that no Condorcet winner exists
for n → ∞ derived by Gehrlein (2002).

6 Conclusions and Discussion

We have carried out an extensive comparison of ML schemes. Our analytical findings
and related results from the literature are summarized in Figure 4 while our experimen-
tal results are illustrated in Figures 7, 8, 9, 10, and 11. These results can be used to
guide the decision whether to use C1 -ML or C2 -ML schemes. We showed that C2 -ML
schemes are the only SD-efficient ML schemes (and even satisfy the stronger notion of
PC -efficiency). Moreover, we proved that all majoritarian and neutral SDSs violate
SD-efficiency, a statement that may be of independent interest. C1 -ML efficiency fail-
ures are, however, extremely rare and may not appear in actual use. We also showed
that, while all ML schemes are SD-manipulable, they are PC -strategyproof whenever
a Condorcet winner exists (which is the case for most real-world preference profiles)
and satisfy relative monotonicity. Moreover, C2 -ML schemes are the only homogeneous
ML schemes that satisfy SD-participation (and even satisfy the stronger notion of PC -
participation). Unsurprisingly, C1 -ML is less manipulable then C2 -ML, simply because
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single voters are often unable to affect the outcome of majoritarian SDSs. This obser-
vation is connected to another potential drawback of C1 -ML: it is less responsive than
C2 -ML. When there are three alternatives and no majority ties, C1 -ML will randomize
with equal probabilities whenever there is no Condorcet winner. While uniform lotteries
may be easier to implement in the real world and perhaps be more acceptable to the
general public, this rigidity comes at a cost. Consider, for example, the profile given in
Figure 1. Here, C1 -ML selects b with probability 1/3 even though 97 of 100 voters prefer
a to b and no reasonable (deterministic) voting rule would select b. C2 -ML, on the other
hand, puts probability 0.04 on alternative b.

Finally, we evaluated the degree of randomization of ML schemes via computer sim-
ulations. For few alternatives, Condorcet winners are likely to exist in which case ML
schemes do not randomize at all. The average degree of randomization (in terms of Shan-
non entropy) of C2 -ML schemes is lower than that of C1 -ML schemes and significantly
lower than that of random dictatorship.
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